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Abstract In this paper, we provide a formal notion of absolute dispersion measure that
is satisfied by some classical dispersion measures used in Statistics, such as the
range, the variance, the mean deviation and the standard deviation, among oth-
ers, and also by the absolute Gini index, used in Welfare Economics for mea-
suring inequality. The notion of absolute dispersion measure shares some prop-
erties with the notion of multidistance introduced and analyzed by Martı́n and
Mayor in several recent papers. We compare absolute dispersion measures and
multidistances and we establish that these two notions are compatible by show-
ing some functions that are simultaneously absolute dispersion measures and
multidistances. We also establish that remainders obtained through the dual de-
composition of exponential means, introduced by Garcı́a-Lapresta and Marques
Pereira, are absolute dispersion measures up to sign.

Keywords: Dispersion measures, multidistances, aggregation functions, dual decomposi-
tion.

1. Introduction

In some simple situations, everybody seems to have an intuition about the
notion of dispersion, being able to inform if some objects are or not more scat-
tered than others. However, if we aim to measure the magnitude of their spread
in order to provide a representation of such perception, even when dealing with
mathematical objects or data, many troubles naturally arise. Of course, there
exists a well-known approach from Descriptive Statistics, but recently some
interesting attempts have been done by extending the usual binary concept of
distance to more general settings. The tittle of the seminal paper by Martı́n
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and Mayor [15] introducing the so-called multidistances is significative in this
sense: “How separated Palma, Inca and Manacor are?”.

On the other hand, as suggested (without any formal definition) by Garcı́a-
Lapresta and Marques Pereira [9], the remainders of exponential means can
be somehow considered as dispersion measures. We now establish this fact
regarding the formal definition of an absolute dispersion measure introduced
in this paper.

All in all, the mentioned concepts have common links in terms of closeness
among different objects. This is the reason why in this paper we have consid-
ered their common background in order to establish their formal connections.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tion and a comprehensive list of properties which will appear along the paper.
Some of them are considered in our definition of absolute dispersion measure,
in the third section, and the fulfillment of some other properties for this mea-
sures is checked or tested. Then, in the fourth section we relate the notion
of multidistance with that of absolute dispersion measure, and this relation-
ship is also analyzed, in the fifth section, in connection with the remainders of
exponential means. The last section presents a synoptic diagram of the men-
tioned relationships, as well as some conjectures for further research and our
concluding remarks.

2. Preliminaries

Let I be [0,1] or R, and I =
⋃

n∈N
In. Vectors in In are denoted as x =

(x1, . . . ,xn), 0 = (0, . . . ,0) , 1 = (1, . . . ,1). Accordingly, x ·1 = (x, . . . ,x) for
every x ∈ I.

Given x,y ∈ In, by x ≥ y we mean xi ≥ yi for every i ∈ {1, . . . ,n}, and
by x > y we mean x ≥ y and x 6= y. Given x ∈ In, the increasing reorder-
ing of the coordinates of x is indicated as x(1) ≤ ·· · ≤ x(n). In particular,
x(1) = min{x1, . . . ,xn} and x(n) = max{x1, . . . ,xn}. The arithmetic mean of x is
symbolized as usual by µ(x). Given a permutation π on {1, . . . ,n}, we denote
xπ = (xπ(1), . . . ,xπ(n)). Finally, the cardinality of the set {x1, . . . ,xn} appears
as #{x1, . . . ,xn}.

We begin by defining standard properties of real functions on Rn. For fur-
ther details the interested reader is referred to Fodor and Roubens [7], Calvo et
al. [6], Beliakov et al. [3], Garcı́a-Lapresta and Marques Pereira [9], Grabisch
et al. [11] and Beliakov et al. [2].

Definition 1.1 Let A : In −→R be a function.

1 A is idempotent if for every x ∈ I it holds A(x ·1) = x.

2 A is symmetric if for every permutation π on {1, . . . ,n} and every x ∈
In it holds A(xπ) = A(x).
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3 A is monotonic if for all x,y ∈ In it holds x≥ y ⇒ A(x)≥ A(y).

4 A is strictly monotonic if for all x,y ∈ In it holds x > y ⇒ A(x) >
A(y).

5 A is compensative if for every x ∈ In it holds x(1) ≤ A(x)≤ x(n).

6 A is anti-self-dual if I = [0,1] and for every x ∈ [0,1]n it holds A(1−
x) = A(x).

7 A is even if I =R and for every x ∈Rn it holds A(−x) = A(x).

8 A is stable for translations if for all x∈ In and t ∈R such that x+t ·1∈
In it holds A(x+ t ·1) = A(x)+ t.

9 A is invariant for translations if for all x ∈ In and t ∈R such that x+
t ·1 ∈ In it holds A(x+ t ·1) = A(x).

10 A is invariant under positive scaling (or positively homogeneous of de-
gree 0) if for all x∈ In and λ > 0 such that λ ·x∈ In it holds A(λ ·x) =
A(x).

Definition 1.2 Let A : I−→R be a function.

1 A is stable if for all x ∈ In and i ∈ {1, . . . ,n} it holds A(x,xi) = A(x).

2 A is contractive if for all x ∈ I there exists y ∈ I such that A(x,y) <
A(x).

3 A is invariant for replications if A(

m︷ ︸︸ ︷
x, . . . ,x) = A(x) for every x ∈ I and

any number m ∈N of replications of x.

3. Absolute dispersion measures

As far as we know, there is no an established notion of absolute dispersion
measure in the literature. In this paper we gather some compelling properties
that such concept should fulfill. Next, we show some classic statistic estimators
which can be understood from this point of view (on this matter, Calot [4] is
still useful for further details).

Definition 1.3 A function D : I−→R is an absolute dispersion measure if
it satisfies the following conditions

1 Positiveness: D(x)≥ 0, for every x ∈ I.

2 Identity of indiscernibles: D(x) = 0 ⇔ x1 = · · · = xn, for all n ∈ N
and x ∈ In.



4 Multidistances and dispersion measures

3 Symmetry: D(xπ) = D(x), for all n ∈ N, x ∈ In and permutation π

on {1, . . . ,n}.

4 Invariance for translations.

5 Invariance for replications.

6 Anti-self-duality if I = [0,1] (evenness if I =R).

Remark 1.1 If invariance under positive scaling were imposed instead of
invariance for translations, then we would move from the scenario of absolute
dispersion measures to that of relative ones. However, in this paper we have
focused our attention just on the first approach in order to establish connections
with multidistances and remainders of exponential means, as will be shown
along the paper.

Next we list some classical absolute dispersion measures commonly appear-
ing in the literature. It is easy to check that they verify the above mentioned
properties and hence they can also be examined under our approach. Some
of them take into account the degree of clustering of the data considering the
mean as reference. However, we do no pretend to be exhaustive. For example,
some other less known possibilities taking into account the closeness to the
median have been avoided.

Definition 1.4 Let x ∈ In.

1 The range of x is defined as r(x) = x(n)− x(1).

2 The variance of x is defined as

σ
2(x) =

1
n

n

∑
i=1

(xi−µ(x))2.

3 The standard deviation of x is defined as

σ(x) =

√
1
n

n

∑
i=1

(xi−µ(x))2.

4 The mean deviation of x is defined as

md(x) =
1
n

n

∑
i=1
|xi−µ(x) |.

5 The Gini index ([10]), the most popular measure of inequality in wel-
fare economics, was introduced by Corrado Gini in 1912. It is based
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on the average of the absolute differences between all possible pairs of
observations (different formulations can be found in Yitzhaki [19] and
Aristondo et al. [1, Subsect. 3.1], among others).

The relative Gini index is defined as

G(x) =
1

2n2µ(x)

n

∑
i=1

n

∑
j=1

∣∣xi− x j
∣∣, if µ(x) 6= 0.

The absolute Gini index is defined as

Ga(x) =
1

2n2

n

∑
i=1

n

∑
j=1

∣∣xi− x j
∣∣.

Remark 1.2 For n = 2, it is interesting to note that both the standard devia-
tion and the mean deviation of x = (x1, . . . ,xn) coincide with the semi-range,
defined as

x(n)−x(1)

2 . In such case, also the mean coincides with the mid-range
defined as

x(1)+x(n)

2 , and the range becomes four times the absolute Gini index.

Remark 1.3 In the literature usually appears the coefficient of variation of

x ∈ I defined as cv(x) =
σ(x)

|µ(x)|
, if µ(x) 6= 0. It is not properly an abso-

lute dispersion measure according to the previous definition, because it vulner-
ates invariance for translations, and anti-self-duality when I = [0,1]. However,
evenness is fulfilled when I =R.

Remark 1.4 It is easy to check that, in the list above, just the range is a
stable absolute dispersion measure. On the other hand, according to computer
simulations, the variance, standard deviation and mean deviation behave as
contractive absolute dispersion measures. Obviously, an open problem consists
on providing formal proofs of these facts. In the case of the absolute Gini
index, its contractivity can be formally guaranteed in the next section under a
multidistance approach.

4. Multidistances

The notion of multidistance was introduced by Martı́n and Mayor [15] from
the classical definition of distance between two points (becoming elements in
a metric space). In this way, from a more general point of view, these authors
consider multidistances among any finite number of points by generalizying
the usual triangle inequality (see also Martı́n and Mayor [16]).

Definition 1.5 A function M : I −→ R is a multidistance if it satisfies the
following conditions:
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1 Positiveness: M(x)≥ 0, for every x ∈ I.

2 Identity of indiscernibles: M(x) = 0 ⇔ x1 = · · · = xn, for all n ∈ N
and x ∈ In.

3 Symmetry: M(xπ) = M(x), for all n ∈N, x ∈ In and permutation π

on {1, . . . ,n}.

4 Generalized triangle inequality: M(x) ≤ M(x1,y) + · · ·+ M(xn,y), for
all n ∈N, x ∈ In and y ∈ I.

The first examples of multidistances proposed by Martı́n and Mayor [15]
are the drastic multidistances. Among them, it is interesting the one defined as
follows:

D(x) = #{x1, . . . ,xn}−1,

which also trivially fulfills all the conditions of absolute dispersion measures.
Another class of multidistances is that of sum-based multidistances (see

Martı́n and Mayor [15, 16]), given by any function Dλ : I−→R such that

Dλ (x) =


0, if n = 1,

λ (n) ∑
i< j
|xi− x j|, if n≥ 2,

where λ : {2,3, . . .} −→ R is any discrete function such that λ (2) = 1 and
0 < λ (n)≤ 1

n−1 for n > 2 (this last condition stands for guaranteeing the gen-
eralized triangle inequality).

Notice that the absolute Gini index is just twice a multidistance of this fam-
ily; even more, it is contractive (see Calvo et al. [5, Prop. 8]). However, not
all sum-based multidistances are absolute dispersion measures. For example,
considering λ (n) = 1

n−1 , invariance for replications fails:

Dλ (x1,x2) =
1

2−1
|x2− x1|= |x2− x1|,

whereas

Dλ (x1,x2,x1,x2) =
1

4−1
4|x2− x1|=

4
3
|x2− x1|.

Similarly, usual distances between all possible
(n

2

)
couples of n points can be

used to achieve a multidistance by means of OWA operators. In order to define
such OWA-based multidistances (see Martı́n et al. [17]), consider a weighting
triangle where the entries are non-negative in each row and they add up to one,
i.e.:
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w1
1

w2
1 w2

2

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3 w4

4

w5
1 w5

2 w5
3 w5

4 w5
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

where wi
j ≥ 0 and

j
∑

i=1
w j

i = 1.

Then we can define the function DW : I−→R such that

DW (x) =


0, if n = 1,

Wn

(n
2)︷ ︸︸ ︷

(|x2− x1|, . . . , |xn− xn−1|), if n≥ 2,

where Wn is the OWA operator whose weights are given by the
(n

2

)
-th row and

w(n
2)

1 + · · ·+ w(n
2)

n−1 > 0 for all n≥ 3 (see Martı́n [14]).

Remark 1.5 If all the left weights in the triangle are unitary, i.e., w(n
2)

1 = 1
for all n∈N , we obtain the maximum multidistance (notice that this case coin-
cides with the range, and hence it is an absolute dispersion measure). However,
not all OWA-based multidistance are absolute dispersion measures. For exam-
ple, if the weights are equal in each row, the corresponding OWA-based multi-
distance DW becomes the sum-based multidistance with λ (n) = 1

(n
2)

= 2
n(n−1) ,

which also vulnerates invariance for replications (in this case, it is easy to check
that DW (x1,x2) = |x2− x1| 6= DW (x1,x2,x1,x2) = 2

3 |x2− x1|).

And also introduced by Martı́n and Mayor [15, 16], the Fermat multidis-
tance DF : I−→R is given by:

DF(x) = min
x∈I

{
n

∑
i=1
|xi− x|

}
where x ∈ In.

Once fixed x ∈ I, such minimum value is effectively reached by any of the
points of the Fermat set associated with {x1, . . . ,xn}. In our unidimensional
context, a classic result (see, for instance, Jackson [12]) provides that such
Fermat set is the singleton

{
x( n+1

2 )

}
, i.e., the median, if n is odd; or the inter-

val
[
x( n

2 ),x( n+1
2 )

]
, if n is even. In this case, it is usual to consider just any of
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the extremes: x( n
2 ), the lower median, or x( n+1

2 ), the higher median, or even the
average of these two values. In what follows we will choose this last option,
calling med(x) the median of {x1, . . . ,xn}. Notice that, as mentioned above,
the argument of the minimum appearing in the expression of the Fermat mul-

tidistance can be rewritten as
n
∑

i=1
|xi−med(x)|, which is exactly n times the

mean deviation with respect to the median.

Proposition 1.1 The Fermat multidistance is an absolute dispersion mea-
sure. Moreover, it is an iterated sum of ranges of the data, where in each term
the extreme values are sequentially withdrawn:

DF(x) =



(
x(n)− x(1)

)
+
(
x(n−1)− x(2)

)
+ · · ·+

(
x( n

2 +1)− x( n
2 )

)
,

if n is even,(
x(n)− x(1)

)
+
(
x(n−1)− x(2)

)
+ · · ·+

(
x( n+1

2 +1)− x( n+1
2 −1)

)
,

if n is odd.

Proof. The key idea is the very essence of the median, an intermediate value
which divides de data in two sets on its left and right sides, each of them which
exactly the same number of terms. Then we have

DF(x) =
n

∑
i=1
|xi−med(x)|=

(
x(n)−med(x)

)
+
(
med(x)− x(1)

)
+
(
x(n−1)−med(x)

)
+(

med(x)− x(2)

)
+ · · ·=

(
x(n)− x(1)

)
+
(
x(n−1)− x(2)

)
+ · · · ,

where the last terms in the corresponding two sums depend on the parity of n.
�

Thus, the Fermat multidistance inherits its condition of absolute dispersion
measure from the range. And its is also true a sort of reciprocal: the above
mentioned fact that the range is also a multidistance.

Remark 1.6 The variance is not a multidistance because the triangle in-
equality fails:

σ
2(0,1) = 0.25 > σ

2(0,0.5)+ σ
2(1,0.5) = 0.0625 + 0.0625 = 0.125.

On the other side, according to computer simulations, the standard deviation
and the mean deviation behave as multidistances, but proofs of these conjec-
tures are yet to be provided.
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5. Remainders of exponential means

In a similar way to the previous scenarios, in what follows we can consider
either aggregation functions with a fixed amount n∈N of input data in the unit
interval, or extended aggregation functions defined for any n ∈N (we will not
distinguish the notation). Such number n is called the arity of the aggregation
function.

Definition 1.6

1 A function A : [0,1]n −→ [0,1] is called an n-ary aggregation function if
it is monotonic and satisfies A(1) = 1 and A(0) = 0.

2 A function A :
⋃

n∈N
[0,1]n −→ [0,1] is called an extended aggregation

function if A|[0,1]n is an n-ary aggregation function for every n ∈N.

For the sake of simplicity, the n-arity is omitted whenever it is clear from
the context.

It is easy to see that for aggregation functions idempotentcy and compen-
sativeness are equivalent concepts.

5.1 The remainder of an aggregation function

We now briefly recall the remainder of an aggregation function, due to
Garcı́a-Lapresta and Marques Pereira [8, 9].

Definition 1.7 Given an aggregation function A : [0,1]n−→ [0,1], the func-
tion
Ã : [0,1]n −→R defined as

Ã(x) =
A(x)+ A(1−x)−1

2

is called the remainder of A.

Clearly, Ã is not an aggregation function: Ã(1) = 0.
The following result can be found in Garcı́a-Lapresta and Marques Pereira

[9] (excepting that invariance for replications is inherited by the remainder; the
proof is immediate).

Proposition 1.2 The remainder Ã inherits from the aggregation function A
the properties of continuity, symmetry, invariance for replications, whenever A
has these properties. �

The following result provide two more properties of the remainder (see
Garcı́a-Lapresta and Marques Pereira [9]).
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Proposition 1.3 Let A : [0,1]n −→ [0,1] be an aggregation function.

1 If A is idempotent, then Ã(x ·1) = 0 for every x ∈ [0,1].

2 If A is stable for translations, then Ã is invariant for translations. �

The first statement establishes that remainders of idempotent aggregation
functions are null on the main diagonal. The second statement applies to ag-
gregation functions satisfying stability for translations. In such case, remain-
ders are invariant for translations. These properties of the remainder Ã suggest
that it may give some information about the dispersion of the coordinates of a
vector in [0,1]n.

5.2 Exponential means

Quasiarithmetic means are the only aggregation functions satisfying conti-
nuity, idempotency, symmetry, strict monotonicity and decomposability (see
Kolmogoroff [13], Nagumo [18] and Fodor and Roubens [7, pp. 112-114]).

Exponential means are the only quasiarithmetic means satisfying stability
for translations.

Given α 6= 0, the exponential mean Aα : [0,1]n −→ [0,1] is the aggregation
function defined as

Aα(x) =
1
α

ln
eαx1 + · · ·+ eαxn

n
.

We now focus on the remainders of exponential means. Given α 6= 0, the
remainder of Aα is the mapping Ãα : [0,1]n −→R defined as

Ãα(x) =
1

2α
ln

(eαx1 + · · ·+ eαxn)(e−αx1 + · · ·+ e−αxn)

n2 .

For every α 6= 0, Ã satisfies identity of indiscernibles. Moreover, Ãα is
continuous, symmetric, anti-self-dual, invariant for translations and invariant
for replications (see Garcı́a-Lapresta and Marques Pereira [9, Sect. 6] for de-
tails).

The following result presents the parameter limits of the remainders of ex-
ponential means (see Garcı́a-Lapresta and Marques Pereira [9, Prop. 35]).

Proposition 1.4 For every x ∈ [0,1]n, the following statements hold:

1 lim
α→∞

Ãα(x) =
x(n)− x(1)

2
.

2 lim
α→−∞

Ãα(x) =−
x(n)− x(1)

2
.
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3 lim
α→0

Ãα(x) = 0. �

Proposition 1.5 Ãα is an absolute dispersion measure for every α > 0.

Proof. It will be shown the only remaining condition, i.e., that Aα is non-
negative for every α > 0. To this aim, it suffices to check that the argument of
the logarithm appearing in the expression of the remainder is greater than or
equal to 1. This happens because its numerator is greater than the denominator:

(eαx1 + · · ·+ eαxn)(e−αx1 + · · ·+ e−αxn) =

n

∑
i=1

eα(xi−xi) + ∑
i< j

(eα(xi−x j) + eα(x j−xi)) =

n + ∑
i< j

2cosh(α(xi− x j))≥ n + 2
(n−1)n

2
= n +(n−1)n = n2,

where the well known property coshz = ez+e−z

2 ≥ 1 of the hyperbolic cosine
has been taken into account in each of the 1 +2 + · · ·+(n−1) = (n−1)n

2 terms
of the last summation. Hence, the logarithm is always non-negative and the
exponential remainder stands as an absolute dispersion measure for α > 0.
�

Notice that, if α < 0, then Ã−α(x) =−Ãα(x), and hence positiveness (re-
quired both for absolute dispersion measures and multidistances) is vulnerated.
In fact, even for α > 0, it is is easy to check that remainders of exponential
means are not multidistances. For example, if α = 0.5, we obtain:

Ã0.5(0,1) = 0.06186 > Ã0.5(0,0.5)+ Ã0.5(1,0.5) =

0.01358 + 0.01358 = 0.02716

and, consequently, the triangle inequality does not hold.

6. Concluding remarks

First, in Fig. 1.1 we show a panoramic diagram connecting the concepts
appeared along the paper.

Next, we show a comprehensive table on the fulfillment of several properties
considered above. Conjectures appear enclosed in parentheses.

symm. anti-self-dual. evenness trans. inv. replic. inv. contract. stabil.
range

√ √ √ √ √
X

√

variance
√ √ √ √ √

(
√

) X
standard deviation

√ √ √ √ √
(
√

) X
mean deviation

√ √ √ √ √
(
√

) X
absolute Gini ind.

√ √ √ √ √ √
X

coef. var.
√

X X X
√

(
√

) X
exp. remainder

√ √
–

√ √
(
√

) X
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Figure 1.1. Relationship among concepts.

 

𝐴 𝛼

𝐴 𝛼 𝛼 > 0)

𝐴 𝛼 𝛼 < 0)

 

 

As commented above, although some open problems remain formally un-
solved due to the complexity in their treatment, we consider that our approach
opens up wider perspectives and sheds new light into the dispersion analysis.
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