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�...Sueña el rico en su riqueza,
que más cuidados le ofrece;
sueña el pobre que padece
su miseria y su pobreza;
sueña el que a medrar empieza,
sueña el que afana y pretende,
sueña el que agravia y ofende,
y en el mundo, en conclusión,
todos sueñan lo que son,
aunque ninguno lo entiende...�

La vida es sueño, Pedro Calderón de la Barca [23]

Espacio y tiempo que el cuerpo admite
como una fábula del pensamiento,
imaginada, acaso, en el momento,
en el que mi otro Yo, mejor orbite.

Sólo mi pensar, tardío y lento,
aplacará tu juvenil envite,
al sugerir una historia que transite,
al epílogo de un hermoso cuento.

Y hará que la aventura pergeñada,
en el ánimo de una testa lela,
aspire a ser impreso, sin portada.

Es la duda: si el cabo de mi vela
atravesará la noche cerrada,
y esbozar un apunte de novela.

Espacio y tiempo, César Francisco Gutiérrez de Manuel.
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Abstract

The sleep apnea-hyponea syndrome (SAHS) is a disease characterized by
episodes of complete absence (apneas) or signi�cant reduction (hypopneas) of
breathing during sleep. The apneic events recurrence leads to inadequate gas
exchange which causes hypoxia and hypercapnia, resulting in oxygen saturation
drops, periodic arousals, as well as sleep fragmentation. As a consequence,
SAHS patients are not able to get restful sleep, which a�ects their quality of
life. Hypersomnolence, decrease in the short-memory function, and depression
are some of the daytime symptoms reported by a�ected people. Additionally,
SAHS has been associated with major cardiovascular and metabolic illnesses
such as heart failure, stroke, sudden death, and diabetes. Recently, it has been
also associated with an increase in cancer incidence. These SAHS consequences
make a fast diagnosis the key action to improve health and quality of life of
patients.

SAHS is a very prevalent illness, a�ecting from 2% to 7% of adult popu-
lation and up to 6% of children. It is also considered as an underdiagnosed
disease, with a growing incidence due to the obesity epidemic present in devel-
oped countries. Overnight polysomnography (PSG), conducted in a specialized
sleep unit, is the �gold standard� to diagnose SAHS. However, it is technically
complex due to the high number of physiological signals to be recorded, costly
due to the need for patient's hospitalization, as well as time-consuming due to
the o�ine inspection of the recordings, which is required to reach diagnosis.
This is obtained by computing the apnea-hypopnea index (AHI) after carefully
reviewing of the recorded signals. Moreover, PSG test deprives patients of their
natural sleep environment.

These drawbacks, the high prevalence of SAHS, as well as the limited avail-
ability of specialized facilities, have led to the search for new ways to simplify
the diagnostic process. One common approach is the analysis of a reduced set
of signals among those involved in full PSG. In this Doctoral Thesis it is posed
the automatic analysis of single-channel air�ow (AF) as a simple and reliable
alternative to PSG. In addition, pattern recognition is proposed as the main
approach to conduct an automatic SAHS diagnosis, including binary classi�ca-
tion (presence or absence of SAHS) as well as determination of SAHS severity
degree (multiclass classi�cation and AHI estimation by means of regression).
We hypothesize that it is possible to reduce the complexity of the SAHS diag-
nostic process by means of an automatic pattern recognition analysis of AF.
Consequently, the general goal of this work is the comprehensive study and
assessment of the diagnostic potential of the AF signal as a surrogate for full
PSG in SAHS detection.

Our methodology is based on three main steps. First, a feature extrac-
tion stage is implemented to obtain information of SAHS from single-channel

xi
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AF. Physiological signals are known to behave both in deterministically and
chaotically ways. For this reason, di�erent methodologies were used to extract
SAHS-related information, such as spectral and non-linear analyses. The pur-
pose of this approaches was the optimum characterization of SAHS by means of
obtaining complementary information. The second step is an automatic feature
selection stage. The comprehensive analysis conducted in the previous stage
may lead to the extraction of useless features for SAHS diagnosis or features
sharing similar information than others. Thus, it has been implemented a fea-
ture selection stage to eliminate those non-relevant or redundant. Two di�erent
approaches have been used for this purpose: the well-known forward-selection
backward-elimination method (SLR-FSBE) and the fast correlation-based �l-
ter (FCBF) algorithm. The former is a wrapper method since it is closely
related to a speci�c classi�er (logistic regression), whereas the latter is a �lter
since it is independent from subsequent analyses. Finally, the third stage is
pattern recognition. In this Doctoral Thesis, it has been used to obtain an
automatic SAHS diagnosis by the application of di�erent classi�cation and re-
gression methods to data obtained and selected in previous stages. The main
purposes of this step have been determining the presence or absence of SAHS
(binary classi�cation), classifying subjects into one out of the four SAHS sever-
ity degrees (multiclass classi�cation), and the estimation of AHI (regression).
This approach di�ers from the common approach followed in the state of the
art, where the main studies focus on detecting each of the apneic events present
in the recordings.

After applying our methodology to single-channel AF, the results showed
that our proposal outperformed a classic event-detection algorithm applied to
our databases. Thus, in the case of binary classi�cation, an ensemble learning
model based on AdaBoost, built with decision trees, reached 89.0% sensitiv-
ity (Se), 80.0% speci�city (Sp), 86.5% accuracy (Acc), 0.950 area under the
receiver-operating characteristics curve (AROC), and 0.672 Cohen's κ, in con-
trast to the classic event-detection algorithm which obtained 75.8% Se, 54.3%
Sp, 64.0% Acc, 0.635 AROC, and 0.286 Cohen's κ. Regarding multiclass clas-
si�cation, another AdaBoost model, built with linear discriminant classi�ers,
obtained 86.5%, 81.0%, and 82.5% accuracies when evaluated in the AHI cuto�s
which establish each of the four SAHS severity degrees (AHI = 5 events/hour,
15 e/h, and 30 e/h). The event-detection algorithm obtained lower statistics
for each threshold, reaching 81.0%, 68.3% y 63.5%, respectively. Finally, when
applying regression to estimate AHI, an arti�cial neural network model based
on multi-layer perceptron (MLP) obtained an intra-class correlation coe�cient
(ICC) of 0.849, and 79.7%, 91.5%, 79.7%, and 88.1% diagnostic accuracies for
AHI cuto�s = 5 e/h, 10 e/h, 15 e/h y 30 e/h, respectively, each of them as-
sociated with corresponding 0.903, 0.956, 0.904, and 0.973 AROC values. By
contrast, the event detection algorithm reached 0.840 ICC, and accuracies of
79.7% (0.823 AROC), 78.0% (0.833 AROC), 66.1% (0.867 AROC) y 74.6%
(0.982 AROC).

On the other hand, our methodology applied to at-home AF recordings from
children showed higher performance than the oxygen desaturation index (ODI),
which is commonly used in clinical practice. Additionally, the combination of
spectral information from these recordings with ODI achieved 85.9% Se, 87.4%
Sp, 86.3% Acc, 0.947 AROC and 0.720 κ.

Our proposal achieved high diagnostic performance comparing with PSG
diagnosis, state-of-the-art studies focused on detecting apneic events in other
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AF databases, as well as studies reporting similar approaches to ours applied
in di�erent PSG signals. Consequently, the main conclusion obtained from this
Doctoral Thesis is that pattern recognition methods applied to single-channel
AF are useful to improve the automation of the SAHS diagnosis process. Hence,
it is also concluded that this process can be reliably simpli�ed by means of the
automatic analysis of AF.
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2 CHAPTER 1. INTRODUCTION

The current Doctoral Thesis focuses on helping the sleep apnea-hypopnea
syndrome (SAHS) diagnosis by means of biomedical signal processing method-
ologies. During the study, several feature extraction and selection procedures,
as well as pattern recognition techniques, have been evaluated. This investiga-
tion has led to results which have been published, or accepted for publication, in
journals indexed in the Journal Citation Reports (JCR) from Thomson Reuters
Web of Science�. Speci�cally, up to four articles were published between De-
cember 2012 and March 2015. Additionally, a �fth article has been recently
accepted for publication (August 2015). This scienti�c productivity has allowed
writing this work as a compendium of publications.

The thematic consistency of the articles included in the thesis is justi�ed in
this introductory chapter. A brief introduction to biomedical engineering and
signal processing can be also found. Moreover, there are two sections devoted
to SAHS. Section 1.3 explains what SAHS is, its risks and severe consequences,
and some related socio-economic issues. Section 1.4 focuses on the diagnosis of
SAHS, i. e., the current standard test and its limitations. The latter, indeed,
are the cause motivating the research problem. Finally, common alternatives
to the standard diagnostic test are described as state of the art.

1.1. Compendium of publications: thematic consistency

SAHS is a highly prevalent disease which a�ects both health and life's qual-
ity of people [128]. In past years, it has become a major concern for the medical
community due to its severe consequences and its association with other ma-
jor illnesses [24, 81]. In spite of the e�ectiveness of the standard diagnostic
test (the polysomnography, PSG), it is complex, costly, and time-consuming.
Consequently, the search for simpler methods to diagnose SAHS has became a
major goal.

This context is the common thread shared by the articles included in the
compendium of publications. The approach followed to simplify the diagnostic
test is also a constant. Since the main source of complexity in the PSG test
is the need to record multiple physiological signals to diagnose SAHS (up to
32 channels), the common methodology conducted in the articles of the com-
pendium has been the analysis of the information recorded from a reduced set
of channels. In this regard, two out of the �ve articles focused on analyzing the
information contained in air�ow (AF) recordings acquired with a thermistor
[64, 65], including the air�ow-related signal respiratory rate variability (RRV).
A third article aimed at studying the AF signal obtained from a nasal prong
pressure sensor [62], whereas another one focused on the analysis of a cardiac
signal, the heart rate variability (HRV) [63]. Finally, the �fth article involved
AF (from thermistor) and oxygen saturation (SpO2) recordings from children
[61].

Another of the articles' connections, which is also one of the major novelties
of the study, is the analytical strategy conducted on the PSG signals. Through
the years, scientists have identi�ed several SAHS-related events a�ecting di�er-
ent physiological systems and, therefore, being re�ected in di�erent biomedical
signals. While most of the state-of-the-art works focus on an event-by-event
study [14, 29, 95, 116], i. e., they aim at detecting each one of these character-
istic events, our approach conducts the analysis of the signals from a general
perspective, i. e., we perform a whole-signal characterization.

Finally, as a result of this common analytical approach, the �ve articles also
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share the same methodological framework. Thereby, feature extraction and se-
lection, as well as pattern recognition methodologies have been implemented
during the study.

Titles, authors, and abstracts of the articles, as well as the scienti�c journals
where these were published are shown below, sorted chronologically:

Linear and nonlinear analysis of air�ow recordings to help in
sleep apnoea-hypopnoea syndrome diagnosis. [65]

Gonzalo C. Gutiérrez-Tobal, Roberto Hornero, Daniel Álvarez, J. Víctor
Marcos, Félix del Campo.Physiological Measurement, 2012, 33(7), 1261.
Impact Factor: 1.496

Abstract : This paper focuses on the analysis of single channel air�ow
signal (AF) to help in sleep apnoea-hypopnoea syndrome (SAHS) diag-
nosis. The respiratory rate variability (RRV) series is derived from AF
by measuring time between consecutive breathings. A set of statistical,
spectral and non-linear features are extracted from both signals. Then
forward stepwise logistic regression procedure (FSLR) is used in order
to perform feature selection and classi�cation. Three logistic regression
(LR) models are obtained by applying FSLR to features from AF, RRV
and both signals simultaneously. The diagnostic performance of single
features and LR models is assessed and compared in terms of sensitivity,
speci�city, accuracy and area under the receiver-operating characteristics
curve (AROC). The highest accuracy (82.43%) and AROC (0.903) are
reached by the LR model derived from the combination of AF and RRV
features. This result suggests that AF and RRV provide useful informa-
tion to detect SAHS.

Pattern recognition in air�ow recordings to assist in the sleep
apnoea-hypopnoea syndrome diagnosis. [64]

Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, J. Víctor Marcos, Félix del
Campo, Roberto Hornero. Medical & Biological Engineering & Comput-
ing, 2013, 51(12), 1367-1380. Impact Factor: 1.500

Abstract : This paper aims at detecting sleep apnoea-hypopnoea syn-
drome (SAHS) from single-channel air�ow (AF) recordings. The study
involves 148 subjects. Our proposal is based on estimating apnoea-
hypopnoea index (AHI) after global analysis of AF, including the investi-
gation of respiratory rate variability (RRV). We exhaustively characterize
both AF and RRV by extracting spectral, non-linear and statistical fea-
tures. Then, the fast correlation-based �lter (FCBF) is used to select
those relevant and non-redundant. Multiple linear regression (MLR),
multi-layer perceptron (MLP) and radial basis functions (RBF) are fed
with the features to estimate AHI. A conventional approach, based on
scoring apnoeas and hypopnoeas, is also assessed for comparison pur-
poses. An MLP model trained with AF and RRV selected features
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achieved the highest agreement with the true AHI (intra-class correla-
tion coe�cient = 0.849). It also showed the highest diagnostic ability,
reaching 92.5% sensitivity, 89.5% speci�city and 91.5% accuracy. This
suggests that AF and RRV can complement each other to estimate AHI
and help in SAHS diagnosis.

Assessment of time and frequency domain entropies to detect
sleep apnoea in heart rate variability recordings from men and
women. [63]

Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Javier Gomez-Pilar, Félix
del Campo, Roberto Hornero. Entropy, 2015, 17(1), 123-141. Impact
Factor: 1.502

Abstract : Heart rate variability (HRV) provides useful information about
heart dynamics both under healthy and pathological conditions. En-
tropy measurements have shown their utility to characterize these dy-
namics. In this paper, we assess the ability of spectral entropy (SE)
and multiscale entropy (MsE) to characterize the sleep apnoea-hypopnea
syndrome (SAHS) in HRV recordings from 188 subjects. Additionally,
we evaluate eventual di�erences in these analyses depending on the gen-
der. We found that SE measures in the very low frequency and low
frequency bands showed ability to characterize SAHS regardless the gen-
der; and that MsE features may be able to depict gender speci�cities.
Also, SE and MsE showed complementarity to detect SAHS since features
from both analyses were automatically selected by the logistic regression-
based forward-selection backward-elimination algorithm. Finally, SAHS
was modelled through logistic regression (LR) by using optimum sets of
selected features. Modelling SAHS by genders reached signi�cant higher
performance than doing it in a jointly way. The highest diagnostic ability
was reached by LR modelling of SAHS in women, achieving 80.9% sensi-
bility, 89.3% speci�city, 85.2% accuracy, and 0.951 area under the ROC
curve. Our results show the usefulness of the SE and MsE analyses of
HRV to detect SAHS, as well as suggest that, when using HRV, SAHS
may be more accurately modelled di�erentiating by gender.

Diagnosis of pediatric obstructive sleep apnea: preliminary �nd-
ings using automatic analysis of air�ow and oximetry recordings
obtained at patients' home. [61]

Gonzalo C. Gutiérrez-Tobal, M. Luz Alonso-Álvarez, Daniel Álvarez,
Félix del Campo, Joaquín Terán-Santos, Roberto Hornero. Biomedical
Signal Processing and Control, 2015, 18, 401-407. Impact Factor: 1.419

Abstract : The Obstructive Sleep Apnea Syndrome (OSAS) greatly a�ects
both the health and the quality of life of children. Therefore, an early
diagnosis is crucial to avoid their severe consequences. However, the stan-
dard diagnostic test (polysomnography, PSG) is time-demanding, com-
plex, and costly. We aim at assessing a new methodology for the pediatric
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OSAS diagnosis to reduce these drawbacks. Air�ow (AF) and oxygen
saturation (SpO2) at-home recordings from 50 children were automati-
cally processed. Information from the spectrum of AF was evaluated, as
well as combined with 3% oxygen desaturation index (ODI3) through a
logistic regression model. A bootstrap methodology was conducted to
validate the results. OSAS signi�cantly increased the spectral content of
AF at two abnormal frequency bands below (BW1) and above (BW2)
the normal respiratory range. These novel bands are consistent with the
occurrence of apneic events and the posterior respiratory overexertion,
respectively. The spectral information from BW1 and BW2 showed com-
plementarity both between them and with ODI3. A logistic regression
model built with 3 AF spectral features (2 from BW1 and 1 from BW2)
and ODI3 achieved (mean and 95% con�dence interval): 85.9% sensitiv-
ity [64.5-98.7]; 87.4% speci�city [70.2-98.6]; 86.3% accuracy [74.9-95.4];
0.947 area under the receiver-operating characteristics curve [0.826-1];
88.4% positive predictive value [72.3-98.5]; and 85.8% negative predictive
value [65.8-98.5]. The combination of the spectral information from two
novel AF bands with the ODI3 from SpO2 is useful for the diagnosis of
OSAS in children.

Utility of AdaBoost to detect sleep apnea-hypopnea syndrome
from single-channel air�ow. [62]

Gonzalo C. Gutiérrez-Tobal, Daniel Álvarez, Félix del Campo, Roberto
Hornero. IEEE Transactions on Biomedical Engineering, In Press. Ac-
cepted August 2015. Impact Factor: 2.347

Abstract : Goal: The purpose of this study is to evaluate the usefulness of
the boosting algorithm AdaBoost (AB) in the context of the sleep apnea-
hypopnea syndrome (SAHS) diagnosis. Methods: We characterize SAHS
in single-channel air�ow (AF) signals from 317 subjects by the extraction
of spectral and non-linear features. Relevancy and redundancy analyses
are conducted through the fast correlation-based �lter (FCBF) to derive
the optimum set of features among them. These are used to feed classi-
�ers based on linear discriminant analysis (LDA) and classi�cation and
regression trees (CART). LDA and CART models are sequentially ob-
tained through AB, which combines their performances to reach higher
diagnostic ability than each of them separately. Results: Our AB-LDA
and AB-CART approaches showed high diagnostic performance when de-
termining SAHS and its severity. The assessment of di�erent apnea-
hypopnea index cuto�s using an independent test set derived into high
accuracy: 86.5% (5 events/h), 86.5% (10 events/h), 81.0% (15 events/h),
and 83.3% (30 events/h). These results widely outperformed those from
logistic regression and a conventional event-detection algorithm applied
to the same database. Conclusion: Our results suggest that AB applied
to data from single-channel AF can be useful to determine SAHS and its
severity. Signi�cance: SAHS detection might be simpli�ed through the
only use of single-channel AF data.
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1.2. Context: biomedical engineering, biomedical signal
processing, and pattern recognition

Biomedical Engineering is an interdisciplinary �eld that focuses on altering,
controlling, or understanding biological systems by applying engineering princi-
ples [22]. It covers a wide range of industrial and academic activities, including
both theoretical and experimental research. One of the greatest Biomedical
Engineering bene�ts is the ability to identify issues and needs in healthcare
systems, which can be solved using novel technologies and methodologies [22].
As a consequence, it is also seen as a mean to provide better services with
ability to highly improve the life's quality of human beings. Additionally, this
is the reason why Biomedical Engineering is involved in all aspects of the de-
velopment of new medical technologies [22].

Biomedical signal processing is one of the activities included in the Biomed-
ical Engineering �eld. In human body, di�erent systems produce physiological
signals which re�ect their behavior. By studying these signals it has been
possible to fully or partially explain and identify a wide range of patholog-
ical conditions [118]. Most of the time, however, the information contained
in biomedical signals is not directly interpretable, and a processing stage is
needed in order to provide meaning to the extracted data [118]. Consequently,
biomedical signal processing has become an essential tool to extract the hidden
clinical meaning from the obtained information. In addition, it has also become
basic to develop new automatic diagnostic systems [118].

Pattern recognition, intimately related to machine learning, focuses on the
automatic detection of regularities in data by means of computer algorithms
[20]. These techniques have experimented great development in recent years.
Their purpose is to use the knowledge obtained from the data to being able
to automatically classify them into one out of several categories (classi�cation
task) or to automatically estimate one or several target continuous variables
(regression) [20]. As a consequence, pattern recognition methodologies have
been applied to solve a wide variety of problems, including development of new
automatic methods to help in the diagnosis of di�erent pathologies.

This doctoral thesis aims at helping in SAHS detection by reducing the
complexity of the standard diagnostic test. For this purpose, several biomedical
signals from PSG have been analyzed. Novel signal processing and pattern
recognition techniques have been developed and assessed as well. Hence, all
the above mentioned re�ect the framework in which this study is encompassed.

1.3. Sleep Apnea-Hypopnea Syndrome (SAHS)

1.3.1. De�nition, symptoms, and risk factors

SAHS is a highly prevalent disease which worsens both the health and the
quality of life of a�ected people [81]. It is characterized by the recurrence of
episodes of total absence of air�ow (apnea) and/or signi�cant air�ow reduc-
tion (hypopnea) during sleep [93]. Apneic events are classi�ed as obstructive,
central, or mixed according to their origin, the former being the most common
[92]. Whereas central events are caused by malfunction of the neural center
that controls respiration, obstructive events are due to upper airway obstruc-
tions. The presence (obstructive) or absence (central) of respiratory e�ort is
the key element to di�erentiate between them. Events starting as central and
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ending as obstructive are classi�ed as mixed [92]. The apnea-hypopnea index
(AHI), i.e. the number of apneic events per hour of sleep time, is the clinical
variable used to establish SAHS and its severity.

The occurrence of SAHS is associated with the presence of nocturnal and
daytime symptoms. Thus, overnight apneic events cause inadequate gas ex-
change characterized by hypoxia and hypercapnia, which lead to drops in oxy-
gen saturation, arousals, and sleep fragmentation. Loud snoring and gasping
are also frequent among people a�ected by SAHS [93, 115]. Nocturnal symp-
toms cause restless sleep which, in turn, leads to daytime symptoms. Thus,
daytime hypersomnolence, concentration and short-term memory di�culties,
as well as depression, have been reported in SAHS patients [93]. In the case of
children, cognitive and behavioral irregularities as well as atypical growth, are
frequently present [59].

The major risk factors for SAHS are aging, male sex, and obesity [39, 49, 93].
Anatomical and clinical factors, such as deposition of fat around the pharynx
and deterioration of the genioglossus negative pressure re�ex, are suggested as
the cause for an increased upper airway collapsibility with age, which leads to
a higher number of apneic events. The larger amount of fat deposited around
pharynx of men, as well as their longer pharyngeal way, have been also sug-
gested as the cause for gender di�erences [39]. Moreover, hormonal reasons are
argued to explain higher risk of SAHS for men and post- menopausal women
[39, 93]. There exist other risk factors such as congestive heart failure, atrial
�brillation, type 2 diabetes, stroke, or even alcohol use [49]. However, it is
recognized that obesity plays a key role in the development of SAHS and the
increase of its severity [39, 49]. Fat deposition in abdominal and pharyngeal ar-
eas have been suggested as possible reasons for ventilatory control instabilities
and increased upper airway collapsibility, respectively. Additionally, functional
impairment in upper airway muscles has been related to obesity [39]. Each of
these issues would lead to increase the number of apneic events. Furthermore,
the clear association between obesity and SAHS has led to point the expanding
epidemic of overweight as one of the major reasons for the high prevalence of
SAHS, particularly in western countries [128].

1.3.2. Prevalence

Prevalence of SAHS is high. Several studies have focused on estimating it
in di�erent countries, ethnic groups, sexes, and age groups, including children
[59, 100, 128]. Beyond the di�erent exact �gures reported for prevalence, all of
them agree in pointing out that there exists a high number of people a�ected
and, very often, not diagnosed [100, 128]. Thus, global prevalence in adults has
been conservatively established in the range 2-7% [100, 128]. Men are known
to be more a�ected than women. Thereby, adult male population present a
prevalence in the range 4-14%, being 1-7% in the case of adult female population
[100, 128]. When considering population older than age 65 years, prevalence
increases beyond 50% for both sexes [128]. Moreover, it has been reported that
up to 6% of children may be also a�ected [59].

The prevalence of SAHS in Spain is not lower than the global trend. Indeed,
there exist studies reporting up to 14% men and 7% women a�ected by SAHS.
This prevalence is higher than �gures reported in studies from other countries
[37]. In 2005, however, the Spanish Group for Sleep (Grupo Español del Sueño,
GES) estimated that SAHS a�ected between 1.200.000 and 2.150.000 people in
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our country, which would be equivalent to a prevalence ranging 2.7-4.9% [38].
The same report established that only 5-9% of these people had been diagnosed
and treated.

1.3.3. Consequences and related illnesses

SAHS has been associated with a wide range of other major illnesses and
pathological conditions. Indeed, some of them have already been mentioned
as risk factors. Congestive heart failure (CHF) has been linked to recurrent
obstructive and central apneic events. These cause hypoxia and high blood
pressure during sleep, which combined with daytime hypertension increase the
chances of such a cardiac failure. In addition, CHF may contribute to worsen
SAHS by facilitating the upper airway collapsibility through periodic breath-
ing, a characteristic pathological respiratory pattern to which these patients
are predisposed [115]. A bidirectional relationship has been also indicated be-
tween SAHS and obesity [81]. As stated above, pharyngeal and abdominal
fat contribute to the occurrence of apneas and hypopneas. Additionally, it
has been also suggested that SAHS worsens obesity. Although the underlying
mechanisms involved are not clear, there are evidence of SAHS patients gaining
greater weight than no SAHS subjects. The occurrence of cardiac arrhythmias
has been usually associated with SAHS as well [81, 115]. Thereby, mechanisms
and signs such as high sympathetic activity, hypoxemia, or systemic in�amma-
tion, frequently seen in SAHS patients, can trigger atrial �brillation. Hyper-
tension, stroke, and sudden cardiac death are other major pathologies linked
to SAHS at di�erent degrees [81]. In recent years, it has been also established
a relationship between SAHS and an increase in cancer incidence [24].

Beyond comorbidities, people su�ering from SAHS are also exposed to a
higher risk of having motor-vehicle collisions and occupational accidents. A
signi�cant proportion of tra�c crashes, costs, and deaths has been linked to
SAHS. In this regard, it has been estimated that SAHS treatment could save
70% of both costs and lifes [114]. Similarly, snorers with daytime hypersom-
nolence, two common signs associated with SAHS, present a signi�cant higher
risk of occupational accidents [80].

1.4. SAHS diagnosis

1.4.1. Polysomnography (PSG)

The high prevalence of SAHS, its severe consequences, as well as the ef-
fectiveness of the treatment, make the diagnosis process the key element to
improve the health and quality of life of a�ected people. SAHS is diagnosed by
means of overnight polysomnography test (PSG), which acts as "gold standard"
[92, 93]. During PSG, multiple physiological signals from patients are moni-
tored. Thus, up to 32 channels may be recorded, including electrocardiogram
(ECG), electroencephalogram (EEG), respiratory e�ort, oxygen saturation of
blood (SpO2), and air�ow (AF). Consequently, patients have to spend a whole
night in a sleep unit, where specialists take care of them as well as supervise the
course of PSG. After the test, the recordings need an o�ine inspection in order
to compute the AHI, which determines the presence and severity of SAHS.

AHI is obtained as the average number of apneic events (apneas and hy-
popneas) per hour of sleep [70]. Consequently, the main objective of clinicians



1.4. SAHS DIAGNOSIS 9

Figure 1.1: Example of an apnea event in AF

Figure 1.2: Example of an hypopnea event in AF

when inspecting the physiological signals is to detect and score each of these
events. In the case of adults, the American Academy of Sleep Medicine (AASM)
de�ne an apnea as a minimum of 90% reduction in the air�ow, acquired with
an oronasal thermal sensor, and which lasts ten seconds or more. Similarly, an
hypopnea is de�ned as a minimum of 30% reduction in the air�ow, obtained
with a nasal pressure sensor, lasting ten seconds or more and accompanied by a
minimum of 3% drop in the oxygen saturation or/and an arousal [18]. Figures
1.1 and 1.2 display true examples of an apnea and a hypopnea event in AF,
respectively. In the case of children, the 10-second criterion of both apneas
and hypopneas is replaced by a minimum duration equivalent to two missed
breathing cycles [18].
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1.4.2. Limitations of the PSG

The high number of signals required to monitor patients during PSG leads
to the need of complex acquisition equipments. This complexity, along with the
quali�ed personnel needed overnight, makes PSG an expensive test [17]. PSG
also implies that patients have to spend one night outside their usual sleep
environment with many sensors attached in their bodies, which is cumbersome
[35]. This may result in recording sleep patterns not representative of their
usual sleep behavior [17], increasing the chances that a single patient requires
more than one PSG. On the other hand, clinicians need to conduct an o�ine
inspection of all the recordings in order to reach each diagnosis, which requires
several hours. Summarizing, although the e�ectiveness of PSG is well-known,
it is complex, costly, time-consuming, and may not represent accurately the
actual sleep behavior of patients. Additionally, there exists a lack of availability
of specialized laboratories to carry out the PSG test [46, 55]. This issue, along
with the high prevalence of SAHS and the high number of not-diagnosed but
a�ected people, leads to long waiting time and di�culties to access diagnosis
and treatment [35, 55].

1.5. Alternatives to PSG: approaches and state of the art

PSG drawbacks have led to the search for di�erent alternatives to diagnose
SAHS [17, 35, 48, 55]. Most of the e�ort has been put into simplifying the
diagnostic test. Reducing PSG complexity is the key factor to decrease cost,
patient's cumbersome, and time delay, as well as gives the chance to develop
home diagnosis portable devices [48, 55]. One direct way to simplify the diag-
nostic test is to analyze a reduced set of signals instead of the whole set used
in PSG. According to the signals analyzed, the equipment used in sleep studies
is categorized as follows [48]:

Type 1 or standard PSG. This is the conventional PSG test, as de-
scribed previously, to which the other types are compared.

Type 2 or comprehensive portable PSG. These devices incorporate
7 seven channels at least, including EEG, electro-oculogram, chin elec-
tromyography, ECG or heart rate, AF, respiratory e�ort, and SpO2.

Type 3 or modi�ed portable sleep apnea testing. Equipment in-
cluded in this category incorporate a minimum of 4 channels: ventilation
or AF (2 channels of respiratory movement or respiratory movement and
AF), ECG or heart rate, and SpO2.

Type 4 or continuous single-bioparameter or dual-bioparameter
recording. Most of devices of this type measure a single parameter or
two parameters, frequently involving AF and/or SpO2. However, all the
equipment not meeting Type 3 criteria is classi�ed as Type 4.
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1.5.1. Signals commonly studied to simplify SAHS diagnosis

The AF signal is directly a�ected by the recurrence of apneas and hypop-
neas. Hence, AF carries crucial information about SAHS and, consequently,
its study is a natural way of dealing with the problem of simplifying SAHS
diagnosis. In past years, a lot of studies focused on evaluating AF as a reli-
able alternative to full PSG. One common approach has been the assessment
of some speci�c type-4 portable device, comparing diagnosis from PSG with
the corresponding one from the new appliance. Some of the proposals recently
evaluated have been SleepStrip� [116], SleepCheck [35], RUSleeping� [58], Ap-
neaLink� [14, 28, 41, 91], and Flow Wizard [110, 112, 127]. Regardless they
were conducted in sleep laboratories or at patient's' home, these studies com-
pared the AHI from PSG with an apneic event index derived from detecting
apneas and hypopneas in the alternative AF signal. Another usual approach
focuses on developing new automatic methodologies with ability to properly de-
tect apneic events. The objective is not to obtain a diagnosis but to accurately
detect some events of interest like obstructive or central apneas, hypopneas,
etc. In this regard, recent studies have applied signal processing and machine
learning methodologies to the AF recordings obtained as part of the PSG pro-
tocol. Thus, Varady et al. [122] assessed four arti�cial neural networks (ANN)
fed with 16-second epochs from AF and/or thoracic movement signals in or-
der to classify each of them as normal breathing, apnea segment, or hypopnea
segment. Álvarez-Estévez and Moret-Bonillo [12] applied a fuzzy algorithm to
AF, SpO2, and respiratory movements recordings to detect breathing events
and classify them into apneas or hypopneas. Similarly, Koley and Dey [76]
detected apneas and hypopneas by feeding a support vector machine (SVM)
classi�er with features extracted from AF. In the same way, Han et al. [67]
used a simple detection algorithm based on the mean magnitude of the second
derivatives of AF to detect only apnea events. A third typical approach com-
pletes the latter by evaluating the diagnostic ability of an event index derived
from the automatic detection. This is the case of Nakano et al. [89]. They
detected apneas and hypopneas in AF by evaluating the power spectral den-
sity of short-time windows. An event index was obtained on the basis of these
detections, and its diagnostic ability was assessed using the AHI from PSG as
reference. Rathnayake et al. [102] also assessed a surrogate of the AHI. They
characterized apneic events by the use of recurrence plots and detected them
with the help of a mixture discriminant analysis. All the above approaches rely
on the de�nition of apnea and hypopnea, which is a frequent topic of discus-
sion, as well as discards the information of the AF signal other than the apneic
events themselves.

Overnight oxygen desaturations are very frequent in SAHS patients. More-
over, the SpO2 signal, which measures the level of arterial blood oxygen satu-
ration, is easily recorded by means of an oximeter placed on the �nger. Con-
sequently, SpO2 has been also commonly assessed as a reliable surrogate for
PSG. It has been analyzed following several approaches. Rodriguez et al [109].
conducted a visual inspection of SpO2 recordings to distinguish SAHS patients.
A more common approach, however, focuses on the evaluation of the diagnostic
performance of some clinical index obtained from the signal. In this regard,
Levy et al. [78] studied the yield of several cut-o�s for the delta index. The
oxygen desaturation indexes (ODIs), derived from several desaturation de�-
nitions (SpO2 drops of 2%, 3%, and 4%), have been also assessed both in
adults [7, 79, 82, 130] and children [25, 123]. Additionally, the analysis of
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SpO2 recordings through automatic signal processing and pattern recognition
methodologies has also become a common approach. Thereby, Roche et al.
[108] obtained a multivariate linear regression model to estimate AHI by com-
bining clinical and oximetry features. Álvarez et al. [9] evaluated a binary
logistic regression model, obtained from SpO2 time and frequency domain fea-
tures, to classify SAHS patients and no-SAHS subjects. Moreover, Garde et
al. [53] used a linear discriminant to combine features extracted from SpO2

recordings of pediatric subjects. Arti�cial neural networks have been also ap-
plied to SpO2 data to estimate the presence of SAHS, as well as its severity
[83, 87, 113]. Some of these studies reported high diagnostic ability, showing
the usefulness of single-channel SpO2 to help in SAHS diagnosis. However,
recurrent desaturations during sleep are not exclusive of SAHS. Other medi-
cal conditions such as chronic obstructive pulmonary disease or asthma may
present similar patterns in the SpO2 signal.

HRV (or the RR time series), derived from ECG, is known to re�ect the
autonomic nervous system behavior [4]. As a consequence, it is a comprehen-
sively studied signal which has been analyzed in relation to a wide range of
illnesses, including SAHS. Particularly, it has been shown that apneic events
are associated with a recurrent bradycardia/tachycardia pattern [21, 60], which
is re�ected in the HRV signal as a higher/lower amplitude pattern. Several an-
alytical approaches have been used to study the e�ects of SAHS in HRV. Penzel
et al. [94] compared spectral and detrended �uctuation analyses to quantify
the changes in HRV caused by SAHS. De Chazal et al. [36] extracted spectral
and time domain features to obtain linear and quadratic discriminant classi�ers
with ability to detect apneic segments. Roche et al. [107] combined wavelet
analysis and classi�cation and regression trees to detect SAHS patients. Al-
Angari and Sahakian [5] used HRV features to train support vector machine
models in order to detect apneic epochs. Moreover, Ravelo-García et al. [103]
combined clinical data and symbolic dynamic markers to classify subjects into
SAHS or non-SAHS. Finally, Shouldice et al. [117] evaluated a quadratic dis-
criminant classi�er feed with features from HRV of children. As in the case of
SpO2, the HRV signal is also modi�ed by other cardiovascular diseases, which
represents one of its limitations. Additionally, sex or age are known to change
the HRV behavior too.

Signals involved in PSG other than AF, SpO2, and HRV have been less
frequently analyzed. Among them, the snoring sound recording [44, 74], the
photoplethysmography from children [56, 57], and the respiratory e�ort [5],
showed promising results.
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As it has been previously shown, the simpli�cation of the SAHS diagnosis
process has become a major concern. Hence, the proposal developed in this
Doctoral Thesis is focused on decreasing its complexity by reducing the num-
ber of signals to be analyzed, conducting a proper characterization of SAHS
using the information provided by these signals, developing a methodology with
ability to detect SAHS, and automating the whole diagnostic process. These
actions have been implemented following the next scheme:

i) Signal acquisition.

ii) Pre-processing stage.

iii) Feature extraction.

iv) Feature selection.

v) Pattern recognition.

This proposal is substantiated by the hypotheses and objectives described
below.

2.1. Hypothesis

As an introductory step in this section, a naive hypothesis can be formu-
lated to indicate the starting point of the study: the diagnostic process of SAHS
can be simpli�ed. This high level statement, however, does not su�ce to focus
the investigation by its own. Several assumptions of lower level have been also
assessed for this purpose. As previously explained, AF have been widely stud-
ied in the context of SAHS diagnosis due to its speci�c role in the de�nition
of apneas and hypopneas. Thus, at the signal level, it has been assumed that
AF provides relevant and enough information to help in SAHS diagnosis. On
the other hand, it is obvious that the methodology used plays the key role in
this investigation. Therefore, a number of related hypothesis have been also
evaluated. Thereby, it has been hypothesized that feature extraction method-
ologies coming from di�erent approaches are able to characterize SAHS in AF.
Similarly, it has been assessed whether these approaches provide complemen-
tary information in the study of SAHS. Feature selection algorithms have been
used for this purpose. After SAHS characterization, however, it is still neces-
sary to transform the information obtained from AF into mathematical models
with ability to help in diagnosis. In this regard, it has been also hypothesized
that the pattern recognition approach can be helpful to diagnose SASH in an
automated way.

These are the main assumptions which integrate the core of the present
study, which can be summarized in the next global hypothesis:

"It is possible to reduce the complexity of the SAHS diagnostic process by
means of an automated pattern recognition analysis of AF".
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2.2. Objectives

The general goal of this work is the comprehensive study and assessment of
the diagnostic potential of the AF signal as a surrogate for full PSG in SAHS
detection. As it has been previously shown, a general methodological frame-
work involving feature extraction, feature selection, and pattern recognition is
proposed. The aim is to gain insight into how SAHS a�ect AF as well as use
the obtained information to simplify the diagnostic process. In order to achieve
the main objective, the following speci�c objectives arise:

I. To build an AF database with signals from adult and pediatric subjects
suspected of su�ering from SAHS. Clinical and demographic data, as well
as diagnosis derived from PSG, have to be associated to the corresponding
recordings.

II. To review the bibliography and state-of-the-art related to feature extrac-
tion, feature selection, and pattern recognition techniques, appropriate to
be used along with biomedical signals and, particularly, AF signals in the
context of SAHS.

III. To select and implement (through Matlab®) those signal processing method-
ologies which, according to the reviewed bibliography, are more suitable
to help in SAHS diagnosis.

IV. To process the signals according to the feature extraction, feature selec-
tion, and pattern recognition methodologies previously implemented.

V. To conduct statistical analysis of results to evaluate the suitability of each
methodology applied to the recordings, as well as to assess the overall
performance of the proposal.

VI. To compare and discuss the results to extract appropriate conclusions.
This objective includes the comparison with the state-of-the-art studies,
the implementation of other classic methodologies in our databases, as well
as comparing our methodology applied to other well-known and widely-
studied signals such as HRV.

VII. To publish the obtained results and conclusions in indexed journals, as
well as international and national congresses.
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3.1. Subject databases: demographic and clinical data

During this investigation, 4 di�erent databases were analyzed. All of them
were composed of recordings from subjects suspected of su�ering from SAHS,
including one children database. The �rst database consisted of 148 AF record-
ings acquired with a thermistor. A second one was integrated by 317 AF record-
ings obtained through a nasal-pressure sensor, whereas 188 HRV recordings
were involved in a third database. The last database consisted of thermistor
AF and SpO2 recordings from 50 children.

Recordings from adult subjects were acquired "in-lab"' during their cor-
responding PSGs. These were conducted in the sleep unit of the Hospital
Universitario Rio Hortega (HURH), Valladolid, Spain. Recordings from chil-
dren were obtained at patient's home as part of the investigations of the unit
of respiratory sleep disorders of the Hospital Universitario de Burgos (HUBU),
Burgos, Spain. Physicians established a diagnosis for each subject according
to their corresponding AHI. Both for adults and children, physicians followed
the AASM rules for scoring apneas and hypopneas [18]. Common AHI cut-
o�s to determine SAHS and its severity in adults are 5, 10, 15, and 30 e/h
[18, 35, 91]. AHI=10 e/h has been widely used as a cuto� to determine the
presence or absence of SAHS [35, 74, 91]. Additionally, SAHS severity levels
can be distinguished by de�ning: no-SAHS (5<AHI), mild-SAHS (5≤AHI<15),
moderate-SAHS (15≤AHI<30), and severe-SAHS (AHI≥30) [101]. In pediatric
subjects, AHI = 3 e/h is also a common cuto� to establish the presence of SAHS
[6]. All the adult subjects, as well as the parents of the pediatric ones, gave
their informed consent to participate in the studies. The Ethics Committees
of both the HURH and HUBU accepted the corresponding protocols. Tables
3.1 to 3.4 show demographic and clinical data of the subjects involved in the
four databases, including age, body mass index (BMI), and male percentage.
Data are presented divided into no SAHS subjects (SAHS-negative) and SAHS
subjects (SAHS-positive) according to the adult (AHI=10 e/h) and pediatric
(AHI=3 e/h) AHI cuto�s.

3.2. Signals analyzed during the study

The signals recorded during PSG come from di�erent body systems. There-
fore, their nature can be electrical, mechanical, optical, etc. Some of the main
signals obtained from PSG are ECG, EEG, respiratory e�ort, SpO2, or AF.
In this study, AF has the most important role. However, heart rate variability

Table 3.1: Demographic and clinical data for the AF database (signals of adult
subjects obtained through a thermistor) divided into SAHS-negative and SAHS-
positive groups (mean ± standard deviation). BMI: body mass index. AHI: apnea-
hypopnea index.

All SAHS-negative SAHS-positive

Subjects (n) 148 48 100
Males (n) 117(79.0%) 32(66.7%) 85(85.0%)
Age (years) 50.9± 11.7 48.8± 12.1 51.9± 11.4
BMI (Kg/m2) 29.1± 4.6 27.6± 4.9 29.9± 4.7
AHI (e/h) − 4.0± 2.4 32.9± 24.3
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Table 3.2: Demographic and clinical data for the AF database (signals of adult
subjects obtained through a nasal prong) divided into SAHS-negative and SAHS-
positive groups (mean ± standard deviation). BMI: body mass index. AHI: apnea-
hypopnea index.

All SAHS-negative SAHS-positive

Subjects (n) 317 110 207
Males (n) 226(71.3%) 68(61.8%) 158(76.3%)
Age (years) 49.9± 12.0 47.6± 12.9 51.1± 11.4
BMI (Kg/m2) 28.1± 5.2 26.5± 5.0 29.0± 5.1
AHI (e/h) − 6.0± 2.6 39.9± 25.9

Table 3.3: Demographic and clinical data for the AF database (signals of pediatric
subjects obtained through a thermistor) divided into SAHS-negative and SAHS-
positive groups (mean ± standard deviation). BMI: body mass index. AHI: apnea-
hypopnea index.

All SAHS-negative SAHS-positive

Subjects (n) 50 24 26
Males (n) 27(54.0%) 11(45.8%) 16(61.5%)
Age (years) 5.3± 2.5 5.2± 2.4 5.4± 2.7
BMI (Kg/m2) 16.5± 2.5 16.1± 1.7 16.9± 3.0
AHI (e/h) − 1.3± 0.8 17.9± 15.4

Table 3.4: Demographic and clinical data for the HRV database (signals of adult
subjects) divided into SAHS-negative and SAHS-positive groups (mean ± standard
deviation). BMI: body mass index. AHI: apnea-hypopnea index.

All SAHS-negative SAHS-positive

Subjects (n) 188 69 119
Males (n) 134(71.3%) 41(59.4%) 93(78.2%)
Age (years) 50.7± 12.0 47.3± 11.5 52.7± 12.3
BMI (Kg/m2) 28.7± 4.7 28.0± 6.1 29.1± 3.7
AHI (e/h) − 3.8± 2.4 33.0± 22.9

(HRV), and SpO2, have been also analyzed, at least to some extent.
AF is a physiological signal mainly used to evaluate whether ventilation

is properly established [120]. In the context of sleep disorders, it is common
to use it to assess respiratory patterns as well as eventual nocturnal events
[43]. Due to the periodic nature of respiration, a non-pathological segment
of AF shows a regular behavior. As previously stated, apnea and hypopnea
de�nitions directly involve the reduction of AF. Consequently, this is a crucial
signal to detect these events [13]. Originally, AF was measured through a
pneumotachograph. However, it was invasive and, consequently, uncomfortable
for patients [43]. Nowadays, AF is measured during PSG in two complementary
ways, by means of both a thermal sensor (thermocouple, thermistor) and a
pressure sensor. Due to their corresponding limitations [13, 43], the AASM
recommends the former to detect apneas and the latter to detect hypopneas
[18]. In the present study, the AF recordings from adults acquired by means
of thermistor were obtained at a sample rate of 10 Hz (PSG equipment: Alice
5, Respironics, Philips Healthcare, the Netherlands). Those acquired through
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a nasal pressure sensor were sampled at a rate of 128 Hz (PSG equipment: E-
series, Compumedics Limited, USA). In the case of the children database, the
AF recordings were obtained at a sample rate of 100 Hz (polygraphy equipment:
eXim Apnea, Bitmed, Sibel S.A., Spain).

HRV, or RR time series, is obtained by computing the time between consec-
utive R peaks of the characteristic QRS complex pattern from ECG [4]. In this
study, HRV has been used to show the diagnostic ability derived from applying
signal processing techniques similar to those conducted in AF. Thereby, results
derived from these analyses can be used to be compared with those from AF
and, therefore, to gain more insight into the diagnostic ability of the latter.
Roughly speaking, HRV shows the time between consecutive heartbeats. The
HRV signal is not involved in the de�nition of apnea or hypopnea. However,
a bradycardia-tachycardia pattern in the heart rate has been observed as a
consequence of apneic events [21, 60], which is re�ected in HRV as recurrent
amplitude increases and decreases. ECG recordings involved in this study were
obtained at a sample rate of 200 Hz (PSG equipment: Alice 5, Respironics,
Philips Healthcare, the Netherlands).

The SpO2 signal shows the level of arterial blood oxygen saturation. It
is also involved in the de�nition of hypopnea. The information is typically
acquired through an optic sensor placed in the �nger as part of the pulse
oximetry test, which is included in the PSG protocol. The oximeter measures
the intensity of light which is transmitted from one side of the �nger to the
other at two di�erent wavelengths: red spectrum and near infra-red spectrum
[133]. Thus, the more intensity is detected by the oximeter the less oxygen
concentration in blood. A non-pathological SpO2 signal is in the range 95-97%
regardless the age, ethnicity, gender, or weight of the subject monitored [90].
Conversely, SAHS patients present recurrent drops in the oxygen saturation
(desaturation), reaching levels below 40%. Previous studies of our research
group have already shown the utility of a comprehensive analysis approach
conducted in SpO2 recordings from adult subjects [7, 8, 9, 84, 85]. Hence,
in this study, SpO2 (sample rate = 100 Hz., polygraphy equipment: eXim
Apnea, Bitmed, Sibel S.A., Spain) has been only used in the case of children.
Particularly, only the information provided by the 3% ODI has been used.
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The general methodology conducted during the study (see Figure 4.1),
starts with an initial stage proposed to minimize undesirable noise and artifacts
in the signals (pre-processing). Then, the recordings from each subject under
study are analyzed to gain insight into the e�ects that SAHS causes in them, i.
e., to characterize SAHS in these signals (feature extraction). It is known that
physiological signals tend to have both deterministic and stochastic behaviors
[33]. Consequently, linear and non-linear analyses have been conducted in or-
der to obtain as much complementary information as possible about SAHS.
Once this exhaustive analysis is done, it might happen that irrelevant or re-
dundant information is extracted. Consequently, a feature selection stage is
implemented, aimed at optimizing the information to be used for the �nal di-
agnostic process. Two approaches have been followed to select this relevant and
non-redundant information: a wrapper algorithm, which is dependent on the
subsequent pattern recognition technique to be applied; and a �lter algorithm,
which is independent of subsequent analyses. After this stage, each subject is
characterized by a vector x whose components are the corresponding values of
the selected features. These vectors can be viewed as patterns which gather the
main information obtained from each subject. Therefore, they are the inputs
in the �nal pattern recognition stage. Pattern recognition techniques are di-
vided into two main groups: classi�cation and regression methods. The former
are aimed at classifying data into two or more categories, which in the current
study has meant classifying subjects into SAHS-positive or SAHS-negative (bi-
nary classi�cation), as well as into one of the four severity degrees of SAHS
(multi-classi�cation). On the other hand, regression is aimed at estimating one
or several continuous variables. In this study, we have used regression tech-
niques to estimate the AHI of every subject. During the whole methodological
process, several statistical issues need to be considered to properly measure the
diagnostic ability of the proposal, as well as to ensure the result's validation.
This is explained in the statistical analysis section.

Figure 4.1: Scheme of the general methodology conducted in the study
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4.1. Pre-processing

4.1.1. AF signal

Although the AF signal is not particularly noisy, some actions were taken
in order to ensure the quality of the recordings analyzed. First, an anti-aliasing
�lter was applied during the acquisition process to satisfy the Nyquist-Shannon
theorem. Then, a visual inspection of the signals was conducted to avoid
occasional recordings without enough data due to prolonged malfunction of
the sensor. In this regard, only signals with data corresponding to 3 or more
hours of sleep were considered for the study. Eventually, less than 3% of the
AF recordings were discarded. Finally, a Butterworth in�nite impulse response
low-pass �lter (cuto� = 1.2 Hz) was also used in order to reduce noise for
prospective analyses in time domain.

The acquisition of the respiratory rate variability signal (RRV), directly
derived from AF, was also part of the pre-processing stage. Similarly to the
well-known HRV, which is derived from ECG, the RRV signal is computed by
measuring the time between consecutive breaths [34]. In this regard, a peak
detection algorithm was implemented to locate inspiratory onsets in AF [77].
Thus, the �rst derivative of AF was examined to �nd time intervals in which
the original signal grew. Then the AF maximums at each interval were located.
Finally, consecutive locations were used as references to measure the time from
one breath to the next [77]. Due to this computation process, the RRV signal
lose the constant sample rate of AF, which is needed for subsequent analyses in
the frequency domain. Therefore, prior the the spectral analysis, a cubic spline
interpolation was applied to the RRV series in order to resample the recordings
to a constant sample rate.

4.1.2. HRV signal

As in the case of AF, an anti-aliasing �lter as well as a visual inspection of
the signals were applied during and after the acquisition process of the ECG
signal, respectively. The main pre-processing actions were related to the com-
putation of the HRV signal. Each sample in the HRV signal is the time between
two consecutive R peaks, which are located in the characteristic QRS complex
of the ECG [15]. Hence, to derive HRV, a QRS-complex detection algorithm
was �rstly applied [16]. It was reported to reach high sensitivity (99.94%)
and positive predictive value (99.93%), even in the presence of muscular noise
and baseline artifacts (99.88% sensitivity and 99.73% positive predictive value,
respectively) [16]. This algorithm is based on Hilbert transform and consists
of two stages. Initially, the �rst di�erential of the ECG signal is computed
(dECG). This is carried out to avoid baseline shifts and motion artifacts. Then,
the Hilbert transform is applied to dECG (h(n) = H[dECG]). Due to the prop-
erties of Hilbert transform, points around peaks in h(n) are regions of high
probability of containing actual QRS peaks [16]. Since the P and T waves are
low comparing with the R waves in h(n) [16], an adaptive threshold is used
to establish those regions truly corresponding to R waves. In the second stage
of the algorithm, these regions are used to look for the actual peaks in the
original ECG. After QRS-complex detection, the di�erence between R-R peaks
is computed.

In order to deal with arrhythmia-related artifacts, we excluded those R-
R intervals not �tting: i) 0.33 seconds < R-R interval < 1.5 seconds and ii)
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di�erence to the previous R-R interval > 0.66 seconds [94]. As in the case of
the RRV signal, HRV was resampled to a constant sample rate before carrying
out spectral analyses [94].

4.1.3. SpO2 signal

SpO2 is not a noisy signal. However, artifacts due to subject movements
might arise. Hence, in addition to an anti-aliasing �lter and a visual inspection,
an artifact removal was applied. In this regard, SpO2 values equal to zero as
well as di�erences between consecutive SpO2 samples ≥4% were considered
artifacts [82]. Removed samples were substituted by interpolated data.

4.2. Feature extraction

As mentioned above, linear and non-linear analyses were conducted in order
to characterize SAHS in the physiological signals. In this regard, linear analysis
was conducted both in time and frequency domain, whereas non-linear features
were obtained from time series.

4.2.1. Frequency domain: spectral analysis

Spectral analysis is a classic approach to investigate physiological signals
[22]. Particularly, the recurrent behavior of the apneic events during sleep
justi�ed the use of this frequency analysis during the study. Thus, the power
spectral density (PSD) of each recording was computed to look for the e�ects
that SAHS causes in the physiological signals under study. PSD was estimated
using the nonparametric Welch's method, which is suitable for non-stationary
signals [125].

Spectral bands of interest

When analyzing overnight physiological recordings, like AF's and HRV's
from PSG, normal patterns are still predominant even in the presence of SAHS.
Hence, in order to de�ne the e�ects of SAHS in the spectrum of the signals,
it is useful to �nd the particular frequency range or ranges in which these are
observed, i. e., to establish bands of interest. In this regard, PSDs from SAHS-
positive and SAHS-negative subjects were compared, frequency by frequency,
by the use of the proper statistical hypothesis test for each case. Then, the
band or bands of interest were de�ned according to the p-values reached in the
comparison of PSD amplitudes at each frequency. That is, bands of interest
were de�ned by those frequencies in which the highest statistical di�erences
(i. e. lowest p-values) were found between the PSDs of healthy subjects and
SAHS subjects. Figure 4.2 illustrates this methodology in the case of the AF
database from children, where BW1 and BW2 refer to each of the 2 bands of
interest found for that case.

Spectral features

Once spectral bands were de�ned, di�erent features were computed in the
frequency domain. Thus, during the study, up to 11 spectral features were
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Figure 4.2: Illustration of the methodology conducted to obtain spectral bands
of interest [61].

obtained from the PSDs of the signals under study. A brief explanation of each
of them is shown below.

First to fourth statistical moments in frequency domain, which
are the well-known mean (Mf1), standard deviation (Mf2), skewness
(Mf3), and kurtosis (Mf4), obtained from the bands of interest or the
whole PSDs as appropriate. They quantify the central tendency, disper-
sion, asymmetry, and peakedness of data, respectively.

Maximum and minimum PSD amplitude, computed as the highest
(MA) and the lowest (mA) PSD values in a certain frequency band. If
the PSD is normalized (PSDn), these features estimate the maximum
and minimum occurrence of events within the band considered.

Power features. By de�nition, the power in a spectral band (PB) can
be estimated from PSD by computing the area under the curve in that
band. When considering PSDn, the more power, the higher occurrence
of events in the band considered. Sometimes, it can be also useful to
estimate the power ratio between two bands. This is the case of the
PSD of HRV, where there are de�ned clear high frequency (HF) and low
frequency (LF) bands related to respiratory rhythms and sympathetic
activity, respectively [94]. The ratio between PLF and PHF (PLF/HF ) is
a commonly analyzed feature when studying HRV [4].

Median frequency (MF ). MF is de�ned as the frequency component
which separates the spectrum of certain band into two parts, holding 50%
of the power each of them [99]. Thus, the lower the MF value, the more
comprised is the spectrum into small frequencies. MF can be obtained
as follows [99]:

1

2
·
f2∑

f=f1

PSD(f) =

MF∑
f=f1

PSD(f), (4.1)



26 CHAPTER 4. METHODS

where f1 and f2 are the frequency limits of the band considered, with
f1 < f2.

Spectral entropy (SpecEn). SpecEn quanti�es the �atness of the PSD
content, which indirectly measures the irregularity of the associated time
series [71, 99]. Thereby, high values of SpecEn (SpecEn→ 1) are related
to a �at PSD (similar to white noise) and, consequently, it is associated
with more irregularity in time domain. By contrast, low SpecEn values
(SpecEn → 0) imply a spectrum condensed into a narrow frequency
band, which is related to less irregularity in time domain (like in a sum of
sinusoids) [99]. Since PSD needs to be considered as a probability density
function, it has to be normalized in order to sum 1. Then SpecEn can
be computed from the following expression [99]:

SpecEn =

f2∑
f=f1

PSDn(f) · logPSDn(f), (4.2)

which is the application of Shannon's entropy to the normalized values
of the PSD, between the f1 and f2 frequency limits.

Wootter's distance (WD). WD is a disequilibrium measurement
which assigns values close to 1 to those distributions with higher sta-
tistical distance to the uniform distribution. By contrast, values close to
0 are achieved as this distance becomes smaller [86]. WD also requires
PSD to be normalized. It can be estimated as follows:

WD = arccos


f2∑

f=f1

√
PSDn(f) ·

√
1/N

 , (4.3)

where N is the number of the PSDn points.

4.2.2. Time domain

Nine features from time domain have been also used during the study in
order to complement the spectral analysis. These are described below.

Common statistics: �rst to fourth statistical moments

As in the case of the frequency domain, �rst to fourth statistical moments
were also obtained in time domain (Mt1 −Mt4). These estimated central ten-
dency, dispersion, asymmetry, and peakedness from time series data instead of
from the PSD.

Non-linear features

Non-linear methods were used to obtain information from the stochastic
components of the biomedical signals under study. In the past, these methods
have shown its usefulness as a complementary approach to spectral analyses,
as well as to obtain helpful information where these are not possible or useless.
During the study, 5 non-linear features have been extracted from the recordings
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associated to the subject database. A brief description of each of them is shown
below:

Central tendency measure (CTM). CTM quanti�es the degree of
variability or chaos in a given time series x [31]. It is based on the plots
of the �rst-order di�erences, x(n+2)−x(n+1) vs. x(n+1)−x(n), where
x(n) represents the n value of the time series [3]. CTM is computed by
obtaining the proportion of points of the plot which fall within a radius
ρ around the origin [31]:

CTM =
1

N − 2

n−2∑
n=1

δ(n), (4.4)

where

δ(n) =

{
1 if {(x(n+ 2)− x(n+ 1))2 + (x(n+ 1)− x(n))2}1/2 ≤ ρ
0 otherwise,

(4.5)

with N being the size of the time series. CTM ranges between 0 and 1,
reaching values closer to 1 when a given series is less variable (values more
concentrated around center) and closer to 0 when it has more variability
(values more dispersed). Radius ρ has to be selected experimentally,
depending on the character of the data [31].

Lempel-Ziv complexity (LZC). LZC estimates the complexity of a
given �nite sequence of symbols P = s(1), s(2), ..., s(n) [132], with larger
values of LZC corresponding to a higher level of complexity. The �rst
step of the algorithm is to transform a time-series x into a symbol se-
quence. Usually, a binary transformation is carried out (symbols 0-1),
taking the median of x as threshold (Th) [3]:

s(n) =

{
0 if x(n) < Th
1 if x(n) ≥ Th (4.6)

where x(n) and s(n) are the nth values of x and P , respectively.

Once the sequence P is obtained, it is scanned from left to right, and
a complexity counter c(n) is increased every time a new subsequence of
consecutive characters is encountered [131]. The following algorithm is
used to obtain c(n) [131]:

1. Let S and Q denote two subsequences of P , and SQ be the con-
catenation of S and Q. Let sequence SQπ be the sequence SQ with
the last character removed. Let v(SQπ) denote the vocabulary of
all di�erent subsequences of SQπ. Initialize c(n) = 1, S = s(1),
Q = s(2) and, consequently, SQπ = s(1).

2. In general, S = s(1), s(2), ..., s(r), Q = s(r + 1), then SQπ =
s(1), s(2), ..., s(r). If Q belongs to v(SQπ), then Q is not a new
sequence but a subsequence of SQπ.

3. Rede�ne Q to be Q = s(r+1), s(r+2) and check whether Q belongs
to v(SQπ).
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4. Repeat step 3 until Q does not belong to v(SQπ). Since Q = s(r +
1), s(r+2), ..., s(r+i) is not a subsequence of SQπ = s(1), s(2), ..., s(r+
i− 1) increase c(n) by 1.

5. Thereafter, S and Q are rede�ned as S = s(1), s(2), ..., s(r + i) and
Q = s(r + i+ 1).

These steps are repeated until Q is the last character. Then, c(n) is the
number of di�erent subsequences in P . In order to make c(n) independent
from the length of the time series, it has to be normalized as follows:

C(n) =
c(n)

b(n)
, (4.7)

where b(n) is de�ned as:

b(n) = lim
n→+∞

c(n) ≡ n

logα(n)
, (4.8)

and α = 2 since the number of symbols is 2.

Approximate entropy (ApEn). ApEn is an irregularity measure-
ment in time series which was originally developed to be applied over
short and noisy data sets [97]. It discriminates series for which clear
feature recognition is di�cult by the assessment of both dominant and
subordinate patterns [98]. ApEn has two user-speci�ed parameters: a
length m and a tolerance window r. Given N points of a time series
x(n) = x(1), x(2), ..., x(N), it can be computed following the next steps
[68, 98]:

1. Form N−m+1 vectors X(1), ..., X(N−m+1), each of them de�ned
as X(i) = [x(i), x(i+ 1), ..., x(i+m− 1)], i = 1, ..., N −m+ 1, i. e.,
each ith-vector represents m consecutive values commencing with
the ith data point.

2. De�ne the distance between X(i) and X(j), d[X(i), X(j)], as the
maximum absolute di�erence between their respective scalar com-
ponents.

3. For a givenX(i), count the number (Nm(i)) of j (j = 1, ..., N−m+1)
for which d[X(i), X(j)] ≤ r. Then, for i = 1, ..., N −m+ 1:

Cmr (i) =
Nm(i)

N −m+ 1
, (4.9)

where Cmr (i) measures, within a tolerance r, the frequency of pat-
terns similar to a given one with a window length m.

4. Compute the natural logarithm of each Cmr (i) and average it over i:

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCmr (i). (4.10)

5. Increase m to m + 1 and repeat steps 1st to 4th in order to �nd
Cm+1
r (i) and φm+1
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6. Finally, ApEn is de�ned by

ApEn(m, r,N) = φm(r)− φm+1(r). (4.11)

According to this algorithm, ApEn measures the logarithmic likelihood
that patterns which are close (within r) for m contiguous observations
remain close (within the same r) form+1 contiguous observations. Thus,
ApEn assigns larger values to more irregular data [98]. Both m and r are
user-speci�ed parameters. However, a range of values have been proposed
to provide ApEn with good statistical reproducibility: m = 1, 2 and
r = 0.1, 0.15, 0.20, 0.25 times the standard deviation of the original series
[68, 98].

Sample entropy (SampEn). Richman and Moorman developed Sam-
pEn to reduce the bias caused by self-matching in the estimation of ApEn
[105]. As in the case of ApEn, a run length m and a tolerance window
r must be speci�ed to compute SampEn. Thus, time-series are divided
into consecutive vectors of length m and it is assessed whether the max-
imum absolute distance between the corresponding components of each
pair of vectors is less than or equal to the tolerance r, i.e., if the vectors
match each other within r. If so, the vectors are considered as similar.
The same process is repeated for vectors of length m+1. Then, it is com-
puted the conditional probability of similar vectors of lengthm remaining
similar when the length is m + 1. The �nal SampEn value is obtained
as the negative logarithm of such conditional probability [2, 105]. Thus,
higher values of SampEn indicate less self-similarity in the times-series
and, consequently, more irregularity [2]. Given N points of a time series
x(n) = x(1), x(2), ..., x(N), SampEn can be computed following the next
steps:

1. Form N−m+1 vectors X(1), ..., X(N−m+1), each of them de�ned
as X(i) = [x(i), x(i+ 1), ..., x(i+m− 1)], i = 1, ..., N −m+ 1, i. e.,
each ith-vector represents m consecutive values commencing with
the ith data point.

2. De�ne the distance between X(i) and X(j), d[X(i), X(j)], as the
maximum absolute di�erence between their respective scalar com-
ponents.

3. For a given X(i), count the number (Bi) of j (j = 1, ..., N − m,
j 6= i) for which d[X(i), X(j)] ≤ r. Then, for i = 1, ..., N −m:

Bmi (r) =
Bi

N −m+ 1
. (4.12)

4. Compute Bm(r) as:

Bm(r) =
1

N −m

N−m∑
i=1

Bmi (r). (4.13)

5. Increase m to m + 1 and calculate Ai as the number of Xm+1(i)
within r of Xm+1(j), where j = 1, ..., N −m, j 6= i. Ami (r) is

Ami (r) =
Ai

N −m+ 1
. (4.14)
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6. Am(r) is computed as

Am(r) =
1

N −m

N−m∑
i=1

Ami (r). (4.15)

Thus, Bm(r) and Am(r) are the probability that two sequences will
match for m and m + 1 points, respectively. Finaly, SampEn is
estimated by:

SampEn(m, r,N) = − ln
Am(r)

Bm(r)
. (4.16)

Multi-scale entropy (MsE). MsE was originally developed by Costa
et al. on the basis of ApEn or SampEn [32]. As previously shown, both
of them measure irregularity in time series. MsE procedure, however,
computes entropy for di�erent time-scales of time series, which makes it
a complexity measure rather than an irregularity measure [33, 42]. In
the current study, only SampEn has been involved in MsE. Thereby,
estimating SampEn for an original time series or recording is equivalent
to SampEn at scale 1. Scale 2 is obtained by averaging the original time
series every 2 samples without overlapping; scale 3 when the average is
every 3 samples, and so on. The scaled time series, yτ , can be computed
as follows [32]:

yτj =
1

τ

jτ∑
i=(j−1)τ+1

xi, 1 ≤ j ≤ N/τ, (4.17)

where τ is the corresponding scale and yj is each of the elements of the
new time series. Then, each of the scaled time series are subsequently
characterized by the corresponding SampEn value. The tendency of the
SampEn curve throughout the scales shows the complexity level in time
series.

4.3. Feature selection

Two automated selection algorithms were used in order to obtain optimum
sets of features among those extracted in the previous stage. Thus, we imple-
mented the forward-selection backward-elimination algorithm on the basis of
logistic regression. Moreover, the fast correlation-based �lter, which is indepen-
dent of the pattern recognition technique subsequently used, was also applied
to the extracted features.

4.3.1. Stepwise logistic regression: the forward-selection backward-

elimination algorithm (SLR-FSBE)

Given a problem context, stepwise logistic regression provides a fast way to
determine signi�cant associations among some variables under study [69]. In
this case, these variables are features extracted from physiological signals, and
the context is SAHS diagnosis. The associations among variables are de�ned
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according to a �xed decision rule, the logistic function, as well as the statisti-
cal signi�cance of the coe�cients (or weights) of each variable. Since logistic
regression assumes errors to follow a binomial distribution, the likelihood ratio
chi-square test is used to measure that statistical signi�cance [69]. The depen-
dence of this feature selection algorithm on a speci�c prediction model (logistic
regression, LR) classi�es stepwise logistic regression as a wrapper method [66].

Forward-selection backward-elimination (FSBE) is a common approach to
implement stepwise logistic regression (SLR-FSBE) [69]. This strategy is e�-
cient in terms of computation as well as robust against over�tting [66]. The
SLR-FSBE algorithm can be implemented following the next steps [69]:

1. Step 0. Given a set of N variables to be evaluated, the starting point
of this algorithm is a LR model only composed of the intercept, i. e., the
constant term. Then, N univariate LR models, one for each variable, are �t
to compare them with this LR intercept model by means of the p-value of
the likelihood ratio chi-square test. Thus, for each independent variable xi,
a LR model and a p-value p(0)i is computed. The most signi�cant variable
xe1 is the one with the lowest p-value:

p
(0)
e1 = min(p

(0)
i ). (4.18)

xe1 is considered signi�cant enough iff p
(0)
e1 < αI and, in such case, it

is included in the model. Otherwise the algorithm stops after selecting no
variables. The election of αI should be guided by the context [69]. However,
common values are in the range 0.05 (which is restrictive to include a low
number of variables) and 0.25 (which let more variables be part of the model)
[69].

2. Step 1. The starting point of this step is a LR model with the intercept and
xe1. In order to assess whether the remaining N−1 variables are signi�cant,
N − 1 LR models are �t with the intercept, xe1, and xi, with i = 1, 2, ..., N
and i 6= e1. These models are compared with the model from the previous
step by computing the p-value of the likelihood ratio chi-square test, i. e.,
p
(1)
i . As in the previous step, the most signi�cant variable is computed as:

p
(1)
e2 = min(p

(1)
i ). (4.19)

xe2 is included in the model iff p(1)e2 < αI and the algorithm proceeds with
the next step. Otherwise, the algorithm stops.

3. Step 2. The two preceding steps are part of the forward-selection stages of
the algorithm. In this step it is also integrated the backward-elimination.
The starting point is a LR model with the intercept, xe1, and xe2. The
objective is to evaluate whether xe1 is still signi�cant once the variable
xe2 is included in the model. Thus, they are �tted as much models as
variables included in previous steps. For each one, only one of the variables
is excluded. All the models are compared with the starting one by means
of the p-value of the likelihood ratio chi-square test, i. e., p(2)−ei, i = 1, 2. A
variable xr2 is a candidate to be removed from the model if:

p
(2)
−r2 = max(p

(2)
−ei), i = 1, 2. (4.20)
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xr2 is removed from the model iff p
(2)
−r2 > αR, with αR > αI . This new

threshold is usually in the range 0.2-0.9 [69].

After the backward-elimination process, it is evaluated the requirement for
a new variable to be included in the model. Thus, N − 2 LR models are
�tted containing the intercept, the variables xe1, and xe2 selected in previous
steps, and a new variable xi, with i = 1, 2, ..., N and i 6= e1, e2. Then, each
model is compared with the model obtained after the backward-elimination
process. As in previous steps, a new variable xi is a candidate to enter the
model, xe3, if its associated p-value is the lowest among all variables. Iff
p
(2)
e3 < αI , xe3 is �nally included in the model and the algorithm proceeds
with the next step. Otherwise, the algorithm stops.

4. Subsequent steps. At each step, the algorithm carries out a backward-
elimination procedure followed by a forward-selection one.

5. End of the algorithm. The algorithm ends when the N variables of the
original set has been included in the model or when none of the candidate
variables satis�es the condition to enter the model and none of the variables
included satis�es the condition to be removed from the model.

4.3.2. Fast correlation-based �lter (FCBF)

The fast correlation-based �lter (FCBF) is an automated selection algo-
rithm which is independent of the posterior pattern recognition methods ap-
plied to the features, i. e., it is considered a �lter method [66]. It has shown its
utility in previous studies involving biomedical applications [1]. FCBF relies on
relevance and redundancy analyses of the variables under study [129]. Thus,
the purpose is to discard those features xi which share more information with
the others than with a dependent variable of interest, y. For the current study,
y is a vector whose components are the AHI values of the subjects.

FCBF is based on symmetric uncertainty (SU), which is a normalized quan-
ti�cation of the information gain (IG) between two variables [129]. The algo-
rithm consists of two steps. In the �rst one, a relevance analysis of the features
xi is conducted. Thus, SU between each feature xi and y is computed as follows
[129]:

SU(xi, y) =

[
IG(xi | y)

H(xi) +H(y)

]
, i = 1, 2, ..., N, (4.21)

where IG(xi | y) = H(xi)−H(xi | y), H is the well-known Shannon's entropy,
and N is the number of variables considered. SU is constrained to 0-1. A
0 value indicates that the two variables are independent, whereas SU = 1
indicates that knowing one feature it is possible to completely predict the other
[129]. Thus, the higher the value of SU , the more information shares the
corresponding feature with y and, consequently, the more relevant is. Then, a
ranking of variables is carried out on the basis of their SU(xi, y) values, i.e., they
are sorted from most relevant to least relevant. The second step is a redundancy
analysis in which SU between each pair of features (SU(xi, xj)) is sequentially
estimated beginning from the �rst-ranked ones. If SU(xi, xj) ≥ SU(xi, y),
with xi being more highly ranked than xj , the feature xj is discarded due to
redundancy and is not considered in next comparisons [129]. The optimum set
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of variables is composed of those not discarded after all comparisons between
variables have been done.

4.4. Pattern recognition

Pattern recognition concerns the identi�cation of underlying behaviors in
data through the use of automatic algorithms. These behaviors, or patterns,
can then be used to de�ne data into a class (classi�cation) or to derive contin-
uous variables (regression) from them [20].

4.4.1. Classi�cation

Linear discriminant analysis

Linear discriminant analysis (LDA) is a supervised classi�er which assigns
a vector xi (with i = 1, 2, ..., S and S the number of instances), into one
out of K classes, Cj (j = 1, 2, ...,K). It relies on the assumption that the
conditional density function of each class, P (xi |Cj), follows a multivariate
normal distribution (normality) with identical covariance matrices, ∑∑∑, for all
classes (homocedasticity) [20]. A discriminant score yj(x) is computed for each
class following [51, 84]:

yj(x) = µTj
∑∑∑−1x− 1

2
µTj

∑∑∑−1xµj + lnP (Cj), (4.22)

where µj is the mean vector for class Cj and P (Cj) its corresponding prior
probability, i.e., the initial proportion of vectors xi belonging to class Cj . The
classi�cation task is carried out through the decision rule, �assign a new vector
xi to the class Cj if yj(xi) = max

j=1,2,...,K
(yj(xi))�.

Logistic regression

LR has become a standard when classifying data into one out of two classes,
i. e., it is a binary classi�er. It is also a supervised learning algorithm. Thus,
given S observations or instances (xi, yi), i = 1, 2, ..., S, xi denotes the vector
(or pattern) which characterizes the instance i, whereas yi is the value of a
binary outcome associated with the same instance [69]. In this regard, LR
estimates the posterior probability that a given instance xi belongs to certain
class Cj (j = 1, 2) that is, P (Cj |xi). This is carried out through the logistic
function [69]:

P (Cj |xi) =
eβ0+xiβ

1 + eβ0+xiβ
, (4.23)

where β0 and β = β1, β2, ..., βN , are the coe�cients of the LR model, and
N is the number of independent variables which compose each xi vector.
β0, β1, β2, ..., βN are obtained through the maximum likelihood estimator [69].
Then, an instance xi is assigned to the class Cj with larger posterior probabil-
ity, P (Cj |xi).
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Classi�cation and regression trees

The classi�cation and regression trees algorithm (CART) is a strategy to
implement decision trees. It is a non-parametric learning method which relies
on a recursive binary partitioning of the input space to take decisions on some
data [20]. As its name suggests, CART let these decisions be approached as
classi�cation or regression problems. However, in the current study, only the
classi�cation approach has been adopted.

Given an input space X composed of N variables, xi = {x1,x2, ...,xN},
CART starts by dividing it according to one of its variables. Then, the two
subsets formed after this division can be also split according to another variable,
and so on. This general description poses two issues to be solved: i) what
strategy to implement in order to grow the tree and ii) when to stop adding
nodes to the tree [20].

The �rst issue includes selecting the space that can be split (at each step
there will be several candidate regions), as well as the speci�c variable and
threshold used to do it. The three of them are optimized jointly through an
exhaustive greedy strategy, adding one node at a time [20]. In the case of
classi�cation tasks, the measure of performance to carry out these selections is
the Gini index, which can be computed as follows [20]:

Gτ (T ) =

K∑
j=1

pτj(1− pτj) . (4.24)

where τ = 1, 2, ..., T , with T as the number of leaf nodes at each step (nodes
without children nodes), and pτj is the proportion of original data points (or
instances), associated with a region Rτ , which are assigned to class j, j =
1, 2, ...K.

For the second issue, one common approach is to grow a large tree until a
speci�c number of leaf nodes is reached. Then this tree is pruned back. The
criterion for the pruning process is given by [20]:

C(T ) =

T∑
τ=1

Qτ (T ) + λT , (4.25)

where Qτ (T ) is the misclassi�cation error associated with the corresponding
region Rτ , and λ is a regularization parameter which is a trade-o� between this
error and the complexity of the model (the number of leaf nodes, T ).

Ensemble learning: adaptive boosting

Ensemble learning refers to combine di�erent models �tted from the avail-
able data in order to achieve better performance than each one separately [126].
Boosting is one of the most powerful strategies to develop ensemble learning
algorithms [20], being known for achieving good generalization ability when
testing on new data [126].

Boosting procedures are iterative algorithms designed to combine models
that complement one another [126]. Such a combination is conducted on the
basis of weighted votes assigned to base classi�ers of the same type, which are
�tted at each iteration [20, 126]. AdaBoost , for adaptive boosting, is a widely
used boosting algorithm which can be used along with any classi�er [50, 126].
However, if AdaBoost is applied to complex classi�ers, the prediction ability
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on new data may be signi�cantly decreased [126], i.e., its generalization ability
may be lost. Thus, simpler procedures known as weak classi�ers are preferable
[126].

At each m iteration, AdaBoost assigns a weight, wmi to every instance xi
(i = 1, 2, ..., S, being S the number of instances). Thus, the mth weak classi�er
is trained using the corresponding weighted instances. Then, its performance is
assessed through an error εm. This error is used to determine the weighted vote
αm for this mth classi�er [126]. Those classi�ers with smaller εm contribute
more to the �nal decision (higher αm). At the end of each iteration, the weights
of the misclassi�ed instances are updated (wm+1

i ) [126]. Finally, the weights of
all instances are normalized in order to maintain the original distribution [50].

Two versions of AdaBoost have been implemented in this study: AdaBoost.
M1, for binary classi�cation and AdaBoost.M2 for multiclass classi�cation.
Both of them rely on reweighing those instances which have been misclassi-
�ed in the previous iteration. Thus, the weak classi�er trained during the next
iteration gives more importance to these instances [20], being more likely to
classify them rightly [126]. The main di�erence between AdaBoost.M1 and
AdaBoost.M2 is how the error εm is de�ned. For AdaBoost.M1, εm is the sum
of the weights of the misclassi�ed instances in a given iteration m, divided by
the sum of the total weights of all instances at that iteration:

εm =

S∑
i=1

wmi (miss.)

S∑
i=1

wmi

. (4.26)

By contrast, a weighted pseudo-loss is de�ned in the case of AdaBoost.M2,
for which εm is computed as follows [50]:

εm =
1

2

S∑
i=1

∑
c 6=ctrue

wmk,c(1− hm(xk, ctrue) + hm(xk, c)) , (4.27)

where c is a categorical variable representing the multiple classes, ctrue refers
to the actual class of xk, and hm is the con�dence of the prediction of the weak
learner for an instance xk and a class from c.

Both AdaBoost.M1 and AdaBoost.M2 carry out the �nal classi�cation task
by returning the class with the highest sum of the votes from all classi�ers,
taking into account the weight αm of their corresponding predictions [50]:

αm = lnβm , (4.28)

where βm is de�ned as (1− εm)/εm. Additionally, the shrinkage regularization
technique has been proposed to minimize over�tting [52]. It is based on adding
a learning rate υ to the iterative process by rede�ning βm as (βm)υ, where υ
ranges 0-1 and has to be experimentally estimated.

Finally, two criteria were used to stop the AdaBoost.M1 algorithm: i) εm
does not belong to the interval (0, 0.5) [126] or ii) the number of weak learn-
ers is not higher than 400 (to minimize the over�tting chances). In the case
of AdaBoost.M2, only the second criterion was applied since the �rst one is
considered too restrictive for multiclass approaches [50].



36 CHAPTER 4. METHODS

4.4.2. Regression

Multiple linear regression

Multiple linear regression (MLR) is a traditional method to predict a target
variable t, through an output variable y, estimated from multivariate patterns
of size N , xi = xi1, xi2, ..., xiN , i = 1, 2, ..., S, with S being the total number of
instances considered. A linear relationship between y and xi is assumed [72]:

y(xi,β) = β0 + β1xi1 + ...+ βNxiN , (4.29)

where β = (β0, β1, ..., βN )T are the regression coe�cients for each input variable
xi, as well as the intercept (β0). β is computed by means of the sum-of-squares
error (ED) minimization [19]:

ED =
1

2

S∑
i=1

[y(xi,β)− ti]2 , (4.30)

where ti corresponds to the actual value of the predicted variable y for the
instance xi.

Multi-layer perceptron

The multi-layer perceptron (MLP) is an arti�cial neural network inspired by
the human brain. Its architecture is arranged in several interconnected layers
(input, hidden layers, and output), which are composed of simple units known
as perceptrons [19]. Each unit is characterized by an activation function g()
as well as by its connections to units from other layers. These connections are
associated with adaptive weights (wij).

The output layer provides the response, y. In a regression task, the purpose
is to estimate a target continuous variable, t. Hence, a single output unit with
a linear activation function was used [88]. Additionally, a single hidden layer,
composed of units with non-linear activation functions, was implemented. This
con�guration is known to be able to provide a universal function approximation
[19]. Thus, y can be expressed as follows:

y(x,w) =

NH∑
j=1

[
wj g

(
I∑
i=1

wijxi + bj

)
+ b0

]
, (4.31)

where w is a vector with all the adaptive parameters (weights and bias), wj
is the weight connecting hidden units huj with the output unit, b0 is the bias
associated with the output unit, wij is the weight connecting the input unit iui
with hidden unit huj , and bj is its associated bias. NH , the number of units in
the hidden layer, is a design parameter whereas I is the total number of units
in the input layer, which in this case is also the number of features used to
train the network. Weights are optimized by the sum of squares error function
minimization. The scaled conjugate gradient method was used for this purpose
[19].

Weight decay regularization was used to minimize over�tting and achieve
good generalization. Thus, a penalty term (Ω) was added to the sum-of-squares
error function in order to favor small weights [19]:
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ED =
1

2

S∑
i=1

[y(xi,w)− ti]2 + υ
∑
i

w2
i , (4.32)

where S is the total number of instances considered and υ is the regularization
parameter, which has to be con�gured.

Radial basis function

The radial basis function (RBF) is another arti�cial neural network ap-
proach. It is composed of one hidden and one output layer. The output y is
computed from the responses provided by the basis functions ψ() from the hid-
den layer nodes. These functions only depend on the radial distance (typically
the Euclidean distance) between the input vector x and a set of suitable centers
cj [19]. Since the problem is a regression task, a single output neuron with a
linear activation function was used to implement the output layer. Thus, y is
given by the following expression [19]:

y(x,w) =

NB∑
j=1

wj ψj (‖x− cj‖) + b, (4.33)

where NB is the number of basis functions (or centers), cj is the center of the
function ψj , wj is the weight connecting ψj and the output neuron, and b is
the bias parameter for this neuron.

A Gaussian function is commonly used for ψ [19]:

ψ(x) = exp

(
−‖x− cj‖2

2σ2
j

)
, (4.34)

where σj is the standard deviation (or width) of each function. Thus, the
numbers of centers (NB) and their locations cj as well as the widths of radial
basis functions σj and the weights wj are parameters to be optimized. NB and
σj are usually experimentally determined. The K-means algorithm is commonly
used to optimize the location of the centers, and wj are estimated through the
sum-of-squares error minimization [19].

4.5. Conventional approach algorithm

A conventional approach algorithm, based on detecting and scoring apneic
events, was also implemented for comparison purposes. Thus, a peak detection
algorithm was used to locate inspiratory onsets and endings in AF time series
[77]. The di�erence between AF values in consecutive onsets and endings loca-
tions determined the amplitude of every inspiration. According to the rules of
the AASM, the algorithm scored those respiratory events which meet with i)
a drop of 30% or more from the AF pre-event baseline and ii) the drop lasts
10 seconds or more [18]. The baseline was computed as the mean amplitude of
the s previous inspirations [67]. Hence, s was a design parameter to be �tted in
a training set. Once all events are scored, the total amount of them is divided
by the recording time to obtain an AHI estimation.
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4.6. Statistical analysis

4.6.1. Diagnostic ability statistics

There exist common statistics used to measure the diagnostic ability of a
given model or test. Their de�nitions rely on the number of subjects rightly
and wrongly classi�ed. In the case of binary classi�cation they are obtained
from the corresponding confusion matrix, which compares the results of the
test under study and a reference test in terms of the presence or absence of a
disease. The elements of this matrix are:

a) True positives (TP ). Number of patients (according to the reference test)
which have been rightly classi�ed by the test evaluated.

b) False negatives (FN). Number of patients (according to the reference test)
which have been wrongly classi�ed by the test evaluated.

c) True negatives (TN). Number of subjects without the disease (according to
the reference test) which have been rightly classi�ed by the test evaluated.

d) False positives (FP ). Number of subjects without the disease (according to
the reference test) which have been wrongly classi�ed by the test evaluated.

According to these elements, the next statistics can be de�ned [47]:

� Sensitivity (Se). Proportion of patients rightly classi�ed, that is:

Se =
TP

TP + FN
× 100. (4.35)

� Speci�city (Sp). Proportion of subjects without the disease rightly classi-
�ed, that is:

Sp =
TN

TN + FP
× 100. (4.36)

� Accuracy (Acc). Proportion of overall subjects rightly classi�ed. This
de�nition is also valid for multiclass tasks. However, for binary classi�cation
it can be de�ned as follows:

Acc =
TP + TN

TP + TN + FP + FN
× 100. (4.37)

� Predictive values. Given a certain class, predictive values are the propor-
tion of subjects rightly classi�ed among all the subjects that the test under
study has assigned to that class. Thus, predictive values can be also used for
multiclass problems. However, positive and negative predictive values (PPV
and NPV , respectively), for binary classi�cation, are the most common:

PPV =
TP

TP + FP
× 100. (4.38)

NPV =
TN

TN + FN
× 100. (4.39)
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� Likelihood ratios. Positive and negative likelihood ratios (LR+ and LR−)
are also common measures in binary classi�cation problems which estimates
the performance of a test in a dimensionless way. They are de�ned as follows:

LR+ =
Se

1− Sp
, (4.40)

LR− =
1− Se
Sp

. (4.41)

Hence, the higher the LR+ the higher the proportion of patients rightly
classi�ed with respect to the proportion of healthy subjects wrongly classi�ed
(desired values close to +∞). Similarly, the lower the LR− the lower the
proportion of patients wrongly classi�ed with respect to the healthy subjects
rightly classi�ed (desired values close to 0).

Receiver-operating characteristics (ROC) analysis

The receiver-operating characteristics analysis (ROC) measures the overall
performance of a test under evaluation. It has been particularly useful as an
assessment tool in clinical practice, in part due to its independence of the im-
balance of the classes in a sample [134], i. e., its independence of the prevalence
of the target disease. It is based on a plot which represents a Se vs. 1 − Sp
curve, where Se and Sp result from evaluating a range of decision thresholds
for the same test. Useful information can be derived from such analysis. One
approach may focus on �nding a suitable threshold that acts as a trade-o�
between FP and FN [134]. On the other hand, since the ROC curves provide
a comprehensive insight of classi�cation ability, they can be used to compare
the performances of di�erent tests in a wider sense. In this regard, a perfect
discriminative test should pass through the point Se = 1 (or 100%), 1− Sp =
0. Therefore, the closer the plot to the upper left corner the higher the overall
performance of a given test [134]. Figure 4.3 displays an example of ROC curve,
where the closest point to (1,0) has been highlighted. The threshold associated
with this point is often chosen as the optimum one when the purpose is the
trade-o� previously mentioned.

One common approach to avoid visual comparisons of ROC plots is to es-
timate the area under the curve (AROC). It is a way to quantify in a single
number the overall performance of a test. It may range between 0 and 1. How-
ever, the less discriminative power is achieved when AROC = 0.5. For AROC
values lower than 0.5 it is enough to change the positiveness of the test in order
to get AROC values higher than 0.5. A perfect discriminative performance is
reached when AROC = 1 (or AROC = 0). AROC is interpreted as follows:
given AROC = 0.9, one positive instance, randomly selected, would have a
larger value in the test under evaluation 90% of the time comparing with a
randomly chosen negative instance.

According to this interpretation, one way to measure the performance of a
test through AROC (considering AROC values ≥ 0.5) is as follows [3]:

a) AROC ranging 0.9 to 1: excellent discriminative ability.

b) AROC ranging 0.8 to 0.89: good discriminative ability.

c) AROC ranging 0.7 to 79: fair discriminative ability.
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Figure 4.3: Example of a ROC curve.

d) AROC ranging 0.6 to 0.69: poor discriminative ability.

e) AROC ranging 0.5 to 0.59: bad discriminative ability.

4.6.2. Measures of agreement

The agreement between the diagnostic standard and the alternatives pro-
posed can be measured both for classi�cation and regression approaches.

Cohen's kappa

The Cohen's kappa index, κ, is a measure of agreement between predicted
and observed classes (two or more classes) which does not consider the agree-
ment that occurs by chance [30, 126]. It can be computed as follows [30]:

κ =
po − pc
1− pc

, (4.42)

where po is the proportion of data (or instances) in which the observed and
predicted classes agree and pc is the proportion of data (or instances) for which
agreement is expected by chance [30]. The maximum value for κ is +1, mean-
ing that there exists a perfect agreement between the observed and predicted
classes. The lower limit for κ ranges between 0 and -1 depending on the
marginal distributions of the classes [30]. κ = 0 means that the agreement
is due entirely to chance whereas κ = −1 corresponds to total disagreement.

Intra-class correlation coe�cient

The intra-class correlation coe�cient (ICC) can be used to measure agree-
ment between predicted and observed continuous variables, i. e., when consider-
ing regression approaches. In contrast to other popular measures, like Pearson's
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correlation coe�cient, ICC takes systematic error into account when assessing
agreement.

There exist several versions of ICC according to its speci�c purpose as
well as the underlying model assumed (one-way ANOVA, two-way ANOVA
with and without interactions, etc). For this case, assessing agreement be-
tween variables, when no ANOVA assumptions are required and there are no
replicated measurements, the next estimation is recommended [27]:

ICC =
MSI −MSE

MSI − (J − 1)MSE + J(MST −MSE)/N
, (4.43)

where J is the number of observers, N is the number of instances considered,
MSI is the instances mean square, MSE is the error mean square, and MST
is the observers mean square. Theoretically, ICC ranges between 0 and +1
[124], with values close to +1 indicating a high degree of agreement between
observers whereas values close to 0 indicate no agreement at all.

4.6.3. Validation

Several methods have been used in order to validate the results obtained
during the study. They were chosen according to the size of the sample used
at each case as well as the number of degrees of freedom needed to be adjusted
for each speci�c problem. Thus, for the smallest samples, bootstrapping was
preferred since it is known to provide good estimation of statistics when few
data is available [40]. For medium-size samples, with no model free parameters
to be adjusted, leave-one-out cross-validation (loo-cv) was used. By contrast,
when parameter adjustment was required, a combination of Hold-out (training
and test sets) with loo-cv or bootstrapping was applied, i. e., �rst the sample
was divided into training and test sets, then loo-cv or bootstrapping was applied
to the training set in order to tune the free parameters.

Hold-out

The natural way to properly estimate the performance of a given model or
methodology is to divide the entire data sample into a training set, for model
�tting, and an independent test set, for estimating a reliable performance. This
is called the hold-out method [20, 126]. This approach imply excluding a sig-
ni�cant amount of data from the model �tting process, which may derive into
less generalizable models if the training set is not enough representative of the
problem [126]. Hence, hold-out is only recommended if enough data is avail-
able. However, as previously mentioned, hold-out can take part of combined
validation methodologies with the purpose of keeping some independent data,
unseen for the rest of the process.

Leave-one-out cross-validation

Loo-cv is another common way of performance validation. It is based on
excluding from the training process one instance at a time [20, 126]. Thus, if
the sample size is N , N models are trained using N − 1 instances. Then, these
are tested on the corresponding excluded instance, which leads to the �nal
performance estimation. One advantage of loo-cv is that each of the N − 1
models are trained using the greatest possible amount of data. This may result
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in more generalizable models [126]. By contrast, it may be computationally
costly for large data sets, as well as produce pessimistic performance estimation
for some speci�c cases [126].

Bootstrapping

The bootstrap 0.632 algorithm was also used as performance estimator when
the data set was small. As previously mentioned, this procedure is known to
be particularly useful in such cases [40, 126]. It is based on the sampling with
replacement method. Thus, given a set x of N instances, x = x1,x2, ...,xN , B
new sets (bootstrap sets) xb (b = 1, 2, ..., B) of size N are formed by resampling
with replacement from the original one [126]. A uniform probability is used to
randomly select the instances from x for each new xb . Hence, instances can
be chosen several times for a particular xb. These will act as a training group
and, most probably, will contain repeated instances from x. Consequently, for
each new resampling process, a number of instances from the original x will
not be selected. These instances will act as the test group. Thus, B new sets
of size N are formed, acting as training groups, and the instances not included
in each case act as the corresponding test groups. Following bootstrap 0.632, a
statistic S obtained from a test set would be a downward estimation of the true
one [40]. Hence, both the training and the test groups are used to compute S
by weighting their corresponding estimations as follows [126]:

S = 0.368Straining + 0.632Stest , (4.44)

where Straining is the statistic computed from the training set of a given xb
whereas Stest is the corresponding value from the test set. Finally, the B
estimations of S are averaged to show a global performance.

4.6.4. Dealing with data imbalance: SMOTE

The high prevalence of SAHS leads to prioritize diagnosis of at-risk pop-
ulation [46]. Consequently, data from SAHS patients is much more available
than data from no SAHS subjects. If the imbalance is too pronounced, it af-
fects the learning process of some pattern recognition algorithms, which bias
its performances towards the majority class. When considering classi�cation
into the four SAHS severity degrees (multi classi�cation task), the imbalance is
particularly marked for the group with the lowest AHI (AHI < 5 e/h). Thus,
the synthetic minority oversampling technique (SMOTE) was implemented to
compensate for this imbalance [26].

SMOTE creates new synthetic instances on the basis of the available minor-
ity class real ones [26]. According to the number of new instances (or vectors
xi) required for the compensation of the classes, the algorithm selects the K-
nearest neighbors of each of the real ones [26]. Thus, if doubling the minority
class instances is needed, K should be 1, and so on. Then, the di�erence
between each vector xi and its K-nearest neighbors is computed. These dif-
ferences, multiplied by a random number in the range 0 to 1, are subsequently
added to the original vector again to form new synthetic ones, whose com-
ponents range between the vector considered and its corresponding K-nearest
neighbors [26].
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4.6.5. Statistical hypothesis tests

Statistical hypothesis testing was used to assess data normality (extracted
features) as well as di�erences among the groups under study (SAHS-negative/
SAHS-positive, SAHS-severity degrees, etc). Thereby, Lilliefors test was ap-
plied to the extracted features in order to evaluate normality. These data did
not pass the test (data not normal) and, as a consequence, non-parametric
statistical signi�cance tests were used to assess di�erences in the above men-
tioned groups. Mann-Whitney U test was used for comparisons between two
classes (SAHS-negative/SAHS-positive), whereas its multiclass extension, the
Kruskal-Wallis test, was used for comparisons among the four SAHS-severity
groups (no-SAHS, mild, moderate, and severe).
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This chapter summarizes the most relevant results displayed in the com-
pendium of publications. They have been split according to the di�erent pat-
tern recognition approaches followed during the study, i. e., binary classi�cation
(presence or absence of SAHS), multiclass classi�cation (prediction of SAHS
severity categories), and regression (estimation of the AHI). Multiclass classi-
�cation and regression was not possible in the case of children AF and adult
HRV databases due to their small size. The former was only composed of 50
children whereas the number of women (54) limited the study in the second
case. All results presented were obtained after conducting one of the validation
methodologies described in Chapter 4.

5.1. Binary classi�cation

5.1.1. Adults

Feature extraction: bands of interest and separability of classes

As explained in Chapter 4, several frequency and time domain features
were obtained from the recordings involved in the study. Most of the spectral
features were extracted from bands of special interest, which were established
according to SAHS speci�cities (AF and RRV signals) or due to their relation-
ships to other main body systems. The latter is the case of the HRV signal,
whose spectral information has been widely associated with the behavior of
the autonomic nervous system. Thus, there exist �xed frequency bands, well-
established in the literature. The bands of interest used in the current study
were:

AF signal from thermistor (Figure 5.1): 0.022− 0.059 Hz (statistically
obtained).

AF signal from nasal pressure (Figure 5.2): 0.025− 0.050 Hz (derived
from apneic event typical duration).

RRV signal from thermistor (Figure 5.3): 0.09− 0.13 Hz (statistically
obtained).

HRV signal (Figure 5.4):

� Very low frequencies (VLF)≡ 0−0.04 Hz (associated with autonomic
nervous system behavior).

� Low frequencies (LF) ≡ 0.04−0.15 Hz (associated with sympathetic
activity).

� High frequencies (HF) ≡ 0.15− 0.4 Hz (associated with parasympa-
thetic activity).

Figures 5.1 and 5.2 show the averaged PSDs, with the corresponding bands
of interest, of AF and RRV from thermistor for the SAHS-negative and SAHS-
positive groups, i. e., di�erences are taken into account according to a binary
classi�cation task. Similarly, Figure 5.4 shows the well-established HRV bands
of interest of SAHS-negative and SAHS positive groups separated by gender.
Finally, Figure 5.3 displays the band of interest for nasal-pressure AF, taking
into account the four severity degrees of SAHS.
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Figure 5.1: PSDs and band of interest in thermistor AF [65].

Figure 5.2: PSDs and band of interest in thermistor RRV [65].

Figure 5.3: PSDs and band of interest in nasal-pressure AF [62].

Table 5.1 displays statistical moments in time domain, non-linear measures,
and spectral features, extracted from AF recordings obtained through a ther-
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Figure 5.4: PSDs and bands of interest in HRV [63].

mistor, for SAHS-negative and SAHS-positive subjects (mean ± standard de-
viation). p-values between the two groups are also shown (signi�cance level
p-value < 0.01). It can be observed that none of the time-domain features
showed statistically signi�cant di�erences and only one of the spectral features
from the whole spectrum did it (Mf3). By contrast, 5 out of 6 spectral features
obtained from the band of interest showed p-value < 0.01. These results high-
light that, for the AF signal, most of the information about SAHS is comprised
within the spectral band of interest.

Table 5.1: Features extracted from the AF signal obtained through a thermistor
sensor for the SAHS-negative and the SAHS-positive groups (mean ± standard devi-
ation). p-values between the two groups are also shown for each feature (signi�cance
level p-value < 0.01). ns: not signi�cant (p-value ≥ 0.01). XB refers to features extracted
from the band of interest.

Features SAHS-negative SAHS-positive p-value

Mt1 0.04± 0.11 0.06± 0.21 ns

Mt2 179.9± 91.4 190.4± 80.3 ns

Mt3 0.28± 0.31 0.28± 0.24 ns

Mt4 11.74± 21.40 8.25± 15.83 ns

CTM 0.628± 0.185 0.635± 0.184 ns

LZC 0.283± 0.027 0.279± 0.029 ns
ApEn 0.435± 0.074 0.412± 0.073 ns
Mf1 4.9 · 104 ± 6.4 · 104 8.4 · 103 ± 8.0 · 103 ns
Mf2 0.06± 0.21 4.7 · 104 ± 5.1 · 104 ns
Mf3 8.94± 2.19 8.02± 1.77 < 0.01
Mf4 96.98± 46.25 80.08± 35.18 ns

MA 68.5·104±96.7·104 59.9·104±68.2·104 ns

WD 0.808± 0.21 0.798± 0.022 ns

Mf1B 3.4 · 104 ± 2.3 · 104 9.9 ·104±12.9 ·104 < 0.01
Mf2B 7.10 ·103±0.8 ·103 39.6·103±10.5·103 < 0.01
Mf3B −0.451± 0.634 0.042± 0.689 < 0.01
Mf4B 2.675± 1.026 2.402± 0.905 ns

MAB 4.4 · 104 ± 3.7 · 104 16.8·104±30.7·104 < 0.01
WDB 0.063± 0.0372 0.109± 0.0608 < 0.01
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Table 5.2: Features extracted from the RRV signal obtained through a thermistor
sensor for the SAHS-negative and the SAHS-positive groups (mean ± standard devi-
ation). p-values between the two groups are also shown for each feature (signi�cance
level p-value < 0.01). ns: not signi�cant (p-value ≥ 0.01). XB refers to features extracted
from the band of interest.

Features SAHS-negative SAHS-positive p-value

Mt1 3.64± 0.50 3.66± 0.51 ns

Mt2 0.85± 0.28 1.04± 0.33 < 0.01
Mt3 0.03± 1.11 0.81± 1.39 < 0.01
Mt4 9.9± 8.0 12.9± 12.7 ns

CTM 0.998± 0.002 0.989± 0.017 < 0.01

LZC 0.975± 0.037 0.992± 0.035 < 0.01
ApEn 1.44± 0.075 1.46± 0.072 ns
Mf1 0.15± 0.10 0.22± 0.14 < 0.01
Mf2 1.4± 1.04 1.69± 1.03 ns
Mf3 17.51± 4.51 12.58± 4.28 < 0.01
Mf4 418.02± 184.65 232.60± 158.77 < 0.01

MA 39.60± 32.36 37.55± 23.52 ns

WD 0.908± 0.008 0.904± 0.009 < 0.01
Mf1B 1.39± 0.91 2.96± 2.53 < 0.01
Mf2B 0.56± 0.42 0.98± 0.86 < 0.01
Mf3B 0.23± 0.38 0.16± 0.39 ns
Mf4B 1.99± 0.40 2.0± 0.43 ns

MAB 2.34± 1.48 4.61± 3.72 < 0.01
WDB 0.16± 0.008 0.14± 0.07 ns

In the case of the features extracted from RRV (derived from thermistor
AF), Table 5.2 shows a di�erent behavior. Thus 4 out of 7 time-domain features
reached statistically signi�cant di�erences (2 statistical moments and 2 non-
linear features). Additionally, 4 out of 6 spectral features obtained from the
whole spectrum, as well as 3 out of 6 spectral features from the band of interest,
also showed p-value < 0.01. In contrast to thermistor AF, RRV time-domain
(common statistics and non-linear features) and spectral features outside the
spectral band of interest, were also able to summarize useful information about
SAHS.

Table 5.3 shows mean ± standard deviation and p-values of the features ex-
tracted from nasal-pressure AF of SAHS-negative and SAHS-positive subjects.
Similarly to thermistor AF, the features from the band of interest (7 out of
9) showed statistical signi�cant di�erences between both groups. By contrast,
CTM was the only nonlinear feature which reached p-value < 0.01.

Finally, Table 5.4 shows the values of SpecEn and Power (mean ± standard
deviation), obtained from the common HRV spectral bands of interest (VLF,
LF, HF, and the whole band VLF-HF) and separated by gender. As can be
observed, all the classic power parameters, but the power in the HF band
of men (PmHF ), did not show di�erences between SAHS-negative and SAHS-
positive subjects. By contrast, SpecEn in VLF and LF showed statistically
signi�cant di�erences both in women and men. Twenty �ve scales of SampEn
(Multi-scale entropy) were also obtained from the HRV recordings. Figure 5.5
displays the mean value of each scale for women and men SAHS-negative and
SAHS-positive groups. Signi�cant p-values (< 0.01) are also shown. Only scale
13th reached statistically signi�cant di�erences between SAHS-negative and
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Table 5.3: Features extracted from the AF signal obtained through a nasal prong
sensor for the SAHS-negative and the SAHS-positive groups (mean ± standard devi-
ation). p-values between the two groups are also shown for each feature (signi�cance
level p-value < 0.01). ns: not signi�cant (p-value ≥ 0.01). XB refers to features extracted
from the band of interest.

Features SAHS-negative SAHS-positive p-value

CTM 0.999± 0.001 0.997± 0.002 < 0.01

LZC 0.0567± 0.008 0.0572± 0.006 ns
SampEn 0.061± 0.014 0.060± 0.015 ns

Mf1B 1.981 ·10−4±0.989 ·10−4 6.348 ·10−4±5.818 ·10−4 < 0.01
Mf2B 0.259 ·10−4±0.169 ·10−4 1.522 ·10−4±2.147 ·10−4 < 0.01
Mf3B 0.194± 0.503 0.309± 0.662 ns
Mf4B 2.201± 0.552 2.453± 0.900 ns

MAB 2.405 ·10−4±1.176 ·10−4 8.992 ·10−4±9.081 ·10−4 < 0.01
mAB 1.599 ·10−4±0.806 ·10−4 4.387 · 10−4 ± 3.59 · 10−4 < 0.01
WDB 0.049± 0.023 0.073± 0.050 < 0.01
MFB 0.0376± 0.001 0.0367± 0.002 < 0.01
SpecEnB 0.996± 0.003 0.990± 0.015 < 0.01

SAHS-positive men. By contrast, 15 out of the 25 scales in women reached
p-values < 0.01.

Table 5.4: Features extracted from the HRV signal for the SAHS-negative and the
SAHS-positive groups (mean ± standard deviation). p-values between the two groups
are also shown for each feature (signi�cance level p-value < 0.01). ns: not signi�cant
(p-value ≥ 0.01). VLF: very low frequency; LF: low frequency; HF: high frequency. w:
women; m: men.

Features SAHS-negative SAHS-positive p-value

SpecEnw
V LF 0.959± 0.020 0.971± 0.011 < 0.01

SpecEnw
LF 0.984± 0.011 0.959± 0.028 < 0.01

SpecEnw
HF 0.979± 0.021 0.970± 0.022 ns

SpecEnw
V LF−HF 0.899± 0.060 0.863± 0.051 ns

Pw
V LF 0.425± 0.153 0.489± 0.170 ns

Pw
LF 0.236± 0.052 0.241± 0.068 ns

Pw
HF 0.234± 0.087 0.199± 0.118 ns
Pw
LF/HF 1.164± 0.514 1.639± 1.065 ns

SpecEnm
V LF 0.958± 0.020 0.966± 0.018 < 0.01

SpecEnm
LF 0.983± 0.012 0.960± 0.035 < 0.01

SpecEnm
HF 0.983± 0.015 0.976± 0.023 ns

SpecEnm
V LF−HF 0.900± 0.053 0.873± 0.061 ns

Pm
V LF 0.437± 0.167 0.503± 0.168 ns

Pm
LF 0.250± 0.051 0.250± 0.068 ns

Pm
HF 0.228± 0.102 0.183± 0.108 < 0.01
Pm
LF/HF 1.407± 0.874 1.898± 1.247 ns

Feature selection: optimum feature subsets

The feature selection stage was conducted through the SLR-FSBE algo-
rithm for thermistor AF and RRV, as well as HRV. In the case of nasal-pressure
AF, a �lter method (FCBF) was preferred since data were used to feed di�er-
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Figure 5.5: Mean value of each SampEn scale for women and men divided into
SAHS groups.

ent classi�ers following both a binary and a multiclass approach in the same
study. Thus, Table 5.5 displays the optimum set of features selected by the
corresponding automatic algorithms for each signal. It can be observed that
spectral and non-linear features were selected in the cases of RRV, nasal prong
AF, and HRV, highlighting the complementarity of these approaches to char-
acterize SAHS. Conversely, only spectral features were selected in the case of
thermistor AF. This di�erent behavior agrees with the results showed in Ta-
ble 5.1, where none of the time-domain features exhibited statistical signi�cant
di�erences.

Results in Table 5.5 also show that thermistor AF and RRV signals contain
complementary information since the SLR-FSBE algorithm automatically se-
lected features from both of them when applied to a joint set of features (Mf3

from RRV, andMA andMf1B from thermistor AF). Additionally, SpecEnV LF ,
SpecEnLF , and SampEn2 were common in the three optimum sets obtained
for the HRV features (from women, men, and women and men joint, respec-
tively). However, di�erent tendencies for women and men were observed in the
remaining MsE scales selected. Thus, for female subjects only scales below
the 8th were selected, whereas in the case of men the remaining features were
selected from scales above the 9th.

Pattern recognition: binary classi�cation

The optimum sets of features obtained for each signal were used to feed
di�erent classi�ers in order to test their diagnostic performances. Table 5.6
shows the statistics which measure the diagnostic ability of each of these clas-
si�ers when detecting the presence or absence of SAHS (binary classi�cation).
As previously explained, Acc, AROC, and κ are statistics which show a global
diagnostic behavior. By contrast, Se, PPV , and LR+ are focused on the
performance when classifying SAHS-positive subjects, whereas Sp, NPV , and
LR− serve a similar function for SAHS-negative ones.

All the models trained with features from AF (including RRV) reached
higher diagnostic ability in terms of Acc and κ than the LR model trained
with non gender-segregated features from HRV (LRw,m). Additionally, most
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Table 5.5: Features automatically selected for the binary classi�cation task

Signal Method #Features Features

AF (Th) SLR-FSBE 4 WDB , Mf1B , MA, Mf2B

RRV (Th) SLR-FSBE 2 Mf3, CTM

AF +RRV (Th) SLR-FSBE 3 MRRV
f3 , MAAF , MAF

f1B

AF (NPP ) FCBF 10
Mf1B , MAB , mAB , Mf2B ,

SpecEnB , MFB , Mf4B , CTM ,
LZC, SampEn

HRV w SLR-FSBE 5 SpecEnV LF , SpecEnLF ,
SampEn1, SampEn2, SampEn7

HRV m SLR-FSBE 12

SpecEnV LF , SpecEnLF ,
SpecEnV LF−HF , SampEn2,
SampEn10, SampEn13,

SampEn16,
SampEn17,SampEn20−23

HRV w,m SLR-FSBE 15

SpecEnV LF , SpecEnLF ,
SpecEnV LF−HF , SampEn2,

SampEn7, SampEn9,
SampEn11, SampEn13,

SampEn14,
SampEn17,SampEn19−23

Table 5.6: Diagnostic performance of di�erent binary classi�ers and the classic event
detection algorithm in adult databases. Se: sensitivity (%); Sp: speci�city (%); Acc:
accuracy; PPV: positive predictive value (%); NPV: negative predictive value (%); LR+:
positive likelihood ratio; LR−: negative likelihood ratio; AROC: area under ROC curve; κ:
Cohen's kappa coe�cient. Th: thermistor; NP: nasal prong. w: women; m: men; w,m:
women and men joined.

Classi�er Signal Se Sp Acc PPVNPVLR+ LR− AROC κ

LR AF(Th) 84.0 70.8 79.7 85.7 68.0 2.88 0.23 0.889 0.543
LR RRV(Th) 84.0 58.3 75.7 80.8 63.6 2.10 0.27 0.850 0.433
LR AF,RRV(Th) 88.0 70.8 82.4 86.3 73.9 3.01 0.17 0.903 0.595
LR AF(NP) 83.5 80.0 82.5 91.6 65.1 4.17 0.21 0.915 0.593
LDA AF(NP) 72.5 74.3 73.0 88.0 51.0 2.82 0.37 0.835 0.410
CART AF(NP) 85.7 68.6 81.0 87.6 64.9 2.73 0.21 0.830 0.593
AB − LDA AF(NP) 86.8 77.1 84.1 90.8 69.2 3.79 0.17 0.855 0.618
AB − CART AF(NP) 89.0 80.0 86.5 92.0 73.7 4.45 0.14 0.950 0.672
Event− det. AF(NP) 75.8 54.3 69.0 81.2 46.3 1.66 0.45 0.635 0.286
LRw HRV 80.8 89.3 85.2 87.5 83.3 7.60 0.22 0.951 0.703
LRm HRV 87.1 56.1 77.6 81.8 65.7 1.98 0.23 0.895 0.450
LRw,m HRV 79.8 59.4 72.3 77.2 63.1 1.97 0.34 0.885 0.397
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of the remaining class-speci�c statistics from AF-related signals also improved
those from the HRV model. This suggests that, in the case of SAHS, AF has
higher global diagnostic potential than a widely studied signal such as HRV
when gender is not taken into account. Moreover, AB − CART reached the
highest global statistics in terms of Acc, AROC, and κ (86.5%, 0.993, and
0.672, respectively). Similarly, AB − CART obtained the highest Se (89.0%),
Sp (80.0%), PPV (92.0%), and LR+ (4.45), as well as the lowest LR− (0.14).
These results suggest this classi�er as the one with the highest diagnostic ability.
By contrast, the lowest diagnostic ability was shown by the conventional event-
detection algorithm.

On the other hand, very similar results were obtained when comparing
LR models obtained from thermistor and nasal prong information: 82.4% vs.
82.5% Acc, 0.903 vs. 0.917 AROC, and 0.595 vs. 0.593 κ, suggesting a similar
diagnostic potential. However, RRV information was needed to improve the
LR model trained with features from thermistor. It is also noteworthy that
both AB models (AB − LDA and AB − CART ) widely outperformed the
corresponding single LDA and CART models, which highlights the usefulness
of the ensemble learning approach.

As previously explained, one of the limitations of the HRV signal is gender
speci�cities. Hence, we also considered models trained with HRV features from
women and men, separately (LRw and LRm). In this regard, both LRw and
LRm showed higher diagnostic ability in terms of Acc, AROC, and κ than
the joint model. The results reached by LRw were particularly high since it
achieved the highest overall κ (0.703), Sp (89.3%), NPV (82.3%), and LR+
(7.6). These indicated higher discriminative power than AB − CART in the
case of SAHS-negative subjects (SAHS-negative women in the case of LRw).

5.1.2. Children: an at-home study

Children are particularly sensitive to changes in the sleep environment.
Additionally, they do not tolerate well all the body sensors needed to record
the PSG signals. Consequently, an at-home approach was preferred to study the
diagnostic ability of AF when considering pediatric SAHS. AF was obtained by
means of a 6-channel polygraph with ability to record thermistor AF, thoracic
movements, body sensor, snoring sounds, and heart rate and oxygen saturation
from oximetry.

Feature extraction: bands of interest and separability of classes

In contrast to adults, two spectral bands of interest were statistically deter-
mined in the case of thermistor AF: 0.119− 0.192 Hz (BW1) and 0.784− 0.890
Hz (BW2) (see Figure 4.2). Table 5.7 shows the values of the extracted fea-
tures from these bands for the SAHS-negative (AHI < 3 e/h) and the SAHS-
positive groups (AHI ≥ 3 e/h) (mean ± standard deviation). It also shows
the corresponding p-values. MA, mA, and Mf1, both in BW1 and BW2, were
signi�cantly higher in SAHS-positive than in SAHS-negative children (p-value
<0.01). By contrast, no di�erences in Mf2, Mf3 and Mf4 were found.
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Table 5.7: Features extracted from the AF signal obtained through a thermistor
sensor for the SAHS-negative and the SAHS-positive children (mean ± standard devi-
ation). p-values between the two groups are also shown for each feature (signi�cance
level p-value < 0.01). ns: not signi�cant (p-value ≥ 0.01).

Features SAHS-negative SAHS-positive p-value

BW1

MA (10−3) 1.90± 2.00 4.10± 5.70 < 0.01
mA (10−4) 5.80± 2.90 13.00± 8.00 < 0.01
Mf1 (10

−3) 1.10± 0.80 2.20± 1.70 < 0.01
Mf2 (10

−4) 3.20± 4.30 7.50± 16.60 ns

Mf3 (10
−1) 6.50± 0.50 6.50± 0.50 ns

Mf4 (10
0) 3.10± 1.00 3.00± 1.00 ns

BW2

MA (10−3) 0.14± 0.21 0.21± 0.23 < 0.01
mA (10−4) 0.38± 0.28 0.87± 0.78 < 0.01
Mf1 (10

−3) 0.07± 0.07 0.14± 0.13 < 0.01
Mf2 (10

−4) 0.25± 0.48 0.28± 0.31 ns

Mf3 (10
−1) 5.7± 4.6 4.7± 4.8 ns

Mf4 (10
0) 2.8± 0.9 3.1± 1.2 ns

Table 5.8: Features automatically selected from the AF signal and ODI3

Signals #Features Features

AF Spectral features 3 mABW1 , MBW2
f3 ,MBW2

f4

AF Spectral features + ODI3 4 ODI3, mABW1 , MBW1
f4 , MBW2

f3

Feature selection: optimum feature subsets from children recordings

The SLR-FSBE algorithm was used twice in the case of children database.
First, it was only applied to the 12 spectral features obtained from BW1 and
BW2. Then, the clinical variable ODI3 (from SpO2) was also included in
the selection process. Table 5.8 displays the features selected in each case. It
can be observed that features from BW1 and BW2 are selected in both cases,
highlighting their information about SAHS as complementary. Additionally,
features from both bands are also selected along with ODI3, suggesting that
they complement the information of this clinical parameter as well.

Pattern recognition: binary classi�cation in children

Table 5.9 shows the diagnostic ability of the ODI3 clinical parameter as
well as the LR models trained with the optimum features selected in the pre-
vious step. Both LRAF and LRAF+ODI3 outperformed ODI3 in terms of Acc,
AROC, and κ. Particularly high was the diagnostic ability of the LRAF+ODI3,
which showed the highest performance at each statistic. These results reveal
the usefulness of data obtained at home from only 2-channels (thermistor AF
and SpO2) to help in pediatric SAHS diagnosis.
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Table 5.9: Diagnostic performance of LR binary classi�ers and single ODI3 in the
children database. Se: sensitivity (%); Sp: speci�city (%); Acc: accuracy; PPV: positive
predictive value (%); NPV: negative predictive value (%); LR+: positive likelihood ratio;
LR−: negative likelihood ratio; AROC: area under ROC curve; κ: Cohen's kappa coe�cient.

Classi�er Se Sp Acc PPV NPV LR+ LR− AROC κ

ODI3 70.9 80.3 75.3 81.9 72.8 3.60 0.36 0.676 0.482
LRAF 79.2 79.4 79.1 81.2 78.8 3.84 0.26 0.875 0.599
LRAF+ODI3 85.9 87.4 86.3 88.4 85.8 6.82 0.16 0.947 0.720

5.2. Multiclass classi�cation

Only nasal prong AF has been evaluated in the multiclass task (no-SAHS,
mild-SAHS, moderate-SAHS, severe-SAHS). This is the only database, among
those used in the study, large enough (317 subjects) to ensure a minimum
number of subjects in the no-SAHS class.

Feature extraction: separability of classes

The spectral band of interest for nasal prong AF used in the multiclass task
was the same than in the case of binary classi�cation task, i. e., 0.025− 0.050
Hz., which was derived from the apneic event typical duration. Table 5.10
displays the values of each of the features extracted for the four SAHS sever-
ity degrees (mean ± standard deviation). Four out of the 9 spectral features
(MA, mA, Mf1B , and Mf2B), as well as CTM , showed statistically signi�-
cant di�erences among classes after the Bonferroni correction (p-value < 0.01).
These spectral features showed higher values as the SAHS severity increased.
An opposite tendency was shown by CTM values. Hence, the variability also
increased with the severity of SAHS.

Table 5.10: Features extracted from AF signal obtained through a nasal prong
sensor for the four severity degrees of SAHS (mean ± standard deviation). p-values
between the four groups are also shown for each feature (signi�cance level p-value <
0.01). ns: not signi�cant (p-value ≥ 0.01). XB refers to features extracted from the band
of interest.

Features no-SAHS mild moderate severe p-value

CTM(10−1) 9.993±0.007 9.988±0.015 9.987±0.009 9.963±0.023 < 0.01
LZC 0.057±0.009 0.057±0.007 0.057±0.006 0.058±0.007 ns
SampEn 0.059±0.012 0.063±0.014 0.062±0.016 0.058±0.014 ns

Mf1B(10
−4) 1.670±0.912 2.296±1.131 3.900±1.886 9.400±7.295 < 0.01

Mf2B(10
−5) 2.140±1.424 3.193±2.428 7.418±8.268 24.86±27.77 < 0.01

Mf3B 0.190±0.540 0.259±0.512 0.149±0.619 0.429±0.689 ns
Mf4B 2.154±0.590 2.269±0.569 2.298±0.637 2.608±1.115 ns

MAB(10
−4) 2.012±1.091 2.854±1.460 5.148±3.134 13.74±11.36 < 0.01

mAB(10
−4) 1.359±0.729 1.849±0.930 2.903±1.294 6.225±4.498 < 0.01

WDB 0.046±0.019 0.052±0.029 0.063±0.041 0.086±0.056 ns
MFB 0.038±0.001 0.038±0.002 0.037±0.002 0.036±0.002 ns
SpecEnB 0.996±0.003 0.996±0.005 0.992±0.017 0.988±0.013 ns
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Feature selection: optimum set feature subsets

The optimum feature subsets for nasal prong AF in the multiclass task
was the same than in the case of the binary classi�cation task: Mf1, MA,
mA, Mf2, SpecEn, MF , Mf4, CTM , LZC, SampEn. It was automatically
obtained through the FCBF algorithm.

Multiclass pattern recognition: diagnostic performance when esti-

mating SAHS severity degrees

Tables 5.11 to 5.17 show the confusion matrix and the corresponding di-
agnostic performance statistics for the classic event-detection algorithm, LR,
single LDA, single CART, AB-LDA, and AB-CART classi�ers when predicting
the four SAHS severity degrees. The diagnostic performance statistics were
computed for the three AHI cuto�s corresponding to the thresholds of the
severity degrees, i. e., 5 e/h, 15 e/h, and 30 e/h. Since LR is essentially a
binary classi�er, its performance was evaluated following the well-known one
vs. all strategy.

As displayed in the confusion matrices, the overall accuracy of the mod-
els, derived from the corresponding main diagonals, was low: Event-detection
39.7%, LR 57.4%, LDA 47.6 %, CART 54.8 %, AB-LDA 60.3%, and AB-CART
57.4%. Classi�cation of mild and moderate subjects were particularly poor for
all the models. Consistent with these overall accuracies, κ values were also
low. By contrast, the diagnostic performance increased when assessing the
predictions of the models in each of the AHI severity cuto�s (5 e/h, 15 e/h,
and 30 e/h). Thus, high diagnostic accuracies were reached by AB-LDA and
AB-CART. They outperformed LR and the Event-detection algorithm in terms
of Acc and κ when assessing the three AHI cuto�s. Moreover, AB-LDA widely
improved the overall performance of single LDA and the Acc for each AHI
cuto�. AB-CART also improved the overall performance of CART, as well as
the Acc for 5 e/h and 30 e/h. However, single CART outperformed the Acc of
AB-CART when considering 15 e/h as the AHI cuto�.

Table 5.11: Four-class confusion matrix for the classic Event-detection algorithm.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 2 4 3 1
mild 12 16 5 5
moderate 1 5 5 5
severe 3 17 15 27

Table 5.12: Four-class confusion matrix for the LR classi�er (one vs. all strategy).

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 8 0 2 0
mild 14 8 10 6
moderate 3 3 10 6
severe 2 1 7 52
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Table 5.13: Four-class confusion matrix for the single LDA classi�er.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 8 0 2 0
mild 13 7 13 5
moderate 5 2 6 3
severe 4 5 14 39

Table 5.14: Four-class confusion matrix for the single CART classi�er.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 7 2 1 0
mild 16 11 9 2
moderate 4 3 6 3
severe 3 0 14 45

Table 5.15: Four-class confusion matrix for the AB-LDA classi�er.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 8 0 2 0
mild 11 16 8 3
moderate 3 4 6 3
severe 1 3 12 46

Table 5.16: Four-class confusion matrix for the AB-CART classi�er.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 8 1 1 0
mild 14 8 12 4
moderate 3 2 6 5
severe 0 3 9 50

5.3. Regression

AF and RRV features from thermistor were also evaluated in a regression
task, i. e., when estimating AHI. As previously explained, MLR, RBF, and
MLP pattern recognition techniques were assessed for this purpose. The event-
detection algorithm was also assessed in this database.

Feature extraction and spectral bands of interest

The features extracted were the same than in the binary classi�cation task
both for thermistor AF and RRV (Tables 5.1 and 5.2). Accordingly, the bands
of interests were also the same (0.022-0.059 Hz. for AF and 0.09-0.13 Hz. for
RRV).
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Table 5.17: Diagnostic performance of the multiclass methods for the AHI cuto�s
= 5, 15, and 30 e/h. Se: sensitivity (%); Sp: speci�city (%); Acc: accuracy; κ: Cohen's
kappa coe�cient.

Classi�er AHI cuto� Se Sp Acc κ

Event− det. 5 86.2 20.0 81.0 0.152
15 66.7 70.8 68.3
30 43.5 82.8 63.5

LR (one vs. all) 5 83.6 80.0 83.3 0.370
15 88.5 62.5 78.6
30 83.9 81.3 82.5

LDA 5 81.0 80.0 81.0 0.281
15 79.5 58.3 71.4
30 62.9 87.5 75.4

CART 5 82.8 70.0 81.7 0.369
15 87.2 75.0 82.5

30 72.6 92.2 82.5
AB − LDA 5 87.1 80.0 86.5 0.432

15 85.9 72.9 81.0
30 74.2 90.6 82.5

AB − CART 5 85.3 80.0 84.9 0.381
15 89.7 64.6 80.2
30 80.6 85.9 83.3

Feature selection: optimum feature subsets

Since several pattern recognition techniques were evaluated, the FCBF al-
gorithm was chosen to automatically select the 3 optimum sets from AF, RRV,
and AF+RRV features. As previously stated, this algorithm ensures a selection
process independent from subsequent analyses. Table 5.18 shows the optimum
feature subsets in each case. As in the case of the SLR-FSBE selection al-
gorithm used for binary classi�cation, the optimum feature subsets obtained
with FCBF highlighted the complementarity of thermistor AF and RRV data,
as well as the complementarity of linear and non-linear analyses.

Table 5.18: Features automatically selected by the FCBF algorithm in the regression
task.

Signal #Features Features

AF 7 WDB , Mf1B , ApEn, CTM , Mf3B , WD, Mf1

RRV 5 CTM , Mf1B , Mt3, Mf3, Mf1

AF +RRV 10 CTMRRV , WDAF
B , MRRV

f1B , MRRV
t3 , MAF

f1B ,
MRRV

f3 , MRRV
f1 , ApEnAF , CTMAF , LZCRRV
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Pattern recognition: AHI regression, agreement, and diagnostic per-

formance

Each of the optimum feature subsets were used to train MLR, RBF, and
MLP models in order to estimate AHI. The ICC was used to measure agreement
between actual and estimated AHIs. Then, trained models showing the highest
ICCs were also assessed in terms of diagnostic ability in a test set for AHI cuto�s
= 5, 10, 15, and 30 e/h. Tables 5.19 to 5.22 show the confusion matrices for
each AHI estimation method in this test set. Additionally, Table 5.23 displays
the diagnostic statistics for the Event-detection algorithm as well as the MLR,
RBF, and MLP models which showed the highest ICC in the training set.The
corresponding ICC in the test set were:

MLRAF+RRV : ICC= 0.809.

RBFAF : ICC= 0.748.

MLPAF+RRV : ICC= 0.849.

Event-detection: ICC= 0.840.

Table 5.19: Confusion matrix for the AHI estimation provided by the classic Event-
detection algorithm.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 2 9 0 0
mild 1 7 6 3
moderate 1 8 6 7
severe 1 1 3 4

Table 5.20: Confusion matrix for the AHI estimation provided by theMLR method.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 5 4 2 0
mild 8 5 2 2
moderate 4 7 9 2
severe 1 2 1 5

Table 5.21: Confusion matrix for the AHI estimation provided by the RBF arti�cial
neural network.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 5 4 1 1
mild 1 7 9 0
moderate 0 3 15 4
severe 0 0 2 7
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Table 5.22: Confusion matrix for the AHI estimation provided by theMLP arti�cial
neural network.

Predicted
no-SAHS mild moderate severe

Gold standard

no-SAHS 3 7 1 0
mild 4 7 4 2
moderate 0 5 13 4
severe 0 0 1 8

Table 5.23: Diagnostic performance of the AHI estimations for the AHI cuto�s = 5,
10, 15, and 30 e/h. Se: sensitivity (%); Sp: speci�city (%); Acc: accuracy; PPV: positive
predictive value (%); NPV: negative predictive value (%); LR+: positive likelihood ratio;
LR−: negative likelihood ratio; AROC: area under ROC curve; κ: Cohen's kappa coe�cient.

Classi�er Opt. set
AHI

cuto�
Se Sp Acc AROC κ

Event− det. AF 5 93.8 18.2 79.7 0.823 0.073
10 87.5 57.9 78.0 0.833
15 64.5 67.9 66.1 0.867
30 44.4 80.0 74.6 0.982

MLR AF, RRV 5 72.9 45.5 67.8 0.653 0.202
10 90.0 63.2 81.4 0.607
15 54.8 78.6 66.1 0.504
30 55.5 92.0 86.4 0.612

RBF AF 5 97.9 45.5 88.1 0.882 0.404
10 92.5 57.9 81.4 0.885
15 90.3 60.7 76.3 0.900
30 77.7 90.0 88.1 0.954

MLP AF, RRV 5 91.7 27.3 79.7 0.903 0.349
10 92.5 89.5 91.5 0.956

15 83.9 75.0 79.7 0.904

30 88.8 88.0 88.1 0.973

It can be observed that the AHI estimation provided by MLP outperformed
MLR and RBF models, as well as the Event-detection algorithm, in terms of
ICC. As in the case of multiclass classi�cation, overall accuracies and κ values
were low: 32.0% and 0.073 for Event-detection, 40.7% and 0.202 for MLR,
57.6% and 0.404 for RBF, and 52.5% and 0.349 for MLP. Nonetheless, very
high diagnostic ability was shown when evaluating the common AHI cuto�s.

Consistent with its highest overall accuracy, RBF also obtained the highest
κ value. However, MLP achieved the highest AROC and Acc for 3 out of the
4 AHI cuto�s, including all AROCs > 0.900 and 91.5% Acc for AHI = 10 e/h.
According to confusion matrices of RBF and MLP, this higher diagnostic ability
is related to a lower number of no-SAHS and mild-SAHS with overestimated
severity degree.

Both MLP and RBF outperformed MLR and the Event-detection algorithm.
The low diagnostic ability of MLR may be due to the underlying linearity
assumption. The classic Event-detection method showed high diagnostic ability
in terms of AROC. Indeed, it slightly improved AROC of MLP for the AHI
cuto� = 30 e/h. However, accuracies were low for all AHI cuto�s.
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In this study, the simpli�cation of the SAHS diagnostic test has been as-
sessed. The automated analysis of single-channel AF signals has been carried
out for this purpose. Methodologies based on feature extraction, feature se-
lection, and pattern recognition has been applied to AF in order to properly
characterize SAHS, automatically detect it, and establish its severity. In this
regard, binary and multiclass classi�cation, as well as estimation of AHI, have
been approached. This methodology has been compared with the classic event-
by-event approach, both in the state of the art and using an event detection
algorithm in our databases. Moreover, our approach has been applied to the
widely studied HRV signal for comparison purposes as well. Next, the main
results obtained during the study are discussed. The three �rst sections are
focused on discussing results obtained in the case of adults. Then, an speci�c
section is devoted to pediatric database. Finally, the main limitations of the
study are presented.

6.1. Spectral bands of interest of the signals under study

Di�erent spectral bands of interest have been used depending on the sig-
nal under study (thermistor AF and RRV, nasal prong AF, or HRV). In the
case of thermistor AF and RRV (148 subject database), they were statistically
determined using the whole set (148 subjects) [65] as well as only a training
set (100 subjects) [64]. In either case results were consistent for both AF (≈
0.020-0.060 Hz.) and RRV (≈ 0.09-0.13 Hz.).

The AF band of interest was also consistent with the reported typical (more
common) apneic event duration, 20 to 40 seconds [39]. This duration mainly
a�ects the 0.025-0.050 Hz. band in the frequency domain. Notice that the
band of interest also falls within 0 to 0.1 Hz., which is the frequency band
which meets the minimum apneic event duration criterion established by the
AASM (10 seconds). These results lead us to directly use 0.025-0.050 Hz as
band of interest for nasal-pressure AF too. This choice was supported by the
reported results [62], where changes in the values of several features extracted
from this band were observed while SAHS severity changed as well.

Physiological interpretation of the RRV band of interest was di�cult since
it is not a commonly analyzed signal and, to the best of our knowledge, it had
not been previously used in SAHS studies. Moreover, interpolation was needed
before conducting the spectral analysis, which is equivalent to the addition of
estimated arti�cial data while complicates its interpretation. A range between
0.09 and 0.13 Hz. corresponds to events being repeated every 7.5 to 11 seconds.
Certainly, this frequency range mostly falls above the minimal apneic event
duration. However, other common and recurrent respiratory SAHS-related
events, such as loud snoring, gasping, and choking, may a�ect time between
breaths in higher frequencies than apneas and hypopneas.

As previously stated, a di�erent case concerns HRV (or RR time series). It is
a widely studied signal investigated in a wide range of physiological conditions,
including SAHS. Indeed, this is a major reason for using it to compare with
AF. Hence, well-known spectral bands of interest had already been reported
in the literature, mainly related to the autonomic nervous system behavior.
In contrast to spectral entropy, spectral power features extracted from these
classic bands (VLF, LF, and HF) did not show signi�cant di�erences between
SAHS-negative and SAHS-positive subjects. However, a clear increase in the
PSD of SAHS-positive subjects was found in the range 0.015-0.060 Hz [63],
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covering part of the VLF and LF bands. Moreover, a recent study has reported
an increased cardio-respiratory coordination during the apneic events [106].
These �ndings suggest a HRV band of interest related to the AF's one, as well
as indicates that HRV classic bands are suboptimal for SAHS discrimination.
Thus, further investigation is needed to �nd a HRV spectral band speci�c for
SAHS.

6.2. Usefulness and complementarity of frequency and
time domain analyses (linear and non-linear approaches)

Spectral and time domain features were used to characterize SAHS in each
analyzed signal. In the case of thermistor AF, signi�cant di�erences were
mainly found in the features from the spectral band of interest. None of the time
domain features showed di�erences between SAHS-negative and SAHS-positive
subjects. Additionally, the SLR-FSBE algorithm only selected 4 spectral fea-
tures as optimum (3 from the band of interest). By contrast, the FCBF method
selected 7 features: 5 spectral (3 from the band of interest) and 2 non-linear.
Since the underlying mechanisms of both selection methods are di�erent, no
conclusions can be drawn from the di�erences in the features selected. How-
ever, it is worth noting that two features were selected by the two methods
and both of them were from the spectral band of interest (WDB , Mf1B). All
these data suggest that, in thermistor AF, the main information about SAHS
is comprised within the spectral band of interest. A di�erent behavior was
found in the case of thermistor RRV. Frequency and time domain features,
(from linear and non-linear approaches), showed statistically signi�cant di�er-
ences. In the case of spectral analysis, there were features from the spectral
band of interest as well as from the whole spectrum which reached p-values
< 0.01. The automatic feature selection stage supported these results. The
SLR-FSBE algorithm selected 2 features as optimum (Mf3, CTM), whereas
FCBF selected 5 (CTM , Mf1B , Mt3, Mf3, Mf1), which were spectral (outside
of and within the spectral band) and temporal (statistics and non-linear). This
indicates that, in RRV, the information about SAHS is contained in the entire
signal as well as highlights the complementarity of the frequency and time-
domain analyses. However, it has to be mentioned that, in spite of a higher
number of features showing statistical di�erences, less features were selected
by the SLR-FSBE (2) and FCBF (5) algorithms comparing with thermistor
AF. This suggests a higher degree of redundancy in the information extracted
from RRV. Finally, features from thermistor AF and RRV were automatically
selected by both SLR-FSBE (2 out of 3 from AF) and FCBF (6 out of 10 from
RRV) when including all of them in the selection process. This indicates that
thermistor AF and RRV are able to provide complementary information about
SAHS.

Only spectral features from the band of interest were extracted in the case
of nasal-pressure AF. Non-linear features in time domain were also obtained.
In the case of the binary classi�cation task, CTM along with 7 out of the 9
extracted spectral features showed statistically signi�cant di�erences. How-
ever, in the multiclass problem, only CTM and 4 out of the 9 spectral features
reached p-value < 0.01 after Bonferroni's correction for multiple comparisons.
As expected, these results suggest higher di�culty when characterizing SAHS
severity instead of only the presence or absence of SAHS. The FCBF auto-
matically selected the �ve features which showed the statistical di�erences
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(Mf1B ,MAB ,mAB ,Mf2B , and CTM), as well as another �ve which did not
show these di�erences (SpecEn,MFB ,Mf4B , LZC, and SampEn), suggesting
their usefulness by providing complementary information.

Although the features extracted from nasal-pressure AF were not exactly
the same as the extracted from thermistor AF, it is worth mentioning that
Mf1B , CTM , and the non-linear entropy measure (ApEn for thermistor and
SampEn for nasal prong) were selected by the FCBF in both cases. Addition-
ally, SLR-FSBE also selected Mf1B from thermistor AF. Mf1B represents the
mean PSD value of the band of interest, which is closely related to the power
(or area) of that band, di�ering only on a constant factor. The spectral power
at each frequency, in turn, is associated with the occurrence of time events in
such a band. Since our proposed AF spectral band of interest is consistent with
the occurrence of apneic events, Mf1B is most probably associated with them
too. This reasoning is supported by data in Tables 5.1, 5.3, and 5.7, where it
can be observed that statistically signi�cant higher values of Mf1B are found
in SAHS-positive subjects (both in adults and children), as well as in Table
5.10, where it is found that Mf1B increases as SAHS is more severe, i. e., as
more number of apneic events occur. An illustration of this behavior can be
also observed in �gures 5.1 to 5.3. These data suggest that Mf1B is one major
feature to characterize SAHS and its severity.

As mentioned in the previous section, power-based spectral features from
typical HRV bands of interest did not evidenced di�erences between SAHS-
negative and SAHS-positive subjects. By contrast, SpecEn from VLF and
LF bands did it both in women and men. This suggests these features as
transverse when characterizing SAHS, as well as supports the idea pointed in
the previous section regarding the need for searching new SAHS-speci�c HRV
bands of interest, covering part of VLF and LF. MsE analysis, by contrast,
showed di�erent behaviors in men and women, suggesting it as being able to
catch gender speci�cities. Thus, 15 out of the 25 SampEn scales showed sta-
tistically signi�cant di�erences in the case of women, whereas only one did it
for men. Additionally, only low scales were included in the optimum set of
features obtained for women by SLR-FSBE, whereas high scales were predom-
inant (10 out of 12) in the case of men. In both cases, spectral and non-linear
features were automatically selected, suggesting again the complementarity of
these approaches.

6.3. Diagnostic ability: signals performance, classic ap-
proach, and state of the art

Information from signals was used as input to di�erent pattern recognition
methodologies focused on binary classi�cation, multiclass classi�cation, and
regression. Thus, AB-CART (nasal-pressure AF) achieved the highest diag-
nostic ability in the binary classi�cation task. It reached higher Acc (86.5%)
and AROC (0.950) than LR trained with HRV features (72.3% Acc and 0.885
AROC), suggesting more generalization ability when gender is not taken into
account. However, LR trained with HRV features from women reached higher
κ and similar AROC (0.672 vs. 0.703 and 0.951 AROC). In the multiclass
task, AB-LDA (nasal prong AF) achieved the highest diagnostic performance
(86.5%, 81.0%, 82.5% Acc for an AHI cuto� = 5, 15, 30 e/h, respectively, and
0.432 κ). Finally, an MLP arti�cial neural network, feed with thermistor AF
and RRV features, obtained the most accurate estimation of AHI in terms of
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agreement (ICC=0.849) and diagnostic ability (91.5% Acc, 0.956 AROC, and
0.809 κ for an AHI cuto� = 10 e/h).

Thermistor, nasal-prong pressure, and HRV

As stated above, logistic regression acts as an standard in binary classi�ca-
tion tasks. This is the reason why it was applied to features from all the signals
under study. Consequently, it can be used to compare the diagnostic potential
of each of them. Thus, LR was assessed for thermistor AF and RRV, as well
as nasal prong AF. LR from nasal prong AF features outperformed LR from
thermistor AF features (82.5% Acc, 0.917 AROC, and 0.593 κ vs. 79.7% Acc,
0.889 AROC, and 0.543 κ). The former, however, was built from 10 features
whereas the latter only used 4. Performance of LR from RRV features was
clearly lower. Nonetheless, diagnostic ability was similar when comparing LR
from nasal prong AF with LR from thermistor AF and RRV features joined
(82.4% Acc, 0.903 AROC, and 0.595 κ, 3 features). These results suggest that
similar diagnostic ability can be reached when using single-channel AF infor-
mation, regardless it is obtained through a thermistor or a nasal prong pressure
sensor.

All LR models trained with AF information outperformed the LR model
trained with HRV features from both men and women (72.3% Acc., 0.885
AROC, and 0.397 κ, 15 features). This result indicates higher diagnostic abil-
ity of AF signal than HRV signal when using data not separated by gender.
LR only trained with features from men reached moderate diagnostic ability
(77.6% Acc, 0.895 AROC, and 0.450 κ, 12 features). However, LR only trained
with features from women reached higher diagnostic performance (85.2% Acc,
0.951 AROC, and 0.703 κ, 5 features). This suggests HRV as a useful signal to
automatically screen SAHS in female subjects. In this regard, more research
is needed in order to ensure causes motivating the di�erent behavior found in
men and women.

Direct comparison with the classic approach

As previously mentioned, AB-CART (nasal-pressure AF) achieved the high-
est diagnostic ability in the binary classi�cation task (86.5% Acc, 0.993 AROC,
and 0.672 κ). These results widely outperformed the classic approach, i. e.,
the Event-detection algorithm (69.0% Acc, 0.635 AROC, and 0.286 κ), which
was applied to the same nasal-pressure AF database. AB-LDA (nasal-pressure
AF), which achieved the highest diagnostic performance in the multiclass task
(86.5%, 81.0%, 82.5% Acc in AHI = 5, 15, 30 e/h, and 0.432 κ), also over-
came the Event-detection algorithm (81.0%, 68.3%, 63.5% Acc in AHI = 5, 15,
30 e/h, and 0.152 κ). This was also applied to the thermistor AF database
to estimate AHI, reaching good agreement with actual AHI (ICC = 0.840).
However, it showed moderated diagnostic ability (78.0% Acc, 0.805 AROC,
and 0.474 κ for an AHI cuto� = 10 e/h), and MLP widely outperformed it
(91.5% Acc, 0.956 AROC, and 0.809 κ for an AHI cuto� = 10 e/h). These
direct comparisons suggest that our proposal, based on a comprehensive anal-
ysis of the signals, can improve the event-by-event approach usually followed
to automatically detect SAHS.
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Comparison with the state of the art

Table 6.1 shows results reported in a wide range of relevant state-of-the-
art studies. These works focused on simplifying SAHS diagnosis by the use
of single-channel AF (thermistor or nasal-pressure), HRV, or SpO2. Table 6.2
displays the main results achieved during this study in the adults database.

Table 6.1: Summary of the diagnostic ability reported in the state-of-the-art main
studies. Se: sensitivity (%); Sp: speci�city (%); Acc (%): accuracy; AROC: area under
ROC curve; Th: thermistor; NP: nasal prong. PSG: polysomnography. ∗: computed from
reported data; -: not enough data to estimate; H-O: hold-out validation (training and test);
loo: leave-one-out cross-validation; k -fold: k -fold cross-validation. SVM: support vector
machine; MLP: multi-layer perceptron; LDA: linear discriminant analysis; QDA: quadratic
discriminant analysis; KNN: K -nearest neighbors. E-D: event-detection

Study Meth. Sign. n
AHI

cuto�
Valid. Se Sp Acc AROC

Shochat et al [116] E-D AF(Th) 288 10 PSG 86.0 57.0 - -
Gergely et al [54] E-D AF(Th) 83 15 PSG 71.9 73.1 72.3∗ -
Nakano et al [89] E-D AF(Th) 216 5 H-O 88.0 80.0 - 0.950

10 92.0 90.0 - 0.960
15 86.0 90.0 - 0.950

Nakano et al [89] E-D AF(NP) 217 5 H-O 97.0 77.0 - 0.950
10 97.0 76.0 - 0.970

15 97.0 73.0 - 0.980

De Almeida et al E-D AF(NP) 30 5 PSG 86.4 75.0 83.3∗ 0.886
[35] 10 85.7 87.5 86.7∗ 0.915

15 83.3 83.3 83.3∗ 0.898
Erman et al [41] E-D AF(NP) 59 5 PSG 85.4 50.0 74.6∗ 0.863

10 82.1 83.9 83.1∗ 0.862
15 90.9 94.6 93.2∗93.2∗93.2∗ 0.977

Chen et al [28] E-D AF(NP) 50 5 PSG 97.7 66.7 94.0∗ 0.951
15 87.5 88.9 88.0∗ 0.944
30 88.2 93.9 90.0∗90.0∗90.0∗ 0.955

Rofail et al [111] E-D AF(NP) 200 5 PSG 94.0 62.0 87.0∗ 0.840
30 90.0 89.0 89.5∗ 0.960

BaHammam et al E-D AF(NP) 95 5 PSG 79.0 68.0 77.9∗ 0.854
[14] 10 70.0 89.0 75.8∗ 0.856

15 65.0 94.0 75.8∗ 0.805
30 63.0 98.0 83.2∗ 0.878

Roche et al [107] Tree HRV 147 10 k -fold 64.2∗ 75.6∗ 69.3∗ -
Al-Angari et al [5] SVM HRV 100 5 - 79.6 78.4 79.0 -

Ravelo-García LR HRV 97 10 k -fold 88.7 82.9 86.6∗ 0.941
et al [103]

Marcos et al [85] MLP SpO2 187 10 H-O 89.8 79.4 85.5 0.900
Marcos et al [84] LDA SpO2 187 10 H-O 86.6 80.4 84.1 0.925

QDA 91.1 78.3 85.8 0.913
KNN 88.1 84.8 86.7 0.822
LR 85.1 87.0 85.8 0.930

Álvarez et al [9] LR SpO2 148 10 loo 92.0 85.4 89.7 0.967
Marcos et al [83] MLP SpO2 240 5 H-O 91.8 58.8 84.0 -

10 89.6 81.3 86.8 -

15 94.9 90.9 93.1 -
Álvarez et al [10] SVM SpO2 320 10 H-O 95.2 80.0 84.5 -
Al-Angari et al [5] SVM SpO2 100 5 - 91.8 98.0 95.0 -
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Table 6.2: Summary of the methods which showed the highest diagnostic ability in
the adults database, for each signal and pattern recognition approach (binary clas-
si�cation, multiclass classi�cation, and regression). Se: sensitivity (%); Sp: speci�city
(%); Acc (%): accuracy; AROC: area under ROC curve; Th: thermistor; NP: nasal prong.
PSG: polysomnography. w: women.∗: computed from reported data; -: not enough data to
estimate; H-O: hold-out validation (training and test); loo: leave-one-out cross-validation;
k -fold: k -fold cross-validation.

Method Signal n
AHI

cuto�
Valid. Se Sp Acc AROC

AB − CART AF(NP) 317 10 H-O 89.0 80.0 86.5 0.935
(binary)[62]

LRw [63] HRV 54 10 loo 80.8 89.3 85.2 0.951

AB − LDA AF(NP) 317 5 H-O 87.1 80.0 86.5 -
(multi)[62] 15 85.9 72.9 81.0 -

30 74.2 90.6 82.5 -

MLP [64]
AF,

RRV(Th) 148 5 H-O 91.7 27.3 79.7 0.903

10 92.5 89.5 91.5 0.956
15 83.9 75.0 79.7 0.904
30 88.9 88.0 88.1 0.973

Studies involving AF were focused on applying an event-detection ap-
proach. Hence, the common methodology was to estimate AHI by scoring
events, in order to evaluate its diagnostic performance according to one or sev-
eral AHI cuto� thresholds. Most of them were intended to evaluate a portable
device as a surrogate for complete PSG. Consequently, they were designed
as validation studies in front of PSG, and no further validation was required.
Only Nakano et al [89] detected the apneic events with the support of automatic
spectral analysis. This approach required some adjustments which justi�ed a
hold-out validation procedure.

For AHI = 5 e/h, the Acc reported in these studies ranged 74.6% - 94.0%.
Our multi AB-LDA (nasal-pressure AF) and MLP (thermistor AF and RRV)
proposals were within this range (86.5% and 79.7%, respectively). Similarly,
MLP reached 0.903 AROC, which is also in the range 0.840 - 0.951 reported
in the literature. The highest Acc and AROC was shown by Chen et al (2009)
[28] (94.0% and 0.951). However, their database was small (n = 50) and an
imbalanced Se/Sp pair was reported (97.7% and 66.7%, respectively). Our
multi AB-LDA showed higher Acc and a more balanced Se/Sp pair than the
studies of De Almeida et al (2006) [35], Erman et al (2007) [41], and BaHam-
mam et al (2011) [14]. A slightly higher Acc (87.0%) was reported by Rofail
et al (2010) [111] in a large database (n = 200). However, Se and Sp were also
imbalanced (94.0% and 62.0%). Finally, Nakano et al (2007) [89] evaluated
both thermistor and nasal-prong AF. The latter showed imbalanced Se and Sp
(97.0% and 77.0%) as well, whereas the former showed results very similar to
multi AB-LDA (88.0% Se and 80.0% Sp).

In the case of AHI = 10 e/h, the AF studies reported AROC in the range
0.856 - 0.970, with our MLP and binary AB-CART proposals reaching high
values within this range (0.956 and 0.935, respectively). Both of them reached
higher AROC than the studies of De Almeida et al (2006) [35], Erman et al
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(2007) [41], and BaHammam et al (2011) [14]. State-of-the-art studies also
showed accuracies ranging 75.8% to 86.7%. AB-CART Acc was 86.5%, which
was only overcame by De Almeida et [35] in a small database (n = 30). MLP
performance was even higher, reaching 91.5% and a balanced Se/Sp pair (92.5%
/ 89.5%). Nakano et al [89] also showed high and balanced Se and Sp values
(92.0% / 90.0%), as well as 0.960 AROC. These results are very similar to
those from our MLP proposal. However, authors did not report enough data
to estimate accuracy.

The evaluation of our proposals in the AHI cuto� = 15 e/h showed the
lowest results. However, MLP and multi AB-LDA Acc and AROC were also
included within the ranges reported in the literature for AF studies: 72.3% -
93.2% Acc and 0.805 - 0.980 AROC. Additionally, 3 out of the 5 studies showing
higher Acc or AROC used small databases (n = 30 [35], 59 [41], 50 [28]).

Finally, in the case of AHI = 30 e/h, studies involving AF reported Acc
in the range 83.2% - 90.0% and AROC ranging 0.878 to 0.960. The highest
Acc was reached by Chen et al (90.0%) [28], achieved in a small database (n
= 50). Multi AB-LDA did not reach the minimum Acc of the range (82.5%).
However, MLP achieved 88.1% with a balanced Se/Sp pair (88.9% / 88.0%).
Additionally, it showed 0.973 AROC, which overcame the upper limit of the
range.

Regarding studies focused on HRV, our methodology applied to AF out-
performed the state-of-the-art studies for AHI = 5 e/h and 10 e/h cuto�s.
Moreover, it also showed high diagnostic ability when applied to HRV record-
ings from women. In this case, results similar to the highest reported in the
literature were reached. Thus, Ravelo-García et al [103] achieved 86.5% Acc
and 0.941 AROC when applying features from symbolic dynamics analysis to a
LR model. Our LR proposal for women reached slightly lower Acc (85.2%) and
higher AROC (0.951) in a smaller database (n = 54). However, they included
4 clinical variables in the LR model. Finally, several works not included in
Table 6.1 reported 100% Acc when classifying 30 subjects from the PhysioNet
Apnea-ECG database (AHI cuto� = 10 e/h), which was used in the Comput-
ers in Cardiology Challenge 2000 [95]. However, comparison with studies using
this database is di�cult since borderline subjects were deliberately removed
from the competition [96].

In the case of the SpO2SpO2SpO2 signal, previous studies of our own group showed
that spectral and nonlinear analyses, as well as pattern recognition techniques,
are able to outperform conventional oximetric indexes based on event-detection,
such as 3% and 4% oxygen desaturation index (ODI) [7, 8, 9, 84, 85]. Thus, re-
sults displayed in Table 6.1 show several pattern recognition algorithms which
reached outstanding diagnostic ability when applied to data from SpO2. Two
studies evaluated their proposals for AHI = 5 e/h. The highest Acc was reached
by Al-Angari et al (2012) [5], 95%, by means of a support vector machine
(SVM) applied to oximetric data. However, the authors did not report any
model validation procedure, which in the case of pattern recognition is manda-
tory to not overrate performance due to over�tting [20]. Marcos et al (2012)
[83] reported 84% Acc along with an imbalanced Se/Sp pair (91.8% / 58.8%)
through an MLP model used to estimate AHI. Our multi AB-LDA proposal
reached higher Acc (86.5%) as well as a more balanced Se/Sp pair (87.1% /
80.0%). In the case of an AHI cuto� = 10 e/h, our MLP proposal reached
high AROC (0.956) as well as higher Acc (91.5%) than all the SpO2 studies in
Table 6.1, including two MLP models fed with linear and non-linear features
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(one for classi�cation and the other one for regression). However, our database
was smaller. For an AHI cuto� = 15 e/h, Marcos et al [83] reported high Acc
(93.1%), outperforming both our AB-LDA and MLP proposals. However, no
further comparison is possible since AROC was not reported.

6.4. An at-home study: pediatric SAHS

Children are particularly uncomfortable when undergoing conventional PSG.
They do not tolerate well the equipment involved, which interferes in their sleep
routine [75]. Hence, pediatric patients are of special interest to develop at-home
and simpli�ed diagnostic tests. As previously explained, we recorded thermis-
tor AF and SpO2, at children's homes, by means of a 6-channel polygraph with
ability to record thoracic movements, body sensor, snoring sounds, and heart
rate as well. After analyzing spectral information from AF, we answered three
questions:

How does SAHS modify the spectral information of air�ow
recordings from children?

We found that the spectral power of AF was signi�cantly higher in SAHS-
positive subjects at 2 novel frequency bands below (BW1) and above
(BW2) the typical respiratory range in children reported in previous
studies (0.220 − 0.430 Hz) [45, 59, 121]. As in the case of adults, the
relationship of BW1 with apneas and hypopneas can be explained on the
basis of the de�nition of these apneic events. In children, apneas and hy-
popneas require at least 2 missed breaths of length in order to be scored
[18]. Missing 2 cycles means that the recurrence of these apneic events
is every 2 normal breaths, at most. Therefore, their frequency has to be
located below the half of the normal respiratory frequency range, modi-
fying the spectrum of AF in such band. Since BW1 is located below the
half of the normal respiratory band, it is consistent with the occurrence
of apneas and hypopneas. On the other hand, di�erences in the high
frequency band, BW2 (0.784− 0.890 Hz.), may be explained as the typ-
ical respiratory overexertion after an apneic event, which increases the
respiratory rate [11].

Are these changes useful to distinguish SAHS in children from
at-home recordings?

Seven out of the 13 extracted features were signi�cantly di�erent in
SAHS-positive than in SAHS-negative subjects, (6 out of 12 from AF
as well as ODI3). Two LR models, the �rst only fed with AF spectral
features (LRAF ) and the second one fed with AF spectral features and
ODI3 (LRAF+ODI3), outperformed all single extracted features. Partic-
ularly high was the diagnostic ability of LRAF+ODI3 (85.9% Se, 87.4%
Sp, 86.3% Acc, and 0.947 AROC), which widely improved the perfor-
mance of an in-lab 6-channel respiratory polygraph (74.2% Se, 81.8% Sp,
77.4% Acc, and 0.852 AROC) [11]. Moreover, our approach required only
2 of the channels recorded at patients' home. Additionally, LRAF also
outperformed this 6-channel respiratory polygraph (79.2% Se, 79.4% Sp,
79.1% Acc, and 0.875 AROC).

Is the air�ow spectral information complementary to the classic
oxygen desaturation index in pediatric SAHS detection?
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Our results showed complementarity between features in two cases. First,
complementarity was highlighted between features from the two novel
AF bands, since the SLR-FSBE algorithm automatically selected fea-
tures from both of them to build the LRAF and the LRAF+ODI3 models.
Second, features from the two spectral bands BW1-BW2 and the ODI3
also showed complementarity, since the latter was also selected for the
LRAF+ODI3 model.

Comparison with the state of the art

Other recent studies also analyzed physiological signals to help in pedi-
atric SAHS diagnosis. Table 6.3 summarizes their results as well as displays
again the results from our LRAF+ODI proposal. Shouldice et al. [117] used
50 HRV recordings, and reached 85.7% Se, 81.8% Sp, and 84.0% Acc in a test
set (AHI ≥ 1), by applying a quadratic linear discriminant to 23 features. Gil
et al. [56] investigated the diagnostic usefulness of the information contained
in 21 PRV time series, reporting 75.0% Se, 85.7% Sp, and 80.0% Acc after a
leave-one-out cross-validation procedure (AHI ≥ 5). Garde et al. [53] reported
83.6% Se, 88.4% Sp, 84.9% Acc, and 0.860 AROC in a 146 subject database
by combining 8 features from SpO2 and pulse rate variability (PRV) in a lin-
ear discriminant (AHI ≥ 5). The relationship of high frequency inspiratory
sounds (HFIS) to OSAS in children has been evaluated as well. Rembold and
Suratt [104] reported data to estimate that 10 HFIS events per hour can be
useful to discriminate SAHS in children for AHI ≥ 3 (61.5% Se, 100.0% Sp.,
and 80.8% Acc). Questionnaires and common symptoms have been also in-
volved in screening tools for SAHS and sleep-disordered breathing. Spruyt and
Gozal [119] proposed a severity scale based on the answers of 1133 children
from general population to 6 sleep-related questions. They used a predictive
score which reached 59.0% Se, 82.9% Sp, 0.790 AROC, 35.4% PPV, and 92.7%
NPV (AHI ≥ 3). Kadmon et al. [73] validated this 6-item questionnaire in a
sample of 85 children referred to a pediatric sleep clinic, reaching 83.0% Se,
64.0% Sp, 0.650 AROC, 28.0%PPV, and 96% NPV (AHI ≥ 5). Finally, Chang
et al. [25] combined symptoms (observable apnea, restless sleep, and mouth
breathing) with ODI from 141 children to assess a new discriminative score,
reaching 60.0% Se, 86.0% Sp, 71.6% Acc, 84.0% PPV, and 64.0% NPV (AHI
≥ 5). Our LRAF+ODI3 outperformed the reported diagnostic ability in these
studies, even though we used recordings obtained from an unsupervised envi-
ronment. However, Shouldice et al. [117] used a more restrictive AHI cuto�
to di�erentiate patients from control subjects and Gil et al. [56], as well as
Rembold and Suratt [104], worked with one single channel.

6.5. Limitations of the study

We have shown the utility of our proposal. However, there exist some lim-
itations which need to be addressed. The �rst one is related to the sample
size. Thus, in spite of using several databases involving a great number of
subjects, a larger sample would enhance the statistical power of our results.
More subjects would be particularly bene�cial in the case of some of the sub-
groups analyzed, such as women, children, and subjects showing AHI ≤ 5 e/h.
However, since SAHS is more prevalent in adult men, and high-risk popula-
tion is prioritized, these kind of subjects are much less common in sleep units.
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Table 6.3: Summary of the diagnostic ability reported in the state-of-the-art main
studies focused on pediatric SAHS. Se: sensitivity (%); Sp: speci�city (%); Acc: accuracy;
AROC: area under ROC curve; PSG: polysomnography; HRV: heart rate variability; PPG:
photopletysmography; PRV: pulse rate variability. ∗: computed from reported data; -: not
enough data to estimate; loo: leave-one-out cross-validation; k -fold: k -fold cross-validation.

Study Signal n
AHI

cuto�
Valid. Se Sp Acc AROC

Shouldice et al. [117] HRV 50 1 loo 85.7 81.8 84.0 0.830
Rembold and Suratt
[104] Sounds 26 3 - 61.5∗ 100∗ 80.8∗ -

Gil et al. [56] PRV 21 5 loo 75.0 85.7 80.0 -
Spruyt and Gozal
[119]

- 1133 3 PSG 59.0 82.9 - 0.790

Kadmon et al. [73] - 85 5 PSG 83.0 64.0 70.6∗ 0.650
Chang et al. [25] SpO2 141 5 PSG 60.0 86.0 71.6∗ -
Garde et al. [53] SpO2+PRV 146 5 k -fold 83.6 88.4 84.9 0.860
LRAF+ODI AF+ SpO2 50 3 loo 85.9 87.4 86.3 0.947

Consequently, their data is also less available. This lack of data did not let us
conduct multiclass or regression studies in the cases of HRV recordings from
women and AF recordings from children. Despite the sample size limitation,
several actions were taken in order to minimize its e�ect. Thus, appropriate
validation methodologies were chosen according to the sample size at each case.
Additionally, for the multiclass task involving nasal-pressure AF, SMOTE was
applied to decrease the imbalance in the number of subjects with AHI ≤ 5.

Other limitations relate to the comprehensive analyses of the signals re-
quired to develop our proposal. In contrast to the classic approach, we did not
look for each of the apneic events present in a recording. Conversely, we charac-
terized each recording by summarizing its SAHS-related information in one or
several features. As a consequence, the direct relationship between this infor-
mation and the events was lost, leading to more di�cult clinical interpretation
of the results. By contrast, our approach used more information to characterize
SAHS than the classic approach, in which data other than the apneic events
is not exploited. Additionally, our approach does not depend on apnea and
hypopnea de�nitions. Finally, we also showed that several of the extracted
features were consistent with SAHS pathophysiology, which highlighted their
clinical meaning. On the other hand, spectral analysis was common in all the
studies conducted. It requires stationarity of the signal to be properly used.
This is only partially ful�lled in the case of physiological recordings. However,
Welch's periodogram was used to conduct all the spectral analyses in order to
minimize this issue.

Our approach, based on minimizing the complexity of the diagnostic pro-
cess, presents another limitation. Since we tried to use as few channels as
possible, no data about thoracic movements were available. Consequently, it
was not possible for us to distinguish among obstructive, central, and mixed
events. However, central and mixed events are much less frequent than ob-
structive ones, and the most e�ective treatments do not take into account the
speci�c cause of each respiratory disturbance. Additionally, it is not possible
to recognize the sleep stages or to know whether patients are actually asleep,
since EEG is not either used. Hence, when implementing our methods to esti-
mate AHI, recording time was used instead of sleep time. Moreover, the single
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use of thermistor or nasal-pressure AF is another limitation, since the AASM
recommends using thermistor to score apneas and a nasal prong to score hy-
popneas. However, our research has shown that the comprehensive analysis
of single-channel AF can achieve high diagnostic performance regardless the
sensor used to acquire the signal.

A �nal limitation concerns the place where the recording of the signals of
the adult databases are carried out. As in the case of our children database,
at-home studies for adults would complement our �ndings about the diagnostic
ability of the signals under study.
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In this Doctoral Thesis, the automated and comprehensive analysis of single-
channel AF has been proposed as a simpli�ed alternative to PSG in the SAHS-
diagnosis process. Feature extraction and selection stages, as well as pattern
recognition, formed the methodological core developed during the study. Fea-
ture extraction was used to exhaustively analyze AF in order to obtain as much
complementary information as possible to characterize SAHS. Linear and non-
linear approaches, implemented as spectral and time-domain analyses, were
used for this purpose. Then, an automated feature selection step was devel-
oped in order to discard non-relevant and redundant information among the
previously extracted features. Two approaches were also used for feature se-
lection implementation: SLR-FSBE, which is dependent on logistic regression;
and FCBF, which is independent of subsequent analyses. Finally, pattern recog-
nition was used to transform the information obtained after feature extraction
and selection into a diagnosis for each subject under study. Three independent
strategies were followed: binary classi�cation (presence or absence of SAHS),
multiclass classi�cation (determination of one out of the four SAHS severity
degrees), and regression (estimation of the AHI).

Our pattern recognition approaches derived into high diagnostic ability
models. Thus, for binary classi�cation, an AB-CART model obtained 89.0%
Se, 80.0% Sp, 86.6%, Acc, 0.935 AROC, and 0.672 κ. Similarly, in a children
database, a LR model obtained 85.9% Se, 87.4% Sp, 86.3% Acc, 0.947 AROC,
and 0.720 κ. In the multiclass classi�cation task, an AB-LDA model reached
86.5%, 81.0%, and 82.5% accuracies for the AHI cuto�s = 5 e/h, 15 e/h, and 30
e/h, respectively, as well as 0.432 κ. Moreover, when estimating AHI, a MLP
model achieved 79.7%, 91.5%, 79.7%, 88.1%, accuracies as well as 0.903, 0.956,
0.904, and 0.973 AROC for the AHI cuto�s = 5 e/h, 10 e/h, 15 e/h, and 30 e/h,
respectively. These results highlighted the performance of our proposal com-
paring with the state-of-the-art studies, mainly focused on an event-by-event
scoring approach. Additionally, our proposal widely outperformed a classic
event-detection algorithm applied to our databases.

7.1. Contributions

Next, the main original contributions provided by the compendium of pub-
lications of this Doctoral Thesis are listed:

To the best of our knowledge, this is the �rst time that single-channel
AF is studied to help in SAHS diagnosis by means of the comprehensive
analytical approach proposed in this study [61, 62, 64, 65]. In contrast to
the classic event-by-event approach, our proposal takes into account the
whole information from each recording. Additionally, it does not depend
on apnea and hypopnea de�nitions. This general contribution can be
divided into the next more speci�c ones:

� AF analyses by means of features from di�erent contexts. As men-
tioned in Chapter 1, physiological signals often present both station-
ary and chaotic behaviors. Thus, we extracted statistical features in
time and frequency domain, as well as spectral and non-linear fea-
tures. The main purpose of such analyses was to achieve a proper
characterization of SAHS in AF by obtaining as useful and comple-
mentary information as possible. No similar methodology was found
in the literature to characterize SAHS in AF recordings.
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� Automated selection of optimum sets of AF features. We followed
two di�erent approaches to carry out the selection process. We im-
plemented a wrapper method (forward-selection backward-elimination,
SLR-FSBE) and a �lter method (fast correlation-based �lter, FCBF).
Both of them were useful to discard non-relevant and redundant
information previously extracted, as well as to highlight the com-
plementarity of the di�erent approaches followed in the feature ex-
traction stage. To the best of our knowledge, this is the �rst time
that the FCBF algorithm is used in SAHS context. The SLR-FSBE
method is a widely used algorithm which has been already applied
to help in SAHS diagnosis. However, no other studies were found
applying this method to features extracted from AF.

� Automated detection of SAHS by means of pattern recognition tech-
niques focused on binary classi�cation, multiclass classi�cation, and
regression. A wide range of pattern recognition techniques were as-
sessed to help in the automated SAHS diagnosis. Arti�cial neural
networks and ensemble learning approaches showed the highest di-
agnostic ability. Thus, AdaBoost and Multi-layer perceptron (MLP)
novel models outperformed the more common methods, such as lin-
ear discriminant, logistic regression, or multiple linear regression.
In addition, they reached high diagnostic ability comparing with
the state of the art. To the best of our knowledge, AdaBoost and
MLP had not been applied to AF information in order to detect
SAHS and its severity.

In contrast to suggestions from the AASM, and by the use of pattern
recognition techniques, we showed that it is possible to reach high diag-
nostic ability from single-channel AF, regardless it was acquired with a
thermal sensor or a nasal pressure sensor [61, 62, 64, 65].

Respiratory rate variability (RRV), derived from AF, was analyzed in
relation to SAHS for the �rst time during this study [64, 65]. We showed
that RRV contains relevant information about SAHS which complements
the information from AF to improve its diagnostic ability.

We de�ned novel spectral bands of interest in AF recordings from adults
and children, following an automatic statistical approach, whose limits
were consistent with the pathophysiology of SAHS [61, 64, 65]. Addition-
ally, features extracted from these bands showed ability to discriminate
SAHS, as well as usefulness in its automatic detection.

It was shown that, when using information from HRV, SAHS could be
more easily modeled when data is separated by gender, especially in the
case of women [63]. No other studies involving HRV and SAHS were
found which considered gender di�erences.

An automated analysis of at-home AF and SpO2 recordings from children
was conducted. Spectral information from AF showed higher pediatric
SAHS diagnosis ability than classic ODI. Moreover, the combination of
ODI and this spectral information showed higher diagnostic ability than
results from the state of the art [61].
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7.2. Main conclusions of the study

The analysis of the obtained results lead to the next main conclusions of
this Doctoral Thesis:

1. Pattern recognition applied to single-channel AF is useful to improve the
automated SAHS diagnostic process.

2. High diagnostic ability can be reached from the automated analysis of single-
channel AF, regardless it is obtained from a thermistor or a nasal prong.
In this study, higher diagnostic performance was reached by nasal-pressure
AF in the classi�cation approaches, whereas thermistor AF showed very
high performance when estimating AHI. Logistic regression was applied to
both of them, reaching similar diagnostic ability and indicating that the
diagnostic potential is similar for the two signals.

3. Our proposal, based on comprehensive and automatic analyses of single-
channel AF, outperforms the classic event-by-event approach when both of
them are applied to our database. Additionally, our proposal showed high
diagnostic ability comparing with state-of-the-art studies which also adopt
this event-by-event methodology.

4. Ensemble learning-based AdaBoost outperforms single LDA, CART, and
LR classi�ers, both in the binary classi�cation task (AB-CART) and the
multiclass classi�cation (AB-LDA). The neural network-based MLP reaches
the highest diagnostic performance when estimating AHI, outperforming
MLR and another neural network, RBF.

5. The FCBF method may be more helpful to obtain optimum subsets of
relevant and non-redundant AF features than the SLR-FSBE algorithm.
The optimum subsets of features from thermistor AF and RRV obtained by
FCBF reached higher diagnostic ability after the pattern recognition stage
than those obtained from SLR-FSBE.

6. Thermistor AF and RRV provide complementary information about SAHS.
Both SLR-FSBE and FCBF automatically selected features from the two
signals when these were simultaneously evaluated, highlighting the singular-
ity of the information provided by them.

7. The limits of the AF spectral band of interest in adults (0.020-0.060 Hz.),
which were statistically obtained, are consistent with the pathophysiology
of SAHS. Information extracted from the band of interest is related to both
the presence of SAHS and its severity. The RRV spectral band of interest
(0.090-0.130 Hz.) also provides useful information about SAHS. However,
clinical interpretation is more di�cult due to the novelty of the signal as
well as to the interpolation required to a proper spectral analysis, which
adds arti�cial information.

8. In AF signal, the main source of information about SAHS is comprised
within the spectral band of interest. By contrast, RRV present useful infor-
mation about SAHS contained in the entire spectrum and time series of the
signal. However, features extracted from RRV signal are more redundant.

9. Mf1B from AF, closely related to the spectral power of the band of inter-
est, is one major feature to characterize SAHS and its severity due to its
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relationship to the occurrence of apneic events. It shows higher values as
the SAHS severity increases. Additionally, it was automatically selected by
the SLR-FSBE and FCBF algorithms, in the case of both thermistor and
nasal-pressure AF.

10. Linear and non-linear approaches, implemented as frequency and time do-
main analyses, provide complementary information about SAHS. Both SLR-
FSBE and FCBF algorithms automatically selected linear and non-linear
features from AF, RRV, and HRV, which shows that both analyses provide
relevant and non-redundant information.

11. Single-channel AF showed higher general diagnostic ability than HRV when
applying the same analytical approach, as well as comparing with the state-
of-the-art studies. However, when the gender was taken into account, a
logistic regression model built with HRV features from women showed high
diagnostic ability, outperforming logistic regression models built with AF
features.

12. SAHS may be more easily modeled from HRV features in the case of women
than in the men. A logistic regression model built with HRV spectral and
non-linear features from women widely outperformed a similar model formed
with features from men as well as another one built with features from both
genders.

13. HRV typical spectral bands of interest are suboptimal for SAHS discrimina-
tion. Results reported in this study suggest that a di�erent band of interest
(0.015-0.060 Hz), covering part of the classic VLF and LF bands, may be
more helpful in SAHS detection.

14. The spectral information contained within at-home single-channel AF record-
ings is useful to detect pediatric SAHS. It outperforms the conventional ODI
from SpO2 and results reported in an at-home 6-channel polygraphy.

15. The combination of the AF spectral information and ODI is helpful to ac-
curately diagnose pediatric SAHS at home. Our 2-channel approach, based
on logistic regression, outperformed the results reported in the main state-
of-the-art studies.

In summary, SAHS-related information was obtained from single-channel
AF. It was useful to characterize SAHS as well as to built pattern recognition
models with ability to reach high diagnostic performance. Our proposal over-
came the classic event-by-event approach and showed high diagnostic ability
comparing with the state of the art. These results suggest that the SAHS
diagnostic test can be reliably simpli�ed by the use of automated analysis of
single-channel AF.

7.3. Future research lines

There exist several questions derived from this investigation which can be
the object of more research in the future since they can complement our results
as well as take care of interesting topics out of the scope of this Doctoral Thesis.
Below, we list those which we consider the most interesting future research lines:
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Di�culty in clinical interpretation of some of our extracted features is one
of the limitations of our study. Hence, it would be helpful to conduct a
more basic research regarding relationship between these features, signs,
and symptoms of SAHS.

Another limitation of our study is the impossibility of recognizing sleep
stages in order to know when a patient is actually asleep. In this regard,
several studies point out slightly di�erent respiratory patterns depending
on the sleep stage. Consequently, detection of these stages by the only
use of single-channel AF would be helpful to complement our �ndings.

The assessment of the diagnostic ability of features extracted from ther-
mistor and nasal-pressure AF simultaneously is another interesting future
line of investigation which is under development.

One natural way to continue our investigation is the assessment of our
methodologies in a large AF recording database obtained at patient's
home. This, indeed, has been already planned to begin in the next
months.

Regarding pediatric SAHS, the acquisition of more recordings would be
helpful to being able to conduct multiclass and AHI estimation studies.
This data acquisition is currently taking place.

In the same way, the acquisition of more HRV recordings from women
would be interesting to conduct multiclass and AHI estimation studies,
as well as compare results with those obtained from men. Finding SAHS-
related gender speci�cities will be also the object of future research lines
in our group.

Another interesting future research is the automatic estimation of the
quality of the signal, previous to its processing. Since the �nal goal is to
develop simple and not supervised at-home diagnostic tests, it would be
helpful to ensure the quality of the signal without the need for a of visual
inspection.

Finally, although we have implemented a wide range of methodologies
during the study, the use of di�erent feature extraction and selection
techniques, as well as pattern recognition algorithms, is also a natural
way to continue this research.
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Next, they are included the full texts of the 4 published papers and the
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Abstract
This paper focuses on the analysis of single-channel airflow (AF) signal
to help in sleep apnoea–hypopnoea syndrome (SAHS) diagnosis. The
respiratory rate variability (RRV) series is derived from AF by measuring time
between consecutive breathings. A set of statistical, spectral and nonlinear
features are extracted from both signals. Then, the forward stepwise logistic
regression (FSLR) procedure is used in order to perform feature selection
and classification. Three logistic regression (LR) models are obtained by
applying FSLR to features from AF, RRV and both signals simultaneously.
The diagnostic performance of single features and LR models is assessed
and compared in terms of sensitivity, specificity, accuracy and area under
the receiver-operating characteristics curve (AROC). The highest accuracy
(82.43%) and AROC (0.903) are reached by the LR model derived from the
combination of AF and RRV features. This result suggests that AF and RRV
provide useful information to detect SAHS.

Keywords: sleep apnoea–hypopnoea syndrome, airflow, respiratory rate
variability, feature extraction, feature selection

1. Introduction

The sleep apnoea–hypopnoea syndrome (SAHS) is characterized by repetitive events of apnoea
(complete cessation of breathing) and hypopnoea (significant breathing reduction) during sleep
(Flemons et al 2003). SAHS has been associated with other diseases such as hypertension,
atrial fibrillation, stroke, cardiac failure, aortic dissection and sudden cardiac death (López-
Jiménez et al 2008). Furthermore, daytime sleepiness caused by SAHS is a risk factor for
occupational accidents and motor-vehicle collisions (Lindberg et al 2001, Sassani et al 2004).
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The prevalence of SAHS has been estimated at 1%–5% of adult men and 2% women in western
countries. However, studies reported up to 5% of adult population remaining undiagnosed
(Young et al 2002).

The gold standard for SAHS diagnosis is polysomnography (PSG) (Flemons et al 2003).
PSG is an overnight test in which many physiological signals are monitored. The apnoea–
hypopnoea index (AHI) from PSG is used to characterize its severity (Patil et al 2007).
Despite its effectiveness, PSG is an expensive and complex test, since it needs the supervision
of specialists and a visual inspection of signals to compute AHI. This results in longer waiting
lists and increased delay time for a final diagnosis (Flemons et al 2004). Therefore, there
is a demand of new helping methods of diagnosis capable of overcoming PSG drawbacks
(Penzel et al 2002). Many studies have focused on analysing a reduced set of signals from
overnight PSG. Typically, the diagnostic ability of electrocardiogram (Penzel et al 2002),
electroencephalogram (Poyares et al 2002), airflow (AF) (Nakano et al 2007, Han et al 2008),
and blood oxygen saturation (SpO2) (Álvarez et al 2010) has been evaluated.

The AF waveform is directly affected by the occurrence of respiratory events (Flemons
et al 2003). Apnoeas are reflected by near-zero values, whereas hypopnoeas cause amplitude
reduction. In contrast, clear oscillations are observed for normal breathing periods. Therefore,
an intensive analysis of the information from the single-channel AF signal is proposed to help
in SAHS detection. In addition to the AF signal, the respiratory rate variability (RRV) series
is also analysed. RRV is computed by measuring the time between consecutive breathings in
AF, similar to the well-known heart rate variability series (Cysarz et al 2008). The normal
pattern for RRV also reflects alterations in the presence of SAHS, since sleep apnoea modifies
the respiratory oscillation (Cysarz et al 2008).

The main purpose of the current study is to evaluate the diagnostic usefulness of AF and
RRV series in SAHS detection. In order to characterize SAHS, the extraction of statistical,
spectral and nonlinear features from AF and RRV is proposed. Common parameters such
as statistical moments have shown to be useful in SAHS detection (Roche et al 1999, de
Chazal et al 2003). Furthermore, frequency analysis has been successfully applied to study
different diseases (Casolo et al 1991, Penzel et al 2002, Poza et al 2007). Moreover, nonlinear
methods have recently proved high capability to help in SAHS diagnosis (Álvarez et al 2006,
Hornero et al 2007, Morillo et al 2009). After feature extraction, a feature selection stage
is implemeted. It is carry out by means of the forward stepwise logistic regression (FSLR)
methodology (Hosmer and Lemeshow 1999), which has been successfully used in prior studies
of SAHS (Álvarez et al 2010). The logistic regression (LR) models obtained through the FSLR
procedure combine the non-redundant information from the features extracted (Hosmer and
Lemeshow 1999). Finally, the diagnostic performance of the single features and the LR
models are assessed and compared in terms of sensitivity, specificity, accuracy and area under
the receiver-operating characteristic curve (AROC).

2. Subjects and signals

2.1. Subjects under study

In this study, 148 subjects suspected of suffering from SAHS were involved (79% males
and 21% females). The recordings were obtained in the sleep unit of Hospital Universitario
Rı́o Hortega in Valladolid, Spain. All subjects presented common symptoms such as daytime
hypersomnolence, loud snoring, nocturnal choking and awakenings or referred apnoeic events.
The subjects were free from any medication which could influence the respiratory centre.
Neither patients suffering from hypothyroidism (two out of the total subjects) nor those
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Table 1. Demographic and clinical data of the population under study. Data are presented as
mean ± SD or n (%). SAHS-positive: subjects with sleep apnoea–hypopnoea syndrome; SAHS-
negative: subjects without sleep apnoea–hypopnoea syndrome; BMI: body mass index; time:
recording time; AHI: apnoea–hypopnoea index.

All subjects SAHS-positive SAHS-negative

Subjects (n) 148 100 (67.6%) 48 (32.4%)
Age (years) 50.87 ± 11.68 51.89 ± 11.41 48.75 ± 12.07
Males (n) 117 (79.0%) 85 (85.0%) 32 (66.7%)
BMI (kg m−2) 29.1 ± 4.6 29.9 ± 4.7 27.6 ± 4.9
Time (h) 7.24 ± 0.38 7.23 ± 0.36 7.27 ± 0.43
AHI (events/h) – 32.9 ± 24.3 4.0 ± 2.4

suffering from chronic obstructive pulmonary disease (COPD) (six out of the total subjects)
were excluded. Physicians considered 100 subjects affected (positive) and 48 not affected
(negative) by SAHS. The AHI threshold for a positive diagnosis was 10 events/h at least.
Apnoea was defined as the cessation of AF for 10 s or more. Hypopnoea was defined as a
minimum of 30% of amplitude reduction for at least 10 s accompanied by a 4% or more
decrease in the saturation of haemoglobin. The Review Board on Human Studies accepted the
protocol, and all subjects gave their informed consent to participate in the study. Demographic
and clinical data of the participants are summarized in table 1.

2.2. AF and RRV signals

The AF recordings were obtained from overnight PSG (Alice 5, Respironics, Philips
Healthcare, the Netherlands). The sensor used to register AF was a thermistor (Pro-Tech,
Respironics, Philips Healthcare, the Netherlands) and the sampled rate was 10 Hz. Previous
to the automatic analysis, a visual inspection of the signals was carried out to assess their
quality. Four recordings were excluded due to prolonged malfunction of the thermistor. Thus,
the remaining 148 AF recordings were entirely analysed.

A peak detection algorithm was implemented to locate inspiratory onsets in AF signal
(Korten and Haddad 1989). Then, RRV was computed by measuring the time between
consecutive locations (Cysarz et al 2008).

Figure 1(a) shows an example of the AF signal and figure 1(b) shows the corresponding
RRV signal. The first 34 s of the AF signal corresponds to a normal breathing pattern.
Consequently, the time between breathings remains around 4.2 s in the RRV signal. Then,
a hypopnoea is shown in the AF signal which is reflected by a decrease in the RRV signal
amplitude. Finally, since the AF normal breathing pattern is recovered, the time between
breathings begins to increase.

3. Methods

The proposed methodology started with a spectral analysis of AF and RRV recordings to
determine those frequency bands associated with SAHS. Afterwards, spectral, nonlinear and
statistical features were extracted from AF and RRV. Then several LR models were obtained
by means of the FSLR method. Finally, diagnostic performance of single features and LR
models was assessed.
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(a)

(b)

Figure 1. Normal breathing pattern followed by hypopnoea event in (a) AF signal and
(b) corresponding RRV signal.

3.1. Definition of spectral bands of interest

The bands of interest were defined as the frequency regions of power spectral density
(PSD) in which the highest statistical differences between SAHS-positive and SAHS-negative
populations were found. PSD of recordings was estimated by means of a non-parametric
Welch method (Welch 1967). This method divides the signals into M overlapping segments of
length L. Then, a smooth time window w[n] is applied, and the modified periodogram of each
windowed segment vL[n] is computed by means of the discrete Fourier transform (DFT) V[ f ]
(Welch 1967):

P̂[ f ] = |V [ f ]|2
fsLU

, (1)

where fs is the sample rate:

V [ f ] =
N−1∑
n=0

vL[n] e− j(2πk/N)n, (2)

and

U = 1

M

M−1∑
n=0

|w(n)|2. (3)

Finally, the average of all DFTs is calculated to obtain the PSD function. A 2048-sample
Hamming window, with 50% overlap and 4096-point DFTs, was used to compute the PSD of
AF and RRV recordings. A cubic spline interpolation (resampling at 10 Hz) was applied to
RRV series before the computation of the PSDs.

The representations of the joint PSDs of each SAHS-positive and SAHS-negative
populations were obtained. The median of the PSD values at each frequency component
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(a) (b)

(c) (d)

Figure 2. Spectral bands of interest of AF and RRV. AF (a) and RRV (b) median-based
representations of PSDs from SAHS-positive (black line) and SAHS-negative (grey line)
populations. AF (c) and RRV (d) whole spectrum p-value versus frequency representations (solid
line).

was applied due to its robustness to outliers. Figures 2(a) and (b) show this median-based
representation for AF and RRV, respectively. The p-value from the Kruskal–Wallis test was
used to find statistically significant differences along frequencies (p-value <0.01). Figures 2(c)
and (d) display the p-value versus frequency representations for AF and RRV, respectively.
Figure 2(c) only shows significant differences in the very low frequency band (0.002–
0.151 Hz). This agrees with figure 2(a), which displays the greatest qualitative differences
in the same band of the spectrums of AF signals. The spectral band of interest was that with
the highest statistically significant differences, i.e. 0.022–0.059 Hz. Moreover, the plot in
figure 2(d) indicates significant differences in most of the frequency components of the RRV
spectrum. However, the highest differences were also found at the very low band. This is also
consistent with the corresponding median-based representation of the PSD (figure 2(b)). The
spectral band of interest was 0.095–0.132 Hz.

3.2. Feature extraction

3.2.1. Statistical moments. The distributions of AF and RRV values are expected to
differ from SAHS-positive and SAHS-negative populations. In order to typify the statistical
behaviour of these distributions, the first-to-fourth statistical moments (Mt1–Mt4) were obtained
from time series. The arithmetic mean (Mt1), standard deviation (SD) (Mt2), skewness (Mt3)
and kurtosis (Mt4) quantify the central tendency, dispersion, asymmetry and peakedness of
data, respectively.
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3.2.2. Spectral features. The reccurrent nature of apnoeic events can be characterized by
means of spectral analysis. Seven spectral features were extracted from the frequency bands
of interest and the same features were obtained from the full PSDs.

Peak amplitude (PA) is the maximum of PSD in a given frequency interval. Band power
(BP) represents the spectral power of a region. Both of them are conventional parameters and
can be computed as follows:

PA = max
PSD

{PSD( f )}, f (Hz) ∈ [ fi, fN], i = 1, 2, . . . , N, (4)

BP =
fN∑

fi= f1

PSD( fi), i = 1, 2, . . . , N, (5)

where N is the number of points in the band and fi are the frequency components of the
spectrum. Figures 2(a) and (b) indicate that higher PA and BP values are expected for the
SAHS-positive population.

The Wootters distance (WD) is a disequilibrium measurement (Wootters 1981). This
parameter requires the PSD to be normalized (PSDn) in order to consider it as a probability
density function (pdf). It is possible to measure the distance between the pdf and the uniform
distribution (Wootters 1981):

WD = arccos

{
f2∑

fi= f1

√
PSDn( f ) ·

√
1/N

}
, (6)

with f 1 and f 2 being the limits of the frequency range where WD is applied and N is the
number of the corresponding PSDn points. If PSDn is equal to a uniform distribution along
frequencies (as in white noise), then WD will be equal to zero. Moreover, if the normalized
spectrum is condensed into a narrow frequency band (as in a sum of sinusoids), WD reaches
the highest values. According to figures 2(a) and (b), differences between WD values from
both populations are expected.

Finally, first-to-fourth statistical moments (Mf1–Mf4) of the amplitude values of PSDs
were also obtained. Differences between the distributions of PSD values are reflected by these
parameters.

3.2.3. Nonlinear features. The high recurrence of apnoeas and hypopnoeas in SAHS-positive
subjects modifies the corresponding AF and RRV waveforms. Since central tendency measure
(CTM), Lempel–Ziv complexity (LZC) and approximate entropy (ApEn) are applied in time
domain, it is expected that these parameters can reflect the differences in the variability,
complexity and irregularity of time series from populations.

The CTM quantifies the degree of variability or chaos in a time series (Cohen et al 1996).
CTM is based on the plots of the first-order differences representing x[n+2]−x[n+1] versus
x[n+1]−x[n], where x[n] are the time serie values (Abásolo et al 2006). It is calculated by
counting the points that fall within a circle of radius ρ around the origin and dividing it by the
total number of points (Cohen et al 1996):

CTM = 1

N − 2

n−2∑
n=1

δ(n), (7)

where

δ(n) =
{

1 if {(x[n + 2] − x[n + 1])2 + (x[n + 1] − x[n])2}1/2 < ρ

0 otherwise,
(8)
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with N being the points of the time series. CTM achieves values between 0 and 1, reaching
values closer to 1 when a given series is less variable (values more concentrated around centre)
and closer to 0 when it has more variability. Radius ρ has to be selected experimentally,
depending on the character of signals (Cohen et al 1996). A method based on p-value was
used to select ρ (Hornero et al 1999). First, CTM of time series was computed by fixing several
radii. Then a statistical significance test was applied to select the ρ which ensured the most
significant differences between populations, i.e. the lowest p-value. In this study, two radii
were used: ρ1 = 31 for the AF signal and ρ2 = 6.61 for the RRV signal.

The complexity of finite sequences can be estimated by means of LZC (Lempel and Ziv
1976). Larger values of the parameter correspond to higher complexity in these sequences
(Zhang et al 2001). The first step in LZC estimation is to convert the time series into finite
sequences of simbols, s(i) (Zhang et al 2001, Abásolo et al 2006). Binary sequences have
been commonly proposed. Due to its robustness to outliers, we assumed the median value as
the threshold to assign a simbol to each value of time series. Once the sequence is obtained,
it is scanned from left to right, and a complexity counter c(n) is increased every time a new
subsequence of consecutive characters is encountered (Zhang et al 2001). Finally, c(n) is
normalized to make the method independent of the length of sequences:

LZC = c(n)

b(n)
, (9)

where

b(n) = n

logα(n)
, (10)

and α = 2 since the sequence is binary.
ApEn is an irregularity measure in time series which was originally developed to be

applied over short and noisy data sets (Pincus 1991). ApEn can assess both dominant and
subordinates patterns in data for which other methods cannot make the feature recognition
easy (Pincus 2001). ApEn has two user-specified parameters: a length m and a tolerance
window r. Theoretically, the ApEn is defined as

ApEn(m, r) = lim
N→∞

[φm(r) − φm+1(r)], (11)

where N is the total number of points of the original time series and φm(r) is the average of the
logarithmic likelihood patterns of length m that are repeated along the original sequence. The
tolerance parameter r is used to determine the similarity between patterns. Since N is finite,
the ApEn is commonly applied as the statistic (Pincus 1991):

ApEn(m, r, N) = φm(r) − φm+1(r). (12)

Larger values of ApEn correspond to more irregularity in the data (Pincus 2001). Despite
their influence in the ApEn outcome, there are no guidelines to optimize the m and r values
(Hornero et al 2005). Thus, m = 1, m = 2 and r = 0.1, 0.15, 0.2, 0.25 times the SD of the
original data sequence have been proposed as input parameters. These values produce good
statistical reproducibility of ApEn for time series of length N � 60 (Pincus 2001). In order to
choose between these values, the p-value-based methodology previously described was used,
and m = 1 and r = 0.25 SD were selected for both AF and RRV signals.

3.3. Feature selection

The features described in the previous subsections measure different properties of AF and
RRV. The information contained in these parameters may be complementary. For simultaneous
analysis of these features, several LR models were obtained. The method used to automatically
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select the features was FSLR which was proposed by Hosmer and Lemeshow (1999). This
procedure was applied to the features from AF, RRV and both signals (AF-RRV).

3.3.1. Forward stepwise logistic regression (FSLR). A regression-based method was used to
describe the relationship between a response variable (outcome) and the explanatory variables.
In this study, the response is a dichotomous variable codifying the diagnosis of a subject
(‘0’ non-affected, and ‘1’ affected by SAHS), and the explanatory variables are the features
explained previously. For this outcome variable, the LR model has become the standard method
of analysis:

π(x) = eβ0+βTx

1 + eβ0+βTx
, (13)

where π(x) values range between 0 and 1, and can be interpreted as the probability of
membership to the SAHS-positive population. β0 is a constant for each model and β is a
vector with coefficients for each component of x. Both β0 and β are estimated according to
the maximum-likelihood criterion (Hosmer and Lemeshow 1999).

The more variables included in a LR model (higher dimensionality), the more dependent
the model becomes on the observed data due to overfitting. Thus, feature selection was used in
order to obtain models with higher capability of generalization. The FSLR procedure has been
proposed for this purpose. It checks the relevance of features, including or excluding them
according to a fixed decision rule. In this work, the decision rule chosen has been the p-value
of the likelihood ratio (Hosmer and Lemeshow 1999). FSLR is characterized by a forward
selection followed by the backward elimination of variables at each step.

3.4. Statistical analysis

The non-parametric Kruskal–Wallis test was used to assess the differences between the SAHS-
positive and the SAHS-negative populations, with a p-value < 0.01 considered as significant.
To ensure statistical validity of results, a leave-one-out cross-validation approach was
applied. Sensitivity (percentage of SAHS-positive subjects correctly diagnosed), specificity
(percentage of SAHS-negative subjects correctly diagnosed) and accuracy (proportion of total
subjects under study correctly classified) were computed by averaging all results from the
cross-validation process. Additionally, the AROC was computed to quantify the diagnostic
performance of a given method (Zweig and Campbell 1993).

4. Results

4.1. Diagnostic performance of single features

A total of 21 features were extracted from each of the two series. Table 2 summarizes the
measurements (mean ± SD) obtained for each feature in SAHS-positive and SAHS-negative
populations. The p-value from the non-parametric Kruskal–Wallis significance test is also
shown.

In the case of the AF signal, six out of seven spectral features obtained from the band
of interest showed statistically significant differences between populations (p-value < 0.01).
Only one out of seven (Mf3) spectral features computed from the full PSD also showed
p-value < 0.01. Neither the statistical moments in time domain nor the nonlinear features
achieved statistically significant differences. In contrast, two statistical moments (Mt2 and
Mt3) and two nonlinear features (CTM and LZC) obtained from RRV showed p-value < 0.01.
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Table 3. Results from the diagnostic assessment of single features extracted from AF and RRV
recordings, derived from the leave-one-out cross-validation procedure. Sen.: sensitivity; Spe.:
specificity; Acc.: accuracy; AROC: area under receiver-operating characteristics curve. AROCs >

0.800 are in bold.

AF signal RRV signal

Feature Sen.(%) Spe.(%) Acc.(%) AROC Sen.(%) Spe.(%) Acc.(%) AROC

Mt1 49.00 58.33 52.03 0.520 48.00 52.08 49.39 0.538
Mt2 53.00 50.00 52.03 0.555 65.00 62.5 64.19 0.669
Mt3 59.00 37.50 52.03 0.543 60.00 77.08 65.54 0.704
Mt4 60.00 50.00 56.76 0.537 73.00 47.92 64.86 0.595

CTM 54.00 47.92 52.03 0.510 68.00 75.00 70.27 0.800
LZC 57.00 58.33 57.43 0.553 62.00 56.25 60.14 0.654
ApEn 61.00 56.25 59.49 0.585 52.00 50.00 51.35 0.577

Mf1 58.00 50.00 55.41 0.554 65.00 62.50 64.19 0.676
Mf2 50.00 47.92 49.32 0.502 61.00 52.08 58.11 0.618
Mf3 68.00 56.25 64.19 0.634 77.00 68.75 74.32 0.809
Mf4 63.00 56.25 60.81 0.612 79.00 70.83 76.35 0.807
PA 48.00 56.25 50.68 0.513 56.00 41.67 51.35 0.528
BP 58.00 50.00 55.41 0.561 65.00 62.50 64.19 0.676
WD 69.00 54.47 64.19 0.631 64.00 56.25 61.49 0.633

Mf1b 71.00 83.33 75.00 0.826 61.00 79.17 66.89 0.745
Mf2b 74.00 87.50 78.38 0.851 61.00 62.50 61.49 0.702
Mf3b 58.00 68.75 61.49 0.676 50.00 52.08 50.68 0.559
Mf4b 63.00 56.25 60.81 0.581 47.00 52.08 48.65 0.508
PAb 74.00 83.33 77.03 0.840 59.00 66.67 61.49 0.745
BPb 71.00 83.33 75.00 0.838 62.00 79.17 67.57 0.756
WDb 65.00 70.83 66.89 0.797 61.00 47.92 56.76 0.567

Table 4. Results from the diagnostic assessment of the LR models, derived from the leave-one-
out cross-validation procedure. Sen.: sensitivity; Spe.: specificity; Acc.: accuracy; AROC: area
under receiver-operating characteristics curve. The number of features introduced as independent
variables at each model are in parentheses. AROCs>0.800 are in bold.

Model Selected features Sen.(%) Spe.(%) Acc.(%) AROC

AF (21) WDb, BPb, PA, Mf2b 84.00 70.83 79.73 0.889
RRV (21) Mf3, CTM 84.00 58.33 75.68 0.850
AF-RRV (42) Mf3

RRV, PAAF, BPb
AF 88.00 70.83 82.42 0.903

Furthermore, nine out of 14 RRV spectral features obtained from the full PSD and the band
of interest presented statistically significant differences.

The results of the individual diagnostic assessment of the features are shown in table 3.
Consistent with the statistical significance test analysis, those features with p-value < 0.01
improved the diagnostic performance of the others. For the AF signal, the highest accuracy
(78.38%) and AROC (0.851) were reached by Mf2b. In the case of RRV, the highest accuracy
(76.35%) was obtained by Mf4, whereas Mf3 achieved the highest AROC (0.809).

4.2. Performance of the FSLR procedure

Table 4 shows the diagnostic results provided by the LR models. The features automatically
selected are also specified. The order of appearance of the selected features in the table is the
same as the order obtained from the FSLR method.
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Figure 3. Bland–Altman plot comparing the AHI from MLRAF_RRV with the AHI from PSG.

Table 5. Linear correlation analysis between features selected to the models and BMI/Age. ρ:
Pearson’s correlation coefficient.

Feature ρ (BMI) ρ (Age)

WDb
AF 0.222 0.115

BPb
AF 0.314 0.021

PAAF 0.156 −0.071
Mf2b

AF 0.269 −0.003
Mf3

RRV −0.054 −0.051
CTMRRV −0.225 −0.262

Four parameters (WDb, BPb, Mf2b and PA) were automatically selected by the FSLR
procedure when all 21 AF features were introduced as independent variables. The AF model
reached 79.73% accuracy and 0.889 AROC. Mf3 and CTM were automatically selected in
the case of the RRV model, obtaining 75.68% accuracy and 0.850 AROC. Finally, the
highest sensibility (88.00%), specificity (70.83%), accuracy (82.43%) and AROC (0.903) were
achieved by the AF-RRV model. Three parameters were automatically selected: Mf3 from RRV
and PA and BPb from AF. These features were used to obtain a multivariate linear regression
model (MLRAF_RRV). The output of MLRAF_RRV (estimated AHI) was compared to the AHI
from PSG. The Bland–Altman plot shown in figure 3 was used for this purpose. It displays an
overestimation tendency for lower AHI values whereas an underestimation tendency is shown
when the AHI becomes higher. Finally, table 5 shows the assessment of linear correlation
between all the features automatically selected and the BMI and age. None of the features
obtained high values of Pearson’s correlation coefficient with BMI or age.
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5. Discussion and conclusions

The utility of AF signals in SAHS detection was assessed. The information from RRV series,
which was derived from AF, was also evaluated. Statistical, spectral and nonlinear features
were used to characterize the behaviour of AF and RRV recordings in SAHS-positive and
SAHS-negative populations. AF and RRV frequency bands of interest within the very low
frequency region were proposed for SAHS detection. Regarding the AF signal, since the
normal breathing rate at rest is set close to 15 breaths per minute, i.e. 0.25 Hz. (Farré et al
1998), the spectral components at very low frequencies of AF correspond to an abnormal
respiratory behaviour. Moreover, the selected spectral band of interest was located below
0.1 Hz. (0.022–0.059 Hz.). Since apnoea and hypopnoea events last 10 s or more (Flemons
et al 2003), the band is consistent with pathophysiology. However, further analysis is required
in order to assess the cause-motivating differences in frequencies higher than 0.1 Hz. The
occurrence of larger number of short-time respiratory events in SAHS-positive subjects is
proposed as a cause for this behaviour. In the case of RRV spectrum, significant differences
were found in most of the spectral components, indicating major changes in time between
breathings caused by SAHS. Most of the AF features that achieved significant differences
between populations were extracted from the spectral band of interest. In contrast, p-value
<0.01 was achieved by statistical, spectral and nonlinear features from RRV. This suggested
that RRV signal contains useful information about SAHS in time and frequency domains. The
diagnostic performance of the features reinforced the ideas exposed above: several spectral
features from the AF band of interest reached higher values of AROC (0.825–0.851) than any
other single feature. This confirmed the usefulness of the spectral information contained in
AF signals to help in SAHS diagnosis.

None of the features selected for the AF, RRV and AF-RRV models presented high
linear correlation with BMI or age of subjects under study. The AF-RRV model achieved
the highest diagnostic performance (82.42% accuracy and 0.903 AROC). Mf3RRV, PAAF and
BPb

AF were automatically selected, containing information from both AF and RRV signals.
One out of the two hypothyroidism patients (false positive) and none of the COPD patients
were misclassified. These results showed that the FSLR procedure improved the diagnostic
performance of single features and suggested that information contained in AF and RRV
signals could be complementary.

The AF signals obtained from thermistor have been recently analysed to help in SAHS
diagnosis. Two hundred and eighty eight subjects participated in a multi-centre study to
evaluate a screening device based on the detection of respiratory events (Shochat et al 2002).
Thus, 86% sensitivity, 57% specificity and 0.81 AROC were achieved in the classification
of subjects. The same methodology was applied to a different population, comparing the
screening performance of the device to the performance of nocturnal pulsioximetry (Gergely
et al 2009). The results of the study achieved 71.9% sensitivity and 73.1% specificity using
AHI = 15 as a cut-off threshold. The AF-RRV model obtained in this work improved the
diagnostic performance of both studies.

There exists an extensive literature focused on the analysis of AF from nasal pressure (NP)
sensor. Most of them aimed to locate respiratory events in AF. Subsequently, a respiratory
disturbance index (RDI) is computed in order to assess its diagnostic performance (De Almeida
et al 2006, Erman et al 2007, Nakano et al 2007, Grover and Pittman 2008, Wong et al 2008,
Tonelli et al 2009, Chen et al 2009, Rofail et al 2010). Populations involved in these studies
ranged from 25 to 200 subjects (83.5 ± 64.6, mean ± SD). Sensitivity, specificity and AROC
reached ranged 82%–97%, 62%–90% and 0.84–0.98, respectively. The best results achieved
in this study are included in these intervals.
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Some limitations have to be taken into account. The population under study could be
larger, with a more balanced proportion of SAHS-positive and SAHS-negative subjects.
Furthermore, all subjects were suspected of having SAHS before PSG test. A control
group (subjects without any symptoms) should be analysed in order to assess the universal
application of the methodology. It would provide additional information to complete this
study. The use of a thermistor to acquire the AF signal, instead of a NP sensor, is al.so
a limitation. Measurements from thermistor are only indirectly related to the AF, resulting
in the underdetection of hypopnoeas (Farré et al 1998). The NP sensor has shown a better
performance for detecting obstructive respiratory events (Bahammam 2004). However, it
has a roughly quadratic relationship with the flow, causing AF changes to be exaggerated
and, consequently, resulting in an overestimation of apnoea events (Bahammam 2004). The
American Academy of Sleep Medicine recommends the use of both types of sensors due
to these disadvantages (Iber et al 2007). The comparison of features extracted from the
signals acquired with the two sensors and the joint analysis of the information extracted from
them are future goals. Another limitation has to be considered. The variability of AHI from
PSG in successive nights is well known (Carlile and Carlile 2008, Levendowski et al 2009).
However, night-to-night variability is not often assessed due to economics and time limitations
(Levendowski et al 2009). Repeated sleep studies in successive nights would be necessary
to complete the assessment of this methodology. Finally, the use of an AHI threshold = 10
events/h to discriminate SAHS is also a limitation since subjects in the range 5–10 events/h
could benefit from the continuous positive airway pressure (CPAP) treatment. CPAP is the
most widely used treatment for severe SAHS (Lindberg et al 2006, Marshall et al 2006).
Further work is needed to assess the accuracy of the methodology for screening those patients
who would benefit from CPAP.

In summary, AF and RRV signals were analysed. A spectral band of interest was located
in a region of the AF spectrum corresponding to anomalous respiration. The statistical
significance test and the diagnostic performance assessment of the features confirmed the
usefulness of the information contained in AF and RRV. Results from the FSLR procedure
suggested that data extracted from them can complement each other. Moreover, the AF-RRV
model improved the diagnostic performance of all the single features. The best results obtained
from this study improved the results from those studies which involved thermistor and are
comparable to those involving NP. Therefore, the proposed methodology could be useful to
help in SAHS diagnosis.
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Abstract This paper aims at detecting sleep apnoea–

hypopnoea syndrome (SAHS) from single-channel airflow

(AF) recordings. The study involves 148 subjects. Our

proposal is based on estimating the apnoea–hypopnoea

index (AHI) after global analysis of AF, including the

investigation of respiratory rate variability (RRV). We

exhaustively characterize both AF and RRV by extracting

spectral, nonlinear, and statistical features. Then, the fast

correlation-based filter is used to select those relevant and

non-redundant. Multiple linear regression, multi-layer

perceptron (MLP), and radial basis functions are fed with

the features to estimate AHI. A conventional approach,

based on scoring apnoeas and hypopnoeas, is also assessed

for comparison purposes. An MLP model trained with AF

and RRV selected features achieved the highest agreement

with the true AHI (intra-class correlation coeffi-

cient = 0.849). It also showed the highest diagnostic

ability, reaching 92.5 % sensitivity, 89.5 % specificity and

91.5 % accuracy. This suggests that AF and RRV can

complement each other to estimate AHI and help in SAHS

diagnosis.
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1 Introduction

The sleep apnoea–hypopnoea syndrome (SAHS) is a dis-

ease characterized by recurrent episodes of total absence

(apnoeas) or significant reduction (hypopnoeas) in airflow

(AF) during sleep. SAHS is highly prevalent since up to

5 % of adults are affected [41]. It has been usually related

to cardiovascular illnesses [25], motor vehicle collisions

[35], and occupational accidents [24]. Recently, it has been

also associated with cancer incidence [8].

The current diagnostic standard test is nocturnal poly-

somnography (PSG). It requires monitoring and recording

multiple physiological signals from patients [32]. The

origin of the signals can be electrical or mechanical, and

each of them can involve one or several channels. The

apnoea–hypopnoea index (AHI), which is derived

from PSG, is used to establish SAHS. Physicians have to

perform an offline inspection of signals such as electro-

cardiogram (ECG), electroencephalogram (EEG), electro-

myogram (EMG), oxygen saturation (SpO2), or AF to

obtain AHI. Thus, PSG is technically complex and time-

consuming [6, 14]. Moreover, it is also costly since

requires expensive equipment as well as expert workforce

overnight [14]. These restrictions limit the availability of

specialized sleep units, leading to long waiting lists and

increasing the time until diagnosis and treatment [11].

Thereby, simplifying SAHS diagnosis has become a major

concern.

New alternative methods have been proposed to over-

come the PSG drawbacks. A common approach is to
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analyse reduced sets of signals from PSG in order to

decrease complexity, cost, and diagnostic time [14]. We

propose evaluating the utility of single-channel AF data to

assist in SAHS diagnosis. The respiratory rate variability

(RRV), derived from AF [10], is also investigated. The

waveform of both signals is directly modified by the

occurrence of apnoea and hypopnoea events [10, 19].

Hence, their study is a natural way of dealing with the

problem. There exist many recent works focused on pro-

cessing AF to determine SAHS. Most of them are aimed at

scoring apnoeic events to estimate AHI [5, 11, 30, 36, 39].

By contrast, our proposal performs a direct estimation of

AHI after a comprehensive analysis of AF and RRV. Thus,

the first step is the extraction of statistical moments, non-

linear measures and spectral parameters from the record-

ings in order to characterize them [2, 15, 26]. This

exhaustive characterization of AF and RRV may lead to

obtain redundant or non-relevant features. Hence, we

include a second step consisting of a feature selection

procedure using the fast correlation-based filter (FCBF)

[42]. FCBF relies on symmetrical uncertainty (SU) and has

been already involved in biomedical applications for can-

cer recognition [18], neonatal seizure detection [1], or gene

classification [13]. Its purpose is to filter data according to

their relevancy and redundancy. A final step is included to

estimate AHI. Thus, we feed three pattern recognition

techniques with the extracted features: multiple linear

regression (MLR), multi-layer perceptron neural network

(MLP), and radial basis function neural network (RBF).

They represent common linear (MLR) and nonlinear

(MLP, RBF) methodologies to perform regression tasks

[7]. We evaluate the agreement between these estimations

and the true AHI of subjects as well as their diagnostic

ability. Additionally, we also conduct a conventional

approach (scoring apnoeas and hypopnoeas) for compari-

son purposes. Our hypothesis is that relevant and non-

redundant features from single-channel AF could help in

SAHS diagnosis by estimating AHI.

2 Materials and methods

Figure 1 presents a scheme of the general methodology

carried out in this study. It includes the feature extraction,

the feature selection, and the AHI estimation steps, as well

as the two kinds of evaluations applied to the estimations

from each pattern recognition method and the conventional

approach.

2.1 Subjects and signals

This study involved recordings from 148 subjects (100

SAHS-positive and 48 SAHS-negative). The AF data were

obtained from nocturnal PSG, which was conducted in the

sleep unit of the Hospital Universitario Rı́o Hortega (Val-

ladolid, Spain). All subjects were suspected of suffering

from SAHS before undergoing PSG due to common

symptoms such as daytime sleepiness, loud snoring, noc-

turnal choking, awakenings, and referring apnoeic events.

The physicians established the AHI threshold for a positive

diagnosis in 10 events per hour (e/h). The score of apnoeic

events was done following the rules of the American

Academy of Sleep Medicine (AASM) [19]. Thus, apnoeas

were defined as 10-s-or-more episodes of complete cessa-

tion of AF. Accordingly, hypopnoeas were defined as 10-s-

or-more episodes of 30 % of AF reduction accompanied by

a 4 % or more decrease in the saturation of haemoglobin.

The Review Board on Human Studies accepted the proto-

col, and all the subjects gave their informed consent to

participate in the study.

The proportion of male subjects was 79 %. No statisti-

cally significant differences between SAHS-positive and

SAHS-negative samples were encountered in the body

Fig. 1 General scheme of the methodology carried out in the study.

AHI apnoea-–hypopnoea index, PPV positive predictive value, NPV

negative predictive value
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mass index (BMI) or age. The entire group was randomly

divided into a training group (60 %) and a test group

(40 %). Table 1 summarizes demographic and clinical data

from the entire sample, the training group and the test

group.

The acquisition of signals during PSG was done by

means of a polygraph (Alice 5, Respironics, Philips

Healthcare, The Netherlands). AF was obtained through a

thermistor (Pro-Tech, Respironics, Philips Healthcare, The

Netherlands) at the sample rate of 10 Hz. The length of the

AF recordings was 7.24 ± 0.38 h (mean ± standard

deviation). An anti-aliasing filter was applied to satisfy the

Nyquist–Shannon theorem. The RRV signal was obtained

from AF by measuring the time between consecutive

breaths [10]. Thereby, we examined the first derivative of

AF to find time intervals in which the original signal grew.

We located the AF maximums at each interval. To derive

RRV, consecutive locations were used as references to

measure the time from one breath to the next [21].

2.2 Definition of spectral bands of interest

The recurrent behaviour of apnoeas and hypopnoeas can be

characterized by analysing AF and RRV in the frequency

domain. Moreover, according to previous studies [15],

differences in the spectrum of SAHS-positive and SAHS-

negative samples are expected. Thus, the power spectral

density (PSD) of the recordings was computed in order to

establish these differences. PSD was estimated using the

nonparametric Welch method, which is suitable for non-

stationary signal analysis [38]. A Hamming window of

2048 (204.8 s) samples (50 % overlap and 4,096-point

DFTs) was used. Cubic spline interpolation was previously

applied to RRV series in order to resample the recordings

to a constant sample rate (10 Hz). The interpolation is not

needed to perform the analysis in time domain, and

therefore, the resampled version of the RRV recordings

was not used in that case.

Spectral bands of interest were defined for AF and

RRV. The Mann–Whitney test was applied to each

SAHS-positive and SAHS-negative full PSD from the

training group. Thus, a p value was computed for each

frequency. We located those frequencies at which the

lowest p value for AF and RRV was reached (p value

�0.01). We set the corresponding band limits around

these frequencies. In order to minimize type I errors, we

chose those frequencies with a corresponding p value

smaller than one order of magnitude. Thereby, we

maximized the likelihood of defining bands in which

truly exist significant differences. According to this

procedure, the following spectral bands of interest were

determined: [0.022–0.058] Hz for AF and [0.085–0.134]

Hz for RRV. Figure 2a, b shows the averaged PSD of

SAHS-positive and SAHS-negative samples for AF and

RRV, respectively, in the training set.

2.3 Feature extraction

Up to 19 features were used to exhaustively characterize

AF and RRV. Statistical moments, nonlinear measures, and

spectral parameters were extracted from each full AF and

RRV recordings. Thus, subjects were described by patterns

composed of the corresponding values for each feature.

2.3.1 Statistical moments

We expected differences between the distribution of the

time series amplitude values from SAHS-positive and

SAHS-negative samples [15]. Hence, four statistical

moments were extracted from AF and RRV. Mean (Mt1),

standard deviation (Mt2), skewness (Mt3), and kurtosis

(Mt4) were computed to quantify central tendency, disper-

sion, asymmetry, and peakedness of data, respectively.

Table 1 Demographic and clinical data for all subjects under study

(mean ± standard deviation)

All SAHS

positive

SAHS

negative

Subjects 148 100 48

All subjects

Age (years) 50.9 ± 11.7 51.9 ± 11.4 48.7 ± 12.1

Males (%) 79.0 85.0 66.7

BMI (kg/m2) 29.2 ± 4.7 29.7 ± 4.5 28.1 ± 5.0

Recording time (h) 7.24 ± 0.38 7.23 ± 0.36 7.27 ± 0.43

AHI (h-1) 37.15 ± 25.81 4.13 ± 2.39

All SAHS positive SAHS negative

Subjects 89 60 29

Training set

Age (years) 51.9 ± 11.8 52.8 ± 11.9 50.2 ± 11.7

Males (%) 80.9 88.3 65.5

BMI (kg/m2) 29.8 ± 5.0 30.5 ± 5.2 28.4 ± 5.7

Recording time (h) 7.22 ± 0.43 7.21 ± 0.38 7.24 ± 0.52

AHI (h-1) 37.4 ± 27.2 3.8 ± 2.4

All SAHS positive SAHS negative

Subjects 59 40 19

Test set

Age (years) 49.2 ± 11.3 50.5 ± 10.7 46.5 ± 12.5

Males (%) 76.3 80.0 68.4

BMI (kg/m2) 28.3 ± 4.1 28.6 ± 3.5 27.7 ± 5.2

Recording time (h) 7.27 ± 0.29 7.26 ± 0.32 7.30 ± 0.23

AHI (events/h) 26.2 ± 17.2 4.3 ± 2.3

BMI body mass index, AHI apnoea–hypopnoea index
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2.3.2 Nonlinear features

Nonlinear features were used to measure the variability,

complexity, and irregularity of the time series. We used

central tendency measure (CTM), Lempel–Ziv complexity

(LZC), and approximate entropy (ApEn) for this purpose.

These methods have been already used to characterize

SAHS in previous studies [2, 15, 26].

• Central tendency measure quantifies the degree of

variability in time series [8]. It is based on first-order

difference plots that can be generated representing

x[n ? 2] - x[n ? 1] versus x[n ? 1] - x[n], where

x[n] are the time series values. CTM is computed by

counting the points falling within a preselected radius q
and dividing that count by the total number of points

[9]. Values closer to 1 indicate lower variability,

whereas values closer to 0 indicate higher variability.

• Lempel–Ziv complexity is a measurement of complex-

ity in finite sequences [23]. Thus, the conversion of

time series into a finite sequence of symbols is needed.

Binary conversion has been commonly applied by

using the median as a threshold [29]. Once the

sequence is obtained, it is scanned from left to right

in order to find new subsequences of consecutive

characters [43]. The final number of these subsequences

is normalized to make the method independent of the

length of sequences. Larger values of LZC correspond

to higher complexity [43].

• ApEn measures the irregularity of time series. It assigns

higher values to higher irregularity [34]. ApEn was

originally developed to be applied over short and noisy

data sets and requires the specification of two design

parameters: a length m and a tolerance window r [33].

These are used to establish the logarithmic likelihood

resulting from those close patterns (within r) for

m contiguous observations, which remain close (within

the same r) for m ? 1 contiguous observations.

Optimum radiusq (CTM), length m, and tolerance r (ApEn)

were determined by a p value-based methodology [17]. In the

case of ApEn, we evaluated m = 1, 2 and r ranging 0.10–0.25

times the standard deviation of the times series (with a 0.05

step). These values produce good statistical reproductibility

for ApEn [34]. A wide range of values for q were also assessed

(0.1–30, with a 0.1 step). We selected those configurations,

which showed the lowest p value between SAHS-positive and

SAHS-negative samples in the training group:

• AF: q = 0.8 (CTM), m = 2, r = 0.2 times standard

deviation (ApEn).

• RRV: q = 4.8 (CTM), m = 2, r = 0.2 times standard

deviation (ApEn).

2.3.3 Spectral features

A total of 12 parameters were extracted from the full PSD

(6) and the band of interest (6) for every AF and RRV

recording.

• First-to-fourth statistical moments, which were also

extracted in the frequency domain (Mf1 - Mf4).

• Peak amplitude (PA), taken as the maximum value of

PSDs in a given frequency interval.

• The Wootters distance (WD) [40], which is a disequi-

librium measure. WD assigns higher values when the

PSD is concentrated into a narrow frequency band (as

in sum of sinusoids). If it is uniformly distributed along

frequencies (white noise), WD equals zero [27].

2.4 Automatic feature selection: FCBF

After the feature extraction stage, the FCBF algorithm

automatically selected relevant and non-redundant features

[42]. FCBF is a filter method, which is not dependent on

posterior analysis. It relies on symmetrical uncertainty

Fig. 2 Low-frequency

representation of the averaged

PSD for a AF and b RRV.

SAHS-positive group in solid

black line. SAHS-negative

group in solid grey line.

Corresponding bands of interest

into dashed lines
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(SU), which is a normalized measure of information gain

(IG) between two variables [42]. The method is divided

into two steps. First, a relevance analysis of features was

done. SU between the features (Xi) and AHI (Y) was

computed as follows:

SUiðXi; YÞ ¼ 2
IGiðXi; YÞ

HiðXiÞ þ HðYÞ i ¼ 1; 2; . . .;N; ð1Þ

where H refers to Shannon’s entropy [42], and N is the

number of features extracted. SU is restricted to the range [0,

1]: 1 indicates that knowing one feature it is possible to

completely predict the other, whereas 0 indicates that the two

features are independent [42]. Once SUi were computed, the

features were ranked from more relevant (higher SUi) to less

relevant (lower SUi). The mean of all SUi values was used as

a cut-off to perform a preselection. The second step was a

redundancy analysis. SU between each pair of preselected

features (SUi,j) was sequentially computed beginning from

the most relevant ones. When SUi,j C SUi, the feature j was

discarded due to redundancy and was not taken into account

in successive comparisons. The final selected features were

those not discarded after ending the procedure.

2.5 Pattern recognition methods

As described above, the extracted features were used to form

patterns (vectors). Thus, a subject n was characterized by a

pattern xn. Each subject and its corresponding xn are asso-

ciated with an AHI value (tn). We modelled the statistical

relationship between patterns and AHI by means of pattern

recognition techniques. The utility of three methods to pro-

vide a reliable estimation (y) of the AHI was evaluated.

2.5.1 Multiple linear regression (MLR)

Multiple linear regression is a traditional method to predict

an output variable, y, through data from a multivariate

pattern, x1, x2,…, xN. It assumes a linear relationship

between the former and the latter [20]:

yðx;wÞ ¼ w0 þ w1x1 þ . . .þ wNxN ¼ wT x; ð2Þ

where w = (w0, w1,…, wN)T are the regression coefficients

for each input variable and the intercept (w0). The

computation of w is done by means of the sum of

squares error (ED) minimization [7]:

ED ¼
1

2

XN

n¼1

yðxn;wÞ � tn½ �2: ð3Þ

2.5.2 Multi-layer perceptron (MLP) network

The MLP network is a model inspired by the human brain.

The architecture of MLP is arranged in several

interconnected layers (input, hidden layers, and output),

which are composed of simple units known as perceptrons

[7]. Each perceptron is characterized by an activation

function g(•), and their connections to perceptrons from

other layers are associated with adaptive weights (wij).

The output layer provides the response, y. Since our

purpose is to estimate a continuous variable, a single output

unit with a linear activation function was used [28].

Additionally, we implemented a single hidden layer com-

posed of perceptrons with nonlinear activation functions.

This configuration is known to be able of providing uni-

versal approximation [7]. Thus, y can be expressed as

follows:

yðx;wÞ ¼
XNH

j¼1

wjg
Xd

i¼1

wijxi þ bj

 !
þ b0

" #
; ð4Þ

where w is a vector with all the adaptive parameters

(weights and bias), wj is the weight connecting hidden units

hj with the output unit, b0 is the bias associated with the

output unit, wij is the weight connecting the input unit

i with hidden unit hj, and bj is its associated bias. NH, the

number of perceptrons in the hidden layer, is a design

parameter. Weights were optimized with patterns from the

training group, by sum of squares error function minimi-

zation. Scaled conjugate gradient was used for this purpose

[7].

Weight decay regularization was used to achieve good

generalization. Thus, a penalty term (X) was added to the

error function ED, to favour small weights [7]:

ET ¼ ED þ X

¼ ED þ t
X

i

w2
i ¼

1

2

XN

n¼1

yðxn;wÞ � tn½ �2 þ t
X

i

w2
i ;

ð5Þ

where X is the sum of squares of the network weights, and

t is known as the regularization parameter, which has to be

configured.

2.5.3 Radial basis function (RBF) network

Radial basis function is a different neural network

approach. This network is composed of a hidden and an

output layer. The output y is computed from the responses

provided by the basis functions w(•) in the hidden layer

nodes. These functions only depend on the radial distance

(typically the Euclidian distance) between the input vector

x and a set of suitable centres cj [7]. A single output neuron

with a linear activation function was used to implement the

output layer, since the problem was a single variable

regression task. Thus, y is given by the following expres-

sion [7]:
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yðx;wÞ ¼
XNB

j¼1

wjwj jjx� cjjj
� �

þ b; ð6Þ

where NB is the number of basis functions (or centres), cj is

the centre of function wj, wj is the weight connecting wj and

the output neuron, and b is the bias parameter for this

neuron. A Gaussian function is commonly used for w(•)

[7]:

wjðxÞ ¼ exp � jjx� cjjj2

2r2
j

 !
: ð7Þ

where rj is the standard deviation (width) of each function.

Thus, the numbers of centres (NB) and their locations cj as

well as the widths of radial basis functions rj and the

weights wj are parameters to be optimized. NB and rj were

experimentally determined during a design stage. K-means

algorithm was used to optimize the location of centres [7],

and wj was computed from the solution of linear equations

following the sum of squares error minimization [7]. All of

them were configured by patterns from the training group.

2.6 Conventional approach

A conventional way of dealing with the problem of auto-

matic SAHS diagnosis is to detect and score respiratory

events in AF signal. Then, an estimation of AHI (AHIc) can

be derived by dividing the number of these events by the

sleep time. We implemented a scoring algorithm to com-

pare it with the proposed pattern recognition techniques. A

peak detection algorithm was used to locate inspiratory

onsets and endings in AF [21]. These values determined the

amplitude of every inspiration. Following the rules of the

AASM, we scored those respiratory events that matched

30 % or more drop from the baseline and lasted a minimum

of 10 s [19]. The baseline was determined by the mean

amplitude of the s previous inspirations [16]. Hence, s was

a design parameter. The same methodology than in the case

of the parameters of nonlinear features was used to opti-

mize s. We computed AHIc in the training group by

varying s from 1 to 10 (with a 1 step). For each s, the

Mann–Whitney test was used to obtain the p value between

the AHIc from the SAHS-positive and the SAHS-negative

samples. The greatest statistical difference, i.e. the lowest

p value, was obtained for s = 3, which was established as

the optimum value.

2.7 Statistical analysis

Data did not pass the Lilliefors normality test. Hence, the

nonparametric Mann–Whitney significance test was used to

assess the differences in SAHS-positive and SAHS-nega-

tive samples. We used the intra-class correlation coefficient

(ICC) and Bland–Altman plots as assessment of agreement

between estimated and true AHI. The diagnostic ability of

the estimations was assessed by means of sensitivity

(proportion of SAHS-positive patients correctly classified),

specificity (proportion of SAHS-negative subjects correctly

classified), accuracy (percentage of subjects correctly

classified over the entire sample), positive predictive value

(proportion of positive test result which are true positives),

and negative predictive value (proportion of negative test

result which are true negatives).

3 Results

Three sets of complete patterns were defined: patterns

composed of the 19 AF features (Pc
AF); patterns composed

of the 19 RRV features (Pc
RRV); and patterns composed of

the 38 AF and RRV features (Pc
AF�RRV). Then, we used the

training group to select relevant and non-redundant fea-

tures through FCBF algorithm. Thus, three new sets of

reduced patterns, formed with filtered features, were

obtained (Pr
AF, Pr

RRV, and Pr
AF�RRV). The training group

was also used in the process of obtaining specific pattern

recognition models. This process was divided into two

stages: design and training. In the first one, the ICC was

computed using a leave-one-out cross-validation (loo-cv)

procedure to find optimum design parameters for MLP and

RBF. In the second one, MLR, MLP, and RBF models

were trained by the use of the entire training group.

The test group was used to evaluate our methodology.

ICC and Bland–Altman plots were used to assess the

agreement between the AHI estimations (MLR, MLP,

RBF, and the conventional approach) and the actual values

of AHI. Furthermore, the diagnostic ability of these esti-

mations was also evaluated. Thus, we used the AHI

threshold established by the physicians (AHI = 10 e/h) to

derive Se, Sp, Acc, PPV, and NPV in each case.

3.1 Feature selection stage

The FCBF algorithm was applied to Pc
AF, Pc

RRV, and

Pc
AF�RRV. The complete patterns were significantly filtered.

Thus, the reduced patterns Pr
AF, Pr

RRV, and Pr
AF�RRV were,

respectively, composed of: 7 out of 19 AF features (from

higher to lower SU: WDb, Mf1b, ApEn, CTM, Mf3b, WD,

Mf1), 5 out of 19 RRV features (from higher to lower SU:

CTM, Mf1b, Mt3, Mf3, Mf1), and 10 out of 38 AF and RRV

features (from higher to lower SU: CTMRRV, WDb
AF,

Mf1b
RRV, Mt3

RRV, Mf1b
AF, Mf3

RRV, Mf1
RRV, ApEnAF, CTMAF,

LZCRRV). All the selected features from the spectral bands

of interest were more relevant than the features from the

full PSDs. Linear and nonlinear features, as well as
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frequency and time domain features, were selected in all

cases. The presence of AF and RRV features was balanced

in Pr
AF�RRV. Nonetheless, the features from RRV tended to

be more relevant than those from AF. CTM from RRV was

the most relevant feature in terms of SU.

3.2 Design and training stages

3.2.1 Design of MLP and RBF

A proper design of MLP and RBF networks is required to

achieve high generalization ability. It refers to selecting the

appropriate model complexity in order to prevent over-

fitting and under-fitting effects [7]. The effective com-

plexity of the MLP and RBF models is governed by the

design parameters [7]. Thus, we experimentally determined

the number of hidden nodes (NH and NB), the regularization

parameter (t), and a smoothing parameter (s), which gov-

erns the widths of kernel functions (rj) in RBF. Only the

training group was used for this purpose.

Figures 3 and 4 show the results of the experiments

conducted to determine these parameters. The MLP and

RBF were fed with complete (Pc
AF, Pc

RRV, Pc
AF�RRV) and

reduced (Pr
AF, Pr

RRV, Pr
AF�RRV) patterns. In each case, the

ICC was computed for NH/t (MLP) or NB/s (RBF) pairs,

and it was used as selection criterion. ICC was estimated

through loo-cv, which was repeated ten times due to ran-

dom initialization of weights and centres of MLP and RBF

networks. Then, we averaged the ten ICCs to obtain the

final value.

Figure 3a–f displays the performance of the MLP net-

works following this procedure. Figures in the same col-

umn correspond to complete (left) or reduced (right) input

patterns, respectively. Figures in the same row indicate the

origin of the features included in the patterns: AF, RRV, or

both signals. t was assessed according to each set. We

chose those t for which their ICC was higher throughout

the number of nodes. NH was varied from 1 to 50, and the

optimum value was selected for the sake of the network

complexity, i.e. we chose those values from which no

substantial ICC improvement was observed. Thus, the

optimum values were NH/t = 18/6 (Pc
AF), 20/11 (Pc

RRV),

22/8 (Pc
AF�RRV), 17/3 (Pr

AF), 13/7 (Pr
RRV), and 18/2

(Pr
AF�RRV). Since NH/t govern the effective complexity of

the networks [7], less complex models were selected as

optimum when using reduced patterns.

Figure 4 follows the same scheme for the RBF net-

works. We varied NB from 1 to 50 and evaluated s in 1, 2,

3, 4 and 5. Since the evolution of the ICC presented clear

absolute maximums, we selected those pairs NB/s corre-

sponding with these points. Hence, NB/s were the

following: 21/2 (Pc
AF), 7/4 (Pc

RRV), 7/4 (Pc
AF�RRV), 18/3

(Pr
AF), 4/1 (Pr

RRV), and 5/4 (Pr
AF�RRV). The optimum

models were also less complex in the case of reduced

patterns, i.e. fewer nodes NB were used.

3.2.2 Training of MLR, MLP and RBF models

Specific MLR, MLP and RBF models were obtained from

the entire training group. A single MLR model was com-

puted for each set of complete (Pc
AF, Pc

RRV, and Pc
AF�RRV)

and reduced (Pr
AF, Pr

RRV, and Pr
AF�RRV) patterns. In the case

of MLP and RBF, we computed 100 models for each set,

due to random initializations in these networks. The opti-

mum design parameters values, which were obtained in the

previous stage, were used in the process.

3.3 Test stage

3.3.1 Intra-class correlation coefficient

and Bland–Altman plots

Table 2 shows the ICC values reached by the MLR, MLP

and RBF models for each set of patterns in the test group.

The values for MLP and RBF are presented as

mean ± standard deviation of the 100 models previously

obtained. One model for each method was selected

according to their ICC: MLRc
AF�RRV (Pc

AF�RRV from MLR),

MLPr
AF�RRV (Pr

AF�RRV from MLP), and RBFr
AF (Pr

AF for

RBF). Thus, MLPr
AF�RRV outperformed AHIc in terms of

agreement and both of them outperformed MLRc
AF�RRV

and RBFr
AF. This tendency was also observed when

applying graphical analysis. Figure 5 displays the ‘‘Bland–

Altman’’—(a, c, e, g)—and ‘‘estimated versus true AHI’’

plots—(b, d, f, h). Both graphs show smaller deviation

from the target AHI in the case of MLPr
AF�RRV and AHIc.

These models also reached less dispersion in the scatter of

the points, which is reflected in the corresponding 95 %

confidence interval: [-15.6, 19.9] e/h in the case of

MLPr
AF�RRV and [-16.6, 19.3] e/h for AHIc.

3.3.2 Diagnostic performance of the models

To complete the analysis, we evaluated the diagnostic

ability of the four AHI estimations obtained from the test

group. Table 3 shows sensitivity (Se), specificity (Sp),

accuracy (Acc), positive predictive value (PPV), and neg-

ative predictive value (NPV) for each method. The highest

performance was achieved by MLPr
AF�RRV, which reached

92.5 % Se, 89.5 % Sp, 91.5 % Acc, 94.9 % PPV, and

85.0 % NPP. MLRc
AF�RRV and RBFr

AF also outperformed

AHIc at each statistic.
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Fig. 3 MLP design stage: ICC for different NH and t values. Optimum values of: t marked in solid line; NH marked in vertical line
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Fig. 4 RBF design stage: ICC for different NB and s values. Optimum values of: s marked in solid line; NB marked in vertical line
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4 Discussion and conclusions

In this study, we addressed the estimation of AHI by pat-

tern recognition in single-channel AF. Our approach

focused on the exhaustive analysis of AF and RRV signals.

Thus, spectral, nonlinear, and statistical features were

obtained from all recordings. FCBF algorithm filtered these

features, discarding those non-relevant or redundant. After

filtering, both linear and nonlinear features from AF and

RRV were selected. Moreover, all the features selected

from the spectral bands of interest were more relevant in

terms of SU than those selected from the full PSDs. The

FCBF method was also useful in the design of MLP and

RBF. Thereby, optimum less complex networks were

selected in both cases when using reduced patterns (Pr
AF,

Pr
RRV, and Pr

AF�RRV) instead of complete patterns (Pc
AF,

Pc
RRV, and Pc

AF�RRV). These results support the use of the

AF and RRV signals, as well as the methodology con-

ducted to characterize them.

During the test stage, the agreement between the AHI

estimations and the true AHI was evaluated. We selected

specific models according to their ICC. Both ICC and

graphical analysis supported MLPr
AF�RRV and AHIc as the

best in terms of agreement. The conventional approach,

however, systematically overestimated AHI in the SAHS-

negative sample (15 out of 19 subjects) and underestimated

AHI in the SAHS-positive sample (27 out of 40 subjects)

(Fig. 5 b). These two effects may have caused that, despite

having lower ICC values, MLRc
AF�RRV and RBFr

AF reached

higher global diagnostic ability than AHIc.

The diagnostic ability of the methods was also assessed.

The highest performance was achieved by the AHI esti-

mation derived from the MLPr
AF�RRV model. This model

reached high sensitivity (92.5 %), specificity (89.5 %), and

accuracy (91.5 %). Only 2 out of 19 SAHS-negative sub-

jects (false positives) and 3 out of 40 SAHS-positive sub-

jects (false negatives) were misclassified. Additionally,

three out of them have borderline true AHI values (5.7, 10,

and 15.8 e/h). Thus, 94.9 % of subjects that our model

estimated SAHS-positive were actually suffering from

SAHS. Moreover, 85.0 % of subjects that our model pre-

dicted SAHS-negative were not SAHS patients. These

findings confirmed the usefulness of combining relevant

and non-redundant features from AF and RRV.

Recent studies aimed at identifying SAHS (AHI

threshold = 10 e/h) from single-channel AF. Most of them

detected and scored respiratory events to estimate AHI.

Shochat et al. [36] investigated the usefulness of Sleep-

StripTM for this purpose. They acquired AF through a

thermistor and involved 288 subjects. Sensitivity was

86.0 %, but specificity reached low values (57.0 %).

Nakano et al. [30] scored events supported by a spectral

analysis of AF. The best performance was achieved using

116 AF recordings acquired with a thermocouple: 92 % Se

and 90 % Sp. Their results are similar to ours from

MLPr
AF�RRV. Nonetheless, no further comparison was

possible since no data were reported to obtain Acc, PPV or

NPV. Nasal prong pressure sensor (NPP) has been widely

used to acquire AF in portable diagnostic devices. Thus, De

Almeida et al. assessed SleepCheckTM [11]. The authors

reported 85.7 % Se and 87.5 % Sp by using a small sample

size (30 subjects). Additionally, Wong et al. [39] evaluated

FlowWizardTM. They achieved high diagnostic perfor-

mance: 92 % Se, 86 % Sp, 96 % PPV, and 75 % NPV.

However, only 27 SAHS-positive subjects and 7 SAHS-

negative subjects were used. Finally, ApenaLinkTM was

recently evaluated by BaHammam et al. [5]. The study

involved 95 AF recordings. Specificity and PPV reached

high values (89.0 and 91.0 %, respectively), but sensitivity

(70.0 %) and NPV (63.0 %) were low. In contrast to the

conventional approach conducted in these studies, our

methodology took into account not only the apnoeic events

but also data from the whole single-channel AF. A similar

approach was performed in a recent study of our research

group [15]. The utility of AF and RRV signals was

assessed by the use of a logistic regression model, i.e. into

a binary classification task. After a loo-cv process, the

diagnostic performance reached 88 % Se, 70.8 % Sp,

82.4 % Acc, 86.3 % PPV, and 73.9 % NPV.

There also exist SAHS studies not aimed at assessing the

diagnostic ability of a given methodology, but focused on

evaluating how well this methodology detects apnoeas

Table 2 ICC obtained from MLR, MLP, RBF, and the conventional

approach (AHIc)

ICC test

AF RRV AF-RRV

AHIc 0.840 – –

MLR

Pc 0.796 0.710 0.809

Pr 0.650 0.689 0.777

MLP

Pc 0.782 ± 0.002 0.644 ± 4.3 e-4 0.808 ± 1.7-5

Pr 0.743 ± 0.002 0.685 ± 1.1 e-4 0.849 – 0.002

RBF

Pc 0.594 ± 0.094 0.617 ± 0.022 0.632 ± 0.170

Pr 0.748 – 0.037 0.703 ± 0.006 0.732 ± 0.016

Best performance for each method in bold

Pc complete patterns, Pr reduced patterns

Fig. 5 Bland–Altman plots (a, c, e, g) and ‘‘estimated versus true

AHI’’ (b, d, f, h), for the specific models and the conventional

approach (AHIc). Results derived from the test group. TP true

positives, FP false positives, TN true negatives, FN false negatives

c
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and/or hypopnoeas. Han et al. [16] used AF recordings

from NPP, along with an automatic algorithm based on the

mean magnitude of the second derivative, to detect apno-

eas. They reported 92.4 % Se and 88.3 % Sp when com-

paring their methodology with the manual score of the

events. Álvarez-Estévez and Moret-Bonillo [3] applied a

fuzzy algorithm to AF, SpO2, and respiratory movement

recordings in order to detect respiratory events and classify

them into apnoeas or hypopnoeas. Their results showed

87 % Se and 89 % Sp in the detection task, whereas they

reported 92/85 % Se and 85/92 % Sp in the classification

task (apnoeas/hypopnoeas). Otero et al. [31] propose sev-

eral algorithms to detect different pathological events from

polysomnographic recordings. Their results showed 97.4

and 94.0 % PPV when detecting apnoeas and hypopnoeas,

respectively.

Pattern recognition techniques have been already shown

to be useful in SAHS detection. Varady et al. [37] trained

four feed-forward artificial neural networks to detect ap-

noeic segments in AF recordings. Data from AF and

respiratory inductive plethysmography (RIP) were used.

Up to 93 % of patterns were correctly classified into nor-

mal, apnoea, or hypopnoea categories. No assessment of

diagnostic ability was performed. El-Shol et al. [12] trained

a MLP network to predict AHI from demographic and

clinical variables of subjects. Sensitivity and specificity

reached 94.9 and 64.7 %, whereas PPV and NPV were 87.9

and 85.2 %, respectively. Additionally, in other study of

our research group [26], 14 features extracted from 240

SpO2 recordings were used along with MLR and MLP

algorithms. The ICCs were 0.80 and 0.91, respectively. The

MLP model showed the highest diagnostic performance:

89.6 % Se, 81.2 % Sp, 86.8 % Acc, 90.5 % PPV, and

79.6 % NPV.

Although our methods have revealed the usefulness of

AF and RRV in SAHS detection, some limitations have to

be addressed. A larger sample size would improve the

generalization of our results. Accordingly, the validation of

the proposed algorithms using different databases would be

of great interest to enhance their statistical power [22].

Moreover, the use of subjects without previous suspects of

suffering from SAHS would complement our findings.

Nonetheless, this issue has no easy solution since subjects

usually undergo overnight PSG after referring some

symptoms. The cut-off AHI = 10 e/h is widely used to

determine SAHS [5, 30, 36, 39]. Hence, our methodology

was optimized according to this threshold. Future works,

however, could assess our methodology for other common

cut-offs such as 5 or 15 e/h. Another limitation is the use of

a thermistor, instead of a thermistor and a NPP simulta-

neously. The AASM recommends using both sensors to

acquire AF [19], due to weaknesses in the two of them [4].

Additionally, it is well known that NPP outperforms

thermistor when recording respiratory events [4]. However,

this work has shown that a global analysis of single-

channel AF from thermistor can achieve high diagnostic

performance and improve the results reported in recent

studies only involving NPP [5, 11, 39]. The application of

our methodology to AF recordings from NPP is a future

goal. Another future goal is to assess relationships between

the proposed features and the apnoeic events in order to

clarify their physiological meaning. Additionally, our

methodology does not offer flexibility to the physicians in

order to change the AHI based on their expertise. However,

the results reported in this study measure to what extent

physicians can trust our AHI estimations. Finally, the main

benefit of our approach would be obtained by applying our

algorithms to single-channel AF recordings acquired at

patient’s domicile. Although there exist several portable

devices to obtain AF [5, 11, 36, 39], these have limitations

and need further investigation to ensure their reliability in

unattended studies at home.

In summary, single-channel AF from thermistor can be

used to assist in SAHS detection and simplify diagnosis.

The methodology conducted over AF and RRV signals has

shown its usefulness to estimate AHI. Particularly, the

FCBF algorithm was successfully used to discard redun-

dant and non-relevant information from recordings, which

in turn decreased the complexity of the models obtained

through neural networks. An MLP model, trained with

relevant and non-redundant features from AF and RRV,

achieved high results in terms of agreement with true AHI

and diagnostic ability. It outperformed a conventional

approach, based on scoring apnoeas and hypopnoeas,

conducted over the same database. Additionally, the MLP

approach also improved the diagnostic ability of the con-

ventional one conducted in other studies. Our results sug-

gest that AF and RRV complement each other in the AHI

estimation and can help in SAHS diagnosis.
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Abstract: Heart rate variability (HRV) provides useful information about heart dynamics 

both under healthy and pathological conditions. Entropy measures have shown their utility 

to characterize these dynamics. In this paper, we assess the ability of spectral entropy (SE) 

and multiscale entropy (MsE) to characterize the sleep apnoea-hypopnea syndrome (SAHS) 

in HRV recordings from 188 subjects. Additionally, we evaluate eventual differences in 

these analyses depending on the gender. We found that the SE computed from the very low 

frequency band and the low frequency band showed ability to characterize SAHS regardless 

the gender; and that MsE features may be able to distinguish gender specificities. SE and 

MsE showed complementarity to detect SAHS, since several features from both analyses 

were automatically selected by the forward-selection backward-elimination algorithm. 

Finally, SAHS was modelled through logistic regression (LR) by using optimum sets of 

selected features. Modelling SAHS by genders reached significant higher performance than 

doing it in a jointly way. The highest diagnostic ability was reached by modelling SAHS in 

women. The LR classifier achieved 85.2% accuracy (Acc) and 0.951 area under the ROC 

curve (AROC). LR for men reached 77.6% Acc and 0.895 AROC, whereas LR for the whole 
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set reached 72.3% Acc and 0.885 AROC. Our results show the usefulness of the SE and MsE 

analyses of HRV to detect SAHS, as well as suggest that, when using HRV, SAHS may be 

more accurately modelled if data are separated by gender. 

Keywords: sleep apnoea; spectral entropy; multiscale entropy; heart rate variability 

PACS Codes: 87.85.Ng; 87.19.Hh; 87.19.lo 

 

1. Introduction 

The sleep apnoea-hypopnoea syndrome (SAHS) is a highly prevalent disease which negatively 

impacts both the health and quality of life of affected people [1]. SAHS is mainly characterized by the 

recurrence of both total breathing cessation (apnoea events) and significant airflow reduction 

(hypopnoea events) during sleep time [2]. Apnoeas and hypopnoeas cause oxygen desaturations and 

sleep fragmentation [2], preventing patients from resting while sleeping, and leading to daytime 

symptoms such as morning headaches, excessive sleepiness, memory loss, or decreased concentration [3]. 

Apnoeic events are also related to challenging processes for different main body systems. In this regard, 

hypoxemia, hypercapnia, inspiratory overexertion, or arousals may vary the normal response of systems 

such as neural, cardiovascular, and metabolic [1]. Thus, SAHS has been associated with major 

pathological conditions such as hypertension, stroke, coronary artery disease, congestive heart failure, 

atrial fibrillation, or diabetes [1–3]. 

Simplifying SAHS diagnosis has become a major concern for experts in recent years. The standard 

diagnostic test is overnight polysomnography (PSG), which is technically complex and expensive [4], 

since it involves monitoring and recording multiple physiological signals such as electroencephalogram 

(EEG), electrocardiogram (ECG), electromyogram, oxygen saturation (SpO2), and airflow [5]. PSG is 

also time-consuming since the physicians need an offline inspection of these recordings to diagnose 

SAHS. Additionally, it is well-known that SAHS is an underdiagnosed disease. As a result, there exists 

an increasing demand of PSG tests [6], which exceed the clinical resources in many of the Western 

countries [7]. The limitations of overnight PSG have led to a search for diagnostic alternatives for SAHS. 

In this regard, one common approach has been the analysis of reduced sets of signals chosen among 

those involved on PSG [6]. 

Heart rate variability (HRV), which is derived from ECG, has been widely investigated to assess 

multiple conditions related to the heart and the autonomic nervous system (ANS) [8]. This connection 

between the heart function and the ANS, extensively reported in the literature, provides a unique 

framework when studying SAHS which is not present in the case of other signals involved in PSG.  

In this regard, the ANS response to the apnoeic events has been associated with a recurrent  

progressive-bradycardia/abrupt-tachycardia pattern observed in HRV [9,10]. Therefore, HRV has been 

usually studied through different approaches to gain insight into SAHS and help in its diagnosis [9–14]. 

The recurrence of bradycardia-tachycardia patterns justifies the use of frequency analyses and the 

definition of spectral bands of interest. Thus, the power in the very low frequency band (VLF, 0–0.04 Hz.), 

in the low frequency band (LF, 0.04–0.15 Hz.), and in the high frequency band (HF, 0.15–0.4 Hz.) has 
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been successfully assessed in studies involving SAHS [11,12]. On the other hand, some works have 

reported chaotic heart beat behaviours [15,16], which suggest applying of nonlinear analyses to HRV. 

Entropy measures, as a common choice to quantify nonlinear dynamics in biomedical signals, have 

shown to be useful in the study of different pathologies and physiological conditions like Alzheimer’s 

disease (AD) [17], diabetes [18], atrial fibrillation [19], or SAHS [20,21]. Particularly, the multiscale 

entropy (MsE) analysis has been widely applied to biomedical signals in order to quantify their 

irregularity (or complexity) over time scales. Thus, MsE has shown its usefulness to study heart rate 

dynamics [22], to find differences in the HRV from healthy subjects and subjects suffering from 

congestive heart failure and atrial fibrillation [23], to show different behaviours in the heart rate of young 

and elder [23], to quantify the complexity of human gait [24], to improve the knowledge of the EEG 

behaviour in AD patients [25], as well as to evaluate the effects of drugs in the EEG of schizophrenia 

patients [26]. Moreover, spectral entropy (SE) has been helpful to quantify the depth of anaesthesia in 

EEG recordings from women undergoing gynaecological surgery [27], to detect endpoints in speech 

signals recorded in noisy environments [28], to show the changes that AD causes in the spectrum of 

magnetoencephalographic and EEG recordings [17,29], as well as to enhance the automatic detection of 

SAHS from single-channel SpO2 recordings obtained during nocturnal oximetry [30]. 

We hypothesize that both SE and MsE can be useful to gain insight into the effects that SAHS causes 

in HRV and, consequently, to help in its detection. Thus, the main objective of this paper is the 

assessment of these analyses in the context of SAHS. As mentioned above, HRV has been commonly 

used to help in SAHS diagnosis, both in frequency and time domain. However, no studies have been 

found showing the behaviour of HRV in SAHS patients (SAHS-positive) and no-SAHS subjects (SAHS-

negative) through SE and MsE, or combining them to automatically detect SAHS. Furthermore, HRV is 

well-known to be affected by gender [8]. In this regard, HRV has shown significantly lower amplitude 

in healthy women of all ages, along with lower standard deviation [31]. These findings justify take 

eventual gender specificities into account when analysing HRV. Therefore, we firstly propose to analyse 

SE and MsE in HRV recordings from SAHS-positive and SAHS-negative considering these potential 

differences, i.e., considering the whole set of recordings as well as dividing it into women and men. 

Then, the use of the automatic forward-selection backward-elimination algorithm (FSBE) is proposed 

to obtain optimum sets of features from the three sets. This analysis highlights relevant features as well 

as allows evaluating the complementarity of SE and MsE when modelling SAHS [32]. Finally, we assess 

the diagnostic ability of logistic regression models built with these features and we compare the results 

reached for women, men, and the whole set of recordings. 

2. Methodology 

2.1. Subjects and Signals under Study 

The study involved 188 subjects (134 men and 54 women) sent to the sleep unit of the Hospital 

Universitario Rio Hortega (Valladolid, Spain) due to suspicion of SAHS. All subjects underwent 

overnight PSG. No subjects with reported cardiac illnesses were included in the study. Apnoeas and 

hypopnoeas were scored by a single expert, who followed the rules of the American Academy of Sleep 

Medicine (AASM) [33]. An apnoea-hypopnoea index (AHI) of 10 events per hour (e/h) was established 
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as the threshold for a positive diagnosis. Accordingly, 93 men and 26 women were considered as  

SAHS-positive. The Ethics Committee of the Hospital Universitario Rio Hortega (Spain) accepted the 

protocol and all the subjects gave their informed consent. Table 1 shows demographical and clinical data 

from the subjects (mean ± standard deviation). No statistically significant differences were found in body 

mass index (BMI) and age between SAHS-positive and SAHS-negative groups in men and women 

(Mann-Whitney U test, p-value > 0.01), nor were found in AHI, BMI, and age between men and women 

in SAHS-positive and SAHS-negative groups (p-value > 0.01). 

Table 1. Demographic and clinical data from the subjects under study. 

 Women Men 

 SAHS-Negative SAHS-Positive SAHS-Negative SAHS-Positive 

#Subjects 28 26 41 93 
Age (years) 49.2 ± 8.6 58.3 ± 14.3 46.0 ± 13.1 51.1 ± 11.7 
BMI (kg/m2) 26.8 ± 6.9 28.8 ± 5.8 28.8 ± 5.6 29.2 ± 2.9 

AHI (e/h) 3.3 ± 2.3 32.8 ± 24.7 4.1 ± 2.5 33.0 ± 22.5 

PSG was carried out with a polysomnograph (Alice 5, Respironics, Philips Healthcare,  

The Netherlands). The HRV signals were obtained from ECG, which was recorded during overnight 

PSG (6 to 8 h) at a sample rate of 200 Hz. Each sample in the HRV signal is the time between two 

consecutive R peaks [34]. Hence, to derive HRV, we firstly applied a QRS-complex detection algorithm 

[35]. It was reported to reach high sensitivity (99.94%) and positive predictive value (99.93%), even in 

the presence of muscular noise and baseline artefacts (99.88% sensitivity and 99.73% positive predictive 

value, respectively) [35]. It is based on Hilbert transform and consists of two stages. Initially, the first 

differential of the ECG signal is computed (dECG). This is carried out to avoid baseline shifts and motion 

artefacts. Then the Hilbert transform is applied to dECG (h(n) = H[dECG]). Due to the properties of 

Hilbert transform, points around peaks in h(n) are regions of high probability of containing actual QRS 

peaks [35]. Since in h(n) the P and T waves are low comparing with the R waves [35], an adaptive 

threshold is used to establish those regions truly corresponding to R waves. In the second stage of the 

algorithm, these regions are used to look for the actual peaks in the original ECG. After QRS-complex 

detection, the difference between R-R peaks was computed. In order to deal with arrhythmia-related 

artefacts, we excluded those R-R intervals not fitting: (i) 0.33 s < R-R interval < 1.5 s and (ii) difference 

to the previous R-R interval > 0.66 s [11]. No statistically significant differences (Mann-Whitney U test) 

were found between women and men in the percentage of R-R intervals discarded per subject or between 

SAHS-positive and SAHS-negative subjects in both groups. Before performing the spectral analysis, the 

HRV signals were resampled at 3.41 Hz by the use of linear interpolation [11]. This sample frequency 

was chosen as a trade-off between not to add a large amount of estimated data and take an efficient 

length for the posterior fast Fourier transform computation. 

2.2. Analysis in Frequency Domain: Spectral Entropy 

The power spectral density (PSD) of each resampled HRV recording was computed. We used the 

Welch’s method since it is suitable for non-stationary signals [36]. A Hamming window of 210 points 

(50% overlap), along with a discrete Fourier transform of 211 points, were used to estimate the PSDs. 
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Then, each PSD was normalized (PSDn) by dividing the amplitude value at each frequency by the 

corresponding total power. In spite of some controversy [37], it is commonly accepted that LF is 

associated with sympathetic activity [8,11], i.e., variations in the low-frequency PSD values from HRV 

reflect changes in the sympathetic nervous system. On the other hand, HF has been related to the 

respiratory rhythms and, therefore, to the parasympathetic activity [8,11]. The physiological 

interpretation of the very-low-frequency PSD values remains unclear [11], and it has been simply 

identified with long-period rhythms [38]. 

SE measurements were obtained from VLF (SEVLF), LF (SELF), HF (SEHF), and 0–0.4 Hz (SEVLF-HF) 

bands. SE quantifies the uniformity, or flatness, of a PSD distribution [17,39]. Thus, a uniform (flat) 

spectrum, whose components are equally dispersed along frequencies, gives a high SE value (SE ≈ 1) [40]. 

This is the case of low predictability signals like the white noise [39,40]. Conversely, a condensed spectrum 

gives a low SE value (SE ≈ 0), which is the case of high predictability signals like sinusoids [39,40]. 

Thereby, for each band, higher SE values correspond to less predictability for the associated components 

in time domain. SE can be computed from the following expression [17]: 
2

1

PSDn( ) log[PSDn( )]
f

f f

SE f f
=

= − ⋅  (1)

which is the application of Shannon’s entropy to the normalized values of the PSD between the f1 and 

f2 frequency limits [17]. 

2.3. Nonlinear Analysis in Time Domain: Multiscale Entropy 

It is accepted that biological systems tend to non-linearity. As stated above, the heart rate is supposed 

to behave in this way [16]. In this regard, the MsE analysis applied to HRV has showed to be helpful in 

determining complexity patterns of several illnesses, as well as age [22,23]. MsE was originally 

developed by Costa et al. [41] on the basis of approximate entropy (ApEn) or sample entropy (SampEn). 

ApEn was designed by Pincus as an entropy measure which quantifies irregularity in time series [42]. 

Richman and Moorman improved ApEn by developing SampEn to reduce the bias caused by self-

matching [43]. 

SampEn divides time-series into consecutive vectors of length m. It assesses whether the maximum 

absolute distance between the corresponding components of each pair of vectors is less than or equal to 

a tolerance r, i.e., if the vectors match each other within r. If so, the vectors are considered as similar. 

The same process is repeated for vectors of length m + 1. Then, it is computed the conditional probability 

of similar vectors of length m remaining similar when the length is m + 1. The final SampEn value is 

obtained as the negative logarithm of such conditional probability [29,43]. Thus, higher values of 

SampEn indicate less self-similarity in the times-series and, consequently, more irregularity [29]. 

Our MsE analysis begins by applying SampEn to the original HRV series. This is the first scale.  

Scale 2 is computed by applying SampEn to a time-series whose values are the original HRV values 

averaged every two samples, without overlapping. In the same way, scale k is computed applying  

SampEn to time-series whose values are the original HRV values averaged every k samples without 

overlapping [41]. 

SampEn requires fitting a vector length, m, and a tolerance, r. We used m = 3 and r = 0.2 times the 

standard deviation of the time-series, as common choices in the study of HRV through SampEn [44]. 
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Our HRV recordings have an average length of 29,000 points. A proper computation of SampEn requires 

at least 10m points [43]. Hence, we chose 25 as a conservative number of scales to be analysed. The 

SampEn values of the 25 scales were taken as features (SampEn1- SampEn25). 

2.4. Logistic Regression: Automatic Feature Selection and Classification 

Logistic regression (LR) is a well-known supervised learning algorithm which estimates the posterior 

probability that a given instance xi belongs to certain class Ck. This posterior probability, p(Ck| xi), is 

computed through the logistic function: 
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where β0 and β are obtained by the weighted least squares minimization procedure [32]. Then, an 

instance xi is assigned to the class with larger posterior probability. In our case, we have two classes: 

SAHS-positive and SAHS-negative. Input pattern xi for each subject was composed of the feature values 

obtained for that subject after the SE and MsE analyses. 

In this study LR was used with two purposes. First, to automatically select relevant and non-redundant 

features among those extracted from the SE and MsE analyses. This was performed through the  

forward-selection backward-elimination algorithm (FSBE), proposed by Hosmer and Lemeshow [32]. 

Then, LR was also used to assess the joint diagnostic ability of the features selected in the  

previous step. 

2.5. Statistical Analysis 

Features did not pass the Lilliefors normality test. Hence, the non-parametric Mann-Whitney U test 

was used to establish eventual statistically significant differences between SAHS-positive and  

SAHS-negative subjects (p-value < 0.01), both in women and men. The diagnostic ability of LR was 

assessed in terms of sensitivity (Se, percentage of SAHS-positive subjects rightly classified), specificity 

(Sp, percentage of SAHS-negative subjects rightly classified), accuracy (Acc, overall percentage of 

subjects rightly classified), positive predictive value (PPV, proportion of positive test results which are 

true positives), negative predictive value (NPV, proportion of negative test results which are true 

negatives), positive likelihood ratio (LR+, Se/(1-Sp)), and negative likelihood ratio (LR-, (1-Se)/Sp). 

The area under the receiver operating-characteristic curve was also computed (AROC). All the statistics 

were obtained after a leave-one-out cross-validation (loo-cv) procedure. 

3. Results 

Our results are divided into three sections. First, we compare the PSDn of SAHS-positive and  

SAHS-negative subjects, along with their corresponding SEVLF, SELF, SEHF, and SEVLF-HF mean values. 

Then, a similar analysis is conducted by using MsE curves and the features extracted from them: 

SampEn1-SampEn25. Thus, 29 features are obtained from the HRV of each subject. Finally, we compare 

LR models obtained to detect SAHS in women, men, and the whole set of subjects, which are built with 

an optimum subset out of the 29 features for each case. 
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3.1. Spectral Entropy 

Figure 1 shows the averaged PSDn for the whole sets of SAHS-positive and SAHS-negative subjects 

(men and women jointly). VLF (0–0.04 Hz), LF (0.04–0.15 Hz), and HF (0.15–0.4 Hz) bands are also 

showed. Figure 2 shows the average PSDn values in women and men for the SAHS-positive and  

SAHS-negative groups. PSDn in both genders follow the same pattern, with SAHS-positive curves being 

qualitatively higher than the SAHS-negative ones from 0.015 to 0.060 Hz, approximately, i.e., covering 

part of VLF and LF bands. Mean values of SE for the four bands considered are displayed in Table 2, 

separated by genders and SAHS class. 

 

Figure 1. Normalized power spectral density of HRV in the whole set of SAHS-negative 

(blue) and SAHS-positive (red) subjects. 

 

Figure 2. Normalized power spectral density of HRV in women (solid lines) and men 

(dashed lines) for the SAHS-positive and SAHS-negative groups. 
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Table 2. Spectral entropy features from VLF, LF, HF, and VLF-HF bands for women and 

men (mean ± standard deviation). P-values obtained from the Mann-Whitney U test. 

 Women Men 

 SAHS-Negative SAHS-Positive p-value SAHS-Negative SAHS-Positive p-value 

SEVLF 0.959 ± 0.020 0.971 ± 0.011 <0.01 0.958 ± 0.020 0.966 ± 0.018 <0.01 

SELF 0.984 ± 0.011 0.959 ± 0.028 <10−4 0.983 ± 0.012 0.960 ± 0.035 <10−4 

SEHF 0.979 ± 0.021 0.970 ± 0.022 0.158 0.983 ± 0.015 0.976 ± 0.023 0.219 

SEVLF-HF 0.899 ± 0.060 0.863 ± 0.051 <0.05 0.900 ± 0.053 0.873 ± 0.061 <0.05 

Statistically significant differences between SAHS-positive and SAHS-negative subjects were found 

in the SE measures from VLF and LF of women and men (Mann-Whitney U test,  

p-value < 0.01). Specifically, SAHS-positive women and men present significantly higher SEVLF and 

significantly lower SELF. On the other hand, no statistically significant differences were found in the SE 

of HF and the whole band. Finally, no statistically significant differences between women and men were 

found in any of the SE measures, either between SAHS-positive groups or between SAHS-negative ones. 

3.2. Multiscale Entropy 

Figure 3 displays averaged MsE curves for the 25 scales of SAHS-positive and SAHS-negative whole 

groups (men and women jointly). Figure 4 depicts the average MsE curves for SAHS-positive and 

SAHS-negative subjects, divided into women and men. It can be observed that SAHS increases SampEn 

values, i.e., irregularity of HRV, for all the scales. A common behaviour is observed both in men and 

women, since the differences in low scales (1st to 7th) are lower than those in the high scales (from the 

8th). This indicates higher differences in the degree of HRV irregularity of SAHS-positive subjects as 

more R-R intervals are averaged. However, only scale 13th reaches statistically significant differences 

between SAHS-positive and SAHS-negative men, whereas statistically significant differences are 

showed for scale 8th and from scale 12th onwards in women. No statistically significant differences 

were found between SAHS-negative women and men, and only scale 1 showed them in the case of the 

SAHS-positive groups. 

 

Figure 3. Averaged MsE curves for 25 scales of the SAHS-negative (blue) and  

SAHS-positive (red) whole groups. 
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Figure 4. Average MsE curves of HRV in women (solid lines) and men (dashed lines) for 

the SAHS-positive and SAHS-negative groups. Black asterisks over SAHS-positive curves 

mark statistical significant differences (Mann-Whitney U test) with the corresponding 

SAHS-negatives (p-value < 0.01). Grey asterisks mark p-values in the range 0.01–0.05. 

3.3. Feature Selection and Classification Results 

The relevancy and complementarity of the features from SE and MsE analyses were assessed by the 

LR-based FSBE selection algorithm. In this regard, three experiments were conducted. First, only the 

features from women were included in the FSBE algorithm. Then, we did the same with the features 

from men. Finally, we applied the FSBE methodology to the 29 extracted features from the whole set of 

subjects. Table 3 shows the features selected in each case. SE and MsE features were selected in the 

three of them, showing that the information obtained from these analyses is complementary for SAHS 

detection. Moreover, SEVLF, SELF, and SampEn2 are common in the three optimum sets of features. 

Different tendencies can be observed for men and women in the remaining MsE features selected. For 

female subjects only scales below 8 were selected, whereas in the case of men the remaining features 

were selected from scales above 9. 

Table 3. Features automatically selected by the FSBE algorithm for women, men, and the 

whole set of subjects. Common features for the three cases are in bold. 

 Number of Features Features Selected 

Women 5 SEVLF, SELF, SampEn1, SampEn2, and SampEn7 

Men 12 
SEVLF, SELF, SEVLF-HF, SampEn2, SampEn10, SampEn13, SampEn16, 

SampEn17, and SampEn20- SampEn23 

All 15 
SEVLF, SELF, SEVLF-HF, SampEn2, SampEn7, SampEn9, SampEn11, 

SampEn13, SampEn14, SampEn17,and SampEn19- SampEn23 
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Table 4. Diagnostic ability of the three LR models trained with the optimal features from 

women (LRFSBE-W), men (LRFSBE-M), and all subjects (LRFSBE-All). Results were computed 

through a loo-cv procedure. 

 Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR- AROC 

LRFSBE-W 80.8 89.3 85.2 87.5 83.3 7.6 0.215 0.951 
LRFSBE-M 87.1 56.1 77.6 81.8 65.7 1.98 0.230 0.895 
LRFSBE-All 79.8 59.4 72.3 77.2 63.1 1.97 0.340 0.885 

The results of the diagnostic ability assessment of the corresponding LR models are shown in  

Table 4. All the statistics were computed after a loo-cv procedure. It can be observed that LRFSBE-W and 

LRFSBE-M, separately, achieve a significant higher performance than the LR model containing all the 

subjects. LRFSBE-W achieves the highest overall performance. 

4. Discussion and Conclusions 

In this study, the ability of entropy measures to characterize SAHS in HRV recordings was evaluated. 

We also looked for eventual differences in these analyses depending on gender. Spectral entropy 

measurements in the VLF and LF bands characterized SAHS transversely, i.e., regardless the gender. 

Thus, for both genders, SAHS decreased predictability of long-period rhythms in HRV (significantly 

higher SEVLF). Also, it made more predictable the rhythms usually associated with sympathetic activity 

(significantly lower SELF). Spectral powers from VLF (PVLF), LF (PLF), and HF (PHF), as well as the 

LF/HF spectral power ratio (PLF/HF), have usually acted as parameters to characterize different 

physiological conditions in the HRV signal [8]. Table 5 shows the values of these conventional 

parameters reached by our SAHS-negative and SAHS-positive groups both in women and men (mean ± 

standard deviation). The corresponding p-values are also displayed (Mann-Whitney U test, p-value 

significance threshold = 0.01). No statistically significant differences were found between SAHS-

negative and SAHS-positive women in any of the classical parameters and only PHF showed a p-value < 

0.01 in the case of men. Thus, SE showed higher performance when characterizing SAHS than the 

spectral powers obtained from the conventional VLF, LF, and HF bands. Nevertheless, a clear increase 

in the PSDn of SAHS-positive subjects can be observed in the range 0.015–0.060 Hz, covering part of 

VLF and LF bands (see Figure 3). It has been established that the typical duration of apnoeic events ranges 

from 20 to 40 s [45], which in the frequency domain would mainly affect the 0.025–0.050 Hz band. Latest 

studies confirmed this as the band with the highest statistically significant differences between SAHS-

positive and SAHS-negative subjects in the airflow signal [46,47]. Additionally, a recent study has 

reported an increased cardio-respiratory coordination during the apnoeic events [48]. Hence, there exist 

strong indications that the observed changes covering part of the VLF and LF bands may be directly 

caused by these events, suggesting that further investigation is needed to find a specific spectral band 

related to SAHS in HRV. Finally, no differences were found in the SE from the HF band. This could be 

due to its relationship with normal breathing patterns [11], which are more predictable as well as 

predominant even in the presence of severe SAHS. 
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Table 5. Differences in the conventional spectral features of women and men (mean ± 

standard deviation). PVLF: spectral power in the VLF band. PLF: spectral power in the LF 

band. PHF: spectral power in the HF band. PLF/HF: PLF/PHF ratio. 

 Women Men 

 SAHS-Negative SAHS-Positive p-Value SAHS-Negative SAHS-Positive p-Value 

PVLF 0.425 ± 0.153 0.489 ± 0.170 0.076 0.437 ± 0.167 0.503 ± 0.168 <0.05 

PLF 0.236 ± 0.052 0.241 ± 0.068 0.897 0.250 ± 0.051 0.250 ± 0.068 0.640 

PHF 0.234 ± 0.087 0.199 ± 0.118 0.058 0.228 ± 0.102 0.183 ± 0.108 <0.01 

PLF/HF 1.164 ± 0.514 1.639 ± 1.065 0.130 1.407 ± 0.874 1.898 ± 1.247 <0.05 

MsE analysis also found differences in SAHS-positive and SAHS-negative subjects. Both in women 

and men, SAHS increased the average irregularity of HRV in the 25 time scales considered. Although it 

is usually accepted that the disease condition leads to a decrease of HRV irregularity [8], it has been also 

shown that sick sinus syndrome, characterized by bradycardia-tachycardia events, can increase the 

entropy measures [8]. As these bradycardia-tachycardia patterns are also recurrent after apnoeic events 

[9], this is consistent with the higher values of HRV irregularity showed in the MsE analysis of the 

SAHS-positive subjects. Moreover, in both genders, differences for the inferior scales are lower than 

those for the coarse-grained scales, indicating that SAHS affects more the long-term rhythms. This 

agrees with the differences found in the SE of VLF and LF. However, unlike the case of SE, we found 

different tendencies in men and women in the MsE curves. Mean values throughout the scales were 

higher for SAHS-positive and lower for SAHS-negative women than the corresponding for  

men. Thereby, 15 out of the 25 scales reached significant differences between SAHS-positive and  

SAHS-negative women, whereas only one did the same among men. In this regard, it has been previously 

reported that the R-R intervals from healthy women are significantly shorter and present less standard 

deviation than the corresponding from men [31]. This is reflected in HRV time series as lower mean 

amplitude and degree of variability. In this study the same tendency is observed since mean and standard 

deviation values in HRV are 0.886 ± 0.15 ms for SAHS-negative men and 0.878 ± 0.13 ms for SAHS-

negative women. When comparing the two groups, in which normal heart behaviour is expected, the 

lower degree of variability may be one reason for the lesser mean values of entropy in women throughout 

the scales. In SAHS-positive subjects, the mean and standard deviation values in HRV behave in the 

same way (0.901 ± 0.12 ms for men and 0.888 ± 0.10 ms for women). Progressive bradycardia patterns 

are present in HRV from SAHS patients, i.e., there are recurrent periods of increased HRV amplitude. 

Since the mean amplitude in women is lower, the difference to the increased HRV values may be higher 

than in men. This may be one reason for explaining the upper values of entropy, which tachycardia 

episodes would not be able to compensate because of their abrupt nature. 

The FSBE algorithm showed the complementarity of SE and MsE analyses by automatically selecting 

features from both of them in the case of women, men, and the whole set of subjects. Additionally, since 

SEVLF and SELF were common for the three sets of optimum features, it supported SE as a transversal 

characterizing of SAHS. It also supported the ability of MsE to distinguish gender specificities in HRV, 

since only scales below the 8th were selected in the case of women and eight out of the nine scales 

selected for men were above the 9th. 
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LR models were built with the three sets of selected features. These showed significantly higher 

performance when modelling SAHS by genders (85.2% Acc for LRFSBE-W, 77.6% Acc for LRFSBE-M) 

than when doing it in a jointly way (72.3% Acc for LRFSBE-All). As a result, Acc increased 9.3% among 

women and 6.7% among men when comparing with the performance of the general model. Our feature 

selection methodology was optimized for an AHI threshold = 10 e/h. However, the outputs provided by 

the LR models can be also evaluated for other common thresholds. Thereby, for AHI = 5 (15) e/h, the 

Acc of LRFSBE-W, LRFSBE-M, and LRFSBE-ALL reaches 75.9% (79.6%), 76.1% (66.4%), and 72.3% (65.4%), 

respectively. Although 5 and 15 e/h are suboptimal thresholds for these models, the obtained results 

show the same general tendency as in the case of AHI = 10 e/h. Thus, it is suggested that SAHS may be 

more easily modelled from the SE and MsE analyses of HRV in the case of women. 

Table 6 displays results from previous works focused on automatic SAHS classification. Data from 

studies involving SpO2, airflow, snoring, respiratory effort, and HRV were included. In the case of the 

SpO2 signal, Acc and AROC range from 84.1% to 95% and 0.822 to 0.967, respectively [49–52].  

A database composed of 187 recordings was used to model a multi-layer perceptron (MLP) classifier, 

which was obtained from three non-linear features [49]. Six spectral (3) and non-linear (3) features were 

extracted from the same database to obtain four more classifiers by means of linear and quadratic 

discriminant analysis, K-nearest neighbours (KNN), and LR [50]. The best diagnostic ability for SpO2 

in terms of AROC (0.967) was achieved by a LR model obtained from four automatically-selected 

features extracted from the frequency and time domain of 147 recordings [51]. The best Acc (95.0%)  

was reported in the case of a support vector machine (SVM) classifier evaluated for a 5 e/h AHI  

threshold [52].  

Up to nine features were extracted and analysed from the Hilbert transform of 41 oronasal airflow 

recordings [53]. The highest diagnostic ability was showed by the 25th frequency percentile of the 

Hilbert spectrum histogram (87.8% Acc and 0.877 AROC). However, these results were reached 

evaluating an AHI threshold = 5 e/h. Other recent study analysed linear and non-linear features from 

thermistor airflow [46]. A LR model obtained from three spectral features reached 82.4% Acc and 0.904 

AROC after loo-cv (AHI threshold = 10 e/h). Moreover, five time and phase domain features from the 

abdominal and thoracic respiratory effort signals were used to feed a SVM classifier which reached 

89.0% Acc, evaluated for AHI = 5 e/h [52]. Snoring sounds have been also assessed in the context of 

SAHS classification. A LR classifier modelled with nine spectral features reached 81.1% Acc and 0.850 

AROC (AHI= 5 e/h threshold); and 86.5% Acc and 0.920 AROC (AHI = 5 e/h threshold) [54]. Another 

LR classifier obtained from 11 time and frequency domain features was evaluated for AHI = 10 e/h [55]. 

High diagnostic performance after loo-cv was reported (90.2% Acc and 0.967 AROC). 
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Table 6. Comparison with previous works focused on automatic classification of SAHS. 

MLP: multi-layer perceptron artificial neural network, LDA: linear discriminant analysis, 

QDA: quadratic discriminant analysis, KNN: K-nearest neighbours, LR: logistic regression, 

SVM: support vector machine, Loo: leave one out. 

Study Signal #Subjects Classifier #Features Validation 
AHI  

Threshold 

Se  

(%) 

Sp  

(%) 

Acc 

(%) 
AROC 

Roche et al. 2003 [56] HRV 147 Tree 8 k-fold 10 64.2+ 75.6+ 69.3+ - 

Marcos et al. 2008 [49] SpO2 187 MLP 3 Hold-out 10 89.8 79.4 85.5 0.900 

Marcos et al. 2009 [50] SpO2 187 LDA 6 Hold-out 10 86.6 80.4 84.1 0.925 

   QDA 6 Hold-out 10 91.1 78.3 85.8 0.913 

   KNN 6 Hold-out 10 88.1 84.8 86.7 0.822 

   LR 6 Hold-out 10 85.1 87.0 85.8 0.930 

Caseiro et al. 2010 [53] Airflow 41 Threshold 1 - 5 81.0 95.0 87.8+ 0.877 

Álvarez et al. 2010 [51] SpO2 148 LR 4 Loo 10 92.0 85.4 89.7 0.967 

Fiz et al. 2010 [54] Snoring 37 LR 9 - 5 87.0 71.4 81.1+ 0.850 

     - 15 80.0 90.9 86.5+ 0.920 

Karunajeewa et al. 

2011 [55] 
Snoring 41 LR 11 Loo 10 89.3 92.3 90.2+ 0.967 

Al-Angari et al.  

2012 [52] 
SpO2 100 SVM 2 - 5 91.8 98.0 95.0 - 

 Respiratory effort   5 - 5 85.7 92.2 89.0 - 

 HRV   5 - 5 79.6 78.4 79.0 - 

Gutiérrez-Tobal et al.  

2012 [46] 
Airflow 148 LR 3 Loo 10 88.0 70.8 82.4 0.903 

Ravelo-Garcia et al. 

2014 [57] 
HRV 97 LR 5 k-fold 10 88.7 82.9 86.6+ 0.941 

This study (LRFSBE-W) HRV 54 LR 5 Loo 10 80.8 89.3 85.2 0.951 

This study (LRFSBE-M) HRV 134 LR 13 Loo 10 87.1 56.1 77.6 0.895 

This study (LRFSBE-All) HRV 188 LR 15 Loo 10 79.8 59.4 72.3 0.885 

+ Computed from reported data. 

Decision trees, SVM, and LR classifiers have been also used to model SAHS from HRV features. 

Eight features from wavelet analysis were used to build a decision tree, reaching 69.3% Acc [56].  

A SVM model was obtained from five time and frequency domain features [52]. Authors reported 79.0% 

Acc when evaluating the classifier for AHI = 5 e/h. A recent study reported 86.6% Acc and 0.941 AROC 

for a LR classifier modelling with four clinical variables and one symbolic dynamic feature extracted 

from HRV [57]. Finally, several works have reported 100% Acc when classifying 30 subjects from the 

PhysioNet Apnea-ECG database, which was used in the Computers in Cardiology Challenge 2000 [58]. 

However, comparison with studies using this database is difficult since borderline subjects were 

deliberately removed from the competition. Additionally, only one woman was included in the apnea 

group [59]. 

Our LR models achieved high diagnostic ability comparing with those studies involving HRV. Only 

the Acc reported in the study from Ravelo-García et al. outperformed the Acc reached by our LRFSBE-W 

model. However, our AROC was slightly higher and we did not include clinical variables in the 
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modelling process. Moreover, only the results reported in the studies conducted by Álvarez et al. and 

Karunajeewa et al. outperformed our LRFSBE-W classifier both in Acc and AROC. Nonetheless, the  

latter does not meet the subject:feature ratio criterion which avoids bias in the logistic regression 

coefficients [60]. These results suggest that our proposal could be helpful to detect SAHS, especially in 

the case of women. Actually, none of the above mentioned studies addressed the problem of evaluating 

gender differences when modelling SAHS. 

Some limitations need to be pointed out in this study. First, an increased number of subjects would 

provide our results with higher statistical power. Additionally, a larger number of subjects would let us 

define the optimum sets of features from an independent database. Nonetheless, we validated their 

performance by the use of leave-one-out cross-validation. Increasing the SAHS-negative men would be 

particularly helpful since there exists a clear unbalance with SAHS-positive ones. However, the 

prevalence of SAHS in our database reflects a realistic proportion of SAHS patients among the subjects 

which undergo PSG [7,61]. Another limitation is the complexity inherent to the acquisition of surface 

ECG as a previous step to obtain HRV. Although acquiring ECG is significantly easier than recording 

the whole set of signals involved during PSG, there exist studies which address the obtaining of HRV 

from simpler devices such as the oximeter [62,63]. Moreover, regarding the R-R time series, no specific 

correction for the timing of R waves associated with ectopic beats has been applied in this study. On the 

other hand, there are some factors with ability to change HRV dynamics. We did not address issues like 

tobacco and alcohol consumption, as well as differences in the fitness of the subjects. These could be 

the object of interesting future research. Another future goal is to carry out an exhaustive analysis of the 

optimal values of m and r for the computation of SampEn from HRV in the context of SAHS. Although 

the values used in this study have shown their usefulness in the characterization of a range of 

physiological conditions, we did not test other values which could enhance the characterization of SAHS 

in our specific database. Regarding the spectral and nonlinear analysis, other features extracted from 

HRV could complement our study and increase the diagnostic ability of our methodology. Finding a 

single feature with ability to gather the complementary information of those interdependent features 

present in our study would be of great interest. In addition, the use of more complex classifiers could 

also improve the results achieved. Finally, even though no statistically significant difference was found 

between the age of SAHS-positive and SAHS-negative groups (either women or men), higher average 

values are present in those affected by SAHS. In this regard, no statistically significant correlation was 

found between any of the features used in the LR models and age (all the absolute Spearman’s correlation 

coefficients were lower than 0.18 and the corresponding p-values higher than 0.11). 

In summary, we showed that SE and MsE analyses of HRV can be used to help in SAHS detection. 

The complementarity of the two of them was also exposed. The ability of MsE to distinguish gender 

specificities in HRV was suggested too. Higher diagnostic ability was reached when modelling SAHS 

from entropy measures of women and men separately. A LR model built with five SE and MsE features 

from women achieved the highest performance in SAHS detection (85.2% Acc, 0.951 AROC for an AHI 

threshold = 10 e/h). This suggests that SAHS may be more easily modelled from HRV in the case of 

women. Our results show the utility of the SE and MsE analyses to help in SAHS detection, as well as 

indicate that, when using HRV, SAHS may be more accurately modelled if data are separated by gender. 

  

126



Entropy 2015, 17 137 

 

 

Acknowledgments 

This research was supported by project TEC2011-22987 from Ministerio de Economía y 

Competitividad and FEDER, the Proyecto Cero 2011 on Ageing from Obra Social La Caixa, Fundación 

General CSIC and CSIC, and the project VA059U13 from the Consejería de Educación de la Junta de 

Castilla y León. G. C. Gutiérrez-Tobal was in receipt of a PIRTU grant from the Consejería de Educación 

de la Junta de Castilla y León and the European Social Fund. 

Author Contributions 

Gonzalo C. Gutiérrez-Tobal designed the study, analysed the data, interpreted the results, and drafted 

the manuscript. Daniel Álvarez and Roberto Hornero designed the study, analysed the data and 

interpreted the results. Javier Gomez-Pilar took part in the collection of data, analysed the data and 

interpreted the results. Félix del Campo took part in the diagnosis of subjects and the collection of data, 

and interpreted the results. All authors have read and approved the final manuscript. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Lopez-Jiménez, F.; Kuniyoshi, F.H.S.; Gami, A.; Somers, V.K. Obstructive Sleep Apnea. Chest 

2008, 133, 793–804. 

2. Patil, S.P.; Schneider, H.; Schwartz, A.R.; Smith, P.L. Adult obstructive sleep apnea: 

Pathophysiology and diagnosis. Chest 2007, 132, 325–337. 

3. Epstein, L.J.; Kristo, D.; Strollo, P.J.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.;  

Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Clinical guideline for the evaluation, management 

and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 5, 263–276. 

4. Bennett, J.A.; Kinnear, W.J. M. Sleep on the cheap: The role of overnight oximetry in the diagnosis 

of sleep apnoea hypopnoea syndrome. Thorax 1999, 54, 958–959. 

5. Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan S.F. The AASM Manual for the Scoring of Sleep 

and Associated Events; American Academy of Sleep Medicine: Westchester, IL, USA, 2007. 

6. Flemons, W.W.; Littner, M.R.; Rowley, J.A.; Gay, P.; Anderson, W.M.; Hudgel, D.W.;  

McEvoy, R.D.; Loube, D.I. Home diagnosis of sleep apnea: A systematic review of the literature. 

Chest 2003, 124, 1543–1579. 

7. Flemons, W.W.; Douglas, N.J.; Kuna, S.T.; Rodenstein, D.O.; Wheatley, J. Access to diagnosis  

and treatment of patients with suspected sleep apnea. Am. J. Respir. Crit. Care Med. 2004, 169, 

668–672. 

8. Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart rate variability: A review. 

Med. Biol. Eng. Comput. 2006, 44, 1031–1051. 

9. Guilleminault, C.; Winkle, R.; Connolly, S.; Melvin, K.; Tilkian, A. Cyclical variation of the heart 

rate in sleep apnoea syndrome: Mechanisms and usefulness of 24 h electrocardiography as a 

screening technique. Lancet 1984, 323, 126–131. 

127



Entropy 2015, 17 138 

 

 

10. Bonsignore, M.R.; Romano, S.; Marrone, O.; Chiodi, M.; Bonsignore, G. Different heart rate 

patterns in obstructive apneas during NREM sleep. Sleep 1997, 20, 1167–1174. 

11. Penzel, T.; Kantelhardt, J.W.; Grote, L.; Peter, J.H.; Bunde, A. Comparison of detrended fluctuation 

analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE Trans. 

Biomed. Eng. 2003, 50, 1143–1151. 

12. Gula, L.J.; Krahn, A.D.; Skanes, A.; Ferguson, K.A.; George, C.; Yee, R.; Klein, G.J. Heart rate 

variability in obstructive sleep apnea: A prospective study and frequency domain analysis.  

Ann. Noninvasive Electrocardiol. 2003, 8, 144–149. 

13. Penzel, T.; Wessel, N.; Riedl, M.; Kantelhardt, J.W.; Rostig, S.; Glos, M.; Suhrbier, A.; Malberg, H.; 

Fietze, I. Cardiovascular and respiratory dynamics during normal and pathological sleep. Chaos 

2007, 17, 015116. 

14. Gapelyuk, A.; Riedl, M.; Suhrbier, A.; Kraemer, J.F.; Bretthauer, G.; Malberg, H.; Kurths, J.;  

Penzel, T.; Wessel, N. Cardiovascular regulation in different sleep stages in the obstructive sleep 

apnea syndrome. Biomed. Technik. (Biomed. Eng.) 2011, 56, 207–213. 

15. Goldberger, A.L. Is the normal heartbeat chaotic or homeostatic? News Physiol. Sci. 1991, 6,  

87–91. 

16. Wessel, N.; Riedl, M.; Kurths, J. Is the normal heart rate “chaotic” due to respiration? Chaos 2009, 

19, 028508. 

17. Poza, J.; Hornero, R.; Abásolo, D.; Fernández, A.; García, M. Extraction of spectral based measures 

from MEG background oscillations in Alzheimerʼs disease. Med. Eng. Phys. 2007, 29, 1073–1083. 

18. Chang, Y.C.; Wu, H.T.; Chen, H.R.; Liu, A.B.; Yeh, J.J.; Lo, M.T.; Tsao, J.H.; Tang, C.-J.;  

Tsai, I.-T.; Sun, C.-K. Application of a Modified Entropy Computational Method in Assessing the 

Complexity of Pulse Wave Velocity Signals in Healthy and Diabetic Subjects. Entropy 2014, 16, 

4032–4043. 

19. Alcaraz, R.; Rieta, J.J. Sample entropy of the main atrial wave predicts spontaneous termination of 

paroxysmal atrial fibrillation. Med. Eng. Phys. 2009, 31, 917–922. 

20. Hornero, R.; Álvarez, D.; Abásolo, D.; del Campo, F.; Zamarrón, C. Utility of approximate entropy 

from overnight pulse oximetry data in the diagnosis of the obstructive sleep apnea syndrome. IEEE 

Trans. Biomed. Eng. 2007, 54, 107–113. 

21. Al-Angari, H.M.; Sahakian, A.V. Use of sample entropy approach to study heart rate variability in 

obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 1900–1904. 

22. Costa, M.D.; Peng, C.K.; Goldberger, A.L. Multiscale analysis of heart rate dynamics: Entropy and 

time irreversibility measures. Cardiovasc. Eng. 2008, 8, 88–93. 

23. Costa, M.D.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of biological signals.  

Phys. Rev. E 2005, 71, 021906. 

24. Costa, M.D.; Peng, C.K.; Goldberger, A.L.; Hausdorff, J.M. Multiscale entropy analysis of human 

gait dynamics. Physica A 2003, 330, 53–60. 

25. Escudero, J.; Abásolo, D.; Hornero, R.; Espino, P.; López, M. Analysis of electroencephalograms 

in Alzheimer's disease patients with multiscale entropy. Physiol. Meas. 2006, 27, 1091–1106. 

26. Takahashi, T.; Cho, R.Y.; Mizuno, T.; Kikuchi, M.; Murata, T.; Takahashi, K.; Wada, Y. 

Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia: A multiscale 

entropy analysis. Neuroimage 2010, 51, 173–182. 

128



Entropy 2015, 17 139 

 

 

27. Hans, P.; Dewandre, P.Y.; Brichant, J.F.; Bonhomme, V. Comparative effects of ketamine on 

Bispectral Index and spectral entropy of the electroencephalogram under sevoflurane anaesthesia. 

Br. J. Anaesth. 2005, 94, 336–340. 

28. Shen, J.L.; Hung, J.W.; Lee, L.S. Robust entropy-based endpoint detection for speech recognition 

in noisy environments. ICSLP 1998, 98, 232–235. 

29. Abásolo, D.; Hornero, R.; Espino, P.; Álvarez, D.; Poza, J. Entropy analysis of the EEG background 

activity in Alzheimer’s disease patients. Physiol. Meas. 2006, 27, 241–253. 

30. Alvarez, D.; Hornero, R.; Marcos, J.V.; Wessel, N.; Penzel, T.; Glos, M.; del Campo, F. Assessment 

of Feature Selection and Classification Approaches to Enhance Information from Overnight 

Oximetry in the Context of Apnea Diagnosis. Int. J. Neural Syst. 2013, 23, 1–18. 

31. Bonnemeier, H.; Wiegand, U.K.; Brandes, A.; Kluge, N.; Katus, H.A.; Richardt, G.; Potratz, J. 

Circadian profile of cardiac autonomic nervous modulation in healthy subjects. J. Cardiovasc. 

Electrophysiol. 2003, 14, 791–799. 

32. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons:  London, UK, 

1999. 

33. Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.;  

Mehra, R.; Parthasarathy, S.; Quan, S.F.; et al. Rules for scoring respiratory events in sleep: Update 

of the 2007 AASM manual for the scoring of sleep and associated events. J. Clin. Sleep Med. 2012, 

8, 597–619. 

34. Baselli, G.; Cerutti, S.; Civardi, S.; Lombardi, F.; Malliani, A.; Merri, M; Pagani, M.; Rizzo, G. 

Heart rate variability signal processing: A quantitative approach as an aid to diagnosis in 

cardiovascular pathologies. Int. J. Biol. Med. Comput. 1987, 20, 51–70. 

35. Benitez, D.; Gaydecki, P.A.; Zaidi, A.; Fitzpatrick, A.P. The use of the Hilbert transform in ECG 

signal analysis. Comput. Biol. Med. 2001, 31, 399–406. 

36. Welch, P.D. The use of fast Fourier transform for the estimation of power spectra: A method based 

on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 

70–73. 

37. Reyes del Paso, G.A.; Langewitz, W.; Mulder, L.J.; Roon, A.; Duschek, S. The utility of low 

frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on 

a reanalysis of previous studies. Psychophysiology 2013, 50, 477–487. 

38. Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the 

autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. 

39. Inouye, T.; Shinosaki, K.; Sakamoto, H.; Toi, S.; Ukai, S.; Iyama, A.; Katsuda, Y.; Hirano, M. 

Quantification of EEG irregularity by use of the entropy of the power spectrum. 

Electroencephalogr. Clin. Neurophysiol. 1991, 79, 204–210. 

40. Sleigh, J.W.; Steyn-Ross, D.A.; Steyn-Ross; M.L.; Grant, C.; Ludbrook, G. Cortical entropy 

changes with general anaesthesia: Theory and experiment. Physiol. Meas. 2004, 25, 921–934. 

41. Costa, M.; Goldberger, A.L.; Peng, C.K. Multiscale entropy analysis of complex physiologic time 

series. Phys. Rev. Lett. 2002, 89, 068102. 

42. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 

1991, 88, 2297–2301. 

129



Entropy 2015, 17 140 

 

 

43. Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and 

sample entropy. Am. J. Physiol. Heart Circ. Physiol. 1999, 278, H2039–H2049. 

44. Alcaraz, R.; Rieta, J.J. A review on sample entropy applications for the non-invasive analysis of 

atrial fibrillation electrocardiograms. Biomed. Signal. Process. Control. 2010, 5, 1–14. 

45. Eckert, D.J.; Malhotra, A. Pathophysiology of adult obstructive sleep apnea. Proc. Am. Thoracic Soc. 

2008, 5, 144–153. 

46. Gutiérrez-Tobal, G.C.; Hornero, R.; Álvarez, D.; Marcos, J.V.; del Campo, F. Linear and  

nonlinear analysis of airflow recordings to help in sleep apnoea-hypopnoea syndrome diagnosis.  

Physiol. Meas. 2012, 33, 1261–1275. 

47. Gutiérrez-Tobal, G.C.; Álvarez, D.; Marcos, J.V.; del Campo, F.; Hornero, R. Pattern recognition 

in airflow recordings to assist in the sleep apnoea–hypopnoea syndrome diagnosis. Med. Biol.  

Eng. Comput. 2013, 51, 1367–1380. 

48. Riedl, M.; Müller, A.; Kraemer, J.F.; Penzel, T.; Kurths, J.; Wessel, N. Cardio-Respiratory 

Coordination Increases during Sleep Apnea. PLoS One 2014, 9, e93866. 

49. Marcos, J.V.; Hornero, R.; Álvarez, D.; del Campo, F.; Zamarrón, C.; López, M. Utility of 

multilayer perceptron neural network classifiers in the diagnosis of the obstructive sleep apnoea 

syndrome from nocturnal oximetry. Comput. Methods Progr. Biomed. 2008, 92, 79–89. 

50. Marcos, J.V.; Hornero, R.; Álvarez, D.; del Campo, F.; Zamarrón, C. Assessment of four statistical 

pattern recognition techniques to assist in obstructive sleep apnoea diagnosis from nocturnal 

oximetry. Med. Eng. Phys. 2009, 31, 971–978. 

51. Alvarez, D.; Hornero, R.; Marcos, J.V.; del Campo, F. Multivariate analysis of blood oxygen 

saturation recordings in obstructive sleep apnea diagnosis. IEEE Trans. Biomed. Eng. 2010, 57, 

2816–2824. 

52. Al-Angari, H.M.; Sahakian, A.V. Automated recognition of obstructive sleep apnea syndrome using 

support vector machine classifier. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 463–468. 

53. Caseiro, P.; Fonseca-Pinto, R.; Andrade, A. Screening of obstructive sleep apnea using  

Hilbert-Huang decomposition of oronasal airway pressure recordings. Med. Eng. Phys. 2010, 32, 

561–568. 

54. Fiz, J.A.; Jane, R.; Solà‐Soler, J.; Abad, J.; García, M.; Morera, J. Continuous analysis and 

monitoring of snores and their relationship to the apnea‐hypopnea index. Laryngoscope 2010, 120, 

854–862. 

55. Karunajeewa, A.S.; Abeyratne, U.R.; Hukins, C. Multi-feature snore sound analysis in obstructive 

sleep apnea-hypopnea syndrome. Physiol. Meas. 2011, 32, doi:10.1088/0967-3334/32/1/006. 

56. Roche, F.; Pichot, V.; Sforza, E.; Duverney, D.; Costes, F.; Garet, M.; Barthélémy, J.C. Predicting 

sleep apnoea syndrome from heart period: A time-frequency wavelet analysis. Eur. Respir. J. 2003, 

22, 937–942. 

57. Ravelo-García, A.G.; Saavedra-Santana, P.; Juliá-Serdá, G.; Navarro-Mesa, J.L.; Navarro-Esteva, J.; 

Álvarez-López, X.; Gapelyuk, A.; Penzel, T.; Wessel, N. Symbolic dynamics marker of heart rate 

variability combined with clinical variables enhance obstructive sleep apnea screening. Chaos 2006, 

24, 024404. 

130



Entropy 2015, 17 141 

 

 

58. Penzel, T.; McNames, J.; de Chazal, P.; Raymond, B.; Murray, A.; Moody, G. Systematic 

comparison of different algorithms for apnoea detection based on electrocardiogram recordings. 

Med. Biol. Eng. Comput. 2002, 40, 402–407. 

59. Penzel, T.; Moody, G.B.; Mark, R.G.; Goldberger, A.L.; Peter, J.H. The apnea-ECG database. In 

Computers in Cardiology 2000, Proceedings of  Conference in Computers in Cardiology, 

Cambridge, MA, USA, 24–27 September 2000; pp. 255–258.  

60. Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the 

number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49,  

1373–1379. 

61. Kapsimalis, F.; Kryger, M.H. Gender and obstructive sleep apnea syndrome, part 1: Clinical 

features. Sleep 2002, 25, 412–419. 

62. Constant, I.; Laude, D.; Murat, I.; Elghozi, J.L. Pulse rate variability is not a surrogate for heart rate 

variability. Clin. Sci. 1999, 97, 391–397. 

63. Gil, E.; Orini, M.; Bailón, R.; Vergara, J.M.; Mainardi, L.; Laguna, P. Photoplethysmography pulse 

rate variability as a surrogate measurement of heart rate variability during non-stationary conditions. 

Physiol. Meas. 2010, 31, 1271. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

131



132



Biomedical Signal Processing and Control 18 (2015) 401–407

Contents lists available at ScienceDirect

Biomedical  Signal  Processing  and  Control

jo ur nal homepage: www.elsev ier .com/ locate /bspc

Diagnosis  of  pediatric  obstructive  sleep  apnea:  Preliminary  findings
using  automatic  analysis  of  airflow  and  oximetry  recordings  obtained
at  patients’  home

Gonzalo  C.  Gutiérrez-Tobala,∗,  M.  Luz  Alonso-Álvarezb,  Daniel  Álvareza,
Félix del  Campoc,d,  Joaquín  Terán-Santosb, Roberto  Horneroa

a Biomedical Engineering Group, E.T.S.I. de Telecomunicación, Universidad de Valladolid, Valladolid, Spain
b Unidad Multidisciplinar de Sueño, CIBER respiratorio, Hospital Universitario de Burgos, Burgos, Spain
c Facultad de Medicina, Universidad de Valladolid, Valladolid, Spain
d Hospital Universitario Río Hortega, Valladolid, Spain

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 31 October 2014
Received in revised form
29 December 2014
Accepted 25 February 2015

Keywords:
Pediatric obstructive sleep apnea
Airflow
Oximetry
Spectral analysis
At-home assessment

a  b  s  t  r  a  c  t

The  obstructive  sleep  apnea  syndrome  (OSAS)  greatly  affects  both  the  health  and  the  quality  of life of chil-
dren.  Therefore,  an  early  diagnosis  is crucial  to  avoid  their  severe  consequences.  However,  the  standard
diagnostic  test (polysomnography,  PSG)  is time-demanding,  complex,  and  costly.  We  aim at assessing
a  new  methodology  for the  pediatric  OSAS  diagnosis  to reduce  these  drawbacks.  Airflow  (AF)  and  oxy-
gen saturation  (SpO2) at-home  recordings  from  50 children  were  automatically  processed.  Information
from  the  spectrum  of  AF  was  evaluated,  as  well  as combined  with  3%  oxygen  desaturation  index  (ODI3)
through  a logistic  regression  model.  A  bootstrap  methodology  was  conducted  to validate  the  results.
OSAS  significantly  increased  the  spectral  content  of AF at two  abnormal  frequency bands  below  (BW1)
and  above  (BW2)  the  normal  respiratory  range.  These  novel  bands  are consistent  with  the  occurrence
of  apneic  events  and  the  posterior  respiratory  overexertion,  respectively.  The  spectral  information  from
BW1  and  BW2  showed  complementarity  both  between  them  and  with  ODI3.  A logistic regression  model
built  with  3  AF spectral  features  (2 from  BW1  and  1 from  BW2)  and  ODI3  achieved  (mean  and  95%  confi-
dence  interval):  85.9%  sensitivity  [64.5–98.7];  87.4%  specificity  [70.2–98.6];  86.3%  accuracy  [74.9–95.4];
0.947 area  under  the  receiver-operating  characteristics  curve  [0.826–1];  88.4%  positive  predictive  value
[72.3–98.5];  and  85.8%  negative  predictive  value  [65.8–98.5].  The  combination  of the  spectral  information
from  two  novel  AF  bands  with  the  ODI3  from  SpO2 is useful  for the  diagnosis  of  OSAS  in children.

© 2015  Elsevier  Ltd. All rights  reserved.

Abbreviations: Acc, accuracy; AF, airflow; AHI, apnea-hypopnea index; AROC,
area under the receiver-operating characteristics curve; ECG, electrocardiogram;
IQR, interquartile range; LR, logistic regression; MA, maximum amplitude of the
power spectral density; mA,  minimum amplitude of the power spectral density;
Mf1-Mf4 , first to fourth statistical moments of the power spectral density; NPV,
negative predictive value; ODI, oxygen desaturation index; OSAS, obstructive sleep
apnea syndrome; PPV, positive predictive value; PSD, power spectral density; PSG,
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1. Introduction

Obstructive sleep apnea syndrome (OSAS) is a disorder char-
acterized by recurrent episodes of apnea (complete absence of
airflow) and hypopnea (significant reduction of airflow) during
sleep [1]. Apneic events lead to oxygen desaturations and arousals
which prevent patients from resting while sleeping, disrupting both
their health and quality of life. OSAS can affect both adults and
children. Common symptoms in children include overnight snor-
ing and sleep difficulties [2], which may derive in other daytime
symptoms and illnesses such as cognitive and behavioral irregu-
larities, abnormal growth, and cardiovascular risks [3,4]. Moreover,
pediatric OSAS is known to be underdiagnosed [5], and the scientific
literature reports up to 6% of children affected [3]. This indicates the
high prevalence of the disease which, in turn, leads to an intensive
use of the healthcare services [6].

http://dx.doi.org/10.1016/j.bspc.2015.02.014
1746-8094/© 2015 Elsevier Ltd. All rights reserved.
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OSAS in children is diagnosed by means of nocturnal
polysomnography (PSG) test, which acts as the “gold standard” [2].
PSG requires recording a wide range of physiological signals from
patients overnight, including electroencephalogram (EEG), elec-
trocardiogram (ECG), electromyogram (EMG), electrooculogram
(EOG), thoracic and abdominal respiration movements, oxygen
saturation (SpO2), and airflow (AF) [1]. Hence, the necessary acqui-
sition equipment is both complex and costly [6]. OSAS diagnosis is
established according to the apnea-hypopnea index (AHI), which
estimates the number of apneic events per hour of sleep time.
To derive AHI, the physiological recordings need to be examined.
Consequently, PSG is also time-consuming [7]. Furthermore, the
equipment involved in PSG is often not well tolerated by children
[8], interfering with their sleep routine.

To overcome these drawbacks a number of alternatives have
been studied. One common approach is the use of a reduced set of
signals from PSG to compute different estimations of AHI. In this
regard, the respiratory disturbance index obtained from respira-
tory polygraphy (RP) was successfully assessed in an in-lab study
with children involving 6 signals [9]: SpO2, AF, heart rate, chest
movements, body position, and snoring. The oxygen desaturation
index (ODI), in combination with common symptoms, has been also
recently evaluated as an alternative to PSG in pediatric patients
[10]. On the other hand, the automatic analysis of physiological
signals has been also proposed. In this sense, features from pho-
toplethysmography time series have shown their usefulness in
OSAS detection in children [11]. Moreover, studies conducting an
automatic processing of the SpO2 and ECG signals have been suc-
cessfully performed in the context of adult and pediatric OSAS
[12–16].

In this paper, a new method for OSAS diagnosis in children
is assessed. Our methodology is based on the only use of spec-
tral data from single-channel AF and the 3% ODI (ODI3), both of
them obtained at patient’s home. The main objective is to eval-
uate the diagnostic usefulness of eventual differences in the AF
spectrum of OSAS patients (OSAS-positive) and no-OSAS subjects
(OSAS-negative) in combination with ODI3. As stated above, ODI3 is
a commonly used parameter in OSAS studies. Moreover, the study
of AF is a straightforward choice since apneas and hypopneas are
defined on the basis of its amplitude variations [17]. Additionally,
the recurrence of apneic events naturally leads to the study of AF in
the frequency domain. Recent works have shown that OSAS mod-
ifies the spectral content of AF recordings from adults at certain
frequencies, and that the information contained in such frequen-
cies is useful in OSAS detection [18,19]. However, no studies have
been found applying a similar analysis to AF recordings from chil-
dren. According to the above mentioned, we pose the following
research questions:

i. How does OSAS modify the spectral information of airflow
recordings from children?

ii. Are these changes useful to distinguish OSAS in children from
at-home recordings?

iii. Is the airflow spectral information complementary to the classic
oxygen desaturation index in pediatric OSAS detection?

To answer them, we conduct an exploratory analysis of the
power spectral density (PSD) of the AF recordings. We  look for
spectral bands of interest showing differences in OSAS-positive and
OSAS-negative subjects, as well as their characterization. The sin-
gle diagnostic performance of both the AF spectral features and
the ODI3 are assessed. We  also evaluate their usefulness and com-
plementarity through logistic regression models. Our hypothesis
is that the joint use of spectral information contained in single-
channel AF and ODI3 could be useful to diagnose OSAS in children.

Table 1
Demographic and clinical data.

Features All OSAS-positive OSAS-negative

# Subjects 50 26 24
Age* (years) 5.3 ± 2.5 5.4 ± 2.7 5.2 ± 2.4
Male (%) 54.0 61.5 45.8
BMI+ (kg/m2) 16.5 ± 2.5 16.9 ± 3.0 16.1 ± 1.7
Recording Time (h) 8.9 ± 0.8 8.8 ± 1.0 9.0 ± 0.5
AHI (e/h) 9.9 ± 13.8 17.9 ± 15.4 1.3 ± 0.8

BMI: body mass index; AHI: apnea hypopnea index.
* p-value = 0.76.
+ p-value = 0.94.

2. Methods and materials

2.1. Subjects and signals under study

This study involved AF and SpO2 recordings from 50 children
ranging 3–13 years old (24 OSAS-negative and 26 OSAS-positive).
All of them were referred to the unit of respiratory sleep disor-
ders of the University Hospital of Burgos (Spain), due to clinical
suspicion of OSAS (snoring and/or witnessed breathing pauses).
Those children suffering from serious chronic medical or psychi-
atric co-morbidities, those who required urgent treatment, and
those with symptoms suggestive of sleep disorders other than OSAS
(e.g., parasomnias, narcolepsy, or periodic leg movements), were
excluded. AF and SpO2 were acquired during a polygraphy test
performed at patients’ home through an eXim Apnea polygraph
(Bitmed®, Sibel S.A., Barcelona, Spain). The sensor used to obtain
AF was a thermistor and the sample rate was  100 Hz. SpO2 was
recorded through an oximeter at the same sample rate. The physi-
cians used the AHI derived from PSG to establish OSAS. For the
overnight PSG, the Deltamed Coherence® 3NT Polysomnograph,
version 3.0 system (Diagniscan, S.A. ACH – Werfen Company; Paris,
France) was  used, recording EEG, right and left EOG, tibial and
submental (leg and chin) EMG, ECG, AF by thermistor and nasal can-
nula, chest-abdomen movements with bands, body position, SpO2
(Nellcor Puritan Bennett – NPB-290®), snoring, and a continuous
transcutaneous recording of carbon dioxide (PtcCO2). The American
Academy of Sleep Medicine (AASM) criteria were used to evaluate
sleep states and respiratory events [17]. The median time between
PSG and RP was  14 days ([6,25], interquartile range, IQR). Apneas
were scored after complete cessation of AF, as defined by the Amer-
ican Academy of Sleep Medicine [17]. Hypopneas were defined
after a 50% reduction of AF accompanied by a 3% decrease in SpO2
[17]. Amplitude cessations and reductions of AF required lasting
2 missed cycles in order to be considered as apneas or hypop-
neas, respectively [17]. An obstructive AHI threshold of 3 events/h
was used to distinguish OSAS-positive from OSAS-negative subjects
[20]. ODI3 was  estimated as the number of desaturations (at least
3%) per hour of recording. The interruption of the oronasal flow sec-
ondary to movements was not accounted for either the PSG or the
RP. An uninterpretable AF signal was  defined as no AF during 30 s
of normal respiration, while respiratory motion signals and SpO2
remained unchanged. Data were excluded from analysis if >60% of
the AF was  uninterpretable. The Ethics Committee of the University
Hospital of Burgos accepted the protocol (approval #CEIC 936) and
an informed consent was obtained for each subject. Table 1 sum-
marizes clinical and demographical data from the subjects under
study. No statistical significant differences in body mass index or
age were found between groups (p-value � 0.01).

2.2. Power spectral density of airflow

We  computed the PSD of each AF recording to explore eventual
differences between the spectral information of OSAS-positive and
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OSAS-negative groups. The estimation of the PSDs was carried out
by the non-parametric Welch method, which is suitable for non-
stationary signals [21]. A Hamming window of 215 samples (50%
overlap) along with a discrete Fourier transform of 216 samples
were used. To avoid the influence of non-physiological factors, each
PSD was normalized (PSDn) by dividing all their spectral compo-
nents by their corresponding total power [22]. Thus, the amplitude
values of the PSDns, as measured in 1/Hz, reflect the occurrence of
AF events at each frequency.

In order to define the spectral bands of interest, we  looked
for statistical significant differences between PSDns from OSAS-
positive and OSAS-negative groups. Data were not normally
distributed. Hence, we used a p-value based methodology con-
sisting in applying the non-parametric Mann–Whitney U test to
the amplitude values of the PSDns from both groups, at each fre-
quency [19]. Fig. 1 shows the median values of the PSDns from
OSAS-positive (black line) and OSAS-negative (gray line) samples.
It also shows the p-values obtained in the comparison of both
groups (light gray line). We  found marked drops in the p-values
around [0.06–0.2] Hz., [0.35–0.43] Hz., and [0.7–1] Hz. However, in
order to avoid type I errors, we only defined as bands of inter-
est those spectral bands in which the p-value were lower than
0.01. Thus, two bands were finally defined: 0.119–0.192 Hz (BW1);
0.784–0.890 Hz (BW2). At each band, we let 10% of components

have a p-value above 0.01 to maintain coherence with the p-value
tendency showed in Fig. 1. This avoids the disaggregation of one
single homogeneous band into several due to spurious values.

We characterized these two  bands by extracting six common
spectral features from each of them:

• Maximum and minimum amplitude (MA, mA), computed as the
highest and the lowest PSDn values in each band. These features
measure the maximum and minimum occurrence of AF events at
the bands.

• First to fourth statistical moments (Mf1–Mf4). Mean (Mf1),
standard deviation (Mf2), skewness (Mf3), and kurtosis (Mf4),
quantify central tendency, dispersion, asymmetry, and peaked-
ness of the spectral data, respectively.

2.3. Logistic regression: feature selection and classification

The logistic regression (LR) method is a supervised learning
algorithm which estimates the posterior probability of a given
instance xi (in our case, a vector containing the extracted fea-
tures) belonging certain class Ck (in our case, Ck = OSAS-positive
or OSAS-negative). Hence, the posterior probability p(Ck|xi), i.e.

Fig. 1. Median values of the PSDns from OSAS-positive (black line) and OSAS-negative (gray line) samples, and p-values at each frequency (light gray line). Significance level
p-value  = 0.01 (black dashed line). In (a), the spectral bands of interest BW1  and BW2  are delimited outside the normal respiratory rate. In (b), BW2  has been expanded for a
better  viewing.
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Table 2
Feature values for OSAS-positive and OSAS-negative groups.

BW1  p BW2  p
Median [IQR] Median [IQR]

OSAS-positive OSAS-negative OSAS-positive OSAS-negative

MA  (10−3) 3.0 [1.3, 4.4] 1.3 [0.8, 2.4] <0.01 0.11 [0.08, 0.28] 0.06 [0.05, 0.12] <0.01
mA  (10−4) 13.0 [7.0, 18.0] 5.1 [4.0, 6.7] �0.01 0.5 [0.4, 1] 0.3 [0.2, 0.5] �0.01
Mf1  (10−3) 1.9 [0.9, 2.7] 0.9 [0.5, 1.4] <0.01 0.08 [0.06, 0.14] 0.04 [0.03, 0.07] <0.01
Mf2  (10−4) 3.5 [1.4, 6.8] 1.5 [0.8, 3.9] 0.045 0.16 [0.11, 0.31] 0.09 [0.06, 0.19] 0.029
Mf3  (10−1) 5.9 [2.9, 8.7] 5.4 [3.5, 9.1] 0.993 3.9 [1.8, 6.6] 4.3 [1.9, 9.3] 0.541
Mf4  (100) 2.7 [2.3, 3.3] 2.7 [2.5, 3.3] 0.749 2.7 [2.4, 3.3] 2.5 [2.3, 3.1] 0.356

p: p-value of the Mann–Whitney U test; IQR: interquartile range.

the probability of a subject belonging to OSAS-positive or OSAS-
negative group, is computed through the logistic function:

p(Ck|xi) = eˇ0+�T xi

1 + eˇ0+�Txi

, (1)

where ˇ0 and � are obtained by the weighted least squares minimi-
zation procedure [23]. Thus, an instance xi is assigned to the class
with larger posterior probability.

First, we used LR to automatically select those relevant and
non-redundant features. This was performed through the step-
wise LR method (SLR), proposed by Hosmer and Lemeshow
[23]. Specifically, we applied the well-known forward-selection
backward-elimination algorithm. Then, LR was also used to assess
the joint potentiality of the selected features from BW1  and BW2
to predict OSAS in children.

2.4. Statistical analysis

Data did not pass the Lilliefors normality test. Hence, the
non-parametric Mann–Whitney U test was used to evaluate sta-
tistical differences in the obtained features from OSAS-positive
and OSAS-negative groups. Sensitivity (Se, percentage of OSAS-
positive subjects rightly classified), specificity (Sp, percentage of
OSAS-negative subjects rightly classified), accuracy (Acc, overall
percentage of subjects rightly classified), positive predictive value
(PPV, proportion of positive test results which are true positi-
ves), and negative predictive value (NPV, proportion of negative
test results which are true negatives) were used to measure the
diagnostic ability of both single features and LR models. In the
assessment of single features, a receiver operating-characteristics
(ROC) analysis was conducted. Thus, the area under the ROC (AROC)
was also computed for each case.

2.5. Results validation: bootstrap 0.632

We  used the bootstrap 0.632 algorithm to validate our results
since it is particularly useful to estimate statistics in small-size
samples [24]. Given a sample of N instances, this method proposes
building B new samples (bootstrap samples) of size N by resampling
with replacement from the original one [24]. A uniform probabil-
ity is used to randomly select the instances for each B. Thus, the
instances can be selected several times for a particular sample Bi,
which acts as a training group and, most probably, will contain
repeated instances [24]. Consequently, for each new sample, a num-
ber of instances from the original are not selected. These instances
act as the test group.

The number of subjects in our database is N = 50 and the num-
ber of bootstrap samples chosen was B = 1000, since it ensures a
proper estimation of the 95% confidence interval [25] (CI). Thus,
1000 new groups of size 50 were built, acting as training groups.
As stated above, the instances not included in each case acted
as the corresponding test groups. Following bootstrap 0.632, a

statistic s obtained from a test set would be a downward estimation
of the true one [25]. Hence, both the training and the test groups are
used to compute s by weighting their corresponding estimations as
follows [24]:

s = 0.632 · stest + 0.368 · straining. (2)

Finally, the B estimations of s are averaged to show a global
performance.

3. Results

3.1. Descriptive analysis and feature selection

Table 2 summarizes the values (median and IQR) of each spec-
tral feature. Consistent with Fig. 1, the values of MA, mA, and Mf1
in BW1  and BW2  were significantly higher in OSAS-positive than
in OSAS-negative subjects (p-value <0.01). Near to significant dif-
ferences were found in Mf2 from both bands, and there were no
differences in Mf3 and Mf4. As expected, ODI3 also showed statisti-
cal differences between groups (OSAS-negative: 0.87 e/h IQR [0.44,
1.9], OSAS-positive: 5.9 e/h IQR [1.8, 9.1], p-value <0.01).

SLR was  used twice to select relevant and non-redundant fea-
tures. First, we applied SLR to the 12 spectral features previously
obtained. Thus, mA from BW1, and Mf3 and Mf4 from BW2  were
automatically selected by SLR to form the corresponding model
(SLRSpec). Second, the selection process was  repeated with the
13 features, i.e., including ODI3. In this case, ODI3, mA  and Mf4
from BW1, as well as Mf3 from BW2  were selected for the model
(SLRSpec-ODI3).

3.2. Diagnostic performance

Table 3 shows the diagnostic performance of the spectral fea-
tures and ODI3 after the bootstrap 0.632 procedure. Se, Sp, Acc,
PPV, and NPV values (mean and 95% CI) were obtained by weight-
ing the training and test estimations according to bootstrap 0.632,
and averaging the results from the 1000 training-test group pairs.
The best single feature in terms of Acc and AROC was  the spectral
mA from BW1  (76.3% [65.7–84.2]; 0.743 [0.584–0.871], respec-
tively), outperforming ODI3 from oximeter (75.3% [67.0–83.4];
0.676 [0.513–0.829]).

Table 4 includes the diagnostic performance of SLRSpec and
SLRSpec-ODI3. SLRSpec, which only used spectral information from
AF, outperformed all the single features in terms of Acc and AROC
(79.1% [68.6–87.9]; 0.875 [0.723–1]). The SLRSpec-ODI3 model, which
combines spectral information from AF with ODI3 from SpO2,
obtained the highest results at each statistic (85.9% Se [64.5–98.7];
87.4% Sp [70.2–98.6]; 86.3% Acc [74.9–95.4]; 0.947 AROC [0.826–1];
88.4% PPV [72.3–98.5]; 85.8% NPV [65.8–98.5]).
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Table  3
Diagnostic performance of the single features.

Se (%) [CI] Sp (%) [CI] Acc (%) [CI] PPV (%) [CI] NPV (%) [CI] AROC [CI]

BW1
MA  60.2

[37.0,87.8]
71.7
[34.5,95.8]

65.6
[55.4,74.2]

71.7
[53.6,94.9]

62.9
[49.1,80.3]

0.651
[0.450,0.805]

mA 71.9
[47.1,87.4]

81.1
[65.3,100.0]

76.3
[65.7,84.2]

80.9
[62.3,100.0]

73.2
[58.7,87.3]

0.743
[0.584,0.871]

Mf1 66.4
[40.5,85.9]

72.3
[50.2,95.1]

69.1
[54.7,77.3]

72.9
[57.9,91.6]

67.3
[53.2,83.6]

0.684
[0.515,0.825]

Mf2 59.4
[32.0,85.3]

67.0
[31.9,91.6]

62.9
[52.4,72.7]

67.1
[51.4,88.7]

60.8
[46.0,77.2]

0.603
[0.416,0.769]

Mf3 53.8
[29.2,78.7]

57.0
[30.8,79.2]

54.0
[43.4,67.7]

57.5
[40.1,75.5]

53.6
[38.5,72.1]

0.542
[0.422,0.675]

Mf4 52.1
[27.3,77.9]

56.3
[29.3,80.8]

60.2
[42.2,67.9]

57.8
[40.5,77.9]

50.7
[25.8,71.6]

0.539
[0.372,0.698]

BW2
MA  74.6

[53.1,95.6]
64.4
[43.8,82.7]

70.6
[60.5,79.2]

70.1
[57.6,83.2]

73.2
[55.2,93.9]

0.670
[0.498,0.809]

mA 83.4
[48.6,98.7]

65.6
[51.2,85.8]

74.8
[61.1,83.6]

72.3
[60.5,84.4]

80.8
[56.7,98.0]

0.730
[0.576,0.859]

Mf1 79.7
[40.4,96.4]

65.2
[47.8,84.4]

72.7
[59.6,81.3]

71.2
[58.8,83.5]

76.6
[55.2,94.7]

0.698
[0.527,0.837]

Mf2 74.6
[42.1,92.2]

64.2
[41.7,83.6]

69.5
[57.6,79.1]

69.3
[56.1,82.8]

71.1
[53.0,89.9]

0.627
[0.449,0.784]

Mf3 52.4
[27.6,78.2]

52.1
[25.8,78.7]

52.4
[39.1,67.1]

53.4
[30.2,73.2]

50.9
[32.7,71.8]

0.557
[0.422,0.706]

Mf4 60.3
[33.5,83.4]

58.9
[34.6,80.1]

59.6
[48.1,70.4]

61.5
[47.4,78.0]

58.1
[42.0,74.2]

0.574
[0.436,0.712]

ODI3 70.9
[49.5,94.6]

80.3
[46.5,100.0]

75.3
[67.0,83.4]

81.9
[62.9,100.0]

72.8
[37.0,87.8]

0.676
[0.513,0.829]

CI: 95% confidence interval.

4. Discussion

In this paper, an alternative diagnostic methodology for OSAS
in children was developed by combining spectral information from
AF with the classic ODI3 from SpO2. Our proposal was  assessed by
answering three research questions.

i. How does OSAS modify the spectral information of airflow
recordings from children?

We  found that the spectral power of AF was significantly
higher in OSAS-positive subjects at novel frequency bands
below (BW1) and above (BW2) the typical respiratory range
in children reported in previous studies (0.220–0.430 Hz)
[3,26,27]. The relationship of BW1  with apneas and hypopneas
can be explained on the basis of the definition of these apneic
events in children. As stated in section 2.1, apneas and hypop-
neas require at least 2 missed breaths of length in order to
be scored [17]. Missing 2 cycles means that the recurrence of
these apneic events is every 2 normal breaths, at most. There-
fore, their frequency has to be located below the half of the
normal respiratory frequency range, modifying the spectrum
of AF in such band. Since BW1  is located below the half of
the normal respiratory band, it is consistent with the occur-
rence of apneas and hypopneas. On the other hand, differences
in the high frequency band, BW2  (0.784–0.890 Hz.), may  be
explained as the typical respiratory overexertion after an apneic

event, which increases the respiratory rate [9]. Moreover, the
greater variability in the PSDn of OSAS-positive children in the
range 0.35–0.43 Hz., which is shown in Fig. 1, is consistent with
the decrease of the deep sleep stage time of these patients
reported in other works [28]. During deep sleeping, respiration
becomes more regular [29], which leads to a condensed nor-
mal  breathing band in the PSDn. OSAS interrupts the sleep cycle
by the recurrence of arousals [1], causing respiratory instabili-
ties [29] and, consequently, a more variable normal breathing
rate.

ii. Are these changes useful to distinguish OSAS in children from
at-home recordings?

Seven out of the 13 extracted features were significantly dif-
ferent in OSAS-positive than in OSAS-negative subjects, (6 out
of 12 from AF, and ODI3). In the diagnostic ability assessment,
mA from BW1  outperformed ODI3, whereas mA  from BW2  per-
formed similarly. Both SLRSpec and SLRSpec-ODI3 outperformed all
the single features. Particularly high was  the diagnostic ability of
SLRSpec-ODI3, which widely improved the performance of an in-
lab 6-channel RP (74.2% Se, 81.8% Sp, 77.4% Acc, and 0.852 AROC)
[9], only requiring information from 2 channels (thermistor
and oximeter) recorded at patients’ home. Additionally, SLRSpec
(information from single-channel AF only) also outperformed
this 6-channel RP.

iii. Is the airflow spectral information complementary to the classic
oxygen desaturation index in pediatric OSAS detection?

Table 4
Diagnostic performance of the logistic regression models.

Se (%) [CI] Sp (%) [CI] Acc (%) [CI] PPV (%) [CI] NPV (%) [CI] AROC [CI]

SLRSpec 79.2
[59.1,96.6]

79.4
[59.3,95.8]

79.1
[69.6,87.9]

81.2
[65.2,94.5]

78.8
[60.4,95.4]

0.875
[0.723,1]

SLRSpec-ODI3 85.9
[64.5,98.7]

87.4
[70.2,98.6]

86.3
[74.9,95.4]

88.4
[72.3,98.5]

85.8
[65.8,98.5]

0.947
[0.826,1]
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The study showed complementarity between features in
two cases: first, between features from the two  novel AF
bands, since SLR automatically selected features from both of
them to build the SLRSpec and the SLRSpec-ODI3 models; second,
between features from the two spectral bands BW1-BW2 and
the ODI3, since the latter was also selected for the SLRSpec-ODI3
model.

Other recent studies also analyzed physiological signals to help
in pediatric OSAS diagnosis. Shouldice et al. used 50 ECG record-
ings, and reached 85.7% Se, 81.8% Sp, and 84% Acc in a test set
(AHI ≥ 1), by applying a quadratic linear discriminant to 23 fea-
tures [15]. Gil et al. investigated the diagnostic usefulness of the
information contained in 21 PPG time series, reporting 75.0% Se,
85.7% Sp, and 80.0% Acc after a leave-one-out cross-validation
procedure (AHI ≥ 5) [11]. The relationship of high frequency inspi-
ratory sounds (HFIS) to OSAS in children has been evaluated as
well [30,31]. Rembold and Suratt reported data to estimate that
10 HFIS events per hour can be useful to discriminate OSAS in
children both for AHI ≥ 1 (70% Se, 100% Sp, and 76.9% Acc) and
AHI ≥ 3 (61.5% Se, 100% Sp., and 80.8% Acc) [30]. Questionnaires
and common symptoms have been also involved in screening tools
for OSAS and sleep-disordered breathing. Spruyt and Gozal pro-
posed a severity scale based on the answers of 1133 children from
general population to 6 sleep-related questions [32]. They used
a predictive score which reached 59.0% Se, 82.9% Sp, 0.79 AROC,
35.4% PPV, and 92.7% NPV (AHI ≥ 3). Kadmon et al. validated this
6-item questionnaire in a sample of 85 children referred to a pedi-
atric sleep clinic [33], reaching 83.0% Se, 64.0% Sp, 0.65 AROC, 28.0%
PPV, and 96% NPV (AHI ≥ 5). Finally, Chang et al. combined symp-
toms (observable apnea, restless sleep, and mouth breathing) with
ODI from 141 children to assess both a logistic regression model
and a new discriminative score [10]. The former reached 76.6% of
diagnostic accuracy whereas the latter achieved 60.0% Se, 86.0%
Sp, 71.6% Acc, 84.0% PPV, and 64.0% NPV (AHI ≥ 5). Our SLRSpec-ODI3
outperformed the reported diagnostic ability in these studies, even
though we used recordings obtained from an unsupervised envi-
ronment. However, Shouldice et al. used a more restrictive AHI
threshold to differentiate patients from control subjects and Gil
et al., as well as Rembold and Suratt, worked with one single chan-
nel.

Some limitations have to be addressed in this study. The sam-
ple size should be larger to empower the generalization ability of
our results. Although the bootstrap 0.632 algorithm is known to
provide good estimates from small datasets [24], the assessment
of our methodology in a larger sample is a very interesting future
target. Additionally, a larger sample would let us define the AF
bands of interest through an independent set of subjects. Nonethe-
less, our bands were consistent with the pathophysiology of the
apneic events. A wide sample of subjects would be also useful to
optimize the set of selected features. Moreover, since our method-
ology relies on a classification problem, it only provides information
about the presence of OSAS and not about its severity. In this sense,
future work focused on estimating the AHI or assessing different
AHI thresholds could complement our findings. The only use of a
thermistor to record AF is another limitation of the study since the
AASM recommends the use of a thermistor to score apneas and a
nasal pressure transducer to score hypopneas [17]. However, our
approach does not rely on event scoring and, in spite of using ther-
mistor alone, results showed high diagnostic ability. Recent studies
have shown high performance when using automatic analysis of
single-channel AF from thermistor in adults [18,19]. Finally, the
application of different spectral or non-linear measures, as well as
the training of more complex classification models, may  be also
useful to enhance our methodology.

5. Conclusion

To the best of our knowledge, this is the first time that the spec-
tral information of AF recordings from children is analyzed in the
context of OSAS. We showed that OSAS in children significantly
modifies the PSDn of AF at two  abnormal respiratory bands. Diag-
nostic ability of single features from these novel bands is similar to
that of classic ODI3. Additionally, the information contained in the
two bands showed complementarity both between them and with
ODI3. Our optimum LR model, built with information from thermis-
tor and oximeter at-home recordings, outperformed the diagnostic
ability reported in previous in-lab studies focused on finding new
alternatives to standard PSG. These results suggest that the spectral
information contained in AF recordings is useful to help in pedi-
atric OSAS and that its combination with ODI3 could be beneficial
to diagnose OSAS in children at home.
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Abstract—Goal: The purpose of this study is to evaluate the 

usefulness of the boosting algorithm AdaBoost (AB) in the context 

of the sleep apnea-hypopnea syndrome (SAHS) diagnosis. 

Methods: We characterize SAHS in single-channel airflow (AF) 

signals from 317 subjects by the extraction of spectral and non-

linear features. Relevancy and redundancy analyses are 

conducted through the fast correlation-based filter (FCBF) to 

derive the optimum set of features among them. These are used 

to feed classifiers based on linear discriminant analysis (LDA) 

and classification and regression trees (CART). LDA and CART 

models are sequentially obtained through AB, which combines 

their performances to reach higher diagnostic ability than each of 

them separately. Results: Our AB-LDA and AB-CART 

approaches showed high diagnostic performance when 

determining SAHS and its severity. The assessment of different 

apnea-hypopnea index cutoffs using an independent test set 

derived into high accuracy: 86.5% (5 events/h), 86.5% (10 

events/h), 81.0% (15 events/h), and 83.3% (30 events/h). These 

results widely outperformed those from logistic regression and a 

conventional event-detection algorithm applied to the same 

database. Conclusion: Our results suggest that AB applied to 

data from single-channel AF can be useful to determine SAHS 

and its severity. Significance: SAHS detection might be simplified 

through the only use of single-channel AF data. 

 

Index Terms—AdaBoost, airflow, sleep apnea-hypopnea 

syndrome, spectral analysis, nonlinear analysis  

I. INTRODUCTION 

n recent years, the Sleep Apnea-Hypopnea Syndrome 

(SAHS) has become a major concern due to the high 

prevalence and severe consequences for the patients’ health 

and quality of life [1], [2]. People suffering from SAHS 

experiment recurrent episodes of complete (apnea) or partial 

(hypopnea) collapse of the upper airway during sleep, which 

lead to cessation or significant reduction of airflow (AF) [3]. 

These apneic events cause oxygen desaturations and arousals 

[3], preventing patients from resting while sleeping [2]. 

Unsuccessful rest derives in daytime symptoms such as 

hypersomnolence, cognitive impairment, and depression [1], 

some of which have been related to motor-vehicle collisions 

and occupational accidents [4], [5]. Moreover, SAHS has been 

associated with cardiac and vascular illnesses [2], as well as 

with an increase in the cancer incidence [6]. 

The standard test to diagnose SAHS is overnight in-lab 

polysomnography (PSG) [3]. Although its effectiveness is 

well-known, PSG implies monitoring and recording multiple 

physiological signals, including electrocardiogram (ECG), 

electroencephalogram (EEG), electromyogram (EMG), 

oxygen saturation of blood (SpO2), and AF [3]. This makes 

PSG a complex test which requires expensive equipment and 

technical expertise [7], [8]. Moreover, the specialists need an 

offline inspection of the recordings to derive the apnea-

hypopnea index (AHI), which is the parameter used to 

establish SAHS and its severity [9]. Thus PSG is also time-

consuming, leading to a delayed diagnostic process and 

increased waiting lists [8], [10]. 

One widespread approach to reduce complexity, cost, and 

time delay is the study of a limited set of signals among those 

involved in PSG [8]. The analysis of a single one has been 

often adopted. Thus, the oxygen desaturation index (ODI) 

from SpO2, the apneic-related events from ECG, and the 

respiratory disturbance index (RDI) from AF have been 

already assessed to help in SAHS diagnosis [10]-[13]. These 

works followed a common methodology: detecting the effects 

caused by each apnea and hypopnea in the signals under study, 

scoring them as apneic-related events, and deriving the 

corresponding diagnostic index. However, our research group 

has lately adopted a different approach based on an exhaustive 

analysis of a signal through the extraction of global features 

[14]-[18].  

In this paper, we propose such a global analysis in single-

channel AF. AF is a straightforward choice to look for simpler 

alternatives to PSG, since apneas and hypopneas are defined 

on the basis of its amplitude oscillations [9]. The American 

Academy of Sleep Medicine (AASM) recommends the use of 

two AF channels: one acquired through an oronasal thermal 

sensor and the second one acquired by means of a nasal prong 

pressure sensor (NPP) [9]. The former is suitable for a proper 

scoring of apneas whereas the latter is used to score 

hypopneas [9]. However, previous studies have shown that it 

is possible to reach high diagnostic ability following an 

automatic global analysis of the single-channel AF from a 

thermal sensor [17], [18]. In this paper, one major goal is to 

assess whether it is also possible to reach a high performance 

when using data from single-channel AF obtained by NPP. 

Our proposal starts with the extraction of spectral (frequency 

domain) and non-linear (time domain) features from NPP AF. 

The analysis in frequency domain is justified due to the 

overnight recurrence of these events. Thereby, common 

spectral features have already shown their utility to 

characterize SAHS as well as other disorders [15]-[19]. On the 

other hand, non-linear measures of variability, complexity, 
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and irregularity in time series have been also used to extract 

useful information from biomedical signals [14], [17]-[19]. 

This exhaustive characterization of AF, however, may lead to 

obtain features with a high degree of shared information, i.e., 

redundant features. In order to avoid this issue, a second step 

is included in our methodology: an automatic feature selection 

stage based on the fast correlation-based filter (FCBF) [20]. 

The FCBF algorithm selects optimum sets of features on the 

basis of their relevancy and redundancy. It has been also 

assessed in biomedical applications [17], [21]. Finally, a 

classification approach is used to distinguish SAHS and its 

severity. Thus, we evaluate two different cases: a binary 

classification task, in which the objective is to determine the 

presence (SAHS-positive) or absence (SAHS-negative) of 

SAHS, and a multiclass task, in which the aim is to assess the 

AHI cutoffs which establish the four severity levels of SAHS 

(no-SAHS, mild-SAHS, moderate-SAHS, and severe-SAHS). 

We propose the AdaBoost (AB) algorithm for both 

classification tasks. AB is a boosting algorithm commonly 

used to take advantage of the performance of several weak 

classifiers of the same type [22]. It is known to be able to 

reach high yields when it is applied to new data [22], i.e., the 

AB algorithm produces generalized models. Moreover, it 

relies on a simple sequential procedure [22], which barely 

increases the complexity of the methodology. These 

characteristics make it a suitable algorithm to be used in 

diagnostic aid contexts. Actually, it has been already assessed 

in the context of SAHS under a classic event-detection 

approach [23], [24]. As weak classifiers we propose two well-

known machine learning algorithms based on i) linear 

discriminant analysis (LDA) and ii) classification and 

regression trees (CART). Both of them have been already 

assessed in the context of SAHS [16], [23]. Since classifiers 

favor the right sorting of classes with more subjects, one major 

issue in the present work is how to deal with imbalanced 

classes. The high prevalence of SAHS leads to prioritize 

diagnosis in at-risk population [25]. Consequently, data from 

SAHS patients is more available than from no SAHS subjects. 

Thus, to compensate for this imbalance, we use the synthetic 

minority oversampling technique (SMOTE) [26], which 

creates new synthetic data from the minority classes on the 

basis of the real data. 

Our hypothesis is that the information obtained from AF and 

the generalization ability of AB can be useful to automatically 

detect SAHS and establish its severity. Thus, the main 

objective of the present work is to evaluate the diagnostic 

usefulness of AB when the only source of SAHS-related 

information is single-channel AF from NPP. In order to 

achieve this goal, we evaluate whether our proposal 

outperforms the diagnostic ability of a typical classification 

algorithms such as logistic regression (LR), which is based on 

one single classifier. We also apply to our AF recordings an 

algorithm focused on the classical event-detection approach, 

which has been previously assessed in other databases [17], 

[27]. Finally, our results are also compared with other recent 

studies focused on SAHS detection from single-channel AF. 

II. POPULATION AND SIGNAL UNDER STUDY 

In this study, AF recordings from 317 adults were involved. 

Before undergoing PSG, all of the subjects suffered from 

common symptoms such as daytime sleepiness, loud snoring, 

nocturnal choking and awakenings, and/or referred apneic 

events. PSG was conducted in the sleep unit of the Hospital 

Universitario Río Hortega in Valladolid, Spain. Physicians 

scored apneas and hypopneas according to the American 

Academy of Sleep Medicine (AASM) rules [9]. Consequently, 

an apnea was defined as a 90% or more reduction in the pre-

event baseline of the AF amplitude, measured through an 

oronasal thermal sensor. In contrast, a hypopnea was scored 

after 30% or more reduction in the pre-event baseline of the 

AF amplitude, measured through a nasal pressure sensor, and 

accompanied by a drop of 3% in SpO2 and/or an EEG arousal. 

In both cases, duration of 10 seconds or more was required to 

annotate the event [9]. All the subjects gave their informed 

consent and the Ethics Committee of the Hospital 

Universitario Rio Hortega (Spain) accepted the protocol. 

Common AHI cutoffs to determine SAHS and its severity 

are 5, 10, 15, and 30 e/h [9], [10], [13], [17]. Particularly, 

SAHS severity levels are: no-SAHS (5AHI), mild-SAHS 

(5≤AHI15), moderate-SAHS (15≤AHI30), and severe-

SAHS (AHI30) [28]. Alternatively, AHI=10 e/h has been 

widely used as cutoff to determine the presence or absence of 

SAHS [10], [13], [17], [18], [29]. Consequently, for the binary 

classification task, we chose AHI=10 e/h to distinguish SAHS-

negative and SAHS-positive subjects, whereas for the multi-

classification task we divided our database according to the 

four SAHS severity levels. Tables I and II show clinical and 

demographical data of the subjects under study when they are 

divided for the binary or the multiclass tasks, respectively. No 

statistically significant differences were found (p-value0.01) 

between SAHS-positive and SAHS-negative (Mann-Whitney 

U test), or among the four severity levels (Kruskal-Wallis 

test), in body mass index (BMI) and age. 

The AF recordings were obtained during overnight PSG, 

which was performed through a polysomnograph (E-series, 

Compumedics). A NPP sensor was used to acquire AF 

(sample rate=128 Hz). The recording length was 7.4  0.3 

hours (mean  standard deviation). An anti-aliasing filter was 

applied to the AF recordings to satisfy the Nyquist-Shannon 

theorem. We also applied an infinite impulse response 

Butterworth low-pass filter (cutoff = 1.2 Hz) to reduce noise 

for a prospective non-linear analysis in time domain. 

We divided our recordings into a training set (60%) and a 

test set (40%). A uniformly random selection was conducted 

to assign the AF recordings to each one. However, for the sake 

of the balance of the classes in the training set, we fixed the 

size of each class as follows: 29 no-SAHS subjects, 54 mild-

SAHS, 54 moderate-SAHS, and 54 severe-SAHS. This 

distribution in the multiclass problem leads to 75 SAHS-

negative and 116 SAHS-positive for the binary classification 

task. The SMOTE algorithm was used to compensate the 

remaining imbalance in classes of the training set (section F). 
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The recordings not selected for the training set were assigned 

to the test set. 

III. METHODS 

Our methodology consists of three steps. First, a feature 

extraction stage is implemented, in which spectral and 

nonlinear analyses are conducted over the AF recordings. 

Then, an automatic feature selection is performed to obtain an 

optimum set of the extracted features. Finally, a boosting 

classification approach is adopted to determine SAHS (binary 

classification) and its severity (multiclass task). Fig. 1 depicts 

a block diagram with the entire methodology followed during 

the study, which is widely explained in next sections. 

A. Feature extraction  

1) Spectral analysis 

Apneas and hypopneas recurrently modify AF throughout 

the night. This behavior supports its study in the frequency 

domain. Hence, the power spectral density (PSD) of each AF 

recording was estimated. Welch’s method was applied for this 

purpose since it is suitable for non-stationary signals [30]. A 

Hamming window of 2
15

 points (50% overlap), along with a 

discrete Fourier transform of 2
16

 points, were used to compute 

PSD. To avoid the influence of factors not related to the 

pathophysiology of SAHS, each PSD was normalized (PSDn) 

dividing the amplitude value at each frequency by their 

corresponding total power [31]. Fig. 2a shows the averaged 

PSDn for the four SAHS severity groups in the training set. 

A spectral band of interest (BW) was defined between 0.025 

Hz. and 0.050 Hz. (Fig. 2b). This corresponds to events lasting 

from 20 to 40 seconds, which has been reported as the typical 

range of the apneic events duration [32]. Moreover, BW is 

consistent with the bands found through statistical approaches 

[17], [18]. Thus, to characterize SAHS, 9 spectral features 

were extracted from the 0.025-0.050 Hz. band of each PSDn: 

minimum amplitude (mA), maximum amplitude (MA), first to 

fourth statistical moments (Mf1- Mf4), median frequency (MF), 

spectral entropy (SpecEn), and Wootters distance (WD). 

 mA and MA were computed as the lowest and the highest 

PSDn values in BW. Since PSD is normalized, the amplitude 

values of the original AF time-series do not affect the power at 

each frequency component. Hence, as BW is related to apneic 

events, mA and MA estimate the minimum and the maximum 

occurrence of them. Mean (Mf1), standard deviation (Mf2), 

skewness (Mf3), and kurtosis (Mf4) of BW were also obtained. 

They are common statistics which quantify central tendency, 

dispersion, asymmetry, and peakedness of data, respectively. 

According to Fig. 2b, mA and MA should be higher as SAHS 

worsens. Similarly, the mean (Mf1) and the standard deviation 

(Mf2) should be also higher. Finally, both the skewness (Mf3) 

and the peakedness (Mf4) seem to be higher in the BW spectral 

data of moderate and severe groups. 

MF is defined as the frequency component which separates 

the spectrum into two parts with 50% of the power each of 

them [33]. Thus, the lower the MF value, the more comprised 

is the spectrum into small frequencies. As seen in Fig 2b, the 

spectrum of BW for the no-SAHS and mild-SAHS groups is 

flat, i. e., the power is equally distributed. Conversely, a fewer 

amount of power is observed in higher frequencies of BW for 

moderate-SAHS and severe-SAHS groups. As a consequence, 

a MF value closer to 0.0375 (the half of the band) is expected 

for the lowest severity degrees. 

SpecEn quantifies the flatness of the PSD content, which 

indirectly measures the irregularity of time series [33]. 

Thereby, high values of SpecEn are related to a flat PSD 

(similar to white noise) and, consequently, it is associated with 

more irregularity in time domain. By contrast, low values 

imply a spectrum condensed into a narrow frequency band, 

which is related to less irregularity in time domain (like in a 

sum of sinusoids) [33]. A flatter spectrum is observed in BW 

as SAHS severity decreases. Therefore, higher values of 

SpecEn are expected in no-SAHS and mild-SAHS groups. 

 
Fig. 1 Block diagram of the signal processing methodology followed 

during the study. 

 

TABLE I  

DEMOGRAPHIC AND CLINICAL DATA FOR THE TWO-CLASS DIVISION 

 All SAHS-negative SAHS-positive 

# Subjects 317 110 207 

Age (years) 49.9  12.0 47.6  12.9 51.1  11.4 

Men (%) 226 (71.3) 68 (61.8) 158 (76.3) 

BMI (kg/m2) 28.1  5.2 26.5  5.0 29.0  5.1 

AHI (e/h) 28.1  26.5 6.0  2.6 39.9  25.9 

TABLE II  

DEMOGRAPHIC AND CLINICAL DATA FOR THE FOUR-CLASS DIVISION 

 no-SAHS mild moderate severe 

# Subjects 39 92 70 116 

Age (years) 43.9  12.5 50.3  12.4 49.9  11.3 51.6  11.5 

Men (%) 19 (48.7) 58 (63.0) 56 (80.0) 93 (80.2) 

BMI(kg/m2) 26.0  5.5 27.0  4.6 28.5  3.9 29.5  5.8 

AHI (e/h) 3.0  1.3 8.6  2.4 22.2 4.1 55.7  24.7 
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WD is a disequilibrium measure which assigns values close 

to 1 to those distributions with higher statistical distance to the 

uniform distribution; whereas values close to zero are assigned 

as the distance becomes smaller [34], [35]. In BW, the 

averaged spectrum of the no-SAHS and mild-SAHS groups is 

similar to a normal distribution (Fig. 2b). Hence, smaller 

values of WD are expected than in the case of the moderate-

SAHS and severe-SAHS groups. 

2) Non-linear analysis 

Alterations caused by SAHS in AF could modify the 

variability, the complexity, and the irregularity of the signal. 

Hence, to complement the spectral analysis, three global non-

linear features were also obtained from each recording in time 

domain: central tendency measure (CTM), Lempel-Ziv 

complexity (LZC), and sample entropy (SampEn). Similarly to 

PSD, each AF time series was normalized before obtaining 

CTM, LZC, and SampEn. Thereby, measuring effects caused 

by factors not related to the pathophysiology of SAHS are 

avoided. We firstly eliminated the spurious values of the 

signal. Then the time-series were divided by the remaining 

maximum absolute value in order to constrain each recording 

into the range -1, 1.  

CTM quantifies the variability of a given series x[n] on the 

basis of its first-order differences [36]. These are plotted 

following x[n+2]-x[n+1] vs. x[n+1]-x[n] [37].  The value of 

CTM is computed as the proportion of points in the plot which 

fall within a radius  [36], which acts as a design parameter. 

Thus, CTM ranges between 0 and 1, with higher values 

corresponding to points more concentrated around the center 

of the plot, i.e., corresponding to less degree of variability. 

People suffering from SAHS experiment continuous changes 

in the respiratory pattern (apneic events, snoring, choking, 

respiratory overexertion after apneas and hypopneas), which 

may add variability to the AF signal. Consequently, it is 

expected that CTM decreases in the presence of SAHS.    

LZC estimates the complexity of a finite sequence of 

symbols [38]. Hence, the first step of the algorithm is to 

convert a time-series x[n] into such a sequence [37]. Usually, a 

binary transformation is performed, with the median of each 

x[n] being used as threshold [37]. Then the sequence is 

scanned, and a counter c(n) is increased with every new 

subsequence of consecutive symbols. Finally, c(n) is 

normalized in order to make the method independent of the 

sequence length. The higher the value of LZC, the higher the 

complexity of the corresponding time-series is [37]. 

Abnormalities in the AF pattern may introduce new 

subsequences of symbols. Hence, more complexity is expected 

in the AF of SAHS patients. 

SampEn is a measure of the irregularity in time-series [39]. 

It was developed by Richman and Moorman to reduce the bias 

caused by self-matching in the estimation of the approximate 

entropy [40]. SampEn divides a time-series into consecutive 

vectors of length m. It assesses whether the maximum absolute 

distance between the corresponding components of each pair 

of vectors is less than or equal to a tolerance r, i.e., if the 

vectors match each other within r. If so, the vectors are 

considered as similar. Then the same process is repeated for 

vectors of length m+1 and the conditional probability that 

similar vectors of length m remain similar when the length is 

m+1 is computed. The final SampEn value is obtained as the 

negative logarithm of such a conditional probability [39], [40]. 

Thus, higher values of SampEn indicate less self-similarity in 

the times-series and, consequently, more irregularity [39]. 

SAHS is reflected in the AF signal by the addition of not 

regular events. As a consequence, it is expected that SampEn 

present higher values in SAHS patients. 

B. Feature selection: fast correlation-based filter 

The exhaustive characterization of the AF signal may lead to 

the extraction of several features which provide similar 

information about SAHS, i.e., which are redundant. Hence, a 

feature selection stage is included to discard those features (Xi) 

which share more information with the others than with a 

SAHS-related dependent variable, Y. The FCBF has shown its 

utility in previous studies involving SAHS [17], as well as 

other biomedical applications [21]. In our case, Y is a vector 

whose components are the AHI value of each subject.  

FCBF relies on symmetric uncertainty (SU), which is a 

normalized quantification of the information gain (IG) 

between two variables [20]. It consists of two steps. In the first 

one, a relevance analysis of the features (Xi) is done. Thus, SU 

between each feature Xi and Y is computed as follows: 
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where IG (Xi | Y) = H(Xi) – H(Xi | Y), H is the well-known 

 
 

 

Fig. 2 a) Averaged PSDn for the four SAHS severity groups in the training 
set and b) detail of the band of interest BW. 
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Shannon’s entropy, and F is the number of features extracted 

(F = 12). SU is constrained to 0-1. A 0 value indicates that the 

two variables are independent, whereas SU = 1 indicates that 

knowing one feature it is possible to completely predict the 

other [20]. Thus, the higher the value of SU, the more 

information shares the corresponding feature with the AHI 

and, consequently, the more relevant is. Then a ranking of 

features is done based on their SU(Xi, Y) values, i.e., from 

most relevant to least relevant. The second step is a 

redundancy analysis in which the SU between each pair of 

features (SU(Xi, Xj)) is sequentially estimated beginning from 

the first-ranked ones. If SU(Xi, Xj) ≥ SU(Xi, Y), with Xi being 

more highly ranked than Xj, the feature j is discarded due to 

redundancy and is not considered in next comparisons [20]. 

The optimum features are those not discarded when the 

algorithm ends.  

C. Classification approach: boosting 

After the feature selection procedure, each subject from our 

database is associated with a vector xk (k = 1, 2,…, N, where N 

is the size of our sample), whose components are the values of 

the features included in the optimum set. The purpose is to 

build models with the ability to determine SAHS and its 

severity on the basis of the information contained in the 

vectors xk. Boosting procedures are known to achieve good 

generalization ability [22]. Thus, 60% of the instances are 

used as training set (Ntraining = 191) to feed the boosting 

method AdaBoost (AB), which we use along with LDA and 

CART as weak classifiers (AB-LDA and AB-CART). The 

remaining 40% (Ntest = 126) is used as test group to validate 

the models. For comparison purposes, we also train a classic 

logistic regression (LR) classifier. 

1) AdaBoost algorithm 

Boosting procedures are iterative algorithms designed to 

combine models that complement one another [22]. Such a 

combination is conducted on the basis of weighted votes from 

classifiers of the same type [22], [41]. AB is a widely used 

boosting algorithm, originally developed by Freund and 

Schapire [42], which can be used along with any classifier 

[22]. However, if AB is applied to complex classifiers, the 

prediction ability on new data may be significantly decreased 

[22], i.e., its generalization ability may be lost. Thus, simpler 

procedures known as weak classifiers are preferable [22]. In 

our case, we chose the well-known LDA and CART 

algorithms to act as weak classifiers. 

At each m iteration, the AB algorithm assigns a weight, wk
m
, 

to every instance (or vector) xk in the training set. Thus, the 

mth weak classifier is trained using the corresponding 

weighted instances. Then its performance is assessed through 

an error m. This error is used to determine the weighted vote, 

m, of this mth classifier [22]. Thereby, those classifiers with 

smaller m contribute more to the final decision. At the end of 

the iteration the weights of the misclassified instances are 

updated (wk
m+1

) [22]. Then, the weights of all instances are 

normalized in order to maintain the original distribution [42]. 

Two versions of AB have been implemented in this study: 

AB.M1, for binary classification, and AB.M2 for the 

multiclass task. Both of them rely on reweighting those 

instances which have been misclassified after each iteration. 

Thus, the weak classifier trained during the next iteration 

gives more importance to these instances [42], being more 

likely to classify them rightly [22]. The main difference 

between AB.M1 and AB.M2 is how the error  is defined. For 

AB.M1 m is the sum of the weights of the misclassified 

instances in a given iteration m, divided by the sum of the total 

weights of all instances at that iteration: 
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By contrast, a weighted pseudo-loss is defined in the case of 

AB.M2, for which m is as follows [42]: 
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where c is a categorical variable representing the multiple 

classes, ctrue refers to the actual class of xk, and hm is the 

confidence of the prediction of the weak learner for an 

instance xk and a class from c. 

AB.M1 and AB.M2 perform the final classification task by 

returning the class with the highest sum of the votes from all 

classifiers, taking into account the weight of their 

corresponding predictions m computed as follows [42]: 

 ,ln mm    (4) 

where m is defined as (1 - m)/m. Additionally, the shrinkage 

regularization technique has been proposed to minimize 

overfitting [43]. It is based on adding a learning rate to the 

iterative process by redefining m as (m)


, where ranges 

1 and has to be experimentally estimated. 

Two criteria were used to stop the AB.M1 algorithm: i) m 

does not belong to the interval (0, 0.5) [22] or ii) the number 

of weak learners is not higher than 400 (to minimize the 

overfitting chances). In the case of AB.M2 only the second 

criterion was applied since the first one is considered too 

restrictive for multiclass approaches [42]. 

D. Logistic regression and conventional approach algorithm 

We also implemented LR models and a conventional event-

detection algorithm to evaluate them using our own database. 

LR is a widely-used supervised learning algorithm which 

has become a standard for binary classification tasks [44]. It 

estimates the posterior probability that a given instance (or 

vector) xk belongs to one of two classes. First, the LR 

algorithm uses the maximum likelihood estimation of the 

coefficients of a linear transformation where the dependent 

variables are the components of each xk [44], in our case, 

features extracted from the signals. Then the well-known logit 

function is applied to this linear transformation in order to 

obtain the above mentioned probability [44]. Vector xk is then 

assigned to the class with the highest posterior probability. 
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We also implemented a conventional scoring algorithm in 

order to apply it to our AF recordings database. Thus, a peak 

detection algorithm was used to locate inspiratory onsets and 

endings in AF time series [45]. The difference between AF 

values in consecutive onsets and endings locations determined 

the amplitude of every inspiration. According to the rules of 

the AASM, the algorithm scored those respiratory events 

which meet with i) a drop of 30% or more from the AF pre-

event baseline and ii) the drop lasts 10 seconds or more [9]. 

The baseline was computed as the mean amplitude of the s 

previous inspirations [27]. Hence, s was a design parameter. 

Once all events are scored, the total amount of them is divided 

by the sleep time to obtain an AHI estimation. To choose an 

optimum s value we computed the AHI estimations of the 

subjects in the training group, with s ranging 1-10. For each s, 

the Spearman’s correlation was computed between the 

corresponding AHI estimations and the actual AHI from the 

subjects. The highest correlation was obtained for s = 6, which 

was established as the optimum value. 

E. Statistical analysis  

The extracted features did not pass the Lilliefors normality 

test. Hence, the non-parametric Kruskal-Wallis test was used 

to establish significant statistical differences between the four 

groups of SAHS severity (p-value<0.01). Bonferroni 

correction was applied to deal with multiple comparisons. 

Diagnostic ability of the AB and LR models was assessed in 

terms of sensitivity (Se, percentage of positive subjects rightly 

classified), specificity (Sp, percentage of negative subjects 

rightly classified), accuracy (Acc, overall percentage of 

subjects rightly classified), and Cohen’s kappa (). measures 

the agreement between predicted and observed classes, 

avoiding the part of agreement by chance [22]. 

The bootstrap 0.632 algorithm [22], which was only applied 

to the training group, was used to find an optimum learning 

rate for the AB models. Thus, B new bootstrap training 

groups (Btraining), with the same size as the original one, were 

built by resampling with replacement from this [46]. We chose 

B = 500 since it suffices for a proper estimation of the error, 

while let the variance remain low [46]. A uniform probability 

was used to select from the original instances in the training 

group. Consequently, some of these instances were repeated 

for each new Btraining, whereas the same number remained 

unemployed. The latter were used as the corresponding 

bootstrap test groups (Btest). We evaluated  in the range (0, 1] 

(step = 0.1). At each step, we computed 
n
 (n = 1, 2, …, B) as 

follows [22]: 

,κ632.0κ369.0κ BtestBtraining
nnn   (5)  

where 
n

Btraining and 
n

Btest are the Cohen’s kappa values for 

each  Btraining and Btest, respectively. Then, the 500 
n
 statistics 

were averaged in each step, and was chosenaccording to the 

highest averaged value. 

F. Balancing the classes: SMOTE 

Before training the classifiers, we applied SMOTE to 

compensate the imbalance among classes. SMOTE creates 

new synthetic instances on the basis of the available minority 

class real ones [26]. In our case, the real instances are the 

vectors of features associated to each subject in this minority 

class. According to the number of new instances (vectors) 

required for the compensation of the classes, the algorithm 

selects the K-nearest neighbors of each of the real ones [26]. 

Thus, if it is required to double the minority class vectors, K 

should be 1, and so on. Then, the difference between each 

vector and its K-nearest neighbors is computed. These 

differences, multiplied by a random number in the range 0 to 

1, are subsequently added to the original vector again, to form 

new synthetic ones whose components are between the vector 

considered and its corresponding K-nearest neighbors [26]. 

As it can be derived from Table II, our instances of features, 

xk, come from: 39 no-SAHS, 92 mild-SAHS, 70 moderate-

SAHS, and 116 severe-SAHS. These were divided into a 

training (60%) and a test set (40%). Since the training set 

plays the key role to avoid the bias towards majority classes 

[26], we adjusted its configuration to balance the classes as 

much as possible. Hence, although the inclusion of instances 

into the training set was uniformly random per class, we 

forced to include 29 no-SAHS, 54 mild-SAHS, 54 moderate-

SAHS, and 54 severe SAHS. Then we applied SMOTE (K=1) 

to the instances of the no-SAHS class to create 29 additional 

synthetic ones. Consequently, the balanced training set was 

finally composed of 58 no-SAHS, 54 mild-SAHS, 54 

moderate-SAHS, and 54 severe SAHS. Accordingly, the test 

set was composed of 10 no-SAHS, 38 mild-SAHS, 16 

moderate-SAHS, and 62 severe-SAHS.  

This instance distribution, carried out for the four classes, 

also resulted in a balanced training set for the binary 

classification task. Thus, it was composed of 104 SAHS-

negative instances (75 real and 29 synthetic) and 116 SAHS-

positive instances (all real). The test set was composed of 35 

SAHS-negative instances and 91 SAHS-positive instances. 

IV. RESULTS 

A. Feature extraction and selection 

 The optimum values for  (CTM), as well as m and r 

(SampEn), were obtained by evaluating the ranges  [0.001, 

0.1] (step=0.001), and m=1, 2 and r [0.10*SD, 0.25*SD] 

(step=0.05*SD), where SD is the standard deviation of the 

time series. In the case of the range was chosen according 

to the character of data [36]. Thus, values of < 0.001 were 

discarded since they led to a CTM value ≈ 0 regardless the 

SAHS severity group of the subjects. Similarly, values of > 

0.1 were also not considered since they led to CTM values = 1 

for every subject. The ranges of m and r were suggested by 

Pincus (2001) as those which experimentally produced good 

entropy estimation in time series longer than 60 samples [47]. 

We chose those configurations (for CTM and m = 2 

and r = 0.1*SD  for SampEn) for which the corresponding 

CTM and SampEn values showed the highest Spearman’s 

correlation with the variable composed of the AHI measures 

from the subjects. We only used training data for this purpose. 

Table III shows the values of the extracted features for the 
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TABLE III  

FEATURE VALUES  FOR THE SEVERITY GROUPS (MEAN ± SD) 

Feat. no-SAHS mild moderate severe p-value 

MA 
(10-4) 

2.012±1.091 2.854±1.460 5.148±3.134 13.736±11.360 <<0.01 

mA 

(10-4) 
1.359±0.729 1.849±0.930 2.903±1.294 6.225±4.498 <<0.01 

Mf1 
(10-4) 

1.670±0.912 2.296±1.131 3.900±1.886 9.400±7.295 <<0.01 

Mf2 
(10-5) 

2.140±1.424 3.193±2.428 7.418±8.268 24.864±27.774 <<0.01 

Mf3 0.190±0.540 0.259±0.512 0.149±0.619 0.429±0.689 0.19+ 

Mf4 2.154±0.590 2.269±0.569 2.298±0.637 2.608±1.115 0.41+ 

WD 0.046±0.019 0.052±0.029 0.063±0.041 0.086±0.056 0.003+ 

MF 0.038±0.001 0.038±0.002 0.037±0.002 0.036±0.002 0.004+ 

SpecEn 

(10-1) 
9.963±0.032 9.958±0.046 9.924±0.168 9.882±0.134 0.024+ 

CTM 
(10-1) 

9.993±0.007 9.988±0.015 9.987±0.009 9.963±0.023 <<0.01 

LZC 0.057±0.009 0.057±0.007 0.057±0.006 0.058±0.007 0.71+ 

SampEn 0.059±0.012 0.063±0.014 0.062±0.016 0.058±0.014 0.18+ 

+Not lower than Bonferroni correction (p-value=0.01/6). 

SAHS severity levels in the training set (mean ± SD only from 

the real instances), along with the corresponding p-values. 

Four out of the 9 spectral features (MA, mA, Mf1, and Mf2), as 

well as CTM, showed statistical significant differences among 

classes after the Bonferroni correction (p-value < 0.01). These 

spectral features showed higher values as the SAHS severity 

increased. An opposite tendency was shown by CTM values. 

Thus, the variability also increased with the severity of SAHS. 

The FCBF was also applied to the training set (only real 

instances). According to FCBF, the ranking of the 12 extracted 

features, from higher to lower SU values, was: Mf1, MA, CTM, 

mA, Mf2, WD, SpecEn, MF, Mf4, LZC, Mf3, and SampEn. Then, 

WD was found redundant with Mf2; and Mf3 with MF. Hence, 

the final FCBF optimum set was composed of 10 features, 7 

from BW (Mf1, MA, mA, Mf2, SpecEn, MF, and Mf4) and 3 

from the non-linear analysis (CTM, LZC, and SampEn).  

B. Classification 

1) Model selection and training 

The AB binary models (AB-LDA2 and AB-CART2) were 

selected according to the optimum  value. Fig. 3 displays the 

corresponding averaged  values for each after the bootstrap 

0.632 algorithm. As mentioned above, this procedure was only 

applied to the training set. The maximum values of  for AB-

LDA2 and AB-CART2 (0.602 and 0.713, respectively) were 

reached at = 0.1 and = 0.6. Then the whole original 

training set was used along with these  values to train the 

AB-LDA2 and AB-CART2 models. AB-LDA2 ended after 53 

iterations (54 ≥ 0.5). Hence, 53 LDA models were taken into 

account for the final classification task. AB-CART2 reached 

the limit of learners established. Therefore, it was assessed in 

the bootstraps sets with more weak learners (500 to 1000). No 

improvement in  was reached. Consequently, the weighted 

votes of 400 CART models were used for the classification. 

For the case of the AB multiclass models (AB-LDA4 and 

AB-CART4), we optimized both the learning rate and the 

number of learners (up to 400) during the bootstrap procedure. 

Hence, for each value of between 0 and 1 (step=0.1) we 

varied the number of weak learners from 1 to 400 (step=10) in 

order to compute Fig. 4 displays the values of as a 

function of  and the number of weak learners. For AB-LDA4 

the optimum values were  = 1 along with 110 weak learners, 

whereas for AB-CART4, were  = 0.8 and 160 weak learners. 

2) Performance of the models 

Table IV shows the diagnostic ability of the binary models 

(test set). The highest values for Acc and  are shown in bold. 

AB-CART2 outperformed the other models in Se, Acc, and 

as well as reached the highest Sp along with LR. These 

results show its higher diagnostic performance. AB-LDA2 also 

improved the results from the classic event-detection 

algorithm and LR. However, the latter was more specific. 

Additionally, AB-LDA2 and AB-CART2 widely improved the 

performance of single models based on LDA and CART 

(LDA2 and CART2). The lowest performance was reached by 

the algorithm based on the event-detection approach. 

In the multiclass task, Table V displays the confusion matrices 

of each model, i.e., the model class estimation for each subject 

vs. their actual SAHS severity group. Notice that, since it is a 

binary classifier, LR was evaluated following the one vs. all 

strategy [41]. The overall accuracy (main diagonal) of the 

models and the event-detection algorithm was low in test set: 

event-detection 39.7%, LR 57.4%, AB-LDA4 60.3% (47.6 % 

in the case of a single LDA4 model), and AB-CART4 57.4% 

(54.8 % in the case of a single CART4 model). Classification 

of mild and moderate subjects was particularly poor for all the 

models. In contrast to the overall accuracy, the diagnostic 

performance increases when assessing the predictions of the 

models in each of the AHI severity cutoffs (5 e/h, 15 e/h, and 

30 e/h). Table VI displays such performance for the multiclass 

models and the event-detection algorithm. Consistent with the 

overall accuracy, values are low. However, high diagnostic 

accuracies are reached by AB-LDA4 and AB-CART4. They 

outperformed LR and the event-detection algorithm in terms 

of Acc and when assessing the three AHI cutoffs. Finally, 

AB-LDA4 widely improved the overall performance of single  

 

 
Fig. 3 Optimum  configuration for AB-LDA2 and AB-CART2 (obtained 

after bootstrap process). 
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LDA4, as well as the Acc for each AHI cutoff. AB-CART4 

also improved the overall performance of CART4, as well as 

the Acc for 5 e/h and 30 e/h. However, CART4 outperformed 

the Acc of AB-CART4 when considering 15 e/h as the AHI 

cutoff. 

V. DISCUSSION AND CONCLUSIONS 

In this paper, new methodologies to help in SAHS diagnosis 

have been proposed. Binary and multiclass AB models, 

composed of LDA and CART classifiers, have been evaluated 

to distinguish SAHS and its severity. Their performances were 

compared with a conventional approach (event-detection 

algorithm) and the classic LR classifier, both of them applied 

to our own database. AB outperformed these, showing high 

diagnostic ability.   

Spectral and non-linear data, extracted from single-channel 

AF from NPP, were the only source of SAHS-related 

information used to feed the models. The spectral analysis 

showed significantly higher spectral power (Mf1) and power 

spectral density (MA and mA) in the 0.025-0.050 Hz. 

frequency band as SAHS severity increased. Since we 

normalized the PSD values, these measures are related to a 

higher occurrence of the apneic events, and not with their 

amplitude. This supports these features as SAHS severity 

dependents. Dispersion (Mf2) in the PSDn values at BW was 

also significantly higher as SAHS worsened, suggesting a 

more heterogeneous occurrence of apneic events throughout 

the frequencies within BW. Finally, the non-linear analysis 

showed significantly higher variability (lower CTM values) 

when SAHS severity increased. This is consistent with our 

initial assumption that the more severe SAHS the more 

changes in the respiratory pattern and, consequently, the 

higher variability in AF. These five features were selected by 

FCBF. Although Mf2, SpecEn, MF, LZC, and SampEn did not 

show discriminative power to distinguish SAHS severity, they 

were also automatically chosen, suggesting their usefulness by 

providing complementary information. Moreover, spectral and 

non-linear features were included in the 10-feature FCBF 

optimum set, which indicates that one analysis complement 

the other, as suggested in previous studies involving AF from 

thermistor [17], [18]. 

AB-CART2 achieved the highest Acc and  values for the 

binary (AHI cutoff = 10 e/h) classification task (86.5% Acc,  

 

 

TABLE IV  

DIAGNOSTIC ABILITY OF THE BINARY MODELS IN THE TEST SET 

Models Se (%) Sp (%) Acc (%) 

Event-detec. 75.8 54.3 69.0 0.286 

LR 83.5 
 

80.0 82.5 0.593 

LDA2 72.5 74.3 73.0 0.410 

CART2 85.7 68.6 81.0 0.593 

AB-LDA2 86.8 77.1 84.1 0.618 

AB-CART2 89.0 80.0 86.5 0.672 

 

    
Fig. 4 Optimum  and number of weak learners for a) AB-LDA4 and b) AB-CART4 (obtained after the bootstrap process). 

TABLE V. CONFUSION MATRICES FOR EACH MODEL IN THE TEST SET. RESULTS FROM LDA AND CART SINGLE MODELS IN PARENTHESES. 

Estimated → 

Event-detection LR (one vs. all) AB-LDA4 (LDA4) AB-CART4 (CART4) 

no mild mod. severe no mild mod. sever

e 
no mild mod. severe no mild mod. severe 

A
ct

u
al

 no-SAHS 2 4 3 1 8 0 2 0 8 (8) 0 (0) 2 (2) 0 (0) 8 (7) 1 (2) 1 (1) 0 (0) 

mild 12 16 5 5 14 8 10 6 11 (13) 16 (7) 8 (13) 3 (5) 14 (16) 8 (11) 12 (9) 4 (2) 

moderate 1 5 5 5 3 3 4 6 3 (5) 4 (2) 6 (6) 3 (3) 3 (4) 2 (3) 6 (6) 5 (3) 

severe 3 17 15 27 2 1 7 52 1 (4) 3 (5) 12 (14) 46 (39) 0 (3) 3 (0) 9 (14) 50 (45) 

 
TABLE VI. DIAGNOSTIC ABILITY OF THE MULTICLASS MODELS IN THE TEST SET. RESULTS FROM LDA AND CART SINGLE MODELS IN PARENTHESES. 

 
Event-detection  LR (one vs. all)  AB-LDA4 (LDA4)  AB-CART4 (CART4)

5 15 30 



  



      

Se (%) 86.2 66.7 43.5 83.6 88.5 83.9 87.1 (81.0) 85.9 (79.5) 74.2 (62.9) 

 

85.3 (82.8) 89.7 (87.2) 80.6 (72.6) 

Sp (%) 20.0 70.8 82.8 80.0 62.5 81.3 80.0 (80.0) 72.9 (58.3) 90.6 (87.5) 80.0 (70.0) 64.6 (75.0) 85.9 (92.2) 

Acc (%) 81.0 68.3 63.5 83.3 78.6 82.5 86.5 (81.0) 81.0 (71.4) 82.5 (75.4) 84.9 (81.7) 80.2 (82.5) 83.3 (82.5) 

 0.152  0.370  0.432 (0.281)  0.381 (0.369) 
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0.672 ). In the multiclass classification, AB-LDA4 obtained 

86.5%, 81.0%, 82.5% Acc for 5 e/h, 15 e/h, and 30 e/h, 

respectively, as well as  = 0.432. It is worth noting that both 

AB-LDA4 and AB-CART4 reached high statistics when 

evaluating 5 e/h and 30 e/h. They outperformed the LR 

models, the single-model LDA and CART classifiers, as well 

as the event-detection algorithm. These cutoffs are particularly 

important. AHI = 5 e/h draws the line for the lower degree of 

SAHS. Furthermore, AHI = 30 e/h, which establish the 

boundary for the highest SAHS severity, has been associated 

with mortality [49], as well as suffices to recommend a 

treatment even in the absence of other symptoms [49]. In this 

regard, and according to Table V, 46 out of the 52 subjects 

(88.5 %) that the AB-LDA4 ensemble predicted as severe-

SAHS were rightly classified, whereas the remaining 6 

(11.5%) were mild- or moderate-SAHS, at least. Similarly, 50 

out of the 59 subjects (84.7%) that the AB-CART4 ensemble 

predicted as severe were indeed severe, with 0 subjects from 

the no-SAHS group falling within this class. 

Table VII summarizes performances from previous works 

focused on the use of single-channel AF from NPP to help in 

SAHS diagnosis [10], [13], [50]-[52]. All studies, except the 

present one, adopted an event detection approach. When 

assessing AHI = 10 e/h, only Wong et al achieved higher 

diagnostic performance than AB-CART2 [10], [51]. However, 

a small sample size was used to evaluate their proposals. 

Nakano et al detected apneic events in AF with the help of 

spectral analysis [50]. They reported higher Se (97.0%) but 

lower Sp (76.0%). Unfortunately, some data about the 

population under study, required to complete the comparison, 

were not reported by the authors. None of the studies, 

outperformed our AB-LDA4 model (86.5% Acc) in the 

assessment of AHI = 5 e/h. However, Nakano et al reported 

significantly higher Se (97.0%) [50]. Additionally, 

BaHammam et al and Nigro et al exhibited higher diagnostic 

ability when assessing AHI = 30 e/h [13], [52]. Nonetheless, 

their databases were composed of 95 and 90 subjects, 

respectively, in contrast to the 317 subjects involved in our 

study. Finally, all the studies performed similarly to our AB-

LDA4 model (81.0% Acc) when evaluating AHI = 15 e/h. 

Despite we have shown the utility of our proposal, some 

limitations need to be addressed. Although our sample is large 

(317 subjects), analyzing more recordings would enhance the 

statistical power of our results. Particularly, a more balanced 

proportion of the classes would be desirable for the sake of the 

model training. Nonetheless, our sample reflects a realistic 

proportion among the people who undergo the PSG test. 

Additionally, we applied the SMOTE technique to our data in 

order to compensate the imbalance. The single use of NPP to 

acquire AF may be another limitation. The AASM 

recommends using both NPP and thermistor for a proper 

quantification of the number of apneas and hypopneas [9]. 

However, our proposal does not rely on a classic event-

detection approach. In this regard, previous studies of our 

research group showed high diagnostic ability when 

evaluating data from single-channel AF acquired through a 

thermistor [17], [18]. Our current proposal has shown that 

using AF data from NPP is also possible in order to reach a 

high diagnostic performance. Another limitation arises 

regarding the redundant information removed by the FCBF 

algorithm. The features discarded share more information with 

the selected ones than with the AHI. However, the features 

selected might still share information with the others to some 

extent. The training time of the AdaBoost models is another 

limitation if we compare it with simpler methodologies such 

as logistic regression. However, once the models are trained, 

the runtime after they are applied to new data is trivial. 

Finally, since we propose an automatic procedure with 

potential to reach diagnosis in few minutes after data 

collection, it would be of great interest if future works could 

address the assessment of our methodology embedded in a 

diagnostic test at patient’s home. It would be also interesting 

the implementation and assessment of a multiclass logistic-

regression based AdaBoost algorithm. 

To the best of our knowledge, this is the first time that the 

AB algorithm is used along with spectral and nonlinear 

features from single-channel AF to help in SAHS diagnosis. 

Our AB proposals for binary and multiclass classification 

outperformed the classic LR as well as a conventional event-

detection algorithm, both of them applied to our own database. 

The new AB-CART2 and AB-LDA4 models achieved high 

diagnostic ability compared with the state of the art. 

Additionally, we showed that it is possible to achieve high 

diagnostic ability by the use of spectral and nonlinear data 

from NPP AF. These results highlight the usefulness of our 

proposal when detecting SAHS and its severity. 
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C.1. Introducción: problemática del síndrome de la apnea-
hipopnea del sueño

El síndrome de la apnea-hipopnea del sueño (SAHS) es una enfermedad que
se caracteriza por la aparición de eventos de cese total (apneas) y disminución
signi�cativa (hipopneas) de la respiración durante el sueño. La recurrencia de
apneas e hipopneas conduce a una ventilación de�ciente caracterizada por hipo-
xia e hipercapnia, que a su vez producen descensos en la saturación de oxígeno
en sangre (desaturaciones), microdespertares periódicos y, por tanto, fragmen-
tación del sueño. Como consecuencia, los pacientes de SAHS no son capaces
de conseguir un sueño reparador, lo que afecta enormemente a su calidad de
vida. Hipersomnolencia diurna, di�cultad para la concentración, disminución
de la memoria a corto plazo y depresión son algunos de los sintomas diurnos
presentes en los pacientes de SAHS. Además, el SAHS está asociado con gra-
ves patologías cardiovasculares y metabólicas como el fallo cardiaco, accidentes
cerebrovasculares, la muerte súbita y la diabetes. Recientemente, el SAHS tam-
bién ha sido asociado con un aumento en la incidencia del cáncer. Es por ello
que un diagnóstico rápido resulta fundamental para la mejora de la salud y la
calidad de vida de los pacientes.

El SAHS es una enfermedad muy prevalente, estimándose que la padecen
entre el 2% y el 7% de la población adulta, y hasta un 6% de los niños.
Además, se considera una afección muy infradiagnosticada, con una incidencia
creciente asociada a la epidemia de obesidad presente en los paises desarrolla-
dos. La polisomnografía nocturna (PSG), realizada en una unidad del sueño
especializada, es la prueba estándar para diagnosticar el SAHS. Sin embargo,
esta prueba resulta compleja técnicamente, debido al alto número de señales
�siológicas que deben registrarse, costosa económicamente, por el gasto deriva-
do de la hospitalización de los pacientes, y requiere mucho tiempo de análisis
posterior para alcanzar un diagnóstico. Éste se obtiene mediante el cálculo del
índice de apnea-hipopnea (apnea-hypopnea index, AHI), tras inspeccionar los
registros polisomnográ�cos. Además, la PSG priva al paciente de dormir en su
entorno de sueño habitual.

C.2. Alternativas a la polisomnografía

Las limitaciones de la PSG, junto con la alta prevalencia de la enferme-
dad y la insu�ciente disponibilidad de instalaciones especializadas, han llevado
a la búsqueda de formas de simpli�car el proceso de diagnóstico. Reducir su
complejidad es el factor clave para disminuir el coste asociado, la incomodidad
de los pacientes, y el tiempo necesario para alcanzar el diagnóstico. Además,
permitiría desarrollar estrategias que incluyeran la utilización de dispositivos
portátiles en el domicilio de los pacientes. Un enfoque habitual es el análisis
de un grupo reducido de señales de entre aquellas involucradas en la PSG. De
acuerdo con el número y tipo de señales analizadas los dispositivos utilizados
en los estudios del sueño se clasi�can del Tipo 1 al 4, siendo el primero la
PSG convencional, y el 4 un dispositivo que registra solamente 1 o 2 canales,
frecuentemente el �ujo aéreo (FA) y/o la desaturación de oxígeno en sangre
(SpO2). Por otro lado, un enfoque muy frecuente de los estudios dirigidos a la
simpli�cación de la prueba de diagnóstico es la detección de cada uno de los
eventos apneicos. En esta Tesis Doctoral se plantea el análisis automático de la
señal del FA monocanal como alternativa simple y �able a la PSG. Además, se
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propone el reconocimiento de patrones como principal técnica para el diagnós-
tico automático del SAHS, incluyendo tanto su detección (clasi�cación binaria)
como la determinación de su severidad (clasi�cación multiclase y estimación
del AHI mediante regresión).

C.3. Hipótesis y objetivos

En la presente Tesis Doctoral se trabaja bajo la hipótesis general de que
es posible reducir la complejidad de la prueba diagnóstica del SAHS mediante
el reconocimiento de patrones automático en el FA. De acuerdo con dicha hi-
pótesis, el objetivo principal de la tesis es el análisis exhaustivo de la señal
de FA monocanal y la posterior evaluación de su capacidad diagnóstica. Para
llevarlo a cabo se han de�nido varios objetivos especí�cos:

i. Construir una base de datos con señales FA procedentes de sujetos sospe-
chosos de padecer SAHS.

ii. Revisar el estado del arte de métodos de procesado automático de señales
�siológicas, especialmente aquellos relacionados con la extracción y selec-
ción de características, así como con el reconocimiento de patrones.

iii. Seleccionar e implementar aquellos métodos que, de acuerdo con el estado
del arte, son más apropiados para su utilización en la ayuda al diagnóstico
del SAHS.

iv. Procesar las señales mediante los métodos implementados anteriormente.

v. Realizar análisis estadísticos de los resultados obtenidos para evaluar la
idoneidad de cada metodología aplicada a los registros, así como llevar a
cabo una evaluación del rendimiento general de la propuesta realizada.

vi. Comparar y discutir los resultados para extraer las conclusiones apropia-
das. Este objetivo incluye la comparación con los estudios del estado del
arte, la implementación de otros métodos clásicos en nuestra base de datos,
así como la aplicación de nuestra metodología a otras señales de referencia
ampliamente estudiadas.

vii. Publicar los principales resultados y conclusiones obtenidos en revistas de
impacto indexadas en el Journal Citation Reports.

C.4. Materiales

Durante la investigación se han analizado 4 bases de datos (3 de sujetos
adultos y 1 de sujetos pediátricos ), todas ellas provenientes de sujetos sospe-
chosos de padecer SAHS. La primera base de datos la forman 148 registros de
FA adquiridos con un termistor. La segunda base de datos está formada por
317 registros de FA obtenidos con una sonda de presión. Además, una tercera
base de datos la forman 188 señales de variabilidad de la frecuencia cardiaca
(heart rate variability, HRV). Por último, la última base de datos la forman
registros de FA (termistor) y SpO2 provenientes de 50 niños.

Los registros de sujetos adultos fueron adquiridos en la unidad del sueño
del Hospital Universitario Rio Hortega de Valladolid (HURH), mientras que
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los correspondientes a sujetos pediátricos se obtuvieron en el domicilio de los
pacientes como parte de las investigaciones de la unidad de desórdenes respira-
torios del sueño del Hospital Universitario de Burgos (HUBU). Los especialistas
médicos establecieron el diagnóstico de cada paciente en base al AHI obtenido
de la PSG. Tanto en el caso de los niños como en el de los adultos, se siguie-
ron las reglas de la Academia Americana de Medicina del Sueño (American
Academy of Sleep Medicine, AASM) para detectar los eventos apneicos [18].
Para determinar tanto el SAHS como su severidad se utilizan umbrales de AHI
comunes como 5, 10, 15 y 30 eventos/hora (e/h) [18, 35, 91]. El umbral de 10
e/h ha sido ampliamente utilizado para determinar la presencia o ausencia del
SAHS [35, 74, 91]. Además, los grados de severidad del SAHS se de�nen como:
no SAHS (AHI<5), SAHS leve (5≤AHI<15), SAHS moderado (15≤AHI<30)
y SAHS severo (AHI≥30) [101]. En sujetos pediátricos, AHI = 3 e/h es un
umbral común para establecer la presencia del SAHS [6]. Todos los sujetos
adultos, así como los responsables legales de los sujetos pediátricos, dieron su
consentimiento informado para participar en el estudio. Los comités éticos del
HURH y del HUBU aceptaron los correspondientes protocolos para llevarlo a
cabo. Las siguientes tablas muestran los datos demográ�cos y clínicos de los
sujetos involucrados en las 4 bases de datos, incluyendo edad, índice de ma-
sa corporal (IMC) y porcentaje de sujetos masculinos. Los datos se presentan
divididos en SAHS-negativo (sujetos sin SAHS) y SAHS-positivo (sujetos con
SAHS) de acuerdo con los umbrales típicos en adultos (AHI = 10 e/h) y niños
(AHI=3 e/h).

C.5. Métodos

La metodología empleada para llevar a cabo estos objetivos se basa en tres
etapas fundamentales. La primera de ellas es la extracción de caracterís-
ticas, utilizada para obtener información sobre el SAHS en los registros de
FA. Las señales �siológicas se caracterizan por tener tanto comportamientos
deterministas como caóticos. Por ello, se han utilizado métodos de extracción
de características procedentes de distintos ámbitos como el análisis espectral y
el no lineal. El objetivo es que estos enfoques permitan una óptima caracteriza-
ción del SAHS mediante la obtención de información que se complemente entre
sí. La segunda etapa es la selección automática de características. El ex-
haustivo análisis realizado en la etapa anterior puede llevar a la extracción de
características no útiles para el diagnóstico del SAHS o que comparten la misma
información que las demás. Por ello, se ha implementado una etapa de selección

Tabla C1: Datos demográ�cos y clínicos de los sujetos de la base de datos de adul-
tos de FA (señales obtenidas mediante termistor), divididos en los grupos SAHS-
negativo y SAHS-positivo (media ± desviación típica). IMC: índice de masa corporal.
AHI: índice de apnea hipopnea.

Todos SAHS-negativo SAHS-positivo

Sujetos (n) 148 48 100
Hombres (n) 117(79,0%) 32(66,7%) 85(85,0%)
Edad (años) 50,9± 11,7 48,8± 12,1 51,9± 11,4

IMC (Kg/m2) 29,1± 4,6 27,6± 4,9 29,9± 4,7
AHI (e/h) − 4,0± 2,4 32,9± 24,3
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Tabla C2: Datos demográ�cos y clínicos de los sujetos de la base de datos de adultos
de FA (señales obtenidas mediante sonda de presión), divididos en los grupos
SAHS-negativo y SAHS-positivo (media ± desviación típica). IMC: índice de masa
corporal. AHI: índice de apnea hipopnea.

Todos SAHS-negativo SAHS-positivo

Sujetos (n) 317 110 207
Hombres (n) 226(71,3%) 68(61,8%) 158(76,3%)
Edad (años) 49,9± 12,0 47,6± 12,9 51,1± 11,4

IMC (Kg/m2) 28,1± 5,2 26,5± 5,0 29,0± 5,1
AHI (e/h) − 6,0± 2,6 39,9± 25,9

Tabla C3: Datos demográ�cos y clínicos de los sujetos de la base de datos de niños de
FA (señales obtenidas mediante termistor), divididos en los grupos SAHS-negativo
y SAHS-positivo (media ± desviación típica). IMC: índice de masa corporal. AHI: índice
de apnea hipopnea.

Todos SAHS-negativo SAHS-positivo

Sujetos (n) 50 24 26
Hombres (n) 27(54,0%) 11(45,8%) 16(61,5%)
Edad (años) 5,3± 2,5 5,2± 2,4 5,4± 2,7

IMC (Kg/m2) 16,5± 2,5 16,1± 1,7 16,9± 3,0
AHI (e/h) − 1,3± 0,8 17,9± 15,4

Tabla C4: Datos demográ�cos y clínicos de los sujetos de la base de datos de adultos
deHRV divididos en los grupos SAHS-negativo y SAHS-positivo (media ± desviación
típica). IMC: índice de masa corporal. AHI: índice de apnea hipopnea.

Todos SAHS-negativo SAHS-positivo

Sujetos (n) 188 69 119
Hombres (n) 134(71,3%) 41(59,4%) 93(78,2%)
Edad (años) 50,7± 12,0 47,3± 11,5 52,7± 12,3

IMC(Kg/m2) 28,7± 4,7 28,0± 6,1 29,1± 3,7
AHI (e/h) − 3,8± 2,4 33,0± 22,9

de características que tiene como objetivo eliminar aquellas que son no relevan-
tes o redundantes. Para ello se han empleado dos enfoques distintos. El primero
es el conocido algoritmo forward-selection backward-elimination (SLR-FSBE),
que está íntimamente relacionado con el clasi�cador regresión logística. Se trata
por tanto de un método wrapper. El segundo es independiente del método de
reconocimiento de patrones aplicado posteriormente. Es por tanto un método
de �ltrado (fast correlation-based �lter, FCBF). Finalmente, la tercera etapa
es la de reconocimiento de patrones. En esta Tesis Dcotoral se ha utilizado
para obtener un diagnóstico automático mediante la aplicación de diferentes
métodos de clasi�cación y regresión a los datos obtenidos y seleccionados en
etapas anteriores. El objetivo de esta estapa ha sido la determinación de la
presencia o ausencia del SAHS (clasi�cación binaria), la clasi�cación de los su-
jetos en uno de los cuatro grados de severidad de la enfermedad (clasi�cación
multiclase) y la estimación del AHI (regresión). Este enfoque contrasta con el
seguido de forma común en el estado del arte, cuyos principales estudios están
centrados en la detección de cada uno de los eventos apneicos de los registros.
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C.6. Resultados y discusión

Tras la aplicación al FA monocanal de nuestra metodología de análisis auto-
mático, se ha mejorado el rendimiento diagnóstico de un algoritmo de detección
de eventos clásico aplicado a nuestras bases de datos. Así, en clasi�cación bina-
ria, un modelo basado en la técnica de ensemble learning AdaBoost, construido
con árboles de decisión, obtuvo 89.0% de sensibilidad (S), 80.0% de especi�ci-
dad (E), 86.5% de precisión (P), 0.950 de área bajo la curva receiver-operating
characteristics (AROC) y 0.672 de la κ de Cohen, frente a 75.8% S, 54.3%
E, 64.0% P, 0.635 AROC y 0.286 κ de dicho algoritmo clásico. En cuanto a
la clasi�cación multiclase, otro modelo AdaBoost, construido con clasi�cado-
res basados en análisis discriminante lineal, obtuvo precisiones diagnósticas del
86.5%, 81.0% y 82.5% al ser evaluado en cada uno de los cortes del AHI que
establencen los 4 grados de severidad del SAHS (AHI = 5 eventos/hora, 15
e/h y 30 e/h). El algoritmo clásico alcanzó peor rendimiento diagnóstico para
cada umbral: 81.0%, 68.3% y 63.5%, respectivamente. Por último, en cuanto
a la estimación del AHI mediante regresión, un modelo de red neuronal arti�-
cial basado en el método multi-layer perceptron (MLP) obtuvo un coe�ciente
de correlación intra-clase (ICC) de 0.849, precisiones diagnósticas de 79.7%,
91.5%, 79.7% y 88.1% para los AHI = 5 e/h, 10 e/h, 15 e/h y 30 e/h, res-
pectivamente, cada uno de ellos asociados además a un AROC de 0.903, 0.956,
0.904 y 0.973. Por el contrario, el algoritmo de detección de eventos alcanzó
0.840 ICC, y unas precisiones diagnósticas correspondientes de 79.7% (0.823
AROC), 78.0% (0.833 AROC), 66.1% (0.867 AROC) y 74.6% (0.982 AROC).

La Tabla C.5 muestra los resultados obtenidos en los principales estudios
del estado de la técnica. Además, la Tabla C.6 resume los mejores resultados
mostrados en esta Tesis Doctoral para el caso de sujetos adultos. Como pue-
de observarse, nuestro enfoque se encuentra entre los que mayor rendimiento
diagnóstico obtienen, comparado con los estudios que implementan un enfoque
de detección de eventos en el FA, así como con los estudios centrados en las
señales HRV y SpO2.

Por otro lado, nuestra metodología aplicada a registros FA domiciliarios de
pacientes pediátricos mostraron un mejor rendimiento que el índice de desatura-
ción de oxígeno (oxygen desaturation index, ODI), común en la práctica clínica.
Además, la combinación de la información espectral de dichos registros con el
ODI mediante regresión logística obtuvo 85.9% S, 87.4% E, 86.3% P, y 0.947
AROC. Como puede verse en la Tabla C.7 estos resultados mejoran los obte-
nidos por los estudios del estado de la técnica centrados en sujetos pediátricos.

C.7. Conclusiones

De acuerdo con todo lo anteriormente expuesto, en esta Tesis Doctoral se
han alcanzado las siguientes conclusiones principales:

1. Las técnicas de reconocimiento de patrones aplicadas sobre la señal FA mo-
nocanal son útiles para mejorar el proceso automático del diagnóstico del
SAHS.

2. Se puede alcanzar un alto rendimiento diagnóstico a través del análisis au-
tomático de la señal FA monocanal independientemente de que ésta haya
sido adquirida mediante un termistor o una sonda de presión.
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Tabla C5: Resumen de la capacidad diagnóstica mostrada por los principales estu-
dios del estado de la técnica. S: sensibilidad (%); E: especi�cidad (%); P (%): precisión;
AROC: area bajo la curva ROC; Ter: termistor; SP: sonda de presión. PSG: polisomno-
grafía. ∗: estimado a partir de los datos del estudio; -: sin datos su�cientes para estimar;
H-O: validación hold-out (entrenamiento y test); loo: validación cruzada dejando uno fuera
(leave-one-out cross-validation); k -fold: validación cruzada k -fold (k-fold cross-validation).
SVM: máquinas de vector soporte (support vector machines); MLP: perceptron multicapa
(multi-layer perceptron); LDA: análisis discriminante lineal (linear discriminant analysis);
QDA: análisis discriminante cuadrático (quadratic discriminant analysis); KNN: K vecinos
más cercanos (K-nearest neighbors). E-D: detección de eventos.

Estudio Mét. Señal n
umbral

AHI
Valid. S E P AROC

Shochat et al [116] E-D AF(Ter) 288 10 PSG 86.0 57.0 - -
Gergely et al [54] E-D AF(Ter) 83 15 PSG 71.9 73.1 72,3∗ -
Nakano et al [89] E-D AF(Ter) 216 5 H-O 88.0 80.0 - 0.950

10 92.0 90.0 - 0.960
15 86.0 90.0 - 0.950

Nakano et al [89] E-D AF(SP) 217 5 H-O 97.0 77.0 - 0.950
10 97.0 76.0 - 0.970

15 97.0 73.0 - 0.980

De Almeida et al E-D AF(SP) 30 5 PSG 86.4 75.0 83,3∗ 0.886
[35] 10 85.7 87.5 86,7∗ 0.915

15 83.3 83.3 83,3∗ 0.898
Erman et al [41] E-D AF(SP) 59 5 PSG 85.4 50.0 74,6∗ 0.863

10 82.1 83.9 83,1∗ 0.862
15 90.9 94.6 93,2∗93,2∗93,2∗ 0.977

Chen et al [28] E-D AF(SP) 50 5 PSG 97.7 66.7 94,0∗ 0.951
15 87.5 88.9 88,0∗ 0.944
30 88.2 93.9 90,0∗90,0∗90,0∗ 0.955

Rofail et al [111] E-D AF(SP) 200 5 PSG 94.0 62.0 87,0∗ 0.840
30 90.0 89.0 89,5∗ 0.960

BaHammam et al E-D AF(SP) 95 5 PSG 79.0 68.0 77,9∗ 0.854
[14] 10 70.0 89.0 75,8∗ 0.856

15 65.0 94.0 75,8∗ 0.805
30 63.0 98.0 83,2∗ 0.878

Roche et al [107] Tree HRV 147 10 k -fold 64,2∗ 75,6∗ 69,3∗ -
Al-Angari et al [5] SVM HRV 100 5 - 79.6 78.4 79.0 -

Ravelo-García LR HRV 97 10 k -fold 88.7 82.9 86,6∗ 0.941
et al [103]

Marcos et al [85] MLP SpO2 187 10 H-O 89.8 79.4 85.5 0.900
Marcos et al [84] LDA SpO2 187 10 H-O 86.6 80.4 84.1 0.925

QDA 91.1 78.3 85.8 0.913
KNN 88.1 84.8 86.7 0.822
LR 85.1 87.0 85.8 0.930

Álvarez et al [9] LR SpO2 148 10 loo 92.0 85.4 89.7 0.967
Marcos et al [83] MLP SpO2 240 5 H-O 91.8 58.8 84.0 -

10 89.6 81.3 86.8 -

15 94.9 90.9 93.1 -
Álvarez et al [10] SVM SpO2 320 10 H-O 95.2 80.0 84.5 -
Al-Angari et al [5] SVM SpO2 100 5 - 91.8 98.0 95.0 -
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Tabla C6: Resumen de los métodos de este estudio que alcanzaron el mayor rendi-
miento diagnóstico en las bases de datos de adultos para clasi�cación binaria, classi�-
cación multiclase y regresión. S: sensibilidad (%); E: especi�cidad (%); P (%): precisión;
AROC: area bajo la curva ROC; Ter: termistor; SP: sonda de presión. w: mujeres. -: sin da-
tos su�cientes para estimar; H-O: validación hold-out (entrenamiento y test); loo: validación
cruzada dejando uno fuera (leave-one-out cross-validation)

Método Señal n
umbral

AHI
Valid. S E P AROC

AB − CART AF(NP) 317 10 H-O 89.0 80.0 86.5 0.935
(binario)[62]

LRw [63] HRV 54 10 loo 80.8 89.3 85.2 0.951

AB − LDA AF(NP) 317 5 H-O 87.1 80.0 86.5 -
(multi)[62] 15 85.9 72.9 81.0 -

30 74.2 90.6 82.5 -

MLP [64]
AF,

RRV(Th) 148 5 H-O 91.7 27.3 79.7 0.903

10 92.5 89.5 91.5 0.956
15 83.9 75.0 79.7 0.904
30 88.9 88.0 88.1 0.973

Tabla C7: Resumen de la capacidad diagnóstica mostrada por los principales estu-
dios del estado de la técnica centrados en SAHS pediátrico. S: sensibilidad (%); E:
especi�cidad (%); P (%): precisión; AROC: area bajo la curva ROC; PSG: polisomnografía;
PPG: fotopletismografía (photopletysmography); PRV: variabilidad del ritmo de pulso (pulse
rate variability). ∗: estimado a partir de los datos del estudio; -: sin datos su�cientes para
estimar; loo: validación cruzada dejando uno fuera (leave-one-out cross-validation).

Estudio Señal n
umbral

AHI
Valid. S E P AROC

Shouldice et al. [117] HRV 50 1 loo 85.7 81.8 84.0 0.830
Rembold and Suratt
[104] Sonidos 26 3 - 61.5∗ 100∗ 80.8∗ -

Gil et al. [56] PRV 21 5 loo 75.0 85.7 80.0 -
Spruyt and Gozal
[119]

- 1133 3 PSG 59.0 82.9 - 0.790

Kadmon et al. [73] - 85 5 PSG 83.0 64.0 70.6∗ 0.650
Chang et al. [25] SpO2 141 5 PSG 60.0 86.0 71.6∗ -
Garde et al. [53] SpO2+PRV 146 5 k -fold 83.6 88.4 84.9 0.860
LRAF+ODI AF+ SpO2 50 3 loo 85.9 87.4 86.3 0.947

3. Nuestra propuesta, basada en el análisis exhaustivo y automático de la señal
FA monocanal, mejora el rendimiento diagnóstico de un algoritmo clásico de
detección de eventos aplicado sobre nuestras propias bases de datos. Además,
nuestra propuesta mostró un alto rendimiento diagnóstico en comparación
con estudios del estado de la técnica que también aplicaron el enfocque de
detección de eventos.

4. El método de ensemble learning AdaBoost, mejora los modelos LDA, CART,
y LR, tanto en la clasi�cación binaria (AB-CART) como en la clasi�cación
multiclase (AB-LDA). La red neuronal MLP alcanza el mayor rendimiento
diagnóstico en la estimación del AHI, mejorando los métodos MLR y RBF.
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5. Los enfoques lineal y no lineal, implementados como análisis en el dominio
de la frecuencia y en el del tiempo, ofrecen información complementaria para
caracterizar el SAHS.

6. La señal FA monocanal muestra un mayor potencial diagnóstico que la señal
HRV, tanto en el caso de la aplicación de la misma metodología (nuestro
enfoque aplicado sobre la señal HRV) como en el caso de estudios del estado
de la técnica también centrados en dicha señal.

7. La información espectral de los registros FA obtenidos en el domicilio de los
pacientes es de utilidad para el diagnóstico del SAHS en niños.

8. La combinación de la información espectral del FA y el ODI es de utilidad
para diagnosticar de manera precisa el SAHS en niños en el domicilio de los
pacientes.

En resumen, se ha caracterizado el SAHS a partir de la información extraída
del FA monocanal. Ésta fue útil para construir modelos de reconocimiento de
patrones con capacidad para alcanzar un alto rendimiento diagnóstico. Nuestra
propuesta superó el enfoque de detección de eventos y mostró un alto rendi-
miento diagnóstico en comparación con los principales estudios del estado de la
técnica. Estos resultados sugieren que la prueba diagnóstica del SAHS puede
ser simpli�cada de manera �able mediante el uso del análisis automático del
FA monocanal.
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