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Second-order numerical integration
of a size-structured cell population model

with equal fission

O. Angulo∗, J. C. López-Marcos† and M. A. López-Marcos†

Abstract— In this work we present a second-order numerical method, based on the integration along the characteristic curves,
for the approximation of the solution to a population model describing the evolution of a size-structured cell population with
equal fission. This method is used to approximate the stable size distribution of the model.
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1 Introduction

Structured population models describe the evolution of a pop-
ulation by means of the individuals’ vital properties (growth,
fertility, mortality, etc.) which depend on individual physiolog-
ical characteristics (structuring variables such as age or size).
Structured models in cell populations dynamics were consid-
ered for the first time in the sixties (see, for example, [6, 9]).
However, this subject has been developed rapidly [14, 10, 15].

When reproduction occurs by fission it seems appropriate to
take into account the size of individuals (by which we mean
any relevant quantity, like weight, satisfying a physical conser-
vation law).

One of the most important issues in the modelization is whether
or not exists a stable size distribution, and many efforts were
directed towards describing the most general models will still
exhibit a stable type distribution property [5].

Here we consider a model for the growth of a size-structured
cell population reproducing by fission into two identical daugh-
ters proposed by Diekmann et al. [8].

In general, physiologically structured population models are
difficult to solve. Although theoretical properties of the models
such as existence, uniqueness, smoothness of solutions, long-
time behaviour (with the study of steady states and their stabil-
ity) could be studied without a solution expression, the knowl-
edge of their qualitative or quantitative behaviour in a more
tangible way is sometimes necessary. Therefore, numerical

methods provide a valuable tool to obtain such information.
In the case of general structured population models, many nu-
merical methods have been proposed to solve them (see [1, 2]
and references therein). In the case of cell population balance
models different techniques have been used (see, for example,
the works of Mantzaris et al. [11, 12, 13]).

In this work we present a second-order characteristics method,
developed and analyzed in [4], based on the discretization of
the integral representation of the solution to the problem along
the characteristic curves. Second-order methods maintain a
good compromise between the required smoothness of the vital
functions based on realistic biological data and the efficiency
of the numerical schemes.

2 The model

In the size-structured cell population model proposed by Diek-
mann et al. [8], the reproduction is given by the fission of the
cell in two equal parts. In this model, cell does not divide until
it reaches a minimal size a > 0. This means that there is a
positive minimum cell-size a

2 . On the other hand, there must
be a maximal size, normalized to 1, at which point every cell
might divide or die. It is also supposed that the environment is
unlimited and all possible nonlinear mechanisms are ignored.
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The problem is given by a conservation law
(1)

ut(x, t) + (g(x)u(x, t))x = −µ(x)u(x, t)

−b(x)u(x, t) + 4 b(2x)u(2x, t),
a

2
< x < 1, t > 0,

a boundary condition

(2) u
(a

2
, t
)

= 0, t > 0,

and an initial size distribution

(3) u(x, 0) = ϕ(x),
a

2
≤ x ≤ 1.

The independent variables x and t represent size and time, re-
spectively. The dependent variable u(x, t) is the size-specific
density of cells with size x at time t and we assume that the
size of any individual varies according to the following ordi-
nary differential equation

(4)
dx

dt
= g(x).

The nonnegative functions g, µ and b represent the growth,
mortality and division rate, respectively. These are usually
called the vital functions and define the life history of the in-
dividuals. Note that all of them depend on the size x (the in-
ternal structuring variable). Here, we should note that the term
4 b(2x)u(2x, t) is interpreted as zero whenever x ≥ 1

2 . We
perform this feature with the use of functions u and b extended
with the value zero on the interval [1, 2]. Condition (2) reflects
that cells with a size less than a

2 cannot exist and is a conse-
quence of the fact that cells only divide after the minimal size
a > 0.

In accordance with accepted biological point of view, there
exists a maximum size. This means that cells will divide
or die with probability one before reaching it. To this end,
if µ and b are positive and bounded functions, we consider
a growth function, introduced by Von Bertalanffy, satisfying
limx→1

∫ x
a/2

ds
g(s) = +∞. Note that if g is a continuous

function defined in
[
a
2 , 1
]

then this hypothesis implies that
g(1) = 0. Moreover, the solution to the problem must sat-
isfy u(1, t) = 0, t > 0, because we suppose that initially there
are no cells of maximum size [7].

3 Numerical method

In [3], two useful first-order schemes were proposed to obtain
the solution to (1)-(3). It is known that low-order of conver-
gence would produce a lack of efficiency which could be re-
duced with higher order methods. However, the smoothness
of the solution to (1)-(3) is not as high as these last schemes
demand. Thus, second-order methods present a good balance:
they enhance the efficiency even with a lack of regular data.

In [4], we develop a novel characteristics method based on the
discretization of the integral representation of the solution to

the problem along the characteristic curves. This procedure
was previously used in [3] for this problem, obtaining a valu-
able first-order method, but now, in order to obtain a second-
order scheme, we consider a different discretization of the in-
tegral representation to the solution.

Therefore, we define µ∗(x) = g′(x) + µ(x) + b(x) and de-
note by x(t) = x(t; t∗, x∗) the characteristic curve of the equa-
tion (1) which takes the value x∗ at the time instant t∗. It is the
solution to the following initial value problem

(5)





d

dt
x(t) = g(x(t)), t > t∗,

x(t∗) = x∗.

In this way, the solution to (1) is given by
(6)
u(x(t), t) = u(x∗, t∗) e−

∫ t
t∗
µ∗(x(τ)) dτ

+4
∫ t
t∗

e−
∫ t
τ
µ∗(x(s))dsb(2x(τ))u(2x(τ), τ)dτ, t ≥ t∗.

Note that, in this new layout, we have to solve two types of
problems: the integration of the equation that defines the char-
acteristic curves (5) and the solution to equations (6) which
provides the solution to the problem along the characteristics.
We use discretization procedures in order to solve them.

We consider the numerical integration of model (1)-(3) along
the time interval [0, T ]. Thus, given a positive integer N , we
define k = T

N and introduce the discrete time levels tn = nk,
0 ≤ n ≤ N . We begin with the integration of (5) which pro-
vides the grid on the space variable (size) of the method. This
grid is nonuniform and invariant with time because the growth
rate function is, explicitly, independent of the time variable.
However, note that it depends on time implicitly conditioned on
cell size. It is usually called the natural grid [1]. In this work,
we approximate such a grid by using a second-order scheme
for the numerical integration of (5): the modified Euler method
providing

x0 = a
2 ,

xj+1 = xj + k
2 (g(xj) + g(xj + kg(xj))) , 0 ≤ j ≤ J − 1.

Integer J represents the index of the last grid point computed at
the size interval and is chosen in order to satisfy the condition
1 − xJ ≤ K k, with K a suitable constant (we refer to [1] for
further details). Note that the points (xj , tn) and (xj+1, tn+1),
0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1, belong to the same nu-
merical characteristic curve. Finally, we fix the last grid point
xJ+1 = 1.

Then, denoting unj = u(xj , t
n), 0 ≤ j ≤ J + 1, 0 ≤ n ≤ N ,

let Unj be a numerical approximation to unj . We propose a one-
step method in order to obtain it. Therefore, starting from an
approximation to the initial data (3) of the problem, for exam-
ple, the grid restriction of the function ϕ, the numerical solu-
tion at a new time level is described in terms of the previous



Numerical integration of a cell population model with equal fission 227

one. Such a general step is obtained by means of the following
second-order discretization of (6). For 0 ≤ n ≤ N − 1,
(7)
Un+1
j+1 = e−

k
2 (µ∗(xj)+µ

∗(xj+1))
(
Unj + 2 k b(2xj) Ū

n
2·j
)

+2 k b(2xj+1) Ūn+1
2·(j+1), j = 0, . . . , J − 1.

In the previous expression, Ūn2·j and Ūn+1
2·(j+1), represent ap-

proximations to the solutions at sizes 2xj and 2xj+1 (not in-
cluded in the discrete grid), and times tn and tn+1, respec-
tively. So, in order to keep the second order, we compute them
by linear interpolation based on the nearest grid points. More
precisely, for the computation of Ūm2·l, approximation to the so-
lution at 2xl, and time tm, first we look for the index M so
that xM−1 < 2xl ≤ xM . Thus:

Ūm2·l =

{
UmM−1 +

UmM−UmM−1

xM−xM−1
(2xl − xM−1), if 2xl < 1,

0, if 2xl ≥ 1.

Obviously, the approximating values at the minimum and max-
imum sizes are

(8) Un+1
0 = Un+1

J+1 = 0.

The numerical procedure seems to be implicit. However, if we
compute the approximations at the new time level tn+1 down-
wards (that is, first Un+1

J+1 using (8), then Un+1
j+1 from J − 1 to

0 using (7), and finally Un+1
0 using (8)), it results in an explicit

procedure. The reason is that the right hand side values in (7)
corresponding to the time tn+1 are either zero or previously
computed.

Assuming that the vital function g, µ and b and the solution u
are sufficiently smooth, we show the second-order convergence
of the numerical method [4].

4 Numerical experiments

In [4] we shown the robustness of the numerical method (7)-(8)
in different situations. Here we present the results obtaining
with one of the test problems presented in [3] in order to study
its stable size distribution u∗(x).

Note that

(9) u(x, t) ≈ C eσ t u∗(x),

∫ 1

a/2

u∗(x) dx = 1,

where σ is the Malthusian parameter (intrinsic rate of natu-
ral increase). Both u∗(x) and σ do not depend on the initial
condition and only the constant C depends on ϕ. In [8], Diek-
mann et al. proved the existence of a stable size distribution if
g(2x) < 2 g(x). Here we compute an approximation to the sta-
ble size distribution by using the numerical solution obtained
with the numerical method.

From (9) we can write

(10)
u(x, t)∫ 1

a/2
u(x, t) dx

≈ u∗(x).

So, from the numerical solution computed by (7)-(8), and ap-
proximating the integral on the left hand size of (10) by means
of the composite trapezoidal rule, we can describe the evolu-
tion of the frequency of the cell volume distribution, which
approaches the stable size distributions as

(11)
Unj∑J

j=0
xj+1−xj

2

(
Unj + Unj+1

) ≈ U∗j .

In the simulation we consider the minimum size at which a
cell divides as a = 1

4 . We suppose that there is no cellular
death, therefore µ(x) = 0, and we choose the size-specific
growth rate as g(x) = 0.1 (1− x). The size-specific division
rate function is

b(x) =





0, if x ∈
[

1
8 ,

1
4

]
,

g(x)
φb(x)

1−
∫ x

1/4
φb(s) ds

, if x ∈
[

1
4 , 1
]
,

where we have considered that each cell has a stochastically
predetermined size at which fission has to occur, which is given
by a probability density φb [14]. In this case

φb(x) = λ





(
x− 1

4

)3
, if x ∈

[
1
4 ,

5
8

]
,

459
4096− 9

4

(
x− 13

16

)2
+16

(
x− 13

16

)4
, if x ∈

[
5
8 , 1
]
,

and λ = 81920
3159 . Finally, we have considered different initial

conditions, but we present the results obtained in this simula-
tion with ϕ(x) =

(
x− 1

8

)3
(1− x)

3.

We have carried out an extensive numerical experimentation
with different final-times T and step-sizes k. We observe that
T = 200 produces a sufficiently long time simulation in order
to provide the stable size distribution by means of (11). For the
step-size k = 0.01 we obtain the stable size distribution pre-
sented in Figure 1, and the value of the Malthusian parameter
σ = 0.061392. The computed value C associated to the grid
restriction of the initial data ϕ is C = 0.002694.
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Figure 1: Numerical stable size distribution. T = 200.
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