
 

 

UNIVERSITY	  OF	  VALLADOLID	  	  
E.T.S.I.	  TELECOMUNICACIÓN	  

 
 

	  
	  
	  

Master	  Thesis	  
	  

GRADO	  EN	  INGENIERÍA	  DE	  TECNOLOGÍAS	  DE	  TELECOMUNICACIÓN	  
	  
	  

Teaching	  Networking,	  Hands-‐On	  Labs	  
	  

	  

Author:	  
	  

Mr.	  Bruno	  Olivar	  Trinchet	   	  
	  

Tutor:	  
	  

Prof.	  Dr.-‐Ing.	  Udo	  Garmann	  
	  

Deggendorf,	  3rd	  February	  2015	  



   

 II 

  



   

 III 

 
 

 

 

	  TITLE:	   Teaching	  Networking,	  Hands-‐on	  Labs 

AUTHOR:	   Mr.	  Bruno	  Olivar	  Trinchet	  	  

TUTOR:	   Prof.	  Dr.-‐Ing.	  Udo	  Garmann	  

DEPARTAMENT:	   Elektro-‐	  und	  Medientechnik	  

Technische	  Hochschule	  Deggendorf	  
	  

	  

	  
	  	  TRIBUNAL	  	   	  
	  
PRESIDENT:	  

VOCAL:	   	  

SECRETARY:	  

Date:	   3rd	  February	  2015	  

Qualification:	  
	  

	  

  



   

 IV 

  



   

 V 

Abstract and Key Words 
 
This project has been focused on the design and implementation of a hands-on laboratory, 
where students would be able understand and learn the different network protocols 
operations. Once dealt with the installation, we have done some tests focused on Wide 
Area Network emulation and, as a further step, the results have been analyzed and 
discussed.  
 
In order to complete said tests, we have implemented some network traffic analysis tools, 
such as Traceroute, Ping or Wireshark. The latter in particular, due to its ease to capture, 
show and filter traffic from many different network protocols. 
 
First of all, the theoretical basic concepts, essential to understand network protocols 
operation, have been properly described. 
 
Then, once explained the theoretical fundamentals, the entire laboratory installation has 
been developed; starting with the hardware components assembly and then following with 
the software part installation. This second section also includes the setup of each service 
or protocol needed for the proper network operation. 
 
Finally, in the last main section, tests performed in the laboratory have been detailed, once 
fully configured the network. These tests have been focused on Wide Area Network 
emulation through the WANem software tool, through which we have introduced some 
delays and packet loss into our network. At the same time, with the above mentioned 
network tools (Traceroute, Ping or Wireshark) we have tested protocols’ behaviour when 
experiencing these delays or packet loss. 
 
 
Key Words: Network, Protocols, Laboratory, Emulation, WANem, Wireshark, TCP/IP. 
  



   

 VI 

  



   

 VII 

Resumen y Palabras Clave 
 
Este proyecto se ha centrado en el diseño e implementación de un laboratorio de 
docencia en el que los alumnos puedan comprender y estudiar el funcionamiento de los 
diferentes protocolos de red. Tras la instalación se han realizado diferentes pruebas, 
centrándose en la emulación de red de área amplia (WAN – Wide Area Network) para, 
posteriormente, analizar los resultados de dichas pruebas. 
 
Para llevar a cabo las diferentes pruebas se han empleado herramientas de análisis, tales 
como Traceroute, Ping o Wireshark, esta última en mayor medida, ya que permite 
capturar tráfico de una gran cantidad de protocolos y mostrar por pantalla el contenido del 
tráfico capturado. 
 
Primeramente, se han descrito los aspectos teóricos fundamentales, necesarios para 
comprender el funcionamiento de los protocolos empleados. 
 
A continuación, una vez sentada la base teórica esencial, se ha desarrollado al completo 
la implementación del laboratorio, comenzando por el montaje de la parte hardware y 
siguiendo con la instalación de la parte software, tanto de las herramientas de análisis de 
tráfico como los servicios o protocolos fundamentales para el correcto funcionamiento de 
la red. 
 
Finalmente, en el último bloque principal se detallan las pruebas realizadas en el 
laboratorio, una vez que la red ha sido puesta en funcionamiento. Estas pruebas han 
girado entorno a la emulación de red de área amplia (WAN – Wide Area Network) 
mediante la herramienta WANem, a través de este software se han introducido en la red 
retardos y pérdidas de paquetes. A su vez, mediante las herramientas mencionadas 
anteriormente, se ha analizado el comportamiento de los diferentes protocolos de red (IP, 
TCP o HTTP) al sufrir estos retardos y pérdidas de paquetes. 
 
 
Palabras clave: Redes, Protocolos, Laboratorio, Emulación, WANem, Wireshark, TCP/IP. 
 

  



   

 VIII 

  



   

 IX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Acknowledgements 
 
 
 
First and foremost, I have to thank my thesis tutor, Mr. Udo Garmann. Without his trust 
placed on me, this project would have never been accomplished. 
 
Most importantly, none of this could have happened without my family. To my parents and 
my sister – Thanks for being always positive, for being by my side whenever I needed. 
 
I would also like to show gratitude to Ramón J. Durán to make possible this great Erasmus 
experience. 
 
Finally, I would never have arrived here without help and support of my best colleague 
Nadia Nohales. 
 

  



   

 X 

  



   

 XI 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

“Innovation distinguishes between a leader and a follower” 
Steve Jobs  



   

 XII 

  



   

 XIII 

 
ABSTRACT AND KEY WORDS .................................................................................................... V 
RESUMEN Y PALABRAS CLAVE .............................................................................................. VII 
1. – INTRODUCTION .................................................................................................................... 15 

1.1. – MOTIVATION AND DESCRIPTION ............................................................................................ 15 
1.2. – PROJECT GOALS .................................................................................................................. 15 
1.3. – STRUCTURE ......................................................................................................................... 16 

2. – THEORETICAL CONCEPTS ................................................................................................. 17 
2.1. – INTRODUCTION .................................................................................................................... 17 

2.1.1. – Architectural Principles ............................................................................................... 17 
2.1.2. – Design and Implementation ........................................................................................ 17 

2.2. – BASIC IP ADDRESS STRUCTURE ........................................................................................... 20 
2.2.1. – Classful Addressing .................................................................................................... 20 
2.2.2. – Subnet Masks ............................................................................................................. 21 
2.2.3. –Broadcast Addresses ................................................................................................... 21 

2.3. – ARP (ADDRESS RESOLUTION PROTOCOL) ............................................................................ 22 
2.3.1. – ARP working ............................................................................................................... 22 

2.4. – INTERNET PROTOCOL (IP) .................................................................................................... 24 
2.4.1. – IPv4 Header ................................................................................................................ 24 
2.4.2. – IP Forwarding .............................................................................................................. 26 

2.5. – DYNAMIC HOST CONFIGURATION PROTOCOL (DHCP) ........................................................... 28 
2.5.1. – Introduction ................................................................................................................. 28 
2.5.2. – Architecture ................................................................................................................. 28 
2.5.3. – DHCP Protocol Operation ........................................................................................... 29 

2.6. – DOMAIN NAME SYSTEM (DNS) AND NAME RESOLUTION ........................................................ 31 
2.6.1. – Introduction ................................................................................................................. 31 
2.6.2. – Name Servers and Zones ........................................................................................... 31 
2.6.3. – Domain Name System Protocol .................................................................................. 32 
2.6.4. – DNS Message Format ................................................................................................ 33 
2.6.5. – DNS with TCP or UDP ................................................................................................ 34 

2.7. – TRANSMISSION CONTROL PROTOCOL (TCP) ......................................................................... 35 
2.7.1. – Introduction ................................................................................................................. 35 
2.7.2. – TCP Segment Structure .............................................................................................. 35 
2.7.3. – TCP Connection .......................................................................................................... 36 

2.8. – HYPERTEXT TRANSFER PROTOCOL (HTTP) .......................................................................... 39 
2.8.1 – Introduction .................................................................................................................. 39 
2.8.2. – HTTP Connections: Persistent and Non-Persistent .................................................... 39 
2.8.3. – HTTP Message Format ............................................................................................... 41 

3. – LABORATORY INSTALLATION ........................................................................................... 45 
3.1. – HARDWARE .......................................................................................................................... 45 

3.1.1. – Available Equipment ................................................................................................... 45 
3.1.2. – The Environment ......................................................................................................... 46 
3.1.3. – Setting up Network-Server as a Router ...................................................................... 48 
3.1.4. – Wide Area Network emulator (WANem) ..................................................................... 51 

3.2. – PROTOCOLS AND SERVERS .................................................................................................. 52 
3.2.1. – Operative System ....................................................................................................... 52 
3.2.2. – Servers ........................................................................................................................ 53 

3.3. – CONCLUSIONS ..................................................................................................................... 62 
4. – WIRESHARK LABS ............................................................................................................... 63 

4.1. – THE ENVIRONMENT ......................................................................................................... 63 
4.2. – WANEM INTERFACE ............................................................................................................. 64 

4.2.1. – Home Screen .............................................................................................................. 64 



   

 XIV 

4.2.2. – Basic Mode ................................................................................................................. 65 
4.2.3. – Advanced Mode .......................................................................................................... 65 

4.3. – WIRESHARK TESTS .............................................................................................................. 66 
4.3.1. – GETTING STARTED .................................................................................................. 66 
4.3.2. – IP (Internet Protocol) ................................................................................................... 68 
4.3.3. – TCP - Transmission Control Protocol ......................................................................... 73 
4.3.4. – DNS - Domain Name Server ....................................................................................... 75 
4.3.5. – HTTP - Hypertext Transfer Protocol ........................................................................... 76 

5. – CONCLUSIONS AND FUTURE LINES ................................................................................. 79 
5.1. – CONCLUSIONS ..................................................................................................................... 79 
5.2. – FUTURE LINES ..................................................................................................................... 79 

BIBLIOGRAPHY ........................................................................................................................... 81 
APPENDIX A – QUESTIONS & TASKS ....................................................................................... 83 

LABORATORY INSTALLATION ........................................................................................................... 83 
The Environment ...................................................................................................................... 83 
Setting up Network-Server as a Router ................................................................................... 83 
Wide Area Network emulator (WANem) .................................................................................. 83 
Servers ..................................................................................................................................... 83 

WIRESHARK LABS .......................................................................................................................... 85 
WANem Interface ..................................................................................................................... 85 
Wireshark Tests ....................................................................................................................... 85 



   

 15 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

1. – Introduction 

1.1. – Motivation and Description 
 
Nowadays, network related subjects need hands-on laboratories to learn and understand 
protocols’ behaviour. To comprehend these protocols, we need to create a suitable 
environment where to test and verify how they behave under different conditions. The 
environment which will be implemented, enables us to modify networks’ conditions, like 
delay or packet loss. 
 
The best way to modify these networks’ conditions is by using a software tool, which will 
allow us to do it in a simple way; this tool is a Wide Area Network Emulator (also known 
as WANem) and it is distributed as a modified Linux-based Operative System. 
 
Once these elements are modified, some tests will be done to analyze the strength of our 
network. Through these modifications we implement a Wide Area Network into our Local 
Area Network, so we will be able to emulate a real-life situation where some packets are 
delayed and other packets get lost. 
 
This kind of emulation could be really useful for teaching purposes, but also for other 
areas like software developing. When a new webpage or application is launched, 
developers often want to test its behaviour in an unusual situation, like a delayed 
connection between server and client or a connection where some data packets are 
randomly lost. 

1.2. – Project goals 
 
The main goal will be to build a complete environment for the students, enabling them 
to: 
 

• Obtain hands-on learning about networking protocols. 
 

• Emulate a real Wide Area Network with delays and packet loss as well as  to check 
out how these protocols behave under different network conditions. 

 
• Perform network tests and analyze their results, making use of network tools, such 

as Traceroute, Ping and Wireshark. 
 

This project could also have another secondary purpose: 
 

• Learn about how to design and implement a hands-on teaching-networking 
laboratory, assembling all the essential hardware and installing all the needed 
software to have a Linux-based environment working properly. 

 
• Review some theoretical concepts related to basic network protocols, which are 

essential to build an operating Local Area Network. 



   

 16 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

1.3. – Structure 
 
The project will be split in three main sections. The first one will be focused on the main 
network protocols and its theoretical concepts. The second section aims to explain the 
laboratory installation, starting by the hardware components assembly and following by 
the software part installation. This section also includes the set up of every server, service 
or protocol needed for the proper network operation. Finally, in the third main part, 
network tests will be performed and the analysis of results will be discussed. 
 
Following to the aforementioned three main sections, some conclusions drawn from the 
findings are presented and they will be focused on the whole thesis. We will also discuss 
some future lines, which could be developed in an upcoming complementary project, with 
some additional network tests and their appropriate analysis of results. 
 
 
 

 
 
 
 
 
 
 
  



   

 17 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2. – Theoretical Concepts 
 

This first section aims to explain the main protocols and 
its theoretical concepts. We need to understand these 
protocols and then, in the following sections, we will be 
able to test and analyze them. We will describe all the 
basic protocols, even ARP and DHCP, although these 
protocols are not going to be tested later, but they are 
essential for network’s operation. The other protocols will 
be IP, TCP, DNS and HTTP. 

 

2.1. – Introduction 
 

2.1.1. – Architectural Principles 
 
The TCP/IP protocol suite allows computers, smartphones, and embedded devices of all 
sizes to communicate with each other. It forms the basis for what is called the global 
Internet, or the Internet, a wide area network (WAN) of about two billion. Although many 
people consider the Internet and the World Wide Web (WWW) to be interchangeable 
terms, we ordinarily refer to the Internet in terms of its ability to provide basic 
communication of messages between computers. We refer to WWW as an application that 
uses the Internet for communication. It is perhaps the most important Internet application. 

 

2.1.2. – Design and Implementation 
 
Although a protocol architecture may suggest a certain approach to implementation, it 
usually does not include a mandate. Consequently, we make a distinction between the 
protocol architecture and the implementation architecture, which defines how the concepts 
in a protocol architecture may be implemented.  
 
Design philosophy for networking protocols involves multiple layers of implementation (and 
design). This approach is now called layering and is the usual approach to implementing 
protocol suites. With layering, each layer is responsible for a different facet of the 
communications. Layers are beneficial because a layered design allows developers to 
evolve different portions of the system separately, often by different people with somewhat 
different areas of expertise. 
 

OSI Model  
 
The most frequently mentioned concept of protocol layering is based on a standard called 
the Open Systems Interconnection (OSI) model as defined by the International 
Organization for Standardization (ISO). Figure 1 shows the standard OSI layers, including 



   

 18 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

their names, numbers, and a few examples. The Internet’s layering model is somewhat 
simpler, as we will see later. 
 

 
Figure 1. OSI Model [1] 

 
 
Although the OSI model suggests that seven logical layers may be desirable for modularity 
of a protocol architecture implementation, the TCP/IP architecture is normally considered 
to consist of five. There was much debate during the early 1970s, but finally TCP/IP “won”.  
 

TCP/IP Model 
 
Figure 2 depicts the layering inspired by the ARPANET reference model, which was 
ultimately adopted by the TCP/IP suite. The structure is simpler than the OSI model, but 
real implementations include a few specialized protocols that do not fit cleanly into the 
conventional layers. 
 

 
Figure 2. TCP/IP Model 

 
 
Starting from the top of Figure 2, we could see the Application layer. The application layer 
is where network applications and their application-layer protocols reside. The Internet’s 



   

 19 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

application layer includes many protocols, such as the HTTP protocol (which provides for 
Web document request and transfer), SMTP (which provides for the transfer of e-mail 
messages), and FTP (which provides for the transfer of files between two end systems). 
We’ll see that certain network functions, such as the translation of human-friendly names 
for Internet end systems like www.example.com to a 32-bit network address, are also done 
with the help of a specific application-layer protocol, the domain name system (DNS). 
 
Then we have the Transport layer, which transports application-layer messages between 
application endpoints. In the Internet there are two transport protocols, TCP and UDP, 
either of which can transport application-layer messages. TCP provides a connection-
oriented service to its applications. This service includes guaranteed delivery of 
application-layer messages to the destination and flow control (that is, sender/receiver 
speed matching). TCP also breaks long messages into shorter segments and provides a 
congestion-control mechanism, so that a source throttles its transmission rate when the 
network is congested. 
 
The UDP protocol provides a connectionless service to its applications. This is a no-frills 
service that provides no reliability, no flow control, and no congestion control. We will refer 
to a transport-layer packet as a segment. 
 
After that we could find the Internet’s network layer, which is responsible for moving 
network-layer packets (known as datagrams) from one host to another. The Internet 
transport-layer protocol (TCP or UDP) sends a transport-layer segment and a destination 
address to the network layer. The network layer provides the service of delivering the 
segment to the transport layer in the destination host. This layer includes the IP Protocol, 
which defines the fields in the datagram. There is only one IP protocol, and all Internet 
components that have a network layer must run the IP protocol. 
 
The Internet’s network layer routes a datagram through a series of routers between the 
source and destination. To move a packet from one node (host or router) to the next node 
in the route, the network layer relies on the services of the link layer. In particular, at each 
node, the network layer sends the datagram down to the link layer, which delivers the 
datagram to the next node along the route.  
 
With TCP/IP, each link-layer interface on each computer (including routers) has at least 
one IP address. IP addresses are enough to identify a host, but they are not very 
convenient for humans to remember or manipulate (especially the long addresses used 
with IPv6). In the TCP/IP world, the DNS is a distributed database that provides the 
mapping between host names and IP addresses (and vice versa). 
 
While the job of the link layer is to move entire frames from one network element to 
another network element, the job of the physical layer is to move the individual bits into the 
frame from one node to the next. The protocols in this layer depend again on the actual 
transmission medium of the link (for example, twisted-pair copper wire, single-mode fiber 
optics).  
  



   

 20 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.2. – Basic IP Address Structure 
 

2.2.1. – Classful Addressing 
 
IPv4 has 4,294,967,296 possible addresses in its address space and because of the large 
number of addresses, it is convenient to divide the address space into different classes. IP 
addresses are grouped by type and size. Most of the IPv4 address groups are subdivided 
to a single address and used to identify a single network interface of a computer. These 
addresses are called unicast addresses. 
 

 
Figure 3. IPv4 Addresses 

 
Here (Figure 3) we see that the five classes are named A, B, C, D, and E. The A, B, and C 
class spaces were used for unicast addresses. If we look more carefully at this addressing 
structure, we can see how the relative sizes of the different classes and their 
corresponding address ranges really work. 
 

 
Figure 4. IPv4 space partitioning 

 
The partitioning into classes introduces a trade-off between the number of available 
networks and the number of hosts that can be assigned to the given network. 
 
  



   

 21 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.2.2. – Subnet Masks 
 
The subnet mask is an assignment of bits used by a host or router to determine how the 
network and subnetwork information is partitioned from the host information in a 
corresponding IP address. Subnet masks for IP are the same length as the corresponding 
IP addresses (32 bits for IPv4). They are typically configured into a host or router in the 
same way as IP addresses—either statically (typical for routers) or using some dynamic 
system such as the Dynamic Host Configuration Protocol (DHCP). For IPv4, subnet masks 
may be written in the same way an IPv4 address is written (i.e., dotted-decimal). Figure 5 
represents some examples of subnet masks in IPv4. 
 

 
Figure 5. IPv4 subnet mask examples 

 

2.2.3. –Broadcast Addresses 
 
Broadcast address is the last address in the network, and it is used for addressing all the 
nodes in the network at the same time. It means that IP packet, where the destination 
address is broadcast address, is sent to all nodes of the IP network. It is important for 
remote announcements in network segment. The subnet broadcast address is formed by 
setting the network/subnetwork portion of an IPv4 address to the appropriate value and all 
the bits in the Host field to 1. 
 
The subnet broadcast address is built by inverting the subnet mask and performing a 
bitwise OR operation with the address of any of the computers on the subnet (or, 
equivalently, the network/subnetwork prefix). Keep in mind that the result of a bitwise OR 
operation is 1 if either input bit is 1. 
  



   

 22 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.3. – ARP (Address Resolution Protocol) 
 
For TCP/IP networks, the Address Resolution Protocol (ARP) [RFC0826] provides a 
dynamic mapping between IPv4 addresses and the hardware addresses used by various 
network technologies. It is important to note here that the network-layer and link-layer 
addresses are assigned by different authorities. For network hardware, the primary 
address is defined by the manufacturer of the device and is stored in permanent memory 
within the device, so it does not change. On the other hand, the IP address assigned to a 
network interface is installed by the user or network administrator. The IP addresses 
assigned to a portable device may be changed when it is moved. 
 
Address resolution is the process of discovering the mapping from one address to another. 
For the TCP/IP protocol suite using IPv4, this is accomplished by the ARP, which is a 
generic protocol and it is designed to support mapping between many different types of 
addresses. In practice it is almost always used to map between 32-bit IPv4 addresses and 
Ethernet-style 48-bit MAC addresses. 
 
ARP provides a dynamic mapping from a network-layer address to a corresponding 
hardware address. It happens automatically and adapts to changes over time without 
requiring reconfiguration by a system administrator. If a host changes its network interface 
card, it MAC address will change (but retaining its assigned IP address), ARP would 
continue to operate properly after some delay. ARP operation normally does not need any 
system administrator changing its configuration. 
 

2.3.1. – ARP working 
 
In the example above you see an example of an ARP table on a Computer A. As you can 
see there is only one entry, this computer has learned that the IP address 192.168.1.2 has 
been mapped to the MAC address 00:0C:29:63:AF:D0. 
 

 
Figure 6. ARP Request 

 
 



   

 23 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Here (Figure 6) we have two computers and we could see their IP and MAC address. 
Computer A want to send a ping to computer B but the ARP table is empty so we have no 
clue what the MAC address of computer B is. First of all computer A will send an ARP 
Request. This message basically says “Who has 192.168.1.2 and what is your MAC 
address?” Since we don’t know the MAC address we will use the broadcast MAC address 
for the destination (FF:FF:FF:FF:FF:FF). This message will reach all computers in the 
Local Area Network. 
 

 
Figure 7. ARP Reply 

 
 
Computer B will answer with a ARP reply (Figure 7). This reply will say “that’s me! And this 
is my MAC address”. Computer A can now add the MAC address to its ARP table and start 
forwarding data to computer B. 
 
 
  



   

 24 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.4. – Internet Protocol (IP) 
 
IP is the most important protocol of the TCP/IP protocol suite. All TCP, UDP, ICMP, and 
IGMP data are transmitted as IP datagrams. IP provides a best-effort, connectionless 
datagram delivery service. When we say “best-effort”, we mean there are no guarantees 
that an IP datagram arrives to its destination successfully. When something goes wrong, 
such as a router temporarily running out of buffers, IP has a simple error-handling 
algorithm: throw away some data (usually the last datagram that arrived). Any required 
reliability must be provided by the upper layers (e.g., TCP). 
 
IP does not maintain any connection state information about related datagrams within the 
network elements. Each datagram is handled independently from all other others so this 
also means that IP datagrams can be delivered out of order. These IP datagrams may be 
duplicated in transit or they may have their data altered as the result of errors. Again, some 
protocol above IP (usually TCP) has to manage all of these potential problems in order to 
provide an error-free delivery for applications. 
 
IP supports a number of options that may be selected on a per-datagram basis. Most of 
these options were introduced in [RFC0791] at the time IPv4 was being designed, when 
the Internet was considerably smaller and when threats from malicious users were less 
important. As a consequence, many of the options are no longer practical or desirable 
because of the limited size of the IPv4 header or concerns regarding security. Most of the 
standardized options are rarely or never used in the Internet today. Options such as 
Source and Record Route, for example, require IPv4 addresses to be placed inside the 
IPv4 header. 
 

2.4.1. – IPv4 Header 
 
The normal size of the IPv4 header is 20 bytes, unless options are present (which is rare). 
The 4 bytes in a 32-bit value are transmitted in the following order: bits 0–7 first, then bits 
8–15, then 16–23, and bits 24–31 last. Figure 8 shows the format of an IPv4 datagram.  
 

 
Figure 8. IPv4 Header 



   

 25 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

The first field (only 4 bits) is the Version field. It contains the version number of the IP 
datagram: 4 for IPv4. The Internet Header Length (IHL) field is the number of 32-bit words 
in the IPv4 header, including any options. Because this is also a 4-bit field, the IPv4 header 
is limited to a maximum of fifteen 32-bit words or 60 bytes. The normal value of this field 
(when no options are present) is 5. 
 
Following the header length, the original specification of IPv4 [RFC0791] specified a Type 
of Service (ToS) byte. Use of these never became widespread, so eventually this 8-bit field 
was split into two smaller parts and redefined by a set of RFCs ([RFC3260], [RFC3168], 
[RFC2474] and others). The first 6 bits are now called the Differentiated Services Field (DS 
Field), and the last 2 bits are the Explicit Congestion Notification (ECN) field or indicator 
bits. These fields are used for special processing of the datagram when it is forwarded. 
 
The Total Length field is the total length of the IPv4 datagram in bytes. Using this field and 
the IHL field, we know where the data portion of the datagram starts, and its length. 
Because this is a 16-bit field, the maximum size of an IPv4 datagram (including header) is 
65,535 bytes. If the Total Length field were not provided, the IPv4 implementation would 
not know how much of a 46-byte Ethernet frame was really an IP datagram, as opposed to 
padding, leading to possible confusion. 
 
The Identification field helps to identify each datagram sent by an IPv4 host. To ensure 
that the fragments of one datagram are not confused with those of another, the sending 
host normally increments an internal counter by 1 each time a datagram is sent and copies 
the value of the counter into the IPv4 Identification field. This field is most important for 
implementing fragmentation. 
 
The Time-to-Live field, or TTL, sets an upper limit on the number of routers through which 
a datagram can pass. It is initialized by the sender to some value (64 is recommended 
[RFC1122], although 128 or 255 is not uncommon) and decremented by 1 by every router 
that forwards the datagram. When this field reaches 0, the datagram is thrown away, and 
the sender is notified with an ICMP message. This prevents packets from getting caught in 
the network forever if an unwanted routing loop occurs. 
 
The Protocol field in the IPv4 header contains a number indicating the type of data found in 
the payload portion of the datagram. The most common values are 17 (for UDP) and 6 (for 
TCP). This provides a demultiplexing feature so that the IP protocol can be used to carry 
payloads of more than one protocol type. Although this field originally specified the 
transport-layer protocol the datagram is encapsulating, it is now understood to identify the 
encapsulated protocol, which may or not be a transport protocol. 
 
The Header Checksum field is calculated over the IPv4 header only. This is important to 
understand because it means that the payload of the IPv4 datagram (e.g., TCP or UDP 
data) is not checked for correctness by the IP protocol. To help ensure that the payload 
portion of an IP datagram has been correctly delivered, other protocols must cover any 
important data that follows the header with their own data-integrity-checking mechanisms. 
 
Every IP datagram contains the Source IP Address of the sender of the datagram and the 
Destination IP Address of where the datagram is destined. These are 32-bit values for 
IPv4. 
 



   

 26 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.4.2. – IP Forwarding 
 
IP forwarding is simple, especially for a host. If the destination is directly connected to the 
host (e.g., a point-to-point link) or on a shared network (e.g., Ethernet), the IP datagram is 
sent directly to the destination—a router is not required. Otherwise, the host sends the 
datagram to a single router (called the default router – default input into the IP routing 
table) and lets the router deliver the datagram to its destination. This simple scheme 
manages most host configurations. 
 
We begin by noting that most hosts today can be configured to be routers as well as hosts, 
and many home networks use an Internet-connected PC to act as a router. What 
differentiates a host from a router to IP is how IP datagrams are handled: a host never 
forwards datagrams it does not originate, whereas routers do. 
 
IP protocol can receive a datagram either from another protocol on the same machine 
(TCP, UDP, etc.) or from a network interface. The IP layer has some information in 
memory, usually called a IP routing table or forwarding table, which it searches each time 
it receives a datagram to send. When a datagram is received from a network interface, IP 
first checks if the destination IP address is one of its own IP addresses (i.e., one of the IP 
addresses associated with one of its network interfaces) or some other address for which it 
should receive traffic such as an IP broadcast or multicast address. If so, the datagram is 
delivered to the protocol module specified by the Protocol field in the IPv4 header. If the 
datagram is not destined for one of the IP addresses being used locally by the IP module, 
then: if the IP layer was configured to act as a router, the datagram is forwarded (that is, 
handled as an outgoing datagram); otherwise the datagram is silently discarded. 
 

 
Figure 9. IP routing table 

 
As we can observe in this capture (Figure 9), IP forwarding table contains the following 
information fields, at least conceptually: 
 

• Destination: This contains a 32-bit field (or 128-bit field for IPv6) used for matching 
the result of a masking operation (see the next bulleted item). The destination can 
be as simple as zero, for a “default route” covering all destinations, or as long as the 
full length of an IP address, in the case of a “host route” that describes only a single 
destination. 
 

• Gateway (Next-hop): This contains the 32-bit IPv4 address of the next IP entity 
(router or host) to which the datagram should be sent. The next-hop entity is 
typically on a network shared with the system performing the forwarding lookup, 
meaning both share the same network prefix. 
 



   

 27 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

• Genmask: This contains a 32-bit field applied as a bitwise AND mask to the 
destination IP address of a datagram being looked up in the forwarding table. The 
masked result is compared with the set of destinations in the forwarding table 
entries. 
 

• Interface: This contains an identifier used by the IP layer to reference the network 
interface that should be used to send the datagram to its next hop. For example, it 
could refer to a host’s 802.11 wireless interface (wlanX), a wired Ethernet interface 
(ethX). 

 
  



   

 28 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.5. – Dynamic Host Configuration Protocol (DHCP) 
 

2.5.1. – Introduction 
 
DHCP or Dynamic Host Configuration Protocol is a client/server protocol used to 
dynamically assign IP-address parameters to a DHCP client (8). DHCP is very widely 
used, in both enterprises and home networks. Even the most basic home router devices 
support embedded DHCP servers. DHCP clients are incorporated into all common client 
operating systems and a large number of embedded devices such as network printers and 
VoIP phones. These devices usually use DHCP to get their IP address, subnet mask, 
router IP address, and DNS server IP address. 
 
The design of DHCP is based on an earlier protocol called the Internet Bootstrap Protocol 
(BOOTP) [RFC0951][RFC1542], which is now effectively obsolete. DHCP extends the 
BOOTP model with the concept of leases and can provide all information required for a 
host to operate. Leases allow clients to use the configuration information for an agreed-
upon amount of time. A client may request to renew the lease and continue operations, 
subject to agreement from the DHCP server. BOOTP and DHCP are backward compatible 
in the sense that BOOTP-only clients can make use of DHCP servers and DHCP clients 
can make use of BOOTP-only servers. BOOTP, and therefore DHCP as well, are carried 
using UDP/IP. Clients use port 68 and servers use port 67. 
 
DHCP provides configuration parameters to Internet hosts and it consists of two different 
parts: 
 

• A protocol for delivering host-specific configuration parameters from a DHCP server 
to a host  

• A mechanism for allocation of network addresses to hosts. 
 
 

2.5.2. – Architecture 
 
DHCP is built on a client-server model, where designated DHCP server hosts allocate 
network addresses and deliver configuration parameters to dynamically configured hosts.  
The term "server" refers to a host providing initialization parameters through DHCP, and 
the term "client" refers to a host requesting initialization parameters from a DHCP server.    
DHCP supports three mechanisms for IP address allocation (9): 
 

• Automatic allocation: DHCP assigns a permanent IP address to a client 
• Dynamic allocation: DHCP assigns an IP address to a client for a limited period of 

time 
• Manual allocation: The network administrator assigns an IP address to the client. 

DHCP is used only to transfer the assigned address to the client. 
 
In dynamic allocation, a DHCP client requests the allocation of an IP address. The server 
answers with one address selected from a pool of available addresses. Typically, the pool 
is a contiguous range of IP addresses allocated specifically for DHCP’s use. The address 
given to the client is allocated for only a specific amount of time, called the lease duration. 



   

 29 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

The client is permitted to use the IP address until the lease expires, although it may 
request extension of the lease as required. In most situations, clients are able to renew 
leases they wish to extend. 
 
In a particular network one or more of these different mechanisms can be used. For 
instance, in our environment, fixed hosts (like web-server, network-server or WANem) 
have been manually allocated, but DHCP server dynamically assigns IP addresses to the 
clients. 
 

2.5.3. – DHCP Protocol Operation 
 
DHCP messages are essentially BOOTP messages with a special set of options. When a 
new client attaches to a network, it first discovers what DHCP servers are available and 
what addresses they are offering. Then, it decides which server will use and which 
address it desires and requests it from the offering server (while informing all the servers of 
its choice). Unless the server has allocated this IP address the address in the meantime, it 
responds by acknowledging the address allocation to the requesting client. In the following 
image (Figure 10), we will see the time sequence of events between a typical client and 
server. 
 

 
Figure 10. Typical DHCP exchange 

 
 
In the above image (Figure 10) we could find a typical DHCP exchange, where a client first 
broadcasts a DHCPDISCOVER message. Then, the server receiving the request, may 
respond with a DHCPOFFER message, including an offered IP address in the “Your” IP 
Address field. (Other configuration options, such as IP address of DNS server or subnet 
mask are often included). The offer message includes the lease time (T), which provides 
the upper bound on the amount of time the address can be used if it is not renewed. The 
message also contains the renewal time (T1), which is the amount of time before the client 
should attempt to renew its lease with the server from which it acquired its lease, and the 
rebinding time (T2), which bounds the time in which it should attempt to renew its address 
with any DHCP server. By default, T1 = (T/2) and T2 = (7T/8). 
 
After receiving one or more DHCPOFFER messages from one or more servers, the client 
determines which offer it will accept and broadcasts a DHCPREQUEST message including 



   

 30 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

the Server Identifier option. The Requested IP Address option is set to the address 
received in the selected DHCPOFFER message.  
 
After handling the binding, the selected server responds with a DHCPACK message, 
indicating to the client that the address binding can now be used. Otherwise, in the case 
where the server cannot allocate the address contained in the DHCPREQUEST message 
(e.g., it has been allocated in some other way or is not available), the server responds with 
a DHCPNAK message. 
 
Once the client receives the DHCPACK message and other associated configuration 
information, it may probe the network to ensure that the address provided is not in use 
(e.g., by sending an ARP request for the address). If the client determines that the address 
is already in use, the client stops using the address and sends a DHCPDECLINE message 
to the server to indicate that the address cannot be used. After a recommended 10s delay, 
the client will retry. If a client elects to renounce to its address before its lease time expires, 
it sends a DHCPRELEASE message and this IP address gets freed. 
  



   

 31 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.6. – Domain Name System (DNS) and Name Resolution 
  

2.6.1. – Introduction 
 
DNS is a distributed client/server networked database that is used by TCP/IP applications 
to map between host names and IP addresses (and vice versa). We use the term 
distributed because no single site on the Internet knows all of the information. Each site 
(university department, campus, company, or department within a company, for example) 
maintains its own database of information and runs a server program that other systems 
across the Internet (clients) can query. The DNS provides the protocol that allows clients 
and servers to communicate with each other and also a protocol for allowing servers to 
exchange information. 
 
The set of all names used with DNS constitutes the DNS name space. This space is 
partitioned hierarchically and is case insensitive. The current DNS name space is a tree of 
domains with an unnamed root at the top. The top echelons of the tree are called top-level 
domains (TLDs), which include generic TLDs (gTLDs), country-code TLDs (ccTLDs), and 
internationalized country-code TLDs (IDN ccTLDs), plus a special infrastructure TLD 
called, for historical reasons, ARPA [RFC3172]. 
 
A domain name consists of a sequence of labels separated by periods. The name 
represents a location in the name hierarchy, where the period is the hierarchy delimiter 
and descending down the tree takes place from right to left in the name. 
 

2.6.2. – Name Servers and Zones 
 
The unit of administrative delegation, in the language of DNS servers, is called a zone. A 
zone is a subtree of the DNS name space that can be administered separately from other 
zones. Every domain name exists within some zone, even the TLDs that exist in the root 
zone. Whenever a new record is added to a zone, the DNS administrator for the zone 
allocates a name and additional information (usually an IP address) for the new entry and 
enters these into the name server’s database. 
 
A DNS server can contain information for more than one zone. At any hierarchical change 
point in a domain name, a different zone and containing server may be accessed to 
provide information for the name. This is called a delegation. At a small campus, for 
example, one person could do this each time a new server is added to the network, but in 
a large enterprise the responsibility would have to be delegated (probably by departments 
or other organizational units), as one person could not keep up with the work. 
 
Name servers contain information such as name-to-IP-address mappings that may be 
obtained from three sources. The name server obtains the information directly from the 
zone database, as the result of a zone transfer (e.g., for a slave server), or from another 
server in the course of processing a resolution. 
 
In the first case, the server is said to contain authoritative information about the zone and 
may be called an authoritative server for the zone. Such servers are identified by name 
within the zone information. Most name servers (except some of the root and TLD servers) 



   

 32 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

also cache zone information they learn, up to a time limit called the time to live (TTL). They 
use this cached information to answer queries. Doing so can greatly decrease the amount 
of DNS message traffic that would otherwise be carried on the Internet. 
 
When answering a query, a server indicates whether the information it is returning has 
been derived from its cache or from its authoritative copy of the zone. When cached 
information is returned, it is common for a server to also include the domain names of the 
name servers that can be contacted to retrieve authoritative information about the 
corresponding zone. 
 

2.6.3. – Domain Name System Protocol 

 
DNS protocol consists of two main parts: a query/response protocol used for performing 
queries against the DNS for particular names, and another protocol for name servers to 
exchange database records (zone transfers). It also has a way to notify secondary servers 
that the zone database has evolved and a zone transfer is necessary (DNS Notify), and a 
way to dynamically update the zone (dynamic updates). The most typical usage is a 
simple query/response to look up the IPv4 address that corresponds to a domain name. 
 
Most often, DNS name resolution is the process of mapping a domain name to an IPv4 
address. DNS query/response operations are supported over the distributed DNS 
infrastructure consisting of servers deployed locally at each site or ISP, and a special set 
of root servers. There is also a special set of generic top-level domain servers used for 
scaling some of the larger gTLDs, including COM and NET. 
 
As of mid-2011, there are 13 root servers named by the letters A through M. There are 
also 13 gTLD servers, also labeled A through M. By contacting a root server and possibly 
a gTLD server, the name server for any TLD in the Internet can be discovered. These 
servers are mutually coordinated to provide the same information. Some of them are not a 
single physical server but instead a group of servers (over 50 for the J root server) that use 
the same IP address. 
 

 
Figure 11. DNS Recursive Query 



   

 33 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.6.4. – DNS Message Format 
 
There is one basic DNS message format [RFC6195]. It is used for all DNS operations 
(queries, responses, zone transfers, notifications, and dynamic updates), as we could see 
in Figure 12. The basic DNS message begins with a fixed 12-byte header followed by four 
variable-length sections: questions (or queries), answers, authority records, and additional 
records. 
 

 
Figure 12. DNS Message Format 

 
In the fixed-length header, the Transaction ID field is set by the client and returned by the 
server. It lets the client match responses to requests. The second 16-bit word includes a 
number of flags and other subfields (Figure 13). 
 

 
Figure 13. DNS Flags 

 
Beginning from the left bit, QR is a 1-bit field: 0 means the message is a query; 1 means it 
is a response. The next is the OpCode, a 4-bit field. The normal value is 0 (a standard 
query) for requests and responses. Other values are: 4 (notify), and 5 (update). Next is the 
AA bit field that indicates an “authoritative answer” (as opposed to a cached answer). TC 
is a 1-bit field that means “truncated”. With UDP, this flag being set means that the total 
size of the reply exceeded 512 bytes, and only the first 512 bytes of the reply were 
returned. RD is a bit field that means “recursion desired”. It tells the server to perform a 
recursive query. If the bit is not set, and the requested name server does not have an 
authoritative answer, the requested name server returns a list of other name servers to 
contact for the answer. RA is a bit field that means “recursion available”. This bit is set in 
the response if the server supports recursion. Root servers generally do not support 
recursion, and the force clients to perform iterative queries to complete name resolution. 



   

 34 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

The Z bit field is reserved for future use. The AD bit field is set to true if the contained 
information is authenticated, and the CD bit is set to true if security checking is disabled. 
The Response Code (or RCODE) field is a 4-bit field with the return code of possible 
values. The common values include 0 (no error) and 3 (name error or “nonexistent 
domain,” written as NXDOMAIN). A list of the first 11 error codes could also be checked in 
DNS documentation. A name error is returned only from an authoritative name server and 
means that the domain name specified in the query does not exist. 
 

2.6.5. – DNS with TCP or UDP 
 
The well-known port number for DNS is 53, for both UDP and TCP. The most common 
format uses the UDP/IPv4 datagram structure. When a resolver issues a query and the 
response comes back with the TC bit field set (“truncated”), the size of the true response 
exceeded 512 bytes, so only the first 512 bytes are returned by the server. The resolver 
may issue the request again, using TCP, which now must be a supported configuration 
[RFC5966]. This allows more than 512 bytes to be returned because TCP breaks up large 
messages into multiple segments. 
 
If UDP is used, both the resolver and the server application software must implement their 
own timeout and retransmission. RFC1536 suggests starting with a timeout of at least 4s, 
and that subsequent timeouts result in an exponential increase of the timeout. 
 
 
 
  



   

 35 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.7. – Transmission Control Protocol (TCP) 
 

2.7.1. – Introduction 
 
TCP is the Internet’s transport-layer, connection-oriented and reliable transport protocol. In 
this section, we’ll see that in order to provide reliable data transfer, TCP relies on many of 
the underlying principles discussed previously, including error detection, retransmissions, 
cumulative acknowledgments, timers, header fields for sequence and acknowledgment 
numbers. TCP is defined in RFC 793, RFC 1122, RFC 1323, RFC 2018, and RFC 2581. 
 

2.7.2. – TCP Segment Structure 
 
The TCP segment consists of header fields and a data field. The data field contains a part 
of application data. The MSS limits the maximum size of a segment’s data field, so when 
TCP sends a large file, such as an image as part of a Web page, it typically breaks the file 
into chunks of size MSS (except for the last chunk, which will often be less than the MSS).  
 
Interactive applications, however, often transmit data chunks that are smaller than the 
MSS; for example, with remote login applications like Telnet, the data field in the TCP 
segment is often only one byte. Because the TCP header is typically 20 bytes (12 bytes 
more than the UDP header), segments sent by Telnet may be only 21 bytes in length. 
 

 
Figure 14. TCP Segment Format 



   

 36 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Figure 14 shows the structure of the TCP segment. The header includes source and 
destination port numbers, which are used for multiplexing/demultiplexing data from/to 
upper-layer applications. Also, the header includes a checksum field. A TCP segment 
header also contains the following fields: 
 

• The 32-bit sequence number field and the 32-bit acknowledgment number field are 
used by the TCP sender and receiver in implementing a reliable data transfer 
service. 
 

• The 16-bit receive window field is used for flow control. We will see shortly that it is 
used to indicate the number of bytes that a receiver is willing to accept. 

 
• The 4-bit header length field (Data Offset) specifies the length of the TCP header in 

32-bit words. The TCP header can be of variable length due to the TCP options 
field. (Typically, the options field is empty, so that the length of the typical TCP 
header is 20 bytes.) 

 
• The optional and variable-length options field is used when a sender and receiver 

negotiate the maximum segment size (MSS) or as a window scaling factor for use in 
high-speed networks. A time-stamping option is also defined. In RFC 854 and RFC 
1323 we could find additional details. 

 
• The flag field (Control Bits) contains 6 bits. The ACK bit is used to indicate that the 

value carried in the acknowledgment field is valid; that is, the segment contains an 
acknowledgment for a segment that has been successfully received. The RST, 
SYN, and FIN bits are used for connection setup and teardown. Setting the PSH bit 
indicates that the receiver should pass the data to the upper layer immediately. 
Finally, the URG bit is used to indicate that there is data in this segment that the 
sending-side upper-layer entity has marked as “urgent.” The location of the last byte 
of this urgent data is indicated by the 16-bit urgent data pointer field. TCP must 
inform the receiving-side upper-layer entity when urgent data exists and pass it a 
pointer to the end of the urgent data. (In practice, the PSH, URG, and the urgent 
data pointer are not used.) 

 

2.7.3. – TCP Connection 
 
TCP is connection-oriented protocol because before one application process can begin to 
send data to another, the two processes must first “handshake” with each other—that is, 
they must send some preliminary segments to each other to establish the parameters of 
the ensuing data transfer. As part of TCP connection establishment, both sides of the 
connection will initialize many TCP state variables associated with the TCP connection. 
 
The TCP “connection” is not an end-to-end TDM or FDM circuit as in a circuit-switched 
network. It is not a virtual circuit, as the connection state resides entirely in the two end 
systems. Because the TCP protocol runs only in the end systems and not in the 
intermediate network elements (routers and link-layer switches), the intermediate network 
elements do not maintain TCP connection state. In fact, the intermediate routers are 
completely ignorant to TCP connections; they see datagrams, not connections. 
 



   

 37 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

A TCP connection provides a full-duplex service: If there is a TCP connection between 
Process A on one host and Process B on another host, then application-layer data can 
flow from Process A to Process B at the same time as application-layer data flows from 
Process B to Process A. A TCP connection is also always point-to-point, that is, between a 
single sender and a single receiver. 
 

TCP Connection: Establishment and Termination 
 
A TCP connection is defined to be a 4-tuple consisting of two IP addresses and two port 
numbers. More precisely, it is a pair of endpoints or sockets where each endpoint is 
identified by a (IP address, port number) pair. A TCP connection typically goes through 
three phases: setup, data transfer (called established), and teardown (closing). As we will 
see, some of the difficulty in creating a robust TCP implementation is handling all of the 
transitions between and among these phases correctly. A typical TCP connection 
establishment and close (without any data transfer) is shown in Figure 15. 
 
 

 
Figure 15. TCP connection (establishment and close) 

 
 
In this image (Figure 15) we could see a normal TCP connection establishment and 
termination. The client starts a three-way handshake to exchange initial sequence 
numbers carried on SYN segments for the client and server. The connection terminates 
after each side has sent a FIN and received an acknowledgment for it, so the final 
exchange is a four-way handshake. 
 
 
Now we will see the initial three-way handshake in more detail: 
 

• First, the active opener (normally called the client – Host A) sends a SYN segment 
(a TCP/IP packet with the SYN bit field turned on in the TCP header) specifying the 
port number of the peer to which it wants to connect and the client’s initial 
sequence. This is segment 1. 



   

 38 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
• After that, the server (Host B) responds with its own SYN segment containing its 

initial sequence number. This is segment 2. The server also acknowledges the 
client’s SYN by ACKing plus 1. A SYN consumes one sequence number and is 
retransmitted if lost. 

 
• Finally the connection is established when the client (Host A) acknowledge this SYN 

from the server by ACKing plus 1. This is segment 3. 
 
 
When the connection is completely established, data transfer (request and reply in Figure 
14) begins. After this data exchange ends, the connection is closed with a four-way 
handshake: 
 

• The active closer (Host A) sends a FIN segment specifying the current sequence 
number the receiver expects to see. The FIN also includes an ACK for the last data 
sent in the other direction. 

• The passive closer (Host B) responds by ACKing value M + 1 to indicate its 
successful receipt of the active closer’s FIN. At this point, the application is notified 
that the other end of its connection has performed a close. Typically this results in 
the application initiating its own close operation. 

 
• The passive closer (Host B) then effectively becomes another active closer and 

sends its own FIN. The sequence number is equal to N. 
 

• To complete the close, the final segment contains an ACK for the last FIN. Note that 
if a FIN is lost, it is retransmitted until an ACK for it is received. 

 
 
 
  



   

 39 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

2.8. – HyperText Transfer Protocol (HTTP) 
 

2.8.1 – Introduction 
 
The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol, is at the 
heart of the Web. It is defined in [RFC 1945] and [RFC 2616]. HTTP is implemented in two 
programs: a client program and a server program. The client program and server program, 
executing on different end systems, talk to each other by exchanging HTTP messages. 
HTTP defines the structure of these messages and how the client and server exchange 
the messages. 
 
A Web page consists of objects. An object is simply a file—such as an HTML file, a JPEG 
image, a Java applet, or a video clip—that is addressable by a single URL. Most Web 
pages consist of a base HTML file and several referenced objects. The base HTML file 
references the other objects in the page with the objects’ URLs. Each URL has two 
components: the hostname of the server that houses the object and the object’s path 
name. If a Web page contains HTML text and five JPEG images, then the Web page has 
six objects: the base HTML file plus the five images. 
 
Web browsers (such as Internet Explorer and Firefox) implement the client side of HTTP. 
In the context of the Web, browser and client are used indistinctly. Web servers, which 
implement the server side of HTTP, are addressable by a URL. Some popular Web 
servers include Apache, which we will use later in the Laboratory Installation section, and 
Microsoft Internet Information Server. 
 
HTTP uses TCP as its underlying transport protocol (rather than running on top of UDP). 
The HTTP client first initiates a TCP connection with the server. Once the connection is 
established, the browser and the server processes access TCP through their socket 
interfaces. On the client side the socket interface is the door between the client process 
and the TCP connection; on the server side it is the door between the server process and 
the TCP connection. 
 
TCP provides a reliable data transfer service to HTTP. This implies that each HTTP 
request message sent by a client process eventually arrives intact at the server; similarly, 
each HTTP response message sent by the server process eventually arrives intact at the 
client. Here we see one of the great advantages of a layered architecture—HTTP need not 
worry about lost data or the details of how TCP recovers from loss or reordering of data 
within the network. That is the job of TCP and the protocols in the lower layers of the 
protocol stack. 
 
Because an HTTP server maintains no information about the clients, HTTP is said to be a 
stateless protocol. If a particular client asks for the same object twice in a period of a few 
seconds, the server resends the object, as it has completely forgotten what it did earlier. 
 

2.8.2. – HTTP Connections: Persistent and Non-Persistent 
 
Depending on the application and on how the application is being used, the series of 
requests may be made back-to-back, periodically at regular intervals, or intermittently. 



   

 40 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

When this client-server interaction is taking place over TCP, the application developer 
needs to make an important decision – should each request/response pair be sent over a 
separate TCP connection, or should all of the requests and their corresponding responses 
be sent over the same TCP connection? 
 

 
Figure 16. HTTP Non-Persistent and Persistent Connections 

 
As we can observe in Figure 16 – Left, with the non-persistent (multiple) connections we 
could find the following behaviour: 
 

• The HTTP client process initiates a TCP connection to the web server on port 
number 80, which is the default port number for HTTP. 

 
• The HTTP client sends an HTTP request message to the server. (We will discuss 

HTTP messages in some in the Wireshark Labs section) 
 

• The HTTP server process receives the request message, retrieves the object /from 
its storage, encapsulates the object in an HTTP response message, and sends the 
response message to the client. 

 
• The HTTP server process tells TCP to close the TCP connection. (But TCP doesn’t 

actually terminate the connection until it knows for sure that the client has received 
the response message properly). 

 
• The HTTP client receives the response message. The TCP connection terminates. 

The message indicates that the encapsulated object is an HTML file. The client 
extracts the file from the response message, examines the HTML file, and finds 
references to the other HTML objects. 

 
• The first four steps are then repeated for each of the rest of the objects. 

 
 
Otherwise, with persistent connections (Figure 16 – Right), the server leaves the TCP 
connection open after sending a response, so requests and responses between the same 
client and server can be sent over the same connection. In particular, an entire Web page 
(for example, the base HTML file and the rest of HTML files) can be sent over a single 



   

 41 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

persistent TCP connection. Moreover, multiple Web pages residing on the same server 
can be sent from the server to the same client over a single persistent TCP connection. 
 
Typically, the HTTP server closes a connection when it isn’t used for a certain time (a 
configurable timeout interval). When the server receives the back-to-back requests, it 
sends the objects back-to-back. The default mode of HTTP uses persistent connections 
with pipelining. 
 

2.8.3. – HTTP Message Format 
 

Request Message 
 
The first line of an HTTP request message is called the request line, the next lines are 
called the header lines. The request line has three fields: the method field, the URL field, 
and the HTTP version field. The method field can take on several different values, 
including GET, POST, HEAD, PUT, and DELETE. The most of HTTP request messages 
use the GET method. The GET method is used when the browser requests an object, with 
the requested object identified in the URL field.  
 

 
Figure 17. HTTP – GET Request 

 
First of all, in Figure 17 we could see that the message is written in ordinary ASCII text. 
Second, we see that the message consists of seven lines, each followed by a carriage 
return and a line feed. The last line is followed by an additional carriage return and line 
feed. Although this particular request message has seven lines (the main lines), a request 
message can have many more lines or as few as one line. 
 
Now let’s look at the header lines in the example. The header line Host: 192.168.206.2 
specifies the host on which the object resides. It’s a local host, so here we could find 
directly its IP address instead of its Domain Name. By including the Connection:	  keep-‐
alive header line, the browser is telling the server that it wants to continue with persistent 
connections; it does not want the server to close the connection after sending the 
requested object. 
 
The User-‐agent: header line specifies the user agent, that is, the browser type that is 
making the request to the server. Here the user agent is Mozilla/5.0, a Firefox browser. 
This header line is useful because the server can actually send different versions of the 
same object to different types of user agents. 



   

 42 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Finally, the Accept-‐language: header indicates that the user prefers to receive a Spanish, 
English or German version of the object, if such an object exists on the server; otherwise, 
the server should send its default version. The Accept-‐language: header is just one of 
many content negotiation headers available in HTTP. 
 

 
Figure 18. HTTP – General Format of a Request 

 
We see that the general format closely follows our earlier example. However, after the 
header lines (and the additional carriage return and line feed) there is an “entity body”. The 
entity body is empty with the GET method, but is used with the POST method. An HTTP 
client often uses the POST method when the user fills out a form—for example, when a 
user provides search words to a search engine. With a POST message, the user is still 
requesting a Web page from the server, but the specific contents of the Web page depend 
on what the user entered into the form fields. If the value of the method field is POST, then 
the entity body contains what the user entered into the form fields. 
 
The HEAD method is similar to the GET method. When a server receives a request with 
the HEAD method, it responds with an HTTP message but it leaves out the requested 
object. Application developers often use the HEAD method for debugging. The PUT 
method is often used in conjunction with Web publishing tools. It allows a user to upload 
an object to a specific path (directory) on a specific Web server. The PUT method is also 
used by applications that need to upload objects to Web servers. The DELETE method 
allows a user, or an application, to delete an object on a Web server. 
 

Response Message 
 
Now we will see a typical example of a HTTP response message. It has three sections: an 
initial status line, header lines, and then the entity body. The entity body contains the 
requested object itself. The status line has three fields: the protocol version field, a status 
code, and a corresponding status message. In this example, the status line indicates that 
the server is using HTTP/1.1 and that everything is OK (Success Code: 200) 
 



   

 43 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 19. HTTP – Response Message 

 
 
The server uses the Connection:	  Keep-‐Alive header line to tell the client that it is not 
going to close the TCP connection after sending the message. The Date: header line 
indicates the time and date when the HTTP response was created and sent by the server. 
Keep in mind that this is not the time when the object was created or last modified; it is the 
time when the server retrieves the object from its file system, inserts the object into the 
response message, and sends the response message. The Server: header line indicates 
that the message was generated by an Apache Web server; it is analogous to the User-‐
agent: header line in the HTTP request message. 
 
The Last-‐Modified: header line indicates the time and date when the object was created 
or last modified. The Last-‐Modified: header is critical for object caching, both in the local 
client and in network cache servers (also known as proxy servers). The Content-‐Length:	  
header line indicates the number of bytes in the object being sent. The Content-‐Type: 
header line indicates that the object in the entity body is HTML text. (The object type is 
officially indicated by the Content-‐Type: header and not by the file extension.) 
 
Now we have some common status codes and associated phrases include [18]: 
 

• 200 OK: Request succeeded and the information is returned in the response. 
 

• 301 Moved Permanently: Requested object has been permanently moved; the new 
URL is specified in Location: header of the response message. The client software 
will automatically retrieve the new URL. 

 
• 400 Bad Request: This is a generic error code indicating that the request could not 

be understood by the server. 
 

• 404 Not Found: The requested document does not exist on this server. 
 

• 505 HTTP Version Not Supported: The requested HTTP protocol version is not 
supported by the server. 

  



   

 44 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 

  



   

 45 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

3. – Laboratory Installation 
This section focuses on explaining how we have the 
laboratory installed. As a first step, the available 
hardware will be detailed and as a next step we will 
explain the set up process. Next, we will talk about the 
software tools we have chosen, how to install and how 
they have been configured. 

The main protocols, such as DHCP, DNS or IP, and their 
basic configuration will be also explained. These 
protocols need to be set up correctly in order to get our 
LAN working properly. 

Then we will detail the Wide Area Network emulator 
software used, the available versions and its basic 
configuration. As WANem will be our basic tool in the 
‘Wireshark Labs’ section, it is important to have this 
server well configured. 

3.1. – Hardware 
 
When installing a laboratory, we first need some knowledge about the available 
equipment. We need to decide which machine is the most appropriate for each service, 
verifying that the hardware meets the requirements. Once clear about the laboratory’s 
structure and the hardware distribution, we are ready to begin with the hardware 
installation. Once successfully installed, we begin with the software part (i.e. Operative 
System, protocols and servers). 

3.1.1. – Available Equipment 
 
First of all we will describe which is the hardware available in the laboratory. We can split 
hardware in two different parts: 
 

• Hosts: clients and servers (computer case, screens, keyboards and mice) 
• Other devices: routers, switches, external Ethernet cards, RJ45 Ethernet LAN cable 

(cat 5 and cat 6) 
 
Then we have to assign a function to each machine and distribute them properly. Once we 
have all the hardware in its correct place, we need to connect the Local Area Network 
cables to the servers, hosts and other devices. As there will be a lot of RJ45 cables, we 
will need some colour code to identify said connections. The chosen schema has been the 
as follows: 
 

• Yellow cable: Client è Switch 
• Red cable: Internal servers è Switch 
• Green cable: Server è Outgoing to Internet 

 
The exact hardware to be used by each device, its brand name and what is the model 
number should be as follows. 



   

 46 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
• Plug & play switch used has to be: 

 
Ø Netgear JGS524 

 
• Manual switch, allowing us to choose between LAN or Internet, is: 

 
Ø Delock Ethernet Switch RJ45 10/100 Mb/s 4-Port manual 

 
• The computers used for the clients are: 

 
Ø HP Compaq dx6100 MT 

 
• The main server, which is running inside the two virtual machines, is: 

 
Ø Dell Vostro  

 
• The Wide Area Network emulator software is running on: 

 
Ø HP Compaq dx6100 MT 

 

3.1.2. – The Environment 
 
Once we know what the available equipment is, we have to think about the network’s 
distribution. There are several possibilities however we need to select the one which 
closely fits our network. We are going to study two options, first a simple one and then 
another one more complicated but also more useful.  

First Layout 
 
Here we have a complete network’s diagram with the first layout. We can see every host 
with their own IP and MAC addresses (Those addresses are not changing when 
implementing    the second layout). 

 
Figure 20. Environment – First layout (with manual Switch) 



   

 47 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

If we observe the diagram (Figure 20), we see that Dell Vostro is the main “real” host and it 
runs inside two virtual machines: the Network-Server and the Web-Server. Both virtualized 
machines are connected to the LAN, but the Web-Server is connected through the 
WANem host and the Network-Server is connected directly to this LAN. 
 
The other devices shown are a manual switch and a non-configurable switch. The second 
one, Netgear JGS524, is connecting the clients to the rest of the network (being LAN or 
Internet). The first one allows us to choose (manually) if we want to work with the emulated 
WAN or with Internet. 
 

Second Layout 
 
There is another option to implement this environment. In this other way, the manual 
switch is removed and we add a second NIC (Network Interface Card) to Network-Server 
machine. This host will be configured to receive outgoing traffic from the Local Area 
Network and send it out of the laboratory through the new NIC. We have to edit the IP 
routing table in Network-Server, adding a new default route. In this case we would have 
this other network layout: 
 

 
Figure 21. Environment – Second layout 



   

 48 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

This second environment (Figure 21) could at first sight seem simple to implement, 
however as our Network-Server is a virtual machine it will be rather more complicated. It 
requires some configuration by the administrator, but it is worth it for the following reasons. 
 
If we choose to implement our network following this second option, when a client in the 
LAN types on a web browser “www.j103.lan” it will connect with the local Web-Server 
through the WANem host. On the other hand, if a client types, for example, 
“www.google.com” on its web browser, the Network-Server will realize this connection 
goes outside the Local Area Network and it will send it to the next hop. 
 
When possible, it is always advisable to implement this second network layout. The 
advantages are clear: we don’t have to choose between one network or another, we can 
work with both at the same time. Maybe one client wants to work with the Local Area 
Network to do some tests with the WANem host, but another client wants to work with 
Internet. This would only be possible with this second layout. If we have to choose 
manually between one network or another, all the clients must work with the same 
network. 
 

3.1.3. – Setting up Network-Server as a Router 
 

Network-Server – Two Network Interface Cards 
 
To implement this second network layout, we need to configure Network-Server as a 
router. It will distinguish between internal and outgoing traffic and it will send this second 
one outside the laboratory, through its second NIC (Network Interface Card). 
 
Both Network-Server and Web-Server have been installed as virtual machines into Dell 
Vostro host. This provides many advantages, such as opportunity to add different virtual 
network interfaces and assign virtual IP and MAC addresses to each one in an easy way. 
So we can have only one real NIC (Network Interface Card) and share it between Network-
Server and Web-Server, and of course each one could have its own independent 
addresses. 
 
On the other hand, having these hosts virtualized adds some difficulties to our 
environment. One of the most important problems appears when we try to add external 
devices into a virtualized machine, such as USB Network Interface Cards. 
 
We are using VMware as virtualization software, and this software does not allow the 
virtual machine to manage USB ports until the “guest” system has completely booted up. 
So when the guest machine’s kernel is booting up, it cannot “see” any USB device (such 
as the USB Network Interface Card).  
 
In Network-Server we need one interface for the LAN’s traffic and another one for the 
outgoing traffic. If we observe the file “FICHERO INTERFACES” we can see how, as the 
kernel didn’t see this USB NIC while system was booting up, the Network-Manager has 
written the IP routing table irrespective of the USB Network Interface Card. As a result, 
Network-Server doesn’t have outgoing connection from the laboratory. 
 



   

 49 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

The solution could seem simple: if we write a new IP routing table including the USB NIC, 
once the machine has detected it, everything should be fixed. By using “route” command 
we could add the proper line into the IP routing table to send outgoing traffic through the 
USB Network Interface Card. 
 
First we need to remove the existing default route (“route del default”) and then, simple 
typing “route	  add	  default	  gw	  192.168.136.1” we will add the proper line to the IP routing table. 
This line will set up USB NIC as default route (for outgoing traffic). [More options about this 
command could be checked simply typing “man route”]. 
 
Unfortunately this could only be a short-term solution, it is not definitive. It’s not really 
useful if we have to type manually the IP routing table each time we boot Network-Server. 
Keep in mind that if the Network-Server machine doesn’t have any outgoing connection 
from the laboratory, nobody else will have it because Network-Server is working as 
laboratory’s router. 
 
Another solution, and more useful, could be to use “rc.local” file. This file is located in 
“/etc/rc.local” and, it allows us to execute command lines written inside, each time the 
system is booted. We can edit “rc.local” file and add a new default route to send outgoing 
traffic through the USB NIC. This line could be: “sbin/route add default gw 192.168.136.1” 
(Figure 22). Keep in mind that we need to activate SUID on “route” command if we want to 
execute it from the “rc.local”. 
 

 
Figure 22. File “rc.local” 

 
 
Now another problem related to USB NIC pops up: “route” command can only write a 
default route if that network is completely reachable at the time of writing. When “rc.local” 
executes “route” command, that network is not reachable yet (Figure 23), so we need to 
add “sleep 30” before “route” command is executed. Thus, “rc.local” waits 30 seconds and 
then it writes a new default route into the IP routing table, once the wished network is 
reachable. 
 

 
Figure 23. Error – Network Unreachable 

 
 
 



   

 50 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

To sum up, Network-Server machine is now configured and, after the system has booted 
up only with the internal network card detected (eth0), “rc.local” file waits 30 seconds until 
the outgoing network is reachable and then it writes the default outgoing route (through 
eth1) into the IP routing table. 
 

Network-Server – Forwarding traffic 
 
In this final step to get Network-Server working as a router, we need to configure it to 
forward all the traffic. In this Ubuntu distribution, the ip forward byte is disabled by default 
because normally said option is not needed. We will enable it only in Network-Server host, 
which is going to work as a router. 
 
To enable this option we need to type in a terminal: “sudo	  echo	  1	  >	  /proc/sys/net/ipv4/ip	  
forward” and we also have to uncomment the following line into the file /etc/sysctl.conf :  
“#	  net.ipv4.ip	  forward=1”. Keep in mind that if we wish to uncomment a line, we only need to 
remove the # symbol at the beginning. 
 

Network-Server – IP Masquerading 
 
Once we have ip forwarding activated, we need to enable the IP masquerading. With this 
function we will make reachable the networks outside of the laboratory from the Local Area 
Network through the Network-Server. So Network-Server will receive traffic from the LAN 
through its first Network Interface Card and it will send it out from the laboratory through its 
second Network Interface Card. 
 
Needed command lines for IP Masquerade activation will be described below: 
 
“sudo	  iptables	  -‐t	  nat	  -‐A	  POSTROUTING	  -‐o	  eth0	  -‐j	  MASQUERADE”	  
	  
“sudo	  iptables	  -‐A	  FORWARD	  -‐i	  eth1	  -‐o	  eth0	  -‐m	  state	  -‐–state	  RELATED,ESTABLISHED	  -‐j	  ACCEPT”	  
	  
“sudo	  iptables	  -‐A	  FORWARD	  -‐i	  eth0	  -‐o	  eth1	  -‐j	  ACCEPT”	  
	  

	  
Figure 24. IP Tables (ipv4) 



   

 51 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

As we can see in this capture (Figure 24), we have already introduced the ip tables in 
Network-Server, but we have to save IPTables rules permanently. Unless they are saved, 
they will be lost after the next system reboot, as they are stored in volatile memory. [19] 
We can store it with the following command line: 
 
“iptables-‐save	  >	  /etc/iptables/rules.v4” 
 
At last, we have Network-Server working as a full router. It differences between internal 
and external traffic and it will send it through one NIC or another in each case. 

 

3.1.4. – Wide Area Network emulator (WANem) 
 

Introduction 
 
This part will briefly explain what are the main options to be set up in the WANem server to 
get it working properly. We will also describe some details, such as the version that we use 
or some essential options we have to configure the first time we boot this WANem server. 

Installation 
 
In the official web page we have two available versions: One is the stable version (v2.3) 
but it is quite old, it was last modified in 2011. The other one is the Beta 2 version (v3.0 
Beta 2) and it was uploaded in 2014, February. Although is a Beta version, it is stable 
enough to work with it. 
 
We also need this version because the other one (v2.3) is not possible to install in the hard 
drive, we would use it as a live distribution. It would be really useless, as each time we 
boot our WANem server, we would have to configure it again. 
 
Once we have the WANem v3.0 Beta 2 ISO file downloaded, we have to burn it into a USB 
drive or a CD and then we are ready to start with the installation. To install WANem into 
the hard drive, we have to boot live version first and then, in the desktop, we will find an 
option to install it. By simply by following the instructions, we should get WANem server 
properly installed into the hard drive. 
  



   

 52 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

3.2. – Protocols and Servers 
 
In this part, software installation and the configuration of every protocol will be explained. 
First of all, we be start with the choice of the Operative System and which version we have 
installed. Then we will explain what protocols are needed for a functional Local Area 
Network, which server has been chosen for each protocol and how we can install it. 
 

3.2.1. – Operative System 
 
The laboratory will be built on an Ubuntu environment, which is a Linux distribution based 
on Debian [20]. The compilation number is Ubuntu 14.04.1 LTS and both x86 and x64 
versions will be used, depending on the architecture of each machine. As desktop 
environment we will use Gnome (Figure 25) instead of Unity because our available 
hardware resources will work much better with it. 
 

 
Figure 25. Ubuntu 14.04.1 LTS x64 – Gnome Desktop Environment 

 
 
 
 



   

 53 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

WANem will be the only Linux server, which will not use Ubuntu. It is distributed with its 
own Linux compilation based on Knoppix (although Knoppix is also based on Debian). 
WANem distribution (version 3.0 Beta 2) uses LXDE as its default desktop environment 
(Figure 26), which is a really lightweight interface. So it will run without problems in a rather 
old machine. 
 

 
Figure 26. WANem distribution (version 3.0 Beta 2) – LXDE Desktop Environment 

 
 
Dell-Vostro machine has Windows already installed with VMware as virtualization 
software, so the virtual machines (guests) are going to use Ubuntu as Operative System 
but the host runs Windows 7 x64. This will not become a problem because from the Local 
Area Network we will see two separated machines: a Network-Server and a Web-Server, 
each one with its own IP and MAC addresses. 

 

3.2.2. – Servers 
 
This section will be focused on describing the essential protocols we need for an 
operational Local Area Network and the main software tools we have to install to manage 
this protocols. Each description will consist of three different parts: an introduction to that 
protocol, how to install it and finally how to set it up. 
 

DHCP – Dynamic Host Configuration Protocol 

Introduction 
 
To implement a new network, one of the first tasks should be how to allocate and manage 
the IP addresses. To tackle this, we have to choose which host will handle this IP 
addresses and what service we need to do it. We have to install a DHCP server and 
configure it to work in our network. Keep in mind that DHCP (Dynamic Host Configuration 
Protocol) is the protocol which takes care of IP addresses management in every network. 
 



   

 54 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Installation 
 
The chosen server for IP addresses management in our Local Area Network is “ISC 
DHCP”. As we can read on its web page, it is open source software so we are free to use it 
on our environment. “ISC DHCP is open source software that implements the Dynamic 
Host Configuration Protocol for connection to an IP network.” [21] 

 
The chosen host to work as DHCP server has been Network-Server, one of the two virtual 
machines running into Dell-Vostro. This host runs “Ubuntu 14.04.1 LTS x64” as Operative 
System, which is Debian based, so to install the “ISC DHCP” server we only have to type 
in a terminal: “sudo	  apt-‐get	  install	  isc-‐dhcp-‐server” (Keep in mind that we need administrator 
privileges to install any server). If everything went successful, the dhcp server should now 
be installed and ready to be configured. 
 

Configuration 
 
With the “ISC DHCP” server installation, many files related to this server have been 
created in our machine. The most important ones are: 
 

• /etc/dhcp/dhcpd.conf: This is the main configuration file and in it we can modify 
most of the options of the DHCP server. 

• /var/lib/dhcp/dhcpd.leases: Here we can find a log with the IP addresses 
allocated to each client. 

• /etc/default/isc-dhcp-server: In this file we can configure the interface we want to 
be listened by this DHCP server. 

• /var/run/dhcpd.pid: This file contains DHCP server’s PID. 
 

We have also installed in our host all the documentation related to DHCP server, so we 
can look up into the man pages if we have any doubt about “ISC DHCP” server’s working. 
On these pages, we find many options as well as details and even some examples are 
shown. 

Default interface 
 
First of all, as we have more than one network interface card installed in Network-Server, 
we need to verify DHCP server is listening on the correct one. To check this, we will open 
“/etc/default/isc-dhcp-server” and at the end of the file we could find this option. In our 
environment, the network interface, which is listening to the Local Area Network, is “eth0”. 
In the following capture (Figure 27) I will show this file and the option. 
 



   

 55 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 27. “/etc/default/isc-dhcp-server 

 
As we observe in Figure 27, we have set up our DHCP server to listen on interface “eth0”. 
It means that DHCP will only assign IP addresses if the requests come from the Local 
Area Network, and not from the outside of the laboratory. 
 
This step could seem unnecessary, however if we send IP addresses outside of the 
laboratory, we may cause a big problem on the rest of University’s network. Keep in mind 
that in a subnet there can only be one DHCP primary server and if this rule is omitted, 
many IP addresses conflicts will appear. In practice, this problem can be also solved by a 
configurable switch, which could be configured to reject DHCP assignments if they are 
coming from a non-allowed port. 
 

DHCPD.CONF 
 
Now we have to set up the main configuration file of this server: “dhcpd.conf”. As we have 
seen before, this file is located on “/etc/dhcp/dhcpd.conf” (although this location might 
change depending on the Linux distribution we are using). In the next image (Figure 28), 
we will see how I have configured this file to manage and allocate IP addresses in our 
Local Area Network: 



   

 56 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 28. /etc/dhcp/dhcpd.conf 

 
The first thing we have to specify is the subnet’s IP address, in this case IP address is 
“192.168.206.0” and the netmask we use is “255.255.255.0”. Then we will write some 
needed DHCP options, such as broadcast address, subnet mask, router address and 
domain name server address. 
 
After that, we will define the DHCP assignment’s range, simply typing “range” and then the 
first IP address followed by the last IP address of the chosen range. 
 
Finally we are going to declare fixed IP addresses, which will always be assigned to the 
same host. It is a useful option and allows us to identify the most important hosts or 
servers in our network. These machines with a fixed IP address will be Network-Server, 
Web-Server and the WANem host. (Here we have also given client1 a fixed IP address to 
facilitate its identification in the different Wireshark tests we have done, but it is not 
mandatory). 

Starting DHCP server 
 
Now we have everything configured properly, so we are ready to start the DHCP server. 
We can reboot the Network-Server to load the entire new DHCP configuration, but we can 
also do it restarting DHCP service. If we select this second option, we can simply type on a 
Terminal: “sudo	  /etc/init.d/isc-‐dhcp-‐server	  restart”. After that, DHCP server is running with 
the new configuration. 
 
 
  



   

 57 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

DNS – Domain Name Server 
 

Introduction 
 
The next step, after setting up the DHCP server, is to install a DNS server. This service will 
be responsible for associating IP addresses and hosts’ names. This will make easier for us 
to identify the hosts for tasks like network maintenance. Strictly speaking, DNS is not a 
mandatory service for a proper operation in a Local Area Network, but due to ease of 
memorize names instead of number sequences, it is almost impossible nowadays to find 
any network without a DNS server implemented.  
 

Installation 
 
We have also chosen the host Network-Server to be our LAN’s Domain Name Server, so 
we need a software tool which allows us to implement this server in our network. We can 
find many different tools to work as a DNS server, but in this case we have chosen “bind9” 
to do it. This is the most the most widely used DNS software on the Internet, providing a 
robust and stable platform on top of which organizations can build distributed computing 
systems with the knowledge that those systems are fully compliant with published DNS 
standards. BIND is open source software that implements the Domain Name System 
(DNS) protocols for the Internet. [22]  
 
Network-Server is running Ubuntu 14.04.1 LTS x64 and we are going to use “bind9” as 
DNS server, which is available into the Ubuntu repositories. So to install “bind9” we only 
have to type “sudo apt-get install bind9” in a terminal. After that, all needed software will be 
installed in Network-Server and ready to be configured. 
 

Configuration 
 
After the installation, we have to set up some DNS files to get our Domain Name Server 
working properly. Most of them have been created in “/etc/bind/” and we will focus on 
“named.conf.local” and “db.local”. 
 
First of all we create a copy of “db.local” but changing its name to “db.j103” and we can do 
it typing “cp	  db.local	  db.j103”. We have chosen “db.j103” but any other name could be valid, 
provided that you change it in “named.conf.local”, as we will see later. 
 

Zone Files 
 
Once we have our own database file (“db.j103 ”) we have to set it up properly. In the 
following capture we see how it has been configured for our environment. Keep in mind 
that DNS is an essential protocol for Internet operation and it has a huge amount of 
options available. Here we will set up DNS for a local environment, so we are going to use 
the basic ones. 
 



   

 58 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 29. DNS zone File  

 
At the beginning of this file (Figure 29) we find the domain name, in this case “j103.lan.” 
Then SOA (Start of the Authority) parameter specifies authoritative information about a 
DNS zone. After that we can find DNS server’s name followed by the domain name 
(nertwork-server.j103.lan.) and DNS administrator’s name. Note final dot in the name 
server declaration is essential to point the end of this domain. 
 
On the following lines we will find a “serial” number, which indicates the last time this file 
was modified. Then we have “refresh”, “retry”, “expire” and “TTL” options and their 
functions could be checked in the DNS documentation files. 
 
After these lines, we find this file’s core: which IP address corresponds with which name 
server. Here we have to specify again that the NS (Name Server) of the DNS host is 
“network-server.j103.lan.”. Then we see four IP addresses (A) and their four name servers. 
 
Finally we have another block with the Canonical Names (CNAME), which are alias of one 
name to another: the DNS lookup will continue by retrying the lookup with the new name. 
This option is used to point which host is working as web-server, so when someone types 
on a web browser “www.j103.lan” he will be redirected to “web-server.j103.lan”, which 
corresponds to “192.168.206.2” IP address.  
 

Named.conf.local File 
 
Once we have our zone file completely configured and ready to work, it’s time to set up 
“/etc/bind/named.conf.local”. Here we have to indicate where the zone file is which we 
have created before. In the following capture we see this file configured for our 
environment. 
 



   

 59 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 30. DNS file – named.conf.local 

  
 
As we observe in Figure 30, we need to specify where the proper zone file is located. In 
our local environment we will translate name servers into IP addresses, so we have only 
configured DNS direct zone file. DNS have also reverse translation (IP address to domain 
name mapping) but this configuration is not going to be detailed here. 
 

Starting DNS server 
 
Once we have our zone file created and properly imported into “named.conf.local” we are 
able to restart the DNS service, in order to get the new configuration loaded. To restart this 
service we only need to type “sudo	  /etc/init.d/bind9	  restart”. 
 
Now we have our DNS server working and ready to translate name servers into IP 
addresses. If we want to check if DNS server is working properly, we only have to type in a 
Terminal “host	  www.j103.lan”. We then see which is the IP address of this server and also 
that “www” is a Canonical Name from “web-server” (Figure 31). 
 
 

 
Figure 31. Terminal “host	  www.j103.lan” 

 
 
  



   

 60 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Web Server – Apache, PHP and MySQL 
 
The web server will be the main target in all of our tests. In the Wireshark Part we will use 
some tools, such as Traceroute or ping to test the WANem server’s behaviour with traffic 
going from clients towards the web server. We will use a complete LAMP server (Linux, 
Apache, MySQL and PHP), although in this scenario MySQL will not be used. It has been 
installed for a future use. 
 

Apache Web Server: 
 
First of all we will install the web server’s base. To install the Apache server we only have 
to type “sudo	  apt-‐get	  install	  apache2	  -‐y” in a Terminal and all the needed files will be 
downloaded in our machine. After that, we can check if the installation was successful, 
typing in a web browser the loopback IP address (http://127.0.0.1). If everything went fine, 
we should see a web page from Apache confirming us that “it works”. 
 
As we can read on its official web page: “The Apache HTTP Server Project is an effort to 
develop and maintain an open-source HTTP server for modern operating systems. The 
goal of this project is to provide a secure, efficient and extensible server that provides 
HTTP services in sync with the current HTTP standards.” [23] We could find many 
modules to extend this server and a lot of sophisticated security options, but in this project 
we are going to use only the default options. That will be enough for our goals. 
 

PHP 5 module: 
 
Now we will install the PHP 5 module for the web server. It could be done simple typing 
“sudo	  apt-‐get	  install	  php5	  libapache2-‐mod-‐php5	  -‐y” in a Terminal. After that we need to restart 
the whole web server (“sudo	  /etc/init.d/apache2	  restart”). We could check everything is 
working properly writing on a web browser: “http://127.0.0.1/php.info”. Then we should see 
all the PHP modules installed. 
 

MySQL (Client and Server): 
 
Finally we need to install MySQL client and server in the web server machine. We only 
have to write in a terminal “sudo	  apt-‐get	  install	  mysql-‐server	  mysql-‐client	  -‐y”. It will ask us for 
a root password and then everything will be downloaded and installed. 
 
As we saw with Apache, MySQL also has many different security options and modules. If 
we want to install a complete MySQL environment, we should also download some extra 
modules. Typing in a terminal the following command line, all of them would be installed 
“sudo	  apt-‐get	  install	  php5-‐mysql	  php5-‐curl	  php5-‐gd	  php5-‐idn	  php-‐pear	  php5-‐imagick	  php5-‐imap	  php5-‐
mcrypt	   php5-‐memcache	   php5-‐ming	   php5-‐ps	   php5-‐pspell	   php5-‐recode	   php5-‐snmp	   php5-‐sqlite	   php5-‐tidy	  

php5-‐xmlrpc	  php5-‐xsl	  -‐y.” 
 

PHP myAdmin: 
 
Another interesting module to be installed is the MySQL and PHP administration’s 
interface. It allows us to manage different options and user accounts related to php and 



   

 61 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

MySQL administration. We have to write the following command line “sudo	  apt-‐get	  install	  
phpmyadmin	  -‐y” and the administration’s interface will be downloaded. It will ask which server 
we have so we specify “apache2”. Now we can manage php and MySQL options writing 
on a web browser: http://127.0.0.1/phpmyadmin. 
 

IP – Internet Protocol 
 
The last protocol we need to set up will be the Internet Protocol but here, strictly speaking, 
we don’t have to “install” any software to manage it. All commands and tools needed are 
installed by default, because this is an essential protocol. Unlike “ISC DHCP” or “BIND 9”, 
which are only installed in servers, IP manage tools (i.e. “route” or “netstat” commands) 
are already installed when you boot the Operative System for the first time. 
 

IP Routing Table 
 
In the Wireshark labs section we will need, for the majority of the tests, traffic going from 
client to server and from server to client through the WANem host. These rules are stored 
in the IP routing table and each machine always looks into this table before sending any 
traffic. Therefore, it is essential to have this tables properly configured if we want to be 
sure where we are sending the traffic through. 
 
The IP routing tables could be checked simply typing in a terminal “netstat	  –r” (Figure 32). 
In the following capture we have a client table of our environment: 
 

 
  Figure 32. Client – “netstat	  –r” 
 
As we can observe in the capture above, in this table here are two inputs. They are the 
system default entries when we have our host connected to a Local Area Network: 
 

• “192.168.206.0” : this rule indicates the client where it has to send the traffic, which 
goes to a machine on the same Local Area Network. It means such traffic goes 
directly to the destination host. 

• “default” : with this rule, the table tells the host what is the default gateway where it 
has to send the traffic to, when this traffic goes outside the Local Area Network. In 
this case, the default gateway is the Network-Server’s IP address because this 
machine is the one who is working as Router for this LAN.  

 
The IP routing table could be easily modified with the command “route”. It allows us to add 
or remove table’s entries simply writing “add” or “del”, as appropriate. Below we see how to 
add a rule into the IP routing table to send traffic through a specific host. 
 
 



   

 62 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 33. Client – Modified IP routing table 

 
As we can observe in this capture (Figure 33), we have modified the IP routing table by 
adding a new rule. When the client is going to send traffic to the local web server 
(192.168.206.2), this rule indicates where it has to be sent through. To add this rule into 
the table we only have to type in a Terminal the following command line: 
 
“sudo	  route	  add	  -‐host	  192.168.206.2	  gw	  192.168.206.3” 
 
Here we have the command “route” followed by “add” option. Then we have to specify if 
we are adding a host or a network rule with its IP address and after that we will specify the 
gateway. This gateway should be the WANem server (192.168.206.3), which is going to 
forward the traffic to the final destination, the local web server (192.168.206.2). 
 
If we want to add this rule into the web-server’s IP routing table, we only have to write 
there the properly rule. We would change the –host IP address with the client1 IP address, 
so we would have: 
 
“sudo	  route	  add	  -‐host	  192.168.206.10	  gw	  192.168.206.3” 
 
 

3.3. – Conclusions 
 
In this second section, we have built a complete environment with the available hardware. 
We have also set up all the needed software, such as protocols, servers or network tools, 
so now we are ready to begin with the network tests. It is important to highlight that the 
servers have been configured with the basic options. If we need to modify an option or add 
any other module, it will be explained when required. 

  



   

 63 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

4. – Wireshark Labs 
This section will be focused on network tests. First of all, 
we will remind briefly the laboratory’s environment and 
then we will perform some tests making use of networking 
tools, such as Traceroute, Ping or Wireshark. After each 
test, we will analyze the results, trying to explain why we 
have obtained it. 

We will begin with the environment, where we could see 
again the laboratory’s structure, with the IP addresses of 
each client or server. 

After that, we will see the main functions in the Wide Area 
Network emulator. This kind of software will give us the 
possibility of emulating a real WAN with its delays, jitter 
or packet loss. 

Then we could start with the network tests. For these 
tests we will use command lines, written in a Terminal, 
such as Traceroute or Ping. Another useful tool will be 
Wireshark, packet sniffer software, which will allows us to 
capture and analyze every packet in our LAN.  

4.1. – THE ENVIRONMENT 
 
We begin this part remembering the laboratory’s environment and its most important hosts 
for our Wireshark tests and analysis. Here we have the Local Area Network’s diagram 
(Figure 34). The network’s core it’s the Dell Vostro machine, which is running two virtual 
machines at the same time: Network-Server and Web-Server. Each virtual machine has its 
own IP address. 
 

 
Figure 34. LAN’s diagram 

 



   

 64 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

In our environment clients are connected to the web-server through the WANem host, 
which will help us to emulate a real environment. With it we would be able to modify some 
characteristics such as delays, jitter or packet loss in the connections between clients and 
web-server. 
 
The other devices to be found in this environment are a manual switch and a non-
configurable switch. With the manual switch we can choose if we want to work with the 
local area network or with Internet. It’s the easiest way to do this, but it can also be done 
by editing the IP routing table in Network-Server host. The plug & play switch is connecting 
the clients to one network or another (it depends on the first switch choice). 
 
Notice that network-server is the only host that is not connected through the WANem 
server. That’s because this machine provides IP addresses and resolve DNS queries. It 
would be many problems if DHCP messages exchanged were delayed or even lost. 

4.2. – WANem Interface 
 
Before beginning with Wireshark tests we need to know, how the WANem interface is and 
what options do we have. We will see the Home Screen and then two different modes: 
basic and advanced. 

4.2.1. – Home Screen 
 
To access into the WANem configuration, we need to type the WANem IP address in a 
web browser followed by “/WANem” (in this case “192.168.206.3/WANem”). Once we have 
typed it, the WANem’s home screen will load and now we are connected to the WANem’s 
configuration interface.  

 
Figure 35. WANem Home Screen 

 
In the main screen (Figure 35) we can find the title, which identifies this interface with the 
“Wide Area Network Emulator”, three different menus (Basic Mode, Advanced Mode and 
Save/Restore). We can also find the WANem version (in this case WANem v3.0), the 



   

 65 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Copyright license and finally an Open Source description telling us that WANem is 
distributed under GNU GPL v2.0. 

4.2.2. – Basic Mode 
 
If we go into the basic mode (Figure 36), we can change the bandwidth of our 
communication or add some delay. If we open the list, we can choose among many 
different bandwidths, but we can also specify it manually into the right text box. The other 
option we are able to find in this basic mode is to add delay to our communication. In this 
case we don’t have any list with delays, we have to type it into the delays text box.  

 
Figure 36. WANem Basic Mode 

4.2.3. – Advanced Mode 
 
On the other hand, if we choose the Advanced Mode (Figure 37), we will find many more 
options, such as random disconnection, IP addresses restrictions, symmetrical or 
asymmetrical network, packet reordering and many others. We can also specify the 
bandwidth in our communication, as in the basic mode but for our tests we will focus on 
delay, jitter, loss and corruption. 

 
Figure 37. WANem Advanced Mode 

 
Once we have chosen basic or advanced mode and we have configured each option, we 
are ready to apply settings and start with the WANem tests.  



   

 66 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

4.3. – Wireshark Tests 
 
After this review of laboratory’s environment and the WANem interface, we are ready to 
begin with the Wireshark tests. First of all I am going to explain Wireshark tool (interface 
and main configuration) and then some tests will be done, focusing on different protocols 
each time. The first one will be IP (Internet Protocol), then TCP (Transmission Control 
Protocol), after that we will see some DNS captures (although DNS is not passing through 
the WANem host) and finally we can test HTTP behaviour under different conditions. 
 

4.3.1. – GETTING STARTED 
 
Wireshark will be our basic work tool in this third section. There are many other packet 
sniffer software, but we’ve chosen Wireshark because it’s Open Source, cross-platform 
and it has an intuitive and powerful interface with many filter options (by protocol, by port, 
by IP address source or destination, by MAC address…) 
 
First we need to know Wireshark, its interface and its options. In the next capture (Figure 
38) we can see the main screen, which appears when we just open the application. 
 

 
Figure 38. Wireshark main screen 

 
Wireshark is a packet sniffer, which allows us to capture messages from the network and 
display them. It consists of two parts: the packet capture library and the packet 
analyzer. The next image (Figure 39) shows a diagram of a packet sniffer and how they 
work. 



   

 67 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 39. Packet Sniffer diagram [1] 

 
The first part, the packet capture library (pcap), receives a copy of every frame transmitted 
over a physical media such as an Ethernet cable. These frames are transmitted to the 
packet analyzer, which understands this frames and displays to the user.  
 
Now, we’re going do some tests with Wireshark and then we will see in detail how do 
these protocols behave in our environment. The tests will be focused on following 
protocols:  
 

• IP: Network layer 
• TCP: Transport layer 
• DNS and HTTP: Application layer 

  



   

 68 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

4.3.2. – IP (Internet Protocol) 
 
IP, Internet Protocol, takes care of the communication between computers. It is 
responsible for addressing, sending and receiving the data packets over the Internet. 
When an IP packet is sent from a computer, it arrives at an IP router. The IP router is 
responsible for “routing” the packet to the correct destination, directly or via another router. 

Connection delays 
 
We use Traceroute diagnostic tool to check how many hops we have between the web 
server and our host. First, we need to check if the IP routing tables in Client1 and in the 
Web-Server have the proper rules configured. Keep in mind that if we want to see the IP 
routing table, we could obtain it just by typing the command “netstat	  -‐r” in a Terminal 
and then following capture will appear: 

 
Figure 40. IP routing table with WANem 

 
In this capture (Figure 40) we can see three rules. One for the traffic, which is going to the 
same LAN (192.168.206.0); another one for the traffic, which goes outside of this LAN 
(default) and last but not least the most important rule for us is the third rule; configured on 
Client1 to send the traffic, which is going to the Web-Server (192.168.206.2) through the 
WANem host (192.168.206.3). 
 
Once we have checked Client1 has its IP routing table properly configured, we need to 
check the same table in the Web-Server. We can do it typing the same command as in 
Client1 (“netstat	  -‐r”). We will then see the following capture: 

 
Figure 41. IP routing table in Web-Server without WANem rule 

 
As we can observe in Figure 41, in the Web-Server host we don’t have any WANem rule 
yet. We only have two rules: one for the traffic outgoing of the LAN and one for the internal 
LAN traffic. That traffic, which this host has to send to the same LAN, is going directly to its 
destination. 
 
To sum up, Client1 sends its traffic to Web-Server through the WANem host, but the Web-
Server sends its traffic to Client1 directly. With this scenario, if we set up a 50ms delay on 
WANem host, we will have the next Traceroute capture: 



   

 69 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 

 
Figure 42. Traceroute: Client1 è WANem è Web-Server è Client1 

 
Here (Figure 42) we have the Traceroute working properly. Client1 is sending all the traffic 
to Web-Server through WANem, and this one is delaying it by 50ms. The second packet 
has the same delay as the first one because the Web-Server host is sending its answer 
directly to us. 
 
Now we set up a new rule in Web-Server’s IP routing table which will send all the traffic to 
Client1 through WANem host, just as Client1 does it. Keep in mind that to add this rule we 
only have to type: 
 
“root@client:/home/web-‐server#	  route	  add	  -‐host	  192.168.206.10	  netmask	  0.0.0.0	  gw	  192.168.206.3” 
 
Once we have introduced the previous command, we can check the rule has been 
successfully added by simply typing again “netstat	  -‐r”: 
 

 
Figure 43. IP routing table in Web-Server with WANem rule 

 
We already have set up both Client1 and Web-Server with the proper rules to send the 
traffic to each other through the WANem host (Figure 43). Now we are going to test this 
scenario and we will see how this new path affects Traceroute’s delay. 
 

 
Figure 44. Traceroute: Client1 è WANem è Web-Server è WANem è Client1 

 
 
As we can observe in this capture (Figure 44), in contrast to the previous scenario, the 
second packet has duplicated its delay. That is because of WANem host is delaying the 



   

 70 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

traffic in both directions. If we have a look at Traceroute’s operating mode, we are able to 
understand this duplicated delay. 
 
Traceroute, by default, sends a sequence of User Datagram Protocol (UDP) packets 
addressed to a destination host. The time-to-live (TTL) value is used to know how many 
routers are between the host that sends the Traceroute and the destination. Routers 
decrement packets' TTL value by 1 when routing and discard packets whose TTL value 
has reached zero, returning the ICMP error message ICMP Time Exceeded. 
 
Traceroute works by sending packets with gradually increasing TTL value, starting with 
TTL value of 1. The first router receives the packet, decrements the TTL value and drops 
the packet because it then has TTL value zero. The router sends an ICMP Time Exceeded 
message back to the source. The next set of packets are given a TTL value of 2, so the 
first router forwards the packets, but the second router drops them and replies with ICMP 
Time Exceeded.  
 
So when the WANem host sends the second Traceroute packet from Client1 to Web-
Server, this packet has a delay of 50ms. Then Web-Server host receives this second 
Traceroute packet, decrements the TTL value and drops it. And here we have the 
“problem” with the duplicated delay. When Web-Server sends back the ICMP Time 
Exceeded message, this message is sent also through the WANem host (unlike in the first 
scenario, where it was sent directly to Client1). WANem host receives the ICMP Time 
Exceeded message, it delays this message by 50ms (added to 50ms this packet already 
had) and then it is sent to Client 1. 
 
That is the reason of this duplicated delay in the second packet of the Traceroute: 50ms 
when Traceroute going to Web Server + 50ms when ICMP message going back to Client1. 
It could seem confusing, but if you know how Traceroute works, it is completely 
understandable. 
 
We can check, as expected, the behaviour is the same even if we change the delay in the 
WANem host: 

 
Figure 45. Traceroute: Client1 è WANem è Web-Server è WANem è Client1 

 
In this case (Figure 45) we have configured a 200ms delay in the WANem host, and as we 
can observe in this capture, Traceroute tells us the second packet has also double delay 
compared to the first one.  
 
To sum up we have our WANem host delaying the traffic between Client1 and Web-Server 
in both directions. 
 



   

 71 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Packet Loss 
 
Now we are going to see how WANem works with packet loss. For this task we will use 
Ping (instead of Traceroute), which will show us the average rate of packets lost. 
 
Ping is a computer network administration utility used to test the reachability of a host on 
an Internet Protocol (IP) network. With it we can also measure the round-trip time for 
messages sent from the source to a destination computer and estimate the average rate of 
messages, which arrive to the destination. 
 
For this test we will also have to set up the IP routing table to send the traffic from Client1 
to Web-Server through the WANem host. We can verify the IP routing table just by typing 
“netstat	  –r”. If we have a capture as the following, then we could start with the PING 
tests. 

 
Figure 46. IP routing table Client1 

 
A rule as shown in this capture (Figure 46) should appear in Client1’s IP routing table. 
Once we have our IP routing table in Client1 properly configured, we can begin with the 
PING tests to check the WANem’s behaviour with the packet loss option. 
 

 
Figure 47. Ping packet loss test 

 
We have set up in WANem host a 50% packet loss, and as we can see here (Figure 47), 
PING tool indicates us that 55% of the packets were lost. If you set up a probability of 50% 



   

 72 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

packet loss, around 50% of the packets will be lost. This is an average rate of packet loss, 
because PING cannot measure exactly how many packets have been lost. 
 
If we set up a 20% packet loss in WANem host and we do a 300 packets PING, we could 
see how this average is more accurate. 
 

 
Figure 48a. 300 packets PING (beginning) 

 

 
Figure 48b. 300 packets PING (end) 

 
This two captures (Figures 48a and 48b) show beginning and end of a 300 packets PING, 
and as we can see in the second line of the last one, 20% of packets were lost. Unlike the 
last test, here we have exactly the same packet loss as we have configured in WANem. So 
it means with a high number of packets sent with a PING, it approaches the configured 
packet loss rate. Although here we have exactly the same rate, it doesn’t always happen 
always. We can also obtain a packet loss rate around the theoretical, but not the same 
one. 
  



   

 73 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

4.3.3. – TCP - Transmission Control Protocol 
 
TCP means “Transmission Control Protocol” and it provides a communication service at an 
intermediate level between an application program and the Internet Protocol (IP). Due to 
network congestion, traffic load balancing, or others unpredictable network behaviours, IP 
packets can be lost, duplicated, or out of order delivered. TCP detects these problems, 
requests retransmission of lost data, rearranges out-of-order data, and even helps to 
minimize network congestion. 
 
In this case we won’t use Traceroute or Ping tools as we used for IP tests. We will use 
Wireshark, a packet sniffer software and with it, we will be able to capture and analyze 
every frame on our network. It shows us far more information than Traceroute or Ping. We 
can filter by TCP protocol and follow the complete sequence of segments. We can also 
check the exact time where those segments have arrived, its sequence’s number, length, 
IP address source or destination and many more details. 
 
To do some of these tests, we should have our IP routing table configured as we had for 
the IP tests (Connection Delays and Packet Loss). We will need to check if Client1 has a 
rule in its IP routing table to send the traffic to Web-Server through the WANem host. 
 
At the beginning of each test, it will be specified if the traffic is going through the WANem 
host or not. 
 
Now, we are going to test TCP behaviour on two different scenarios. First, we connect 
Client1 and Web-Server with a direct connection. So in this first test all the traffic is going 
directly from Client1 to Web-Server, without going through WANem. 

 
Figure 49. TCP segments exchanged without delays (opening) 

 
As we can see in this Wireshark capture (Figure 49), TCP uses a three-way handshake to 
establish the connection: SYN, SYN-ACK, ACK. There are no delays, so there are no 
retransmissions. This is a direct connection between the client and the web-server, so 
WANem has nothing to do here. 
 
Now, we establish a connection between Client1 and Web-Server through the WANem 
host, which is going to add a 500 ms delay. 
 

 
Figure 50. TCP segments exchanged with a 500ms delay (opening) 



   

 74 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
In this second capture (Figure 50), we can see how TCP tries to establish the connection 
but, due to 500 ms delay, the establishment segments are retransmitted. Now we are 
going to analyze this second situation. 

  
Figure 51a. Diagram without delay 

 
Figure 51b. Diagram with delay 

 
Here we have two diagrams. The first one (Figure 51a) represents the exchange of 
segments between client and server needed to establish a TCP connection when there are 
no delays. So here everything is fine and we don’t have any retransmission. WANem is not 
working on this connection. On the second one (Figure 51b), due to WANem host delay, 
the timer – set when the first segment was sent – ends and the SYN segment is 
retransmitted. 
 
If we observe how does TCP close a connection, we could find the same behaviour as 
before. On the direct connection there will be no problems, but on the other one, the delay 
introduced by WANem will cause several retransmissions. As we have seen before, TCP 
uses a four-way handshake to close the connection. In the next Wireshark capture (Figure 
52), we could see TCP does it. 

 
Figure 52. TCP segments exchanged without delays (closing) 

 
We can see the four-way handshake working properly. There are no retransmissions 
because there are no delays or packet loss in this communication, so everything goes fine. 
 
Now we are going to see what happens when TCP wants to close a connection, which is 
going through the WANem host. 

 
Figure 53. TCP segments exchanged with a delay (closing) 

 



   

 75 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

In this capture (Figure 53) we can see how, due to WANem host delay, the [FIN,ACK] 
segments are sent twice. Each machine is retransmitting its own FIN segment because of 
the timer ends due to delay. Finally the TCP connection can be properly closed because 
each host receives the correct ACK segment. 
 

4.3.4. – DNS - Domain Name Server 
 
DNS, Domain Name Server, is an Internet service that translates domain names into IP 
addresses. As mentioned before, in our environment DNS server is not behind the 
WANem host, so our DNS queries go directly from the client to the DNS server (Figure 14). 
 
Due to these problems with delayed DNS queries, we are not going to test this protocol 
when sending its traffic through WANem. We will just briefly see what is the path of these 
DNS queries in our environment and then analyze how it works by using a Wireshark 
capture. 

 
Figure 54. DNS query’s path 

 
In this capture (Figure 54) we observe the path of the DNS queries between the clients 
(Client1 in this case) and the DNS server. Keep in mind that in our environment, the 
Network-Server machine is working at the same time as DNS server and as DHCP server. 
So it’s the only host, which never sends its traffic through the WANem host. 
 
Now, with this Wireshark capture, we are going to check if the DNS server is working 
properly. 

 
Figure 55. DNS query – Wireshark capture 

 
As we can see on this capture (Figure 55), the client requests to the DNS server the IP 
address of “www.j103.lan”. DNS server answer contains information about the real name 
of the server and its IP address. If we observe the capture, we can see that “www.j103.lan” 
is the canonical name of “web-server.j103.lan” and it IP address is 192.168.206.2. 
 



   

 76 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

If we compare the DNS server’s response (Figure 15) with the information given on the 
network’s diagram (Figure 14), we can check that DNS server is working fine. 
 

4.3.5. – HTTP - Hypertext Transfer Protocol 
 
As we can read on the World Wide Web Consortium (W3C) website: “The Hypertext 
Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, 
hypermedia information systems.” 
 
HTTP is a stateless protocol because each command is executed independently, without 
any knowledge of the commands that came before it. 
 
In this section we are going to explore some aspects of HTTP protocol such as: 
 

• GET/response interaction 
• HTTP message formats 

 
To perform these tests with HTTP we will use again the Wireshark tool and for some of 
them, we need to send the traffic from Client1 to Web-Server through the WANem host. 
We should have our IP routing table configured as we had for the IP and TCP tests, to 
verify it we only have to type “netstat	  -‐r” in a Terminal. Client1 should have a rule in its 
IP routing table to send the traffic to Web-Server through the WANem host. 
 
At the beginning of each test, it will be specified if the traffic is going through the WANem 
host or not. 
 
In this first test WANem host is not involved. We have a direct connection between Client1 
and Web-Server and we just only want to see the HTTP request method, the HTTP 
version used and which status code we can find.  

 
Figure 56. HTTP GET/response interaction 

 
As we can see on this capture (Figure 56), Client1 requests each element (html, images, 
css files…) needed to load the webpage. GET is the method used to obtain these 
elements. We can also see the HTTP version used is “1.1” and the status code received is 
“200 OK”. In this case we have a success status code, so it means that the request was 
fulfilled. 
 
Now we are going to test HTTP’s behaviour on two different scenarios: with and without 
delays. Let’s begin by loading a web page with a direct connection between the client and 
the web server. 
 



   

 77 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 
Figure 57. HTTP loading webpage – No delays 

 
 
In this first test (Figure 57), as we have direct connection between our computer and the 
web server, everything is going to be fine. The WANem host is not working here, so there 
are no delays on our communication. We can observe the whole web page is loaded in 
less than 0.2 seconds. 
 
Now we are going to load the same web page again. This time we have modified the path 
and the connection between the client and the web-server is going through the WANem 
host. This one has been configured to add a 500ms delay on every communication going 
through it. 
Remind that before loading the web page, we have to clean the web browser’s cache. 
 

 
Figure 58. HTTP loading webpage – Delays 

 
As we can observe on this second capture (Figure 58), from the time the first element was 
requested until the last one was delivered, there is a gap of more than 11 seconds. It 
means WANem host is doing its job well and it delays all the traffic going through it. These 
objects are finally delivered because there is only delay in the communication and WANem 
is not losing packets. 
 

  



   

 78 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

 

  



   

 79 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

5. – Conclusions and Future Lines 

5.1. – Conclusions 
 
Having arrived at this point, we affirm that the main goal has been completely achieved. 
We have built a complete environment where students could learn about networking 
protocols through practical training. They can also emulate a real Wide Area Network and 
modify the connection delay or the average rate of packets lost, among many other 
characteristics. 
 
In the Wireshark Labs section, in addition to network tests, we have analyzed the results 
of these tests, explaining the reason of each result. We have some results, which are not 
exact, because they are based on a network traffic estimation (e.g. Ping packet lost). 
 
It is worth noting that in the Laboratory Installation section we have found some 
difficulties, most of them due to Network-Server and Web-Server being virtual machines. 
It has involved some complications when trying to get the laboratory operating. Finally 
these difficulties have been successfully solved and now everything is working properly 
and ready to be used to teach networking. 

5.2. – Future Lines 
 
The main software tool used to emulate our real environment has been WANem (Wide 
Area Network emulator) and, as we have seen in the section where we explained this tool, 
WANem software has many different options. We have used some of them (like 
connection delays or data packets loss) but there are many more. 
 
This project could be extended simply performing new network tests with these unused 
WANem features. Some of them may be really interesting to prove in this environment, 
such as jitter, randomly disconnections or packet corruption. Another option is to join two 
or three different WANem characteristics working at the same time and test how our 
environment responds. 
 
If some new tests are done, the results could be also analyzed with the current analysing 
network tools, like Traceroute, Ping or Wireshark. They are powerful enough to work in an 
upcoming development. 
 
 
 
 
 
 

   



   

 80 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

  



   

 81 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Bibliography 
 

1. [Figure 1] Cosby, Scott. “BACnet Architecture”. OSI Model. 
http://www.chipkin.com/bacnet-architecture/ (retrieved January 23, 2015) 

2. [Figure 2] “TCP/IP Model Figure 2”. Kevin R. Fall, W. Richard Stevens. (2011) 
TCP/IP Illustrated, Volume 1, Addison-Wesley 

3. [Figure 3] “Multicast”. IPv4 addresses. 
http://www.net130.com/CMS/Pub/network/network_protocal/2005_08_21_36977_3.
htm (retrieved January 25, 2015) 

4. [Figure 4] “Analyzing Classful Ipv4 Networks”. Classful network. 
http://resources.intenseschool.com/ccna-prep-analyzing-classful-ipv4-networks/ 
(retrieved January 20, 2015) 

5. [Figure 5] “IPv4 Subnetting”. IPv4Subnets 
http://sunix.hk/study/cisco/ipv4-subnetting.html (retrieved January 24, 2015) 

6. [Figure 6 – 7]. “Address Resolution Protocol”. ARP request and reply. 
http://networklessons.com/cisco/arp-address-resolution-protocol-explained/ 
(retrieved January 24, 2015) 

7. [Figure 8]. “Route My World!”. IPv4 Header. 
http://routemyworld.com/2009/02/01/bsci-ip-version-6/ 
(retrieved January 24, 2015) 

8. “Wireshark Wiki” Dynamic Host Configuration Protocol (DHCP), Year 2010.
 URL: http://wiki.wireshark.org/DHCP (retrieved January 24, 2015) 

9. [RFC 2131] “Network Working Group” Dynamic Host Configuration Protocol 
(DHCP), March 1997. URL: https://www.ietf.org/rfc/rfc2131.txt 
(retrieved January 29, 2015) 

10. [Figure 10] “DHCP Snooping and IP Source Guard”. DHCP. 
https://www.howtonetwork.net/members/login.cfm?hpage=DHCP_Snooping_and_I
P_Source_Guard.cfm 
(retrieved January 29, 2015) 

11. [Figure 11] “An Intro to DNS”. Domain Name System. 
http://sophiedogg.com/intro-to-dns/ 
(retrieved January 29, 2015) 

12. [Figure 12] “Microsoft TechNet” Domain Name Service.  
https://technet.microsoft.com/en-us/library/bb962025.aspx 
(retrieved January 29, 2015) 

13. [Figure 13] “DNS Header”. OpCode. 
http://www.inacon.de/ph/data/DNS/Header_fields/Header_section_format/DNS-
Header-Field-Flag-OPCODE_OS_RFC-1035.htm 
(retrieved January 31, 2015) 



   

 82 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

14. [Figure 14] “The TCP/IP Guide”. TCP Segment Format. 
http://www.tcpipguide.com/free/t_TCPMessageSegmentFormat-3.htm 
(retrieved January 31, 2015) 

15. [Figure 15] “Connection oriented communication (TCP/IP)”. TCP session 
establishment and termination. 
http://wiki.mikrotik.com/wiki/Manual:Connection_oriented_communication_(TCP/IP) 
(retrieved January 31, 2015) 

16. [Figure 16] “HTTP persistent connection”. HTTP keep-alive. 
https://en.wiki2.org/wiki/HTTP_persistent_connection 
(retrieved January 31, 2015) 

17. [Figure 18] “Application Layer”. HTTP Message Format. 
http://www.studycampus.com/PgD/cnm/lesson2.htm 
(retrieved January 31, 2015) 

18. [RFC 2616] “Hypertext Transfer Protocol -- HTTP/1.1”. Status Codes Definitions. 
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html 
(retrieved January 31, 2015) 

19. “Iptables Firewall Rules”. Save IpTables Permanently. 
http://www.thomas-krenn.com/en/wiki/Saving_Iptables_Firewall_Rules_Permanently 
(retrieved January 31, 2015) 

20. “Ubuntu Official Website”. Ubuntu and Debian. 
http://www.ubuntu.com/about/about-ubuntu/ubuntu-and-debian 
(retrieved January 31, 2015) 

21. “Internet System Consortium”. ISC DHCP. 
https://www.isc.org/downloads/dhcp/ 
(retrieved January 31, 2015) 

22. “Internet System Consortium”. BIND and DNS. 
https://www.isc.org/downloads/bind/ 
(retrieved January 31, 2015) 

23. “Apache Official Website”. HTTP Server Project. http://httpd.apache.org/ 
(retrieved January 31, 2015) 

24. James F. Kurose, Keith W. Ross. (2013) Computer Networking (A Top Down 
Approach), Pearson 

25. Kevin R. Fall, W. Richard Stevens. (2011) TCP/IP Illustrated, Volume 1, Addison-
Wesley 
 

26. Nemeth E., Snyder G., Hein Trent R., Whaley B., (2010) UNIX® AND LINUX® 
SYSTEM ADMINISTRATION HANDBOOK, Prentice Hall 
 

27. Maxwell S., (2002) UNIX System Administration: A Beginner’s Guide, McGraw-
Hill/Osborne  



   

 83 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Appendix A – Questions & Tasks 

Laboratory Installation 
 

The Environment 
 
There is more than one way to implement the environment, however we need to select the 
one which closely fits our network. We are going to study two options, first a simple one 
and then another one more complicated but also more useful. Try to design several 
possibilities and choose the best one for this network. 
 

Setting up Network-Server as a Router 
 
One layout needs to configure Network-Server as a router. It will distinguish between 
internal and outgoing traffic and it will send this second one outside the laboratory. Try to 
discover if some new hardware is needed and then set up the router to forward 
outgoing traffic properly. 
 

Wide Area Network emulator (WANem) 
 
This environment requires a software tool, which allows us to modify the network 
conditions (like delays, jitter, packet loss, packet corruption…), and this tool will be 
WANem. Try to install this Linux-based distribution on a host and introduce it into 
the network. The WANem host should be reachable for everyone in the LAN, even 
for new clients.  
 

Servers 
 

DHCP – Dynamic Host Configuration Protocol 
 
To implement a new network, one of the first tasks should be how to allocate and manage 
the IP addresses. To tackle this, we have to choose which host will handle this IP 
addresses and what service we need to do it. We have to install a DHCP server and 
configure it to work in our network. Keep in mind that DHCP (Dynamic Host Configuration 
Protocol) is the protocol which takes care of IP addresses management in every network. 
 
The chosen server for IP addresses management in our Local Area Network is “ISC 
DHCP”. Try to install DHCP Server into Network-Server host and configure it to 
allocate and manage IP addresses in the whole Local Area Network. 
 



   

 84 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

DNS – Domain Name Server 

 
The next step, after setting up the DHCP server, is to install a DNS server. This service will 
be responsible for associating IP addresses and hosts’ names. This will make easier for us 
to identify the hosts for tasks like network maintenance. 
 
We have also chosen the host Network-Server to be our LAN’s Domain Name Server, so 
we need a software tool which allows us to implement this server in our network. We have 
chosen “bind9” to do it. Try to install the DNS server and configure it to associate IP 
addresses and hosts’ names in the Local Area Network. 
 

Web Server – Apache, PHP and MySQL 
 
The web server will be the main target in all of our tests. In the Wireshark Part we will use 
some tools, such as traceroute or ping to test the WANem server’s behaviour with traffic 
going from clients towards the web server. We will use a complete LAMP server (Linux, 
Apache, MySQL and PHP). Try to install these servers and configure them properly 
to host a webpage. 
 

IP – Internet Protocol: IP Routing Table 

 
In the Wireshark labs section we will need, for the majority of the tests, traffic going from 
client to server and from server to client through the WANem host. These rules are stored 
in the IP routing table and each machine always looks into this table before sending any 
traffic. Therefore, it is essential to have this tables properly configured if we want to be 
sure where we are sending the traffic through. Try to configure the IP routing table on 
each machine you want to send traffic through the WANem host. 
 
  



   

 85 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

Wireshark Labs 
 

WANem Interface 
 
Before beginning with Wireshark tests we need to know, how the WANem interface is and 
what options do we have. Connect to the WANem server and try to configure the 
different modes (basic and advanced). Then try to test the applied configuration 
doing a Ping from a client to the Web-Server (sending the traffic through the 
WANem host). 
 
 

Traceroute – IP Connection Delays 
 
Use Traceroute diagnostic tool to check how many hops we have between the web server 
and our host. First, check if the IP routing tables in Client1 and in the Web-Server have the 
proper rules configured. We are going to test Traceroute in two different scenarios: first set 
up IP routing table to send traffic through the WANem host only in the client. Then do it in 
the Web-Server too. Try to discover why the second packet duplicates its delay in 
the second scenario. 
 

Ping – IP Packet Loss 
 
Set up a loss percentage in WANem host and then use Ping tool to estimate the average 
rate of packets lost. Is it accurate? Try to test the same scenario with many more PING 
packets (e.g. 300 packets) 
 

Wireshark Tests 
 
To perform the following tests we will establish a connection between the client and a 
webpage hosted in the local web-server. Remind that before loading the web page for a 
new test, we have to clean the web browser’s cache. 
 

TCP - Transmission Control Protocol 
 
Now, we are going to test TCP behaviour on two different scenarios. First, we will connect 
Client and Web-Server with a direct connection. Then, we establish a connection between 
Client and Web-Server through the WANem host, which is going to add a 500 ms delay. 
What happens with the opening three-way handshake and with the closing four-way 
handshake? Use Wireshark to show the TCP exchange and explain the differences 
between in both cases. Keep in mind that we can filter by TCP protocol and follow the 
complete sequence of segments. 
  



   

 86 

Bruno Olivar Trinchet Teaching Networking, Hands-on labs 

HTTP - Hypertext Transfer Protocol 
 
Use Wireshark to filter the traffic and show only HTTP requests and responses. What 
HTTP version are we using? What are the status codes received from the server? 
Has the entire webpage loaded without problems? How long does it take to load the 
whole webpage? 
 
Now we are going to load the same web page again. This time we need to modify the path 
and the connection between the client and the web-server will go through the WANem 
host, which has been configured to add a 500ms delay on every communication going 
through it. Now, how long does it take to load the whole webpage? Could you find 
any data retransmissions?  
 


