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a b s t r a c t

In this paper, an efficient numerical method for the approximation of a nonlinear size-
structured populationmodel is presented. The nonlinearity of themodel is given by depen-
dency on the environment through the consumption of a dynamical resource. We

∧
analyse

the properties of the numerical scheme and optimal second-order convergence is derived.
We report experiments with academical tests to demonstrate numerically the predicted
accuracy of the scheme. The model is applied to solve a biological problem: the dynamics
of an ectothermic population (thewater flea,Daphniamagna).We

∧
analyse its long time evo-

lution and describe the asymptotically stable steady states, both equilibria and limit cycles.
© 2014 Elsevier Ltd. All rights reserved.

1. Introduction1

In nature we observe that some physiological characteristics, like age, level of satiation (of a predator), energy reserves2

or the body size of the individual, play an important role in its behaviour. Physiologically structured population models ex-3

press the dynamics of the population in terms of the processes taking place at the basic unit (individual level) considering4

physiological differences. They describe the changes in the number of individuals of a population due to growth, death and5

reproduction and reflect the effect of the physiological state of the individuals on the population dynamics.6

Unlimited population growth does not exist either. A population influences its environment and therefore its own be-7

haviour. In addition, many biological feedback loops can only be described properly in terms of the interaction of the8

physiological processes within the individuals (e.g. the availability of food). Consequently, the use of nonlinear structured
∧

9

population models is an ideal tool to give a realistic mathematical formulation of density dependence. They allow us to take10

into account the effect of competition for natural resources in the structured-specific growth, mortality and fertility rates.11

In this paper, we study a situation inwhich the vital rates are influenced by the availability of food in the environment, for12

which the individuals in the population compete. The dynamics of food density is determined by two processes: the regen-13

eration of the foodwithin the environment (whichmodels the changes in the food density in the absence of any consumers)14

and the feeding by the individuals of the physiological structured population. It could be explained as a predator–preymodel15

in which the predator is considered physiologically structured and the prey is unstructured. A similar theoretical framework16

could be foundwhenwe try to model the dynamics of a cellular population for a continuously stirred batch culture in a tank17

reactor [1]. In this case, the model includes a different integral termwhich takes into account how cells divide. With respect18

to individual growth rate, a fraction of the ingested food is
∧
channelled to maintenance and growth. The necessity of main-19

tenance could make this quantity negative. Therefore, the animal shrinks in fact (sea-anemones, flatworms, water fleas,20

∧
etc.) [2–4].21
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Theoretical analysis of these kinds of problems is highly difficult. With respect to models with a nonlinear dependence 1

on weighted populations, the analysis of existence and uniqueness was proven in [5]. Calsina et al. [6] made an in depth 2

theoretical study in two settings: a finite and infinite size range, although it was made only in the case of the nonlinear au- 3

tonomous case. It was pointed out in [4], that for an analysis ofmodels that involves a dynamical resourcewe had to perform 4

as carried out in [6]. The study of this theoretical framework appeared first in a Thieme’s presentation http://math.la.asu. 5

edu/∼dieter/workshop/schedule.html. Nevertheless, a problemwith only positive growth was analysed in [7]. They showed 6

stability properties and bifurcation phenomena within a study of the renewal equation for the consumer population birth 7

rate coupled to a delay differential equation for the resource concentration. We can find an extensive study of physiolog- 8

ically structured population models, with analytical studies of aspects such as existence and uniqueness, smoothness and 9

the asymptotic behaviour of solutions in [8,2,9,10,4]. 10

Often, models such as those discussed above cannot be solved analytically and require numerical integration to obtain an 11

approximation to the solution. Nevertheless, standard numerical methods cannot be indiscriminately applied, because they 12

could lead to inaccurate results and, therefore, wrong conclusions. We could introduce the following examples. We showed 13

that the application of a non A-stable numerical method for the simulation to this problem in [11] was not suitable for the 14

approximation of its asymptotically stable steady state. Some spurious oscillations occur if we use a wrong choice of the 15

numerical integrator [12]. The choice of the selection procedure makes the approximation to singular asymptotically stable 16

steady states better [13]. Also, the lack of regularity of the solution plays an essential role in using an ad hoc method [14]. 17

The numerical solution to themodel, due to its obviousmathematical complexity, entails a serious challenge. De Roos [3] 18

introduced a semidiscrete method, the ‘‘escalator boxcar train’’, in terms of momenta of the original density function. How- 19

ever, it did not provide a direct approximation to the density function and its convergence has not yet been considered yet. 20

In [15], we consider a direct integration of the system by means of a version of a numerical method, successfully employed 21

in [11], to obtain this missing information. Nevertheless, it was shown that some numerical methods were not appropri- 22

ate for a long-time integration. In that work, we presented a new suitable numerical method based on the modified Euler 23

method and themid-point quadrature rule. On the other hand, amodification of such a numerical procedurewas introduced 24

in [13] in order to approximate singular asymptotic states for these kinds of models. Details about the numerical integration 25

of physiologically-structured population models can be found in [16] and the references therein. 26

On the other hand, numerical methods for the solution to these kinds of models have been successfully applied to struc- 27

tured models to replicate the available field and/or laboratory data for a variety of different systems: rotifers [17,18], where 28

we showed the existence of an asymptotic stable equilibrium state and the existence of a stable periodic solutionwith ad hoc 29

schemes due to the lack of regularity of the problem; slugs [19], in which we studied equilibrium and oscillatory solutions 30

of a general mass structured systemwith a boundary delay: the numerical calculations revealed oscillations, pulse solutions 31

and irregular dynamics; marine invertebrates [20,21], where we approximated accurately the steady states and
∧
analysed 32

the asymptotic behaviour of the solutions to the linear model and provided original knowledge about the mechanisms that 33

govern the stability of a nonlinear systemwith a dynamical larvae behaviour; forest dynamics [22,23], inwhichwedescribed 34

coexistence mechanisms in a size-structured model in terms of competitive differences at the regeneration state, etc. 35

Finally, when we have to face a numerical simulation in a problem, we must carry out the analysis of the following 36

numerical properties: consistency, stability and convergence. These properties guarantee the goodness of the method to 37

approach the solution. 38

In this paper,wehave developed a new,more efficient second-order numericalmethod for the problemandperformed its 39

complete convergence analysis. We have developed numerical simulations for an academic problem to confirm numerically 40

the convergence order. Also, we have applied it to a significant biological example: the dynamics of a Daphnia magna popu- 41

lation. It has been studied numerically, but the convergence analysis for the numerical integration has not yet finished [3]. 42

Nevertheless, an analysis of a different scheme that utilized an intermediate value to perform the numerical integrationwas 43

initiated in [24]. Here, we place emphasis on the approximation to the
∧
asymptotically stable states of themodel. In Section 2 44

we proceed to present the general model. Section 3 is devoted to introducing the numerical method employed to approx- 45

imate the solution to the model. The analysis of the convergence properties is shown in Sections 4–7 and the numerical 46

results performed complete
∧
the last section. 47

2. The model 48

We consider the following nonlinear size-structured populationmodelwhere the population feedback on the individuals 49

life history is given by an integro-ordinary differential equation, 50

ut + (g(x, S(t), t) u)x = −µ(x, S(t), t) u, 0 < x < xM(t), t > 0, (2.1) 51

g(0, S(t), t) u(0, t) =

 xM (t)

0
α(x, S(t), t) u(x, t) dx, t > 0, (2.2) 52

u(x, 0) = u0(x), 0 ≤ x ≤ xM(0), (2.3) 53

S ′(t) = f (S(t), I(t), t), t > 0, (2.4) 54

S(0) = S0. (2.5) 55

http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html
http://math.la.asu.edu/~dieter/workshop/schedule.html


O. Angulo et al. / Computers and Mathematics with Applications xx (xxxx) xxx–xxx 3

The model involves a nonlinear hyperbolic partial differential equation which represents a balance law, a nonlinear and a1

nonlocal boundary conditionwhich reflects the reproduction process and an initial size-distribution for the population. This2

size-structured problem is coupled with an initial value one.3

The independent variables x and t represent size and time, respectively. The dependent variable u(x, t) is the size-specific4

density of individuals with size x at time t . The influence of the environment is given by a function S(t) which represents a5

physiological resource. Its dynamics is driven with the initial value problem (2.4)–(2.5), which is coupled with (2.1)–(2.3).6

The evolution of such a resource also depends on the population, which is performed by means of the nonlocal term I(t)7

defined by8

I(t) =

 xM (t)

0
γ (x, S(t), t) u(x, t) dx, t ≥ 0. (2.6)9

Functions g , α and µ represent the growth, fertility and mortality rates, respectively. These are usually called the vital10

functions and define the life history of an individual. Functions α and µ are nonnegative. Note that all the vital functions11

(g , µ and α) depend on the size x (the structuring internal variable), on time t and on the value of the resource at time t ,12

which can reflect the influence of the environmental changes on the vital functions. The function f on the right-hand side13

of (2.4) depends on the value of the resource at time t , on the total amount of individuals in the population by means of the14

weighted functional I(t) (which represents theway of weighting the size distribution density in order tomodel the different15

influence of the individuals of different sizes on such dynamics) and on time t . In general, the size of any individual varies16

according to the following ordinary differential equation17

dx
dt

= g(x, S(t), t). (2.7)18

Therefore, as the growth rate does not have a determined sign, the maximum size xM(t) that an individual could have at19

time t , changes with time and its dynamics is described by20

d
dt

xM(t) = g(xM(t), S(t), t), t > 0,

xM(0) = xM .

(2.8)21

Model (2.1)–(2.5) represents a way of describing the dynamics of a Daphnia magna population into an algal food source and22

was introduced first in [3].23

With regard to the theoretical and numerical
∧
analyses of the model, they were mentioned in the Introduction. We note24

that the mathematical analysis of the solutions to the problem (2.1)–(2.5) in its general setting is beyond the scope of this25

paper and we will concentrate on the numerical aspects of the problem. Thus, we assume the existence and uniqueness of26

sufficiently smooth solutions under suitable hypotheses.27

In the present paper, we introduce a new, more efficient second-order numerical method for this nonlinear model. We28

also validate it with its convergence analysis. Throughout the paper we assume the following regularity conditions on the29

data functions and the solution to the problem (2.1)–(2.6):30

(H1) u ∈ C2([0, xM(t)] × [0, T ]), u(x, t) ≥ 0, x ∈ [0, xM(t)], t ≥ 0.31

(H2) S ∈ C2([0, T ]), S(t) ≥ 0, t ≥ 0.32

(H3) γ ∈ C2([0, xM(t)] × D × [0, T ]), where D is a compact neighbourhood of33

{S (t) , 0 ≤ t ≤ T } .34

(H4) µ ∈ C2([0, xM(t)] × D × [0, T ]), is nonnegative and D is a compact neighbourhood of35

{S (t) , 0 ≤ t ≤ T } .36

(H5) α ∈ C2([0, xM(t)] × D × [0, T ]), is nonnegative and D is a compact neighbourhood of37

{S (t) , 0 ≤ t ≤ T } .38

(H6) f ∈ C2(D × DI × [0, T ]), is nonnegative, D is a compact neighbourhood of39

{S (t) , 0 ≤ t ≤ T } ,40

and DI is a compact neighbourhood of41  xM (t)

0
γ (x, S(t), t) u(x, t) dx, 0 ≤ t ≤ T


.42

(H7) g ∈ C3([0, xM(t)] × D × [0, T ]), where D is a compact neighbourhood of43

{S (t) , 0 ≤ t ≤ T } .44

and g(0, S, t) ≥ C > 0, t ≥ 0, S ∈ R. In addition, the characteristic curves x(t; t∗, x∗) defined in (2.7) are continuous45

and differentiable with respect to the initial values (t∗, x∗) ∈ [0, T ] × [0, xM(t)].46

The above hypotheses may be based on three possible reasons. First, biological assumptions such as the nonnegativity of47

some of the vital functions or, in (H7), to reflect that any individual in the studied population could shrink [2]. Second, the

Juan Carlos
Tachado
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mathematical requirements to obtain the existence and uniqueness of solutions for the problem (2.1)–(2.6) [2]. Finally, the 1

regularity properties needed in the numerical analysis to derive optimal rates of convergence [15]. 2

3. Numerical integration 3

The numerical method we employ to approximate the solution to (2.1)–(2.6) is based on the discretization of a repre- 4

sentation of the solution along the characteristic curves [11]. First of all we rewrite the partial differential equation (2.1) in 5

a more suitable form for its numerical treatment. So we define 6

µ∗(x, z, t) = µ(x, z, t) + gx(x, z, t). 7

Thus, Eq. (2.1) has the form 8

ut + g(x, S(t), t) ux = −µ∗(x, S(t), t) u, 0 < x < xM(t), t > 0. (3.9) 9

We denote by x(t; t∗, x∗) the characteristic curve of Eq. (3.9) that takes the value x∗ at time t∗. Such a characteristic curve 10

is the solution to the initial value problem 11

d
dt

x(t; t∗, x∗) = g(x(t; t∗, x∗), S(t), t), t ≥ t∗,

x(t∗; t∗, x∗) = x∗.

(3.10) 12

Now, we consider the function that represents the solution to (3.9) along the characteristic curves 13

w(t; t∗, x∗) = u(x(t; t∗, x∗), t), t ≥ t∗, 14

which satisfies the initial value problem 15

d
dt

w(t; t∗, x∗) = −µ∗

x

t; t∗, x∗


, S(t), t


w(t; t∗, x∗), t ≥ t∗, 16

w(t∗; t∗, x∗) = u(x∗, t∗), 17

and, therefore, it can be represented in the following integral form 18

w(t; t∗, x∗) = u(x∗, t∗) exp

−

 t

t∗
µ∗

x

τ ; t∗, x∗


, S(τ ), τ


dτ


, t ≥ t∗. (3.11) 19

Given a constant step k > 0, we introduce the discrete time levels tn = n k, n = 0, 1, 2, . . .. We also take J a positive integer, 20

as a parameter related to the size variable which describes the number of points in the uniform initial grid. The diameter of 21

such a mesh grid is h = xM/J , and the initial grid nodes are X0
j = j h, 0 ≤ j ≤ J . In order to start the integration, we consider 22

as an approximation to the density at the initial time (t0), the grid restriction of the initial condition in (2.3), U0
j = u0(X0

j ), 23

0 ≤ j ≤ J . Also, we use S0 in (2.5) as the initial value of the resource. Then, the numerical method provides, at each dis- 24

crete time level, a mesh grid on the size interval in Xn, the approximation to the density on such a mesh grid in Un and the 25

approximation of the value of the resource Sn, from the approximations we computed at the previous time level, by using 26

discretizations of Eqs. (3.10), (3.11), (2.2), (2.5), (2.6). Thus, for n = 0, 1, 2, . . . , the numerical solution at time tn+1
= tn +k, 27

is obtained from the known values of the numerical solution at time tn as follows, 28

Xn+1
0 = 0, (3.12) 29

Xn+1
j+1 = Xn

j +
k
2


g(Xn

j , Sn, tn) + g(Xn+1,∗
j+1 , Sn+1,∗, tn+1)


, 0 ≤ j ≤ J, (3.13) 30

Sn+1
= Sn +

k
2


f

Sn, Q(Xn, γn

· Un), tn

+ f


Sn+1,∗, Q(Xn+1,∗, γn+1,∗

· Un+1,∗, tn+1)


, (3.14) 31

Un+1
j+1 = Un

j exp


−
k
2


µ∗

Xn
j , Sn, tn


+ µ∗


Xn+1,∗
j+1 , Sn+1,∗, tn+1


, (3.15) 32

0 ≤ j ≤ J , 33

Un+1
0 =

Q(Xn+1, αn+1
· Un+1)

g(0, Sn+1, tn+1)
, (3.16) 34

where we have to compute approximations at time level tn+1, 35

Xn+1,∗
0 = 0, Xn+1,∗

j+1 = Xn
j + k g(Xn

j , Sn, tn), 0 ≤ j ≤ J, (3.17) 36

Sn+1,∗
= Sn + k f


Sn,Q n(Xn, γn

· Un), tn

, (3.18) 37

Un+1,∗
j+1 = Un

j exp

−kµ∗


Xn
j , Sn, tn


, 0 ≤ j ≤ J, (3.19) 38

Un+1,∗
0 =

Q(Xn+1,∗, αn+1,∗
· Un+1,∗)

g(0, Sn+1,∗, tn+1)
. (3.20) 39
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Note that the general step of the method increases the number of grid points and also the dimension of the vector with the1

numerical densities: at time tn, we have J + 1 grid nodes in Xn and the (J + 1)-dimensional vector Un, and at time tn+1 we2

obtain J + 2 grid nodes in Xn+1 and the (J + 2)-dimensional vector Un+1. In order to maintain the number of grid points3

suitable to perform the next step, we eliminate at time tn+1 the first grid node Xn+1
l which satisfies4

|Xn+1
l+1 − Xn+1

l−1 | = min
1≤j≤J+1

|Xn+1
j+1 − Xn+1

j−1 |. (3.21)5

We reproduce the same reduction in the corresponding vector Un+1. However, we do not recompute the approximations to6

the nonlocal terms at such a time level.7

In the description of themethod,we use the following notation; vectorsαp and γp contain the evaluations of the functions8

α and γ in (2.2) and (2.6), respectively, at the grid points in Xp, at the resource value Sp and at time tp. Products γp.Up
9

and αp.Up must be considered componentwise. In order to approximate integrals over the interval [0, xM(tp)], we use the10

composite trapezoidal quadrature rule based on the grid points Xp
= [Xp

0 , X
p
1 , . . . , X

p
J ], that is11

Q(Xp,Vp) =

J
j=1

Xp
j − Xp

j−1

2


V p
j−1 + V p

j


. (3.22)12

Note that the method is implicit: all the expressions provide explicit equations for the numerical values at the highest time13

level, except those which involve the numerical density Up
0 at the first grid point, but it is easy to implement the method in14

an explicit form.15

4. Convergence analysis: preliminaries16

Below, we will
∧
analyse numerical methods based on integration along characteristics that use a general quadrature rule17

with suitable properties to approximate the integral terms. Convergence will be obtained by means of consistency and18

nonlinear stability. We use the discretization framework developed by López-Marcos et al. [25].19

We assume that the spatial discretization parameter, h, takes values in the set H = {h > 0 : h = xM/J, J ∈ N}. Now, we20

suppose that the time step, k, satisfies k = r h, where r is an arbitrary and positive constant fixed throughout the analysis.21

In addition, we set N = [T/k]. For each h ∈ H , we define the space22

Ah =

N
n=0


RJ+n

× RJ+n+1
× RN+1,23

whereRJ+n is used for the approximations to the interior grid nodes andRJ+n+1 for the approaches to the theoretical solution24

on them and on the left boundary node, at time level tn, 0 ≤ n ≤ N; and RN+1 is employed for the approximations to the25

theoretical solution to the initial value problem. We also consider the space26

Bh =

RJ

× RJ+1
× R


× RN

×

N
n=1


RJ+n

× RJ+n
× RN ,27

where

RJ

× RJ+1
× R


is employed to compare with the initial approximations; RN considers the residuals that take place28

on the boundary node for every time step; and
N

n=1


RJ+n

× RJ+n

, is used for the residuals which arise in the formulae29

that define the grid nodes and the solution values; and RN considers the residuals that are computed for the resource. Both30

spaces have the same dimension.31

In order to measure the size of the errors, we define32

∥η∥∞ = max
1≤j≤p

|ηj|, η = (η1, η2, . . . , ηp) ∈ Rp,33

34

∥Vn
∥1 =

J+n
j=0

h |V n
j |, Vn

∈ RJ+n+1.35

Thus, we endow the spaces Ah and Bh with the following norms.36

If

y0,V0, . . . , yN ,VN , a


∈ Ah, then37

∥

y0,V0, . . . , yN ,VN , a


∥Ah = max


max
0≤n≤N

∥yn∥∞, max
0≤n≤N

∥Vn
∥∞, ∥a∥∞


.38

On the other hand, if

Y0, Z0, A0, Z0, Y1, Z1, . . . , YN , ZN ,A


∈ Bh, thus39

∥

Y0, Z0, A0, Z0, Y1, Z1, . . . , YN , ZN ,A


∥Bh = ∥Y0

∥∞ + ∥Z0
∥∞ + |A0| + ∥Z0∥∞40

+

N
n=1

k ∥Zn
∥∞ +

N
n=1

k ∥Yn
∥∞ +

N
n=1

k |An|.41
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Now, for each h ∈ H , we define 1

xh = (x0, x1, x2, . . . , xN), xn = (xn1, . . . , x
n
J+n) ∈ RJ+n, 2

x0j = j h, 1 ≤ j ≤ J, 3

xnj = x(tn; tn−1, xn−1
j−1 ), 1 ≤ j ≤ J + n, 1 ≤ n ≤ N; (4.23) 4

and we denote xn0 = 0, n ≥ 0. Recall that x(t; t∗, x∗) represents the theoretical solution to problem (2.7), t∗ ∈ [0, T ], x∗
∈ 5

[0, xM(t)]. In addition, if u represents the theoretical solution to (2.1)–(2.6) we define 6

uh = (u0,u1,u2, . . . ,uN), un
= (un

0, u
n
1, . . . , u

n
J+n) ∈ RJ+n+1, 7

un
j = u(xnj , tn), 0 ≤ j ≤ J + n, 0 ≤ n ≤ N. (4.24) 8

Finally, if S is the theoretical solution to (2.5) then we define 9

sh = (s0, s1, s2, . . . , sN), sn = S(tn), 0 ≤ n ≤ N. (4.25) 10

Therefore, ũh = (x0,u0, x1,u1, . . . , xN ,uN , sh) ∈ Ah. 11

Next, we introduce the discretization operator. Let R be a positive constant and we denote by BAh(ũh, R hp) ⊂ Ah the 12

open ball with centre ũh and radius R hp, 1 < p < 2, 13

Φh : BAh(ũh, R hp) → Bh, 14

Φh

y0,V0, . . . , yN ,VN , a


=

Y0, P0, A0, P0, Y1, P1, . . . , YN , PN ,A


, (4.26) 15

defined by the following equations: 16

Y0
= y0 − X0

∈ RJ , (4.27) 17

P0
= V0

− U0
∈ RJ+1, (4.28) 18

A0
= a0 − S0 ∈ R. (4.29) 19

Vectors X0, U0 and value S0 represent approximations at t = 0, respectively, to the initial grid nodes, to the theoretical 20

solution at these nodes and to the initial resource. Also, 21

Pn+1
0 = V n+1

0 −
Q

yn+1, αn+1

· Vn+1


g

0, an+1, tn+1

 , (4.30) 22

Y n+1
j+1 =

1
k


yn+1
j+1 − ynj −

k
2


g(ynj , a

n, tn) + g(yn+1,∗
j+1 , an+1,∗, tn+1)


, (4.31) 23

Pn+1
j+1 =

1
k


V n+1
j+1 − V n

j exp


−
k
2


µ∗

ynj , a

n, tn

+ µ∗


yn+1,∗
j+1 , an+1,∗, tn+1


, (4.32) 24

0 ≤ j ≤ J + n − 1, 25

An+1 =
1
k


an+1

− an −
k
2


f

an, Q(yn, γn

· Vn), tn

+ f


an+1,∗, Q(yn+1,∗, γn+1,∗

· Vn+1,∗), tn+1 , (4.33) 26

0 ≤ n ≤ N − 1
∧
, where, with the notation introduced in Section 3, 27

yn+1,∗
j+1 = ynj + k g(ynj , a

n, tn), (4.34) 28

V n+1,∗
j+1 = V n

j exp

−kµ∗


ynj , a

n, tn


, (4.35) 29

0 ≤ j ≤ J + n − 1, 30

V n+1,∗
0 =

Q(yn+1,∗, αn+1,∗
· Vn+1,∗)

g(0, an+1,∗, tn+1)
, (4.36) 31

an+1,∗
= an + k f


an, Q(yn, γn

· Vn), tn

, (4.37) 32

0 ≤ n ≤ N − 1. We denote by Q(X,V) =
M

l=0 ql(X) Vl, the general quadrature rule employed in (4.30)–(4.37). We have 33

to highlight that the number of nodes considered at each time level is J + n + 1, which does not coincide with the number 34

of nodes of Xn, 0 ≤ n ≤ N . This is due to the fact that the quadrature rules use the fixed values of the nodes Xn
0 = xn0 = 0, 35

0 ≤ n ≤ N . This notation is also valid if we consider quadrature rules whose nodes are, at each time level, a subgrid of Xn, 36

0 ≤ n ≤ N . 37
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Note that, Φh takes into account all the possible nodes and their corresponding solution values at each time level, and it1

employs quadrature rules possibly based on a subgrid. If Ũh = (X0,U0,X1,U1, . . . ,XN ,UN , sh) ∈ BAh(ũh, R hp), satisfies2

Φh(Ũh) = 0 ∈ Bh, (4.38)3

the nodes and the corresponding values of the solution at such nodes of Ũh are a numerical solution to the scheme defined4

by (3.13)–(3.16) when the composite trapezoidal quadrature rule is given. On the other hand, the numerical solution to the5

scheme defined by (3.13)–(3.16) satisfies (4.38).6

Henceforth, C will denote a positive constant, independent of h, k (k = r h), j (0 ≤ j ≤ J + n) and n (0 ≤ n ≤ N); C may7

have different values in different places.8

We assume that the quadrature rule satisfies the following properties:9

(P1) |I(tn) − Q (xn, γn
· un)| ≤ C h2, when h → 0, 0 ≤ n ≤ N .10

(P2)
 xM (t)

0 α(x, S(tn), tn) u(x, tn) dx − Q (xn, αn
· un)

 ≤ C h2, when h → 0, 0 ≤ n ≤ N .11

(P3) |qj(xn)| ≤ q h, where q is a positive constant independent of h, k, j (0 ≤ j ≤ J +n) and n (0 ≤ n ≤ N), for 0 ≤ j ≤ J +n,12

0 ≤ n ≤ N .13

(P4) Let R and p be positive constants with 1 < p < 2. The quadrature weights qj are Lipschitz continuous functions on14

B∞(xn, R hp), 0 ≤ j ≤ J + n, 0 ≤ n ≤ N .15

(P5) Let R and p be positive constants with 1 < p < 2. If yn, zn ∈ B∞(xn, R hp), Vn
∈ B∞(un, R hp) and an ∈ B∞(Sn, R hp),16

then17  J+n
i=0


qi(yn) − qi(zn)


γ (zni , a

n, tn) V n
i

 ≤ C∥yn − zn∥∞,18

when h → 0, 0 ≤ n ≤ N .19

(P6) Let R and p be positive constants with 1 < p < 2. If yn, zn ∈ B∞(xn, R hp), Vn
∈ B∞(un, R hp) and an ∈ B∞(Sn, R hp),20

then21  J+n
i=0


qi(yn) − qi(zn)


α

zni , a

n, tn

V n
i

 ≤ C∥yn − zn∥∞,22

when h → 0, 0 ≤ n ≤ N .23

The following result establishes that the composite trapezoidal rule used in our experiments satisfies these properties [15].24

Theorem 1. Assume that the hypotheses (H1)–(H7) hold. If the quadrature rules are the composite trapezoidal quadrature on25

subgrids

xnjnl

M(n)

l=0
, 0 ≤ n ≤ N with the property26

(SR) There exists a positive constant C such that, for h sufficiently small, xnjnl+1
−xnjnl

≤ C h, 0 ≤ l ≤ M(n)−1, xnjn0
= 0, xnjnM(n)

= xJ+n,27

with

xnjnl

M(n)−1

l=1
contained in xn, 0 ≤ n ≤ N.28

Then, properties (P1)–(P6) hold.29

The following result shows that operator (4.26) is well defined.30

Proposition 1. Assume that hypotheses (H1)–(H7) hold and that the quadrature rules used in (4.30)–(4.37) satisfy the properties31

(P1)–(P6). If32 
X0,V0, . . . ,XN ,VN , S


∈ BAh(ũh, R hp),33

where R is a fixed positive constant and 1 < p < 2, then, for h sufficiently small,34

Q(Xn, γn
· Vn) ∈ DI , (4.39)35

0 ≤ n ≤ N. Furthermore, as h → 0, Xn,∗
∈ B∞(xn, R′ hp), Sn,∗ ∈ B∞(sn, R′ hp) and Vn,∗

∈ B∞(un, R′ hp), and36

Q(Xn,∗, γn,∗
· Vn,∗) ∈ DI , (4.40)37

1 ≤ n ≤ N.38

Proof. The definition of Q, the hypotheses (H1)–(H7), the properties (P1)–(P6) and that Vn is bounded, allow us to obtain39 Q(Xn, γn
· Vn) − I(tn)

 ≤
Q(Xn, γ(Xn, Sn) · Vn) − Q(xn, γ(Xn, Sn) · Vn)

40

+
Q(xn, γ(Xn, Sn) · Vn) − Q(xn, γ(Xn, S(tn)) · Vn)

41

+
Q(xn, γ(Xn, S(tn)) · Vn) − Q(xn, γn

· un)
+ Q(xn, γn

· un) − I(tn)
42
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≤

 J+n
j=0


qj(Xn) − qj(xn)


γ (Xn

j , Sn) V n
j

+
 J+n
j=0

qj(xn)

γ (Xn

j , Sn) − γ (xnj , s
n)

V n
j

 1

+

 J+n
j=0

qj(xn) γ (xnj , s
n)

V n
j − un

j

+ o(1) 2

≤ C R hp (J + n + 1)∥γ ∥∞ ∥Vn
∥∞ + C q R hp+1 (J + n + 1) ∥Vn

∥∞ 3

+ R q hp+1 (J + n + 1) ∥γ ∥∞ + o(1), (4.41) 4

0 ≤ n ≤ N , h → 0. Therefore (4.39) holds, for h sufficiently small. On the other hand, (4.40) is derived following the same 5

arguments. � 6

5. Consistency 7

We define the local discretization error as 8

lh = Φh(ũh) ∈ Bh, 9

and we say that the discretization (4.26) is consistent if, as h → 0, 10

lim ∥Φh(ũh)∥Bh = lim ∥lh∥Bh = 0. 11

The following theorem establishes the consistency of the numerical scheme defined by Eqs. (4.27)–(4.32). 12

Theorem 2. Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules satisfy properties (P1)–(P6). Then, 13

as h → 0, the local discretization error satisfies, 14

∥Φh(ũh)∥Bh = ∥u0
− U0

∥∞ + ∥x0 − X0
∥∞ + |s0 − S0| + O(h2

+ k2). (5.1) 15

Proof. We denote Φh(ũh) = (Z0, L0, σ 0, L0, Z1, L1, . . . , ZN , LN , σ). 16

First, we set the next bounds for the auxiliary values. Then, bymeans of regularity hypotheses (H1)–(H7), properties (P1), 17

(P2) of the quadrature rule and error bounds for the explicit Euler method and the rectangular quadrature rule, we obtain 18

|xnj − xn,∗j | =
x tn; tn−1, xn−1

j−1


− xn−1

j−1 − k g(xn−1
j−1 , sn−1, tn−1)

 19

≤ C k2, (5.2) 20

1 ≤ j ≤ J + n, 21

|sn − sn,∗| ≤
S(tn) − sn−1

− k f

sn−1, I(tn−1), tn−1 22

+ C k
f sn−1, I(tn−1), tn−1

− f

tn−1, sn−1, Q(xn−1, γn−1

· un−1)
 23

≤ C

k2 + k

I(tn−1) − Q(xn−1, γn−1
· un−1)

 24

≤ C (k2 + h2), (5.3) 25

and 26

|un
j − un,∗

j | = |un−1
j−1 |

exp


−

 tn

tn−1
µ∗

x(τ ; tn−1, xn−1

j−1 ), S(τ ), τ

dτ


27

− exp

−kµ∗


xn−1
j−1 , sn−1, tn−1 ≤ C k2, (5.4) 28

1 ≤ j ≤ J + n, 1 ≤ n ≤ N . By means of inequality (5.3) we arrive at 29

|un
0 − un,∗

0 | ≤ C
g 0, sn,∗, tn un

0 − Q

xn,∗, αn,∗ un,∗ 30

≤ C
g 0, sn,∗, tn− g


0, sn, tn

 |un
0| 31

+


 xM(tn)

0
α(x, sn, tn) u(x, tn) dx − Q


xn, αn un 32

+
Q xn, αn un

− Q

xn,∗, αn,∗ un,∗ 33

≤ C (h2
+ k2) +

Q xn, αn un
− Q


xn,∗, αn,∗ un,∗ . (5.5) 34
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Now, bymeans of inequalities (5.2)–(5.5), hypotheses (H1)–(H7) and the properties of the quadrature rule (P3) and (P6), we1

obtain2 Q xn, αn un
− Q


xn,∗, αn,∗ un,∗ ≤

 J+n
j=0


qj(xn) − qj(xn,∗)


α

xn,∗j , sn,∗, tn


un,∗
j

3

+

J+n
j=0

qj(xn) α xn,∗j , sn,∗, tn

− α


xnj , s

n, tn


un,∗
j

4

+

J+n
j=0

qj(xn) α

xnj , s

n, tn
 

un
j − un,∗

j

5

≤ C (h2
+ k2) + C h

Q xn, αn un
− Q


xn,∗, αn,∗ un,∗ ,6

thus, for h sufficiently small, we arrive at7 Q xn, αn un
− Q


xn,∗, αn,∗ un,∗ ≤ C (h2

+ k2). (5.6)8

Therefore, by means of (5.5) and (5.6), it follows that9

|un
0 − un,∗

0 | ≤ C (h2
+ k2). (5.7)10

Finally, using the inequalities (5.2)–(5.4) and (5.6)–(5.7), the hypotheses (H1)–(H7), the properties of the quadrature11

rule (P3) and (P5) in (5.6), we obtain12 Q xn, γn un
− Q


xn,∗, γn,∗ un,∗ ≤ C (h2

+ k2). (5.8)13

Now, we set the bounds for Zn, 1 ≤ n ≤ N . By means of (3.10) and (4.31), the regularity hypotheses (H1)–(H7), inequal-14

ities (5.2)–(5.3) and the error bound of
∧
R–K schemes employed, we have15

|Zn
j | ≤

1
k

xnj − xn−1
j−1 −

k
2


g

xn−1
j−1 , sn−1, tn−1

+ g

xnj , s

n, tn
16

+
k
2

g xnj , sn, tn− g

xn,∗j , sn, tn

17

+
k
2

g xn,∗j , sn, tn

− g


xn,∗j , sn,∗, tn

18

≤ C

k2 +

xnj − xn,∗j

+ |sn − sn,∗|


19

≤ C (k2 + h2), (5.9)20

1 ≤ j ≤ J + n, 1 ≤ n ≤ N .21

Next, arguments analogous to those used to derive (5.9) lead us to establish the bound for the truncation errors produced22

by the resource solution. By means of (4.33), the regularity hypotheses (H1)–(H7), the property of the quadrature rule (P1),23

inequalities (5.3) and (5.8) and the error bound of
∧
R–K schemes employed, we arrive at24

|σ n
| ≤

1
k

sn − sn−1
−

k
2


f

sn−1, I(tn−1), tn−1

+ f

sn, I(tn), tn

25

+
k
2

f sn−1, I(tn−1), tn−1
− f


sn−1, Q(xn−1, γn−1

· un−1), tn−126

+
k
2

f sn, I(tn), tn− f

sn,∗, I(tn), tn

27

+
k
2

f sn,∗, I(tn), tn− f

sn,∗, Q(xn,∗, γn,∗

· un,∗), tn,
28

≤ C

k2 +

sn − sn,∗
+ I(tn−1) − Q(xn−1, γn−1

· un−1)
29

+
I(tn) − Q(xn, γn

· un)
+ Q(xn, γn

· un) − Q(xn,∗, γn,∗
· un,∗)

30

≤ C

k2 + h2 , (5.10)31

1 ≤ n ≤ N . Finally, we establish the bounds for the truncation errors produced by the solution to the PDE with a similar32

reasoning. By means of (3.11) and (4.32), the regularity hypotheses (H1)–(H7), the property of the quadrature rule (P1),33

Juan Carlos
Tachado

Juan Carlos
Texto insertado
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Juan Carlos
Tachado

Juan Carlos
Texto insertado
Runge-Kutta
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inequalities (5.2)–(5.3) and the error bound of the trapezoidal quadrature rule, we have 1

|Lnj | ≤
C
k


 tn

tn−1
µ∗

x(τ ; tn−1, xn−1

j−1 ), s(τ ), τ

dτ −

k
2


µ∗

xn−1
j , sn−1, tn−1

2

+ µ∗

xnj , s

n, tn
+ k

2

µ∗

xnj , s

n, tn

− µ∗


xn,∗j , sn,∗, tn

 3

≤ C

k2 +

xnj − xn,∗j

+ sn − sn,∗
 4

≤ C (k2 + h2), (5.11) 5

1 ≤ j ≤ J + n, 1 ≤ n ≤ N . And, to find an estimation for the boundary terms, Eq. (4.30), hypothesis (H7) and property (P2), 6

allow us to obtain 7

|Ln0| ≤ C
g 0, sn, tn un

0 − Q

xn, αn

· un 8

≤ C


 xM (tn)

0
α(x, sn, tn) u(x, tn) dx − Q


xn, αn

· un 9

≤ C h2, (5.12) 10

1 ≤ n ≤ N . Therefore, (5.1) follows from (5.9)–(5.11) and (5.12). � 11

6. Stability 12

Another notion that plays an important role in the analysis of the numerical method is the stability with h-dependent 13

thresholds. For h ∈ H , let Rh be a real number (the stability threshold) with 0 < Rh < ∞, we say that the discretization (4.26) 14

is stable for ũh restricted to the thresholds Rh, if there exist two positive constants h0 and S (the stability constant) such that, 15

for any h ∈ H with h ≤ h0, the open ball BAh(ũh, Rh) is contained in the domain of Φh, and, for all Ṽh, W̃h in that ball, 16

∥Ṽh − W̃h∥ ≤ S ∥Φh(Ṽh) − Φh(W̃h)∥. 17

We begin with the following auxiliary result whose
∧
demonstration was made in [24] where the same quadrature rule is 18

given. 19

Proposition 2. Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules satisfy properties (P1)–(P6). 20

Let
∧
yn, zn ∈ B∞(xn, R hp), Vn,Wn

∈ B∞(un, R hp) and an, bn ∈ B∞(sn, R hp). Then, as h → 0, 21

|Q(yn, γn
· Vn) − Q(zn, γn

· Wn)| ≤ C

∥Vn

− Wn
∥1 + ∥yn − zn∥∞ + |bn − an|


, (6.1) 22

|Q(yn,∗, γn,∗
· Vn,∗) − Q(zn,∗, γn,∗

· Wn,∗)| ≤ C

∥Vn,∗

− Wn,∗
∥1 + ∥yn,∗ − zn,∗∥∞ + |bn,∗ − an,∗|


, (6.2) 23

1 ≤ n ≤ N. 24

Now, we introduce the theorem that establishes the stability of the discretization defined by Eqs. (4.27)–(4.32). 25

Theorem 3. Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules satisfy properties (P1)–(P6). Then, 26

the discretization is stable for ũh with Rh = R hp, 1 < p < 2. 27

Proof. We denote 28

Φh

y0,V0, y1,V1, . . . , yN ,VN , a


=

Y0, P0, A0, P0, Y1, P1, . . . , YN , PN ,A


, 29

Φh

z0,W0, z1,W1, . . . , zN ,WN , b


=

Z0,R0, B0,R0, Z1,R1, . . . , ZN ,RN , B


, 30

y0,V0, y1,V1, . . . , yN ,VN , a

,

z0,W0, z1,W1, . . . , zN ,WN , b


∈ BAh(ũh, Rh). 31

Now, we set 32

En
= Vn

− Wn
∈ RJ+n+1, ∆n

= yn − zn ∈ RJ+n, σ n
= bn − an ∈ R, 0 ≤ n ≤ N. 33

34

En,∗
= Vn,∗

− Wn,∗
∈ RJ+n+2, ∆n,∗

= yn,∗ − zn,∗ ∈ RJ+n+1, σ n,∗
= bn,∗ − an,∗ ∈ R, 35

1 ≤ n ≤ N . From (4.34) and by means of hypotheses (H7), we obtain 36

|∆
n,∗
j | ≤ |∆n−1

j−1 | + k
g yn−1

j−1 , an−1, tn−1
− g


zn−1
j−1 , bn−1, tn−1 37

≤ (1 + C k) |∆n−1
j−1 | + C k

σ n−1
 , (6.3) 38



O. Angulo et al. / Computers and Mathematics with Applications xx (xxxx) xxx–xxx 11

1 ≤ j ≤ J + n. Thus1 ∆n,∗


∞
≤ (1 + C k)

∆n−1


∞
+ C k

σ n−1
 , (6.4)2

1 ≤ n ≤ N . Next, from (4.37), by means of hypothesis (H6) and inequality (6.1), we arrive at3

|σ n,∗
| ≤ |σ n−1

| + k
f an−1,Q


yn−1, γn−1

· Vn−1 , tn−1
− f


bn−1,Q


zn−1, γn−1

· Wn−1 , tn−14

≤ (1 + C k) |σ n−1
| + C k

∆n−1


∞
+
En−1


1


, (6.5)5

1 ≤ n ≤ N . Now, from (4.35), by means of hypotheses (H4), (H7), ∥Wn−1
∥∞ ≤ C , we have6

|En,∗
j | ≤ |En−1

j−1 | exp

−kµ∗


yn−1
j−1 , an−1, tn−1

7

+ |W n−1
j−1 |

exp −kµ∗

yn−1
j−1 , an−1, tn−1

− exp

−kµ∗


zn−1
j−1 , bn−1, tn−18

≤ |En−1
j−1 | + C k

µ∗

yn−1
j−1 , an−1, tn−1

− µ∗

zn−1
j−1 , bn−1, tn−19

≤ |En−1
j−1 | + C k

σ n−1
+ ∆n−1

j−1

 ,10

1 ≤ j ≤ J + n. Thus,11

|En,∗
j | ≤

En−1

1 + C k

σ n−1
+ ∆n−1


∞


, (6.6)12

1 ≤ j ≤ J + n. And, from (4.36), (H7) and inequality (6.2), enable us to write13

|En,∗
0 | ≤ C

g 0, an,∗, tn− g

0, bn,∗, tn

 Q(yn,∗, γn,∗ Vn,∗)
14

+
g 0, an,∗, tn Q(yn,∗, γn,∗ Vn,∗) − Q(zn,∗, γn,∗ Wn,∗)

15

≤ C
σ n,∗

+ ∆n,∗


∞
+
En,∗


1


, (6.7)16

1 ≤ n ≤ N . Next, we use (6.4) and (6.5) in (6.7) to obtain, for h sufficiently small,17

|En,∗
0 | ≤ C

σ n−1
+ ∆n−1


∞

+
En−1


1 +

En,∗

1


, (6.8)18

1 ≤ n ≤ N . Now, multiplying |En,∗
j | by h and summing in j, 0 ≤ j ≤ J + n + 1, from (6.6), (6.8) and that k = r h, we obtain19

∥En,∗
∥1 ≤ C h

σ n−1
+ ∆n−1


∞

+
En−1


1 +

En,∗

1


+ h

J+n+1
j=1

En−1

1 + C k

σ n−1
+ ∆n−1


∞


20

≤ C h
En,∗


1 + C

σ n−1
+ ∆n−1


∞

+
En−1


1


, (6.9)21

1 ≤ n ≤ N . Therefore, for h sufficiently small,22

∥En,∗
∥1 ≤ C

σ n−1
+ ∆n−1


∞

+
En−1


1


, (6.10)23

1 ≤ n ≤ N .24

Now, by means of (4.31), hypotheses (H6)–(H7), (6.3) and (6.5) enable us to write25

|∆n
j | ≤ |∆n−1

j−1 | +
k
2

g(yn−1
j , an−1, tn−1) − g(zn−1

j , bn−1, tn−1)
26

+
k
2

g(yn,∗j , an,∗, tn) − g(zn,∗j , bn,∗, tn)
+ k

Y n
j − Zn

j

27

≤ |∆n−1
j−1 | + C k

g(yn−1
j , an−1, tn−1) − g(zn−1

j , an−1, tn−1)
28

+
g(zn−1

j , an−1, tn−1) − g(zn−1
j , bn−1, tn−1)

+ g(yn,∗j , an,∗, tn) − g(zn,∗j , an,∗, tn)
29

+
g(zn,∗j , an,∗, tn) − g(zn,∗j , bn,∗, tn)

+ k
Y n

j − Zn
j

30

≤ (1 + C k) |∆n−1
j−1 | + C k


|σ n−1

| +
∆n,∗

j

+ σ n,∗
+ k

Y n
j − Zn

j

31

≤ |∆n−1
j−1 | + C k

∆n−1


∞
+
En−1


1 +

σ n−1
+ k

Y n
j − Zn

j

 , (6.11)32

1 ≤ j ≤ J + n, 1 ≤ n ≤ N . Thus, when N ≥ n > j ≥ 1, from (6.11), we have33

|∆n
j | ≤ C k

j−1
l=0


∥En−1−l

∥1 + ∥∆n−1−l
∥∞ +

σ n−1−l
+ k

j−1
l=0

|Y n−l
j−l − Zn−l

j−l |. (6.12)34
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Therefore, when N ≥ n > j ≥ 1, by means of (6.12), we establish 1

|∆n
j | ≤ C


n−1

m=n−j

k ∥Em
∥1 +

n−1
m=n−j

k ∥∆m
∥∞ +

n−1
m=n−j

k
σm

+

n
m=n−j+1

k ∥Ym
− Zm

∥∞. (6.13) 2

On the other hand, when J + n ≥ j ≥ n ≥ 1, due to (6.11) it follows that 3

|∆n
j | ≤ |∆0

j−n| + C k
n−1
l=0


∥En−1−l

∥1 + ∥∆n−1−l
∥∞ +

σ n−1−l
+ k

n−1
l=0

|Y n−l
j−l − Zn−l

j−l |. (6.14) 4

Thus, when J + n ≥ j ≥ n ≥ 1, (6.14) yields 5

|∆n
j | ≤ ∥∆0

∥∞ + C


n−1
m=0

k ∥Em
∥1 +

n−1
m=0

k ∥∆m
∥∞ +

n−1
m=0

k
σm

+

n
m=1

k ∥Ym
− Zm

∥∞. (6.15) 6

Then, by means of (6.13) and (6.15), we can conclude that 7

∥∆n
∥∞ ≤ ∥∆0

∥∞ + C


n−1
m=0

k ∥Em
∥1 +

n−1
m=0

k ∥∆m
∥∞ +

n−1
m=0

k
σm

+

n
m=1

k ∥Ym
− Zm

∥∞. (6.16) 8

1 ≤ n ≤ N . On the other hand, from (4.33), hypothesis (H6) and inequalities (6.1)–(6.2), (6.4)–(6.5) and (6.10), we arrive at 9

|σ n
| ≤ |σ n−1

| + k |An
− Bn

| + C k
f (an−1, Q(yn−1, γn−1(y, a) · Vn−1), tn) 10

− f (bn−1, Q(yn−1, γn−1(y, a) · Vn−1), tn)
 11

+
f (bn−1, Q(yn−1, γn−1(y, a) · Vn−1), tn) 12

− f (bn−1, Q(zn−1, γn−1(z, b) · Vn−1), tn)
 13

+
f (an,∗, Q(yn,∗, γn,∗(y, a) · Vn,∗), tn) 14

− f (bn,∗, Q(yn,∗, γn,∗(y, a) · Vn,∗), tn)
 15

+
f (bn,∗, Q(yn,∗, γn,∗(y, a) · Vn,∗), tn) 16

− f (bn,∗, Q(zn,∗, γn,∗(z, b) · Vn,∗), tn)
 17

≤ (1 + C k) |σ n−1
| + k |An

− Bn
| + C k

σ n,∗
 18

+
Q(yn−1, γn−1(y, a) · Vn−1) − Q(zn−1, γn−1(z, b) · Vn−1)

 19

+
Q(yn,∗, γn,∗(y, a) · Vn,∗) − Q(zn,∗, γn,∗(z, b) · Vn,∗)

 20

≤ (1 + C k) |σ n−1
| + k |An

− Bn
| + C k

∆n−1


∞
+
En−1


1


21

+ C k
∆n,∗


∞

+
En,∗


1 + |σ n,∗

|


22

≤ (1 + C k) |σ n−1
| + k |An

− Bn
| + C k

∆n−1


∞
+
En−1


1


, (6.17) 23

1 ≤ n ≤ N . Thus, 24

|σ n
| ≤ (1 + C k)n |σ 0

| +

n−1
l=0

k (1 + C k)l |An−l
− Bn−l

| +

n−1
l=0

C k (1 + C k)l
∆n−l−1


∞

+
En−l−1


1


, (6.18) 25

1 ≤ n ≤ N . Therefore, 26

|σ n
| ≤ C


|σ 0

| +

n
m=1

k |Am
− Bm

| +

n−1
m=0

k
∆m


∞

+

n−1
m=0

k
Em


1


, (6.19) 27

1 ≤ n ≤ N . 28

On the other hand, from (4.32) we arrive at 29

|En
j | ≤ |En−1

j−1 | exp

−

k
2


µ∗

yn−1
j−1 , an−1, tn−1

+ µ∗

yn,∗j , an,∗, tn


30

+ |W n−1
j−1 |

exp−
k
2


µ∗

yn−1
j−1 , an−1, tn−1

+ µ∗

yn,∗j , an,∗, tn


31

− exp

−

k
2


µ∗

zn−1
j−1 , bn−1, tn−1

+ µ∗

zn,∗j , bn,∗, tn


+ k |Pn

j − Rn
j |, (6.20) 32
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1 ≤ j ≤ J + n, 1 ≤ n ≤ N . Now, by means of hypotheses (H4) and (H7), we have1

exp

−

k
2


µ∗

yn−1
j−1 , an−1, tn−1

+ µ∗

yn,∗j , an,∗, tn


≤ 1 + C k, (6.21)2

1 ≤ j ≤ J + n, 1 ≤ n ≤ N . Thus, (6.1), (6.4)–(6.5), (6.20)–(6.21), hypotheses (H4) and (H6)–(H7), and that ∥Wn−1
∥∞ ≤ C ,3

enable us to write4

|En
j | ≤ k |Pn

j − Rn
j | + (1 + C k) |En−1

j−1 | + C k
µ∗


yn−1
j , an−1, tn−1

− µ∗

zn−1
j , an−1, tn−15

+
µ∗


yn,∗j , an,∗, tn


− µ∗


zn,∗j , an,∗, tn

6

+
µ∗


zn−1
j , an−1, tn−1

− µ∗

zn−1
j , bn−1, tn−17

+
µ∗


zn,∗j , an,∗, tn


− µ∗


zn,∗j , bn,∗, tn

8

≤ k |Pn
j − Rn

j | + (1 + C k) |En−1
j−1 | + C k

∆n−1
j−1

+ σ n−1
+ ∆n,∗

j

+ σ n,∗
9

≤ k |Pn
j − Rn

j | + (1 + C k) |En−1
j−1 | + C k

∆n−1


∞
+
En−1


1 +

σ n−1
 , (6.22)10

1 ≤ j ≤ J + n, 1 ≤ n ≤ N . Now, from (4.30) and hypotheses (H7) it follows that11

|En
0 | ≤ |Pn

0 − Rn
0| +

Q (yn, αn(y, a)Vn)

g (0, an, tn)
−

Q (zn, αn(z, b)Wn)

g (0, bn, tn)

12

≤ |Pn
0 − Rn

0| + C
g 0, bn, tn− g


0, an, tn

 Q zn, αn(z, b)Wn13

+
g 0, tn, bn Q yn, αn(y, a)Vn

− Q

zn, αn(z, b)Wn , (6.23)14

1 ≤ n ≤ N . Next, (H5), property (P3), and that ∥Wn
∥∞ ≤ C , enable us to obtain15 Q zn, αn(z, b)Wn ≤ C, (6.24)16

1 ≤ n ≤ N . Furthermore, the definition of αi and hypotheses (H5) yield17 αi

yni , a

n, tn

− αi


zni , b

n, tn
 ≤ C


|∆n

i | + |σ n
|

, (6.25)18

1 ≤ n ≤ N . Next, by means of (6.25), hypotheses (H5), properties (P3) and (P6), and that ∥Wn
∥∞ ≤ C , we arrive at19 Q yn, αn(y, a)Vn

− Q

zn, αn(z, b)Wn ≤

 J+n
i=0

qi(yn) α(yni , t
n, an) (V n

i − W n
i )

20

+

 J+n
i=0


qi(yn) α(yni , a

n, tn) − qi(zn) α(zni , b
n, tn)


W n

i

21

≤ C ∥En
∥1 +

 J+n
i=0


qi(yn) − qi(zn)


α(yni , t

n, an)W n
i

22

+

 J+n
i=0

qi(zn)

α(yni , t

n, an) − α(zni , t
n, bn)


W n

i

23

≤ C

∥En

∥1 + ∥∆n
∥∞ +

σ n
 , (6.26)24

1 ≤ n ≤ N . Therefore, we complete the derivation of the stability estimate for the boundary node taking into account25

(6.23)–(6.24) and (6.26), and hypotheses (H7),26

|En
0 | ≤ |Pn

0 − Rn
0| + C

σ n
+ ∆n


∞

+
En


1


, (6.27)27

1 ≤ n ≤ N . Thus, when N ≥ n > j ≥ 1, from (6.22), we obtain28

|En
j | ≤ (1 + C k)j |En−j

0 | + k
j−1
l=0

(1 + C k)l |Pn−l
j−l − Rn−l

j−l |29

+ C k
j−1
l=0

(1 + C k)l

∥En−1−l

∥1 + ∥∆n−1−l
∥∞ + |σ n−1−l

|

. (6.28)30

Therefore, we establish31

|En
j | ≤ C


|En−j

0 | +

n−1
m=n−j

k ∥Em
∥1 +

n−1
m=n−j

k ∥∆m
∥∞ +

n
m=n−j+1

k ∥Pm
− Rm

∥∞ +

n−1
m=n−j

k |σm
|


. (6.29)32
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On the other hand, when J + n ≥ j ≥ n ≥ 1, due to (6.22) it follows that 1

|En
j | ≤ (1 + C k)n |E0

j−n| + k
n−1
l=0

(1 + C k)l |Pn−l
j−l − Rn−l

j−l | 2

+ C k
n−1
l=0

(1 + C k)l

∥En−1−l

∥1 + ∥∆n−1−l
∥∞ + |σ n−1−l

|

. (6.30) 3

Thus, we can conclude that 4

|En
j | ≤ C


∥E0

∥1 +

n−1
m=0

k ∥Em
∥1 +

n−1
m=0

k ∥∆m
∥∞ +

n−1
m=0

k |σm
| +

n
m=1

k ∥Pm
− Rm

∥∞


. (6.31) 5

Now, multiplying |En
j | by h and summing in j, 0 ≤ j ≤ J + n, 1 ≤ n ≤ N , from (6.27), (6.29) and (6.31) and that k = r h, we 6

have 7

∥En
∥1 = h |En

0 | +

n−1
j=1

h |En
j | +

J+n
j=n

h |En
j | 8

≤ h |Pn
0 − Rn

0| + C h
σ n

+ ∥En
∥1 + ∥∆n

∥∞


9

+ C
n−1
j=1

h


|En−j

0 | +

n−1
m=n−j

k ∥Em
∥1 +

n−1
m=n−j

k ∥∆m
∥∞ +

n−1
m=n−j

k |σm
| +

n
m=n−j+1

k ∥Pm
− Rm

∥∞


10

+ C
J+n−1
j=n

h


∥E0

∥1 +

n−1
m=0

k ∥Em
∥1 +

n−1
m=0

k ∥∆m
∥∞ +

n−1
m=0

k |σm
| +

n
m=1

k ∥Pm
− Rm

∥∞


11

≤ C


∥E0

∥1 + h ∥En
∥1 +

n−1
m=0

k ∥Em
∥1 +

n−1
j=1

h |En−j
0 | + h

σ n
+ n−1

m=0

k |σm
| 12

+ h ∥∆n
∥∞ +

n−1
m=0

k ∥∆m
∥∞ +

n
m=1

k ∥Pm
− Rm

∥∞ + h |Pn
0 − Rn

0|


13

≤ C


∥E0

∥1 +

n
m=0

k ∥Em
∥1 +

n
m=0

k |σm
| +

n−1
j=1

h

|Pn−j

0 − Rn−j
0 | + ∥En−j

∥1 + ∥∆n−j
∥∞ + |σ n−j

|


14

+

n
m=0

k ∥∆m
∥∞ +

n
m=1

k ∥Pm
− Rm

∥∞ + h |Pn
0 − Rn

0|


15

≤ C


∥E0

∥1 +

n
m=0

k ∥Em
∥1 +

n
m=0

k ∥∆m
∥∞ +

n
m=0

k |σm
| +

n
m=1

k ∥Pm
− Rm

∥∞ +

n
m=1

h |Pm
0 − Rm

0 |


, 16

1 ≤ n ≤ N . Then, 17

∥En
∥1 ≤ C


∥E0

∥1 +

n
m=1

k ∥Em
∥1 +

n
m=0

k ∥∆m
∥∞ +

n
m=0

k |σm
| +

n
m=1

k ∥Pm
− Rm

∥∞ + ∥P0 − R0∥∞


, (6.32) 18

1 ≤ n ≤ N . Thus, by means of the discrete Gronwall lemma, 19

∥En
∥1 ≤ C


∥E0

∥1 +

n
m=0

k ∥∆m
∥∞ +

n
m=0

k |σm
| +

n
m=1

k ∥Pm
− Rm

∥∞ + ∥P0 − R0∥∞


, (6.33) 20

1 ≤ n ≤ N . Next, we substitute (6.33) into (6.16) to have 21

∥∆n
∥∞ ≤ ∥∆0

∥∞ + C


k ∥E0

∥1 +

n−1
m=0

k ∥∆m
∥∞ 22

+

n−1
m=1

k


∥E0

∥1 +

m
l=0

k ∥∆l
∥∞ +

m
l=0

k |σ l
| +

m
l=1

k ∥Pl
− Rl

∥∞ 23
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+ ∥P0 − R0∥∞


+

n−1
m=0

k |σm
| +

n
m=1

k ∥Ym
− Zm

∥∞


1

≤ C


∥∆0

∥∞ + ∥E0
∥1 +

n−1
m=1

k ∥∆m
∥∞ +

n−1
m=0

k |σm
|2

+

n−1
m=1

k ∥Pm
− Rm

∥∞ + ∥P0 − R0∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (6.34)3

1 ≤ n ≤ N . Again, by means of the discrete Gronwall
∧
lemma, it follows that4

∥∆n
∥∞ ≤ C


∥∆0

∥∞ + ∥E0
∥1 +

n−1
m=0

k |σm
| + ∥P0 − R0∥∞ +

n−1
m=1

k ∥Pm
− Rm

∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (6.35)5

1 ≤ n ≤ N . Next, we substitute (6.35) in (6.33) to obtain6

∥En
∥1 ≤ C


∥∆0

∥∞ + ∥E0
∥1 +

n
m=0

k |σm
| + ∥P0 − R0∥∞ +

n
m=1

k ∥Pm
− Rm

∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (6.36)7

1 ≤ n ≤ N . Next, we substitute (6.35) and (6.36) in (6.19)8

|σ n
| ≤ |σ 0

| +

n
m=1

k |Am
− Bm

| + C
n−1
m=0

k
σm

9

+ C
n−1
m=1

k


∥∆0

∥∞ + ∥E0
∥1 +

m−1
l=0

k |σ l
| + ∥P0 − R0∥∞ +

m
l=1

k ∥Pl
− Rl

∥∞ +

m
l=1

k ∥Yl
− Zl

∥∞


10

+ C
n−1
m=1

k


∥∆0

∥∞ + ∥E0
∥1 +

m
l=0

k |σ l
| + ∥P0 − R0∥∞ +

m
l=1

k ∥Pl
− Rl

∥∞ +

m
l=1

k ∥Yl
− Zl

∥∞


,11

≤ C


|σ 0

| +

n
m=1

k |Am
− Bm

| + C
n−1
m=1

k
σm

12

+ ∥∆0
∥∞ + ∥E0

∥1 + ∥P0 − R0∥∞ +

n−1
m=1

k ∥Pm
− Rm

∥∞ +

n−1
m=1

k ∥Ym
− Zm

∥∞


(6.37)13

1 ≤ n ≤ N . Again by means of the discrete Gronwall
∧
lemma, it follows that14

|σ n
| ≤ C


∥∆0

∥∞ + ∥E0
∥1 + |σ 0

| +

n
m=1

k |Am
− Bm

| + ∥P0 − R0∥∞15

+

n−1
m=1

k ∥Pm
− Rm

∥∞ +

n−1
m=1

k ∥Ym
− Zm

∥∞


. (6.38)16

1 ≤ n ≤ N . Then, we substitute (6.38) in (6.35) and (6.36) to obtain17

∥∆n
∥∞ ≤ C


∥∆0

∥∞ + ∥E0
∥1 + |σ 0

| + ∥P0 − R0∥∞ +

n−1
m=1

k |Am
− Bm

|18

+

n−1
m=1

k ∥Pm
− Rm

∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (6.39)19

and20

∥En
∥1 ≤ C


∥∆0

∥∞ + ∥E0
∥1 + |σ 0

| + ∥P0 − R0∥∞ +

n−1
m=1

k |Am
− Bm

|21

+

n
m=1

k ∥Pm
− Rm

∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (6.40)22
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1 ≤ n ≤ N . And, finally, we substitute (6.38)–(6.40) in (6.27), (6.29) and (6.31) to arrive at 1

∥En
∥∞ ≤ C


∥∆0

∥∞ + ∥E0
∥1 + |σ 0

| + ∥P0 − R0∥∞ +

n−1
m=1

k |Am
− Bm

| 2

+

n
m=1

k ∥Pm
− Rm

∥∞ +

n
m=1

k ∥Ym
− Zm

∥∞


, (6.41) 3

1 ≤ n ≤ N . So, due to (6.38), (6.39) and (6.41) we have 4

∥

∆0, E0, . . . , ∆N , EN , σ


∥Ah ≤ C ∥(∆0, E0, σ 0, P0 − R0, Y1

− Z1, P1
− R1, . . . , YN

− ZN , PN
− RN ,A − B)∥Bh . � 5

7. Convergence 6

The global discretization error is defined as 7

ẽh = ũh − Ũh ∈ Ah. 8

We say that the discretization (4.26) is convergent if there exists h0 > 0 such that, for each h ∈ H with h ≤ h0, (4.38) has a 9

solution Ũh for which, as h → 0, 10

lim ∥ũh − Ũh∥Ah = lim ∥ẽh∥Ah = 0. 11

In our analysis, we shall use the following result of the general discretization framework introduced by López-Marcos 12

et al. [25]. 13

Theorem 4. Assume that (4.26) is consistent and stable with thresholds Rh. If Φh is continuous in B(ũh, Rh) and ∥lh∥Bh = o(Rh) 14

as h → 0, then: 15

(i) For h sufficiently small, the discrete equations (4.38) possess a unique solution in B(ũh, Rh). 16

(ii) As h → 0, the solutions converge and ∥ẽh∥Ah = O(∥lh∥Bh). 17

Finally, we propose the next theorem which establishes the convergence of the numerical method defined by Eqs. (4.27)– 18

(4.32). 19

Theorem 5. Assume that hypotheses (H1)–(H7) hold and that the considered quadrature rules satisfy properties (P1)–(P6). Then, 20

for h sufficiently small, the numerical method defined by Eqs. (4.27)–(4.32) has a unique solution Ũh ∈ B(ũh, Rh) and 21

∥Ũh − ũh∥Ah ≤ C

∥x0 − X0

∥∞ + ∥u0
− U0

∥∞ + |s0 − S0| + O(h2
+ k2)


. (7.1) 22

The proof of Theorem 5 is immediately derived by means of consistency (Theorem 2), stability (Theorem 3) and Theorem 4. 23

Specifically, if X0
= x0, U0

= u0 and S0 = s0, the proposed numerical scheme is second-order accurate. 24

At this moment, we have obtained convergence of the numerical method (4.27)–(4.33) which does not employ selection 25

at each time level. Also, we have proven the convergence of numerical methods which employ a selection criterion, when- 26

ever the positions, which are determined by the criterion we have chosen, lead us to subgrids which satisfy property (SR). 27

For the criterion presented in this paper, this property may be shown in two stages. First, as proven in [15], it leads us to 28

subgrids with such a property when we applied it over nodes which are in a neighbourhood of the theoretical ones with 29

radius R hp. In a second stage, it is proven that the nodes, which in fact the numerical method computes, are in such neigh- 30

bourhoods. In order to do this, it is enough to realize that such nodes could be seen, up to each time level, as the solutions 31

obtained by a discrete operator which has the form of that defined in (4.26). 32

Remark. It is well known that regularity hypotheses are necessary, in numerical analysis, to derive optimal rates of 33

convergence for numerical quadrature rules and numerical methods for differential equations. This is the meaning of our 34

smoothness assumptions. However, an interesting question is to consider how the numerical scheme analysed in this paper 35

should be used to carry out the numerical integration of problems with non-smooth biological data functions. In such case, 36

sometimes it is possible to locate these singular points, thus we would obtain the convergence result taking into account 37

that the method is based on the approximation along the characteristics curves by means of quadrature rules. For example, 38

with respect to the discontinuities caused by the lack of compatibility among the initial and boundary conditions, the 39

discussion introduced in [15], for the model without dynamical resource, is also valid in this case. In other physiologically 40

structured models, we can observe finite jump discontinuities caused by the problem itself (as in [14]), or by non-smooth 41

coefficients (as in [26,27]) which propagate along the characteristic curves. While these points are located, a
∧
proper choice 42

of the mesh grid and a suitable simple adaptation of the quadrature rules, keep the order of convergence of the method. The 43

same studies could be made for our model if they would be necessary. Also we have found situations, as in [13], providing 44

unbounded solutions close to the maximum size. Again, we can perform a different selection procedure and a modification 45

of the quadrature rule to describe the approximation to the solution. Finally, we refer to [28,29], and the references therein, 46

for numerical approximation to weak solutions for a similar kind of models. 47
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Table 1
Error and experimental order of convergence.

k \ h 2.5e−2 1.25e−2 6.25e−2 3.13e−2 1.56e−2

2.5e−2 1.565536e−4 2.674563e−4 2.852092e−4 2.888894e−4 2.897345e−4

1.25e−2 6.434510e−4 3.741278e−5 6.469671e−5 6.920614e−5 7.013337e−5
2.07

2.05
2.04 2.04

6.25e−2 7.647515e−4 1.656411e−4 9.157412e−6 1.590974e−5 1.704878e−5
1.96

2.03
2.02 2.02

3.13e−2 8.238862e−4 1.916386e−4 4.209129e−5 2.265792e−6 3.944845e−6
2.00

1.98
2.01 2.01

1.56e−2 8.438404e−4 2.051189e−4 4.790993e−5 1.060032e−5 5.635547e−7
2.01 2.00 1.99 2.01

8. Numerical results1

We have carried out different numerical experiments with the scheme defined in Section 3.2

First, we have considered an academical problem. It consists of a theoretical test problemwithmeaningful nonlinearities3

(both from a mathematical and a biological point of view). In this case, the numerical integration for the experiment was4

carried out on the time interval [0, 10]. The size interval was taken as [0, 1]. Below, we describe the functions involved in5

the experiment. The size-specific growth, fertility and mortality moduli are chosen as6

g(x, z, t) =
λ

2
1 + z
z


z

1 + z

2

− x2


+
xr

1 + z


29
30

−
z
k


,7

α(x, z, t) =
3
2
λ

1 +


z

C

29
30 −

z
k

−29λ
30r

1 + 2


z
C

29
30 −

z
k

−29λ
30r

,8

µ(x, z, t) = λ
1 + z
z


z

1 + z
+ 2x


−

3r
1 + z


29
30

−
z
k


.9

The weight function is taken as γ (x, z, t) = x2 and, finally,10

f (z, i, t) = rz

1 −

z
k


− rzi

(1 + z)5

z5(1 + 4e−λt)
.11

With this choice of data functions, the problem (2.1)–(2.6) has the following solution12

u(x, t) =


S(t)

1 + S(t)
− x

2

− e−λt


S(t)

1 + S(t)

2

− x2


,13

S(t) =
29
30

Ce29rt/30

1 + Ce29rt/30/k
,14

r = 0.1, C = 24, k = 5, λ = 0.3. Since we know the exact solution to the problem, we can show numerically that our15

method is second-order accurate by means of an error table. In Table 1, each entry in columns two to seven of the upper16

value represents the global error17

eh,k = max

max
0≤j≤J

|u(X0
j , t0) − U0

j |, |S(t
0) − S0|, max

1≤n≤N


max
0≤j≤J

|u(Xn
j , tn) − Un

j |


, |S(tn) − Sn|


18

and the lower number is the experimental order s of the method as computed from19

s =
log(e2h,2k/eh,k)

log 2
.20

Each column and each row of the
∧
table correspond to different values of the spatial and time discretization parameter, re-21

spectively. The results in the
∧
table clearly confirm the expected second-order convergence. The property of convergence22

Juan Carlos
Tachado

Juan Carlos
Texto insertado
points



18 O. Angulo et al. / Computers and Mathematics with Applications xx (xxxx) xxx–xxx

in finite time interval is important to carry out experiments in which the long-time behaviour of the population is investi- 1

gated. Therefore, the numerical integration of the model with an efficient method allows us to consider a more realistic test 2

problem. 3

Second, the numericalmethod has been employed to describe the dynamics of a population of ectothermic invertebrates: 4

the water flea, Daphnia magna. In this particular case, the data functions employed in [3] are given by 5

g(x, z, t) = g


z
1 + z

− x


, 6

µ(x, z, t) = µ, 7
8

α(x, z, t) = α
z

1 + z
x2, 9

f (z, i, t) = r z

1 −

z
K


− i

z
1 + z

, 10

γ (x, z, t) = x2. 11

Simple calculations provide the following steady state of the model,Q2 12

u∗(x) =
αr
g

(1 + S∗)


1 −

S∗

K


1 −

x
x∗

M

 µ
g −1

, 0 ≤ x ≤ x∗

M , (8.1) 13

with the following maximum size and resource 14

x∗

M =
3


µ(µ + g)(µ + 2g)

2αg2
, S∗

=
x∗

M

1 − x∗

M
. (8.2) 15

This model, with the following set of parameter values µ = 0.1, α = 0.75, r = 3, K = 8.3 and xM = 1, was
∧
analysed 16

with different numerical techniques in [3,13]. This set is beyond the theoretical analysis settings because the steady state is 17

unbounded (although integrable in whatever case g > µ). 18

We have performed simulations with g = 0.0075, µ = 0.1, α = 0.75, r = 3 and xM = 1. This set of parameters 19

makes the solution be bounded and therefore, within the theoretical analysis settings. In a first experiment, we take the 20

value K = 8.3. We employ initial conditions (2.3) and (2.5) which ensure compatibility between u0, S0 and the problem, 21

u0(0) =
α

g

 xM

0
x2 u0(x) dx,

S0

1 + S0
=

3 g u0(0)
2α

 xM
0 x u0(x) dx + g u′

0(0)
, 22

and integrate numerically until T = 1000.Weemploy small perturbations of (8.1) and (8.2) as initial conditions:xM = 0.875, 23

S0 = 7, and 24

u0(x) =


αr
g

(1 + S0)

1 −

S0

K


1 −

xxM
β

if 0 ≤ x ≤xM ,

0 if xM < x ≤ xM .

(8.3) 25

The value of β is taken in order to ensure the compatibility conditions 26

(β + 3)(β + 2)(β + 1) =
2αx3M

g
, 27

which results in β ≈ 0.5153057420. 28

The computations performed with different values of the parameters of the discretization, k and J , show that the numer- 29

ical solution is attracted to a stationary state. Therefore, we can state that equilibrium is asymptotically stable. For a fixed 30

number of grid points on the size interval, J , the numerical steady state converges to the theoretical one as the time step k 31

decreases. However, we observe that a critical value of the time step k, depending on J , appears. Below this critical value, 32

the numerical method does not produce better approximations to the theoretical values of the equilibrium state. Our expe- 33

rience allows us to estimate that an optimal ratio of the discretization parameters is about k J ≈ 250. In Table 2, we present 34

the errors produced by the numerical approximations to the theoretical equilibrium state with different values of the dis- 35

cretization parameters (J and k). Note that the convergence is second-order. For this choice of the final time integration, the 36

approach to the theoretical steady state is good enough as shown in Table 2. 37

In Fig. 1, we show the long time evolution of the numerical solution obtained with the values of the discretization pa- 38

rameters k = 0.0625, J = 4000. In the
∧
figure, we draw the evolution of the density function, the total population computed 39

from the population density by the composite trapezoidal quadrature rule, the maximum individual size and the dynamical 40

resource. As we can observe, all of them evolve towards the equilibrium state. 41

Taking into account the good behaviour of the numerical solution in a predictable situation, we now consider a more 42

complicated situation. As the value of the parameter K increases, the equilibrium state becomes unstable. In a second
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Table 2
Errors in the approximationswith respect to the theoretical val-
ues: N∗

0 =
 x∗M
0 u∗(x) dx ≈ 46.6763867098 (total population),

S∗ ≈ 4.0859721214 (resource).

k J Total population Resource

1 250 4.946335e−3 4.112717e−2
5e−1 500 1.004377e−3 9.992129e−3
2.5e−1 1000 2.270716e−4 2.461613e−4
1.25e−1 2000 5.403338e−5 6.108879e−4
6.25e−2 4000 1.318184e−5 1.521058e−4
3.125e−2 8000 3.255560e−6 3.788916e−5
1.5625e−2 16000 8.089576e−7 9.394259e−6
7.8125e−3 32000 2.016265e−7 2.277898e−6

Fig. 1. Evolution of the numerical solution. Case of a stable steady state.

experiment, we present an example of this situation by taking K = 9.64. As an initial condition, we take the unstable1

equilibrium state (8.1)–(8.2) (we extend this function to the whole interval [0, xM ] by taking u0(x) = 0 if x∗

M < x ≤ xM ).2

As in the previous experiment, the values of the discretization parameters are k = 0.0625, J = 4000. We can observe3

the instability of the equilibrium and the solution evolving towards a cycled situation (Fig. 2). Taking into account that the4

numerical solution is attracted to a limit cycle, considering a sufficiently large time, the numerical solution obtained after5

this long time integration lies practically on such a cycle. In this way, the numerical method provides an approximation to6

the limit cycle. In Fig. 3, the representation of such a cycle in the tridimensional space defined by the total population, the7

maximum individual size and the dynamical resource, is drawn. From thenumerical results obtained for the total population,8

the maximum size and the dynamical resource, we can obtain an in depth analysis of these quantities throughout a period9

of the limit cycle. For example, in Table 3, we present the behaviour of some numerical quantities of the solution
∧
throughout10

a period of the limit cycle. Also, we can estimate such a period by interpolation: it is about 64.6824.11

9. Conclusions12

We have
∧
analysed a second-order numerical method for a problem that describes a population with a possible shrinking13

size andwith a dependency on the environmentmanaged by the evolution of a vital resource. Themethod involves only one14

level of time each step. The second-order convergence has been theoretically proven bymeans of an argument of consistency15

and stability of the scheme. The academical test problem allows us to report numerical experiments which demonstrate the16

predicted accuracy of the scheme.17

This knowledge leads us tomake a long time integration of themodel. The biological problemwe consider is well known.18

It describes the dynamics of a Daphnia magna population. With its long time integration, we observe the good stability19
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Fig. 2. Evolution of the numerical solution. Case of an unstable steady state.

Fig. 3. Limit cycle appearing in the case of an unstable steady state.

properties that our numerical scheme possesses. In the settings of the theoretical analysis, our numerical scheme makes it 1

possible to determine the rich dynamics of themodel. It presents an equilibrium that is stable until the parameter K reaches 2

the bifurcation value. After that, it becomes unstable. In the stable case, we showhow the numerical steady state approaches 3

the theoretical steady state. When the equilibrium is unstable, a stable limit cycle appears, the characteristics of which are 4

also described. 5
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Table 3
Behaviour of some numerical quantities of the solution throughout a period of the limit
cycle.

Time Resource Total population Maximum size

0 Abs. maximum (5.91) ↗ ↗

14.22 ↘ ↗ Abs. maximum(0.82)
19.57 ↘ Rel. maximum(53.41) ↘

27.01 Rel. minimum(3.42) ↘ ↘

30.90 ↗ ↘ Rel. minimum(0.80)
32.15 ↗ Rel. minimum(51.37) ↗

36.21 Rel. maximum(4.92) ↗ ↗

43.09 ↘ ↗ Rel. maximum(0.81)
45.92 ↘ Abs. maximum(53.52) ↘

57.50 Abs. minimum(2.55) ↘ ↘

60.20 ↗ ↘ Abs. minimum(0.77)
61.79 ↗ Abs. minimum(47.35) ↗

64.68 Abs. maximum(5.92) ↗ ↗
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