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José Luis Garćıa-Lapresta

PRESAD Research Group, IMUVA, Departamento de Economı́a Aplicada, Universidad de

Valladolid, Avenida Valle de Esgueva 6, 47011 Valladolid, Spain

Ricardo Alberto Marques Pereira

Dipartimento di Economia e Management, Università degli Studi di Trento, Via Inama 5,
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Abstract

In this paper, we review the role of self-duality in the theory of aggregation
functions, the dual decomposition of aggregation functions into a self-dual core
and an anti-self-dual remainder, and some applications to welfare, inequality,
and poverty measures.
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1. Introduction

In the context of aggregation functions, self-duality is an important property
(see Beliakov et al. [3] and Grabisch et al. [16]). Self-dual aggregation functions
satisfy A(1−x) = 1−A(x) for every x ∈ [0, 1]n. In other words, the aggregate
value of the transformed inputs coincides with the transformed aggregate value
of the original inputs. This means that the aggregation function is unbiased
relatively to the higher or lower value of its inputs.

In the aggregation of reciprocal preference relations, for instance, self-duality
ensures the reciprocity of the aggregate preference relation (see Garćıa-Lapresta
and Llamazares [12]).

Silvert [24] introduced symmetric sums, a class of self-dual aggregation func-
tions with two variables, within the context of his characterization of self-duality
(see also Dubois and Prade [8] and Calvo et al. [6, p. 32]).

Garćıa-Lapresta and Marques Pereira [13, 14] proposed a method that asso-
ciates a self-dual aggregation function to any aggregation function. This method
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improves the one given by Silvert [24] in a number of ways (see Garćıa-Lapresta
and Marques Pereira [14, Sect. 4]).

Maes et al. [20] provide a characterization of self-dual aggregation functions
which generalizes those given by Silvert [24] and Garćıa-Lapresta and Marques
Pereira [14]. In turn, Maes and De Baets [19] merge self-dual and commutative
binary aggregation functions in a single functional equation.

The paper is organized as follows. Section 2 reviews basic notions regarding
aggregation functions and their dual decomposition, with a particular focus on
exponential means and OWA functions. Section 3 discusses some applications
of the dual decomposition to welfare economics, and Section 4 contains some
concluding remarks.

2. Aggregation functions

We now present notation and basic definitions regarding aggregation func-
tions on [0, 1]n, with n ∈ N and n ≥ 2 throughout the text. For further details
the interested reader is referred to Fodor and Roubens [10], Calvo et al. [6],
Beliakov et al. [3], Garćıa-Lapresta and Marques Pereira [14] and Grabisch et
al. [16].

Vectors in [0, 1]n are denoted as x = (x1, . . . , xn), 0 = (0, . . . , 0), 1 =
(1, . . . , 1). Accordingly, for every x ∈ [0, 1], we have x · 1 = (x, . . . , x). Given
x,y ∈ [0, 1]n, by x ≥ y we mean xi ≥ yi for every i ∈ {1, . . . , n}, and
by x > y we mean x ≥ y and x 6= y. Given x ∈ [0, 1]n, the increasing and
decreasing reorderings of the coordinates of x are indicated as x(1) ≤ · · · ≤ x(n)
and x[1] ≥ · · · ≥ x[n], respectively. In particular, x(1) = min{x1, . . . , xn} =
x[n] and x(n) = max{x1, . . . , xn} = x[1]. Clearly, x[k] = x(n−k+1) for every
k ∈ {1, . . . , n}. In general, given a permutation σ on {1, . . . , n}, we denote
xσ = (xσ(1), . . . , xσ(n)). The arithmetic mean of x is denoted by µ(x).

Definition 1. Let A : [0, 1]n −→ R be a function.

1. A is idempotent if for every x ∈ [0, 1] it holds that A(x · 1) = x.

2. A is symmetric if for every permutation σ on {1, . . . , n} and every x ∈
[0, 1]n it holds that A(xσ) = A(x).

3. A is monotonic if for all x,y ∈ [0, 1]n it holds that x ≥ y ⇒ A(x) ≥
A(y).

4. A is strictly monotonic if for all x,y ∈ [0, 1]n it holds that x > y ⇒
A(x) > A(y).

5. A is compensative (or internal) if for every x ∈ [0, 1]n it holds that
x(1) ≤ A(x) ≤ x(n).

6. A is self-dual if for every x ∈ [0, 1]n it holds that A(1− x) = 1−A(x).

7. A is anti-self-dual if for every x ∈ [0, 1]n it holds that A(1−x) = A(x).

8. A is invariant for translations if for every x ∈ [0, 1]n it holds that A(x+
t · 1) = A(x) for every t ∈ R such that x + t · 1 ∈ [0, 1]n.

9. A is stable for translations (or shift-invariant) if for every x ∈ [0, 1]n it
holds that A(x+t·1) = A(x)+t for every t ∈ R such that x+t·1 ∈ [0, 1]n.
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Definition 2. Let
(
A(k)

)
k∈N be a sequence of functions, with A(k) : [0, 1]k −→

R and A(1)(x) = x for every x ∈ [0, 1].
(
A(k)

)
k∈N is invariant for replications

(or strongly idempotent) if for all x ∈ [0, 1]n and any number of replications
m ∈ N of x it holds that

A(mn)(

m︷ ︸︸ ︷
x, . . . ,x) = A(n)(x).

Definition 3. Consider the binary relation < on [0, 1]n, defined as

x < y ⇔
n∑
i=1

xi =

n∑
i=1

yi and

k∑
i=1

x(i) ≤
k∑
i=1

y(i),

for every k ∈ {1, . . . , n− 1}.
1. A function A : [0, 1]n −→ [0, 1] is S-convex if for all x,y ∈ [0, 1]n:

x < y ⇒ A(x) ≥ A(y).

2. A function A : [0, 1]n −→ [0, 1] is strictly S-convex if for all x,y ∈ [0, 1]n:

x � y ⇒ A(x) > A(y),

where x � y means x < y and x 6= y.

Definition 4. A function A : [0, 1]n −→ [0, 1] is called an n-ary aggregation
function if it is monotonic and satisfies A(1) = 1 and A(0) = 0. An aggrega-
tion function is said to be strict if it is strictly monotonic.

For the sake of simplicity, the n-arity is omitted whenever it is clear from
the context. Every idempotent aggregation function is compensative, and vice
versa.

2.1. Dual decomposition of aggregation functions
We now briefly recall the so-called dual decomposition of an aggregation

function into its self-dual core and associated anti-self-dual remainder, due to
Garćıa-Lapresta and Marques Pereira [14]. First we introduce the concepts of
self-dual core and anti-self-dual remainder of an aggregation function, estab-
lishing which properties are inherited in each case from the original aggregation
function. Particular emphasis is given to the properties of stability for transla-
tions (self-dual core) and invariance for translations (anti-self-dual remainder).

Definition 5. Let A : [0, 1]n −→ [0, 1] be an aggregation function. The aggre-
gation function A∗ : [0, 1]n −→ [0, 1] defined as

A∗(x) = 1−A(1− x)

is known as the dual of the aggregation function A.

Clearly, (A∗)∗ = A. Thus, an aggregation function A is self-dual if and only
if A∗ = A. Moreover, the dual A∗ inherits from the aggregation function A
the properties of continuity, idempotency (hence, compensativeness), symme-
try, strict monotonicity, self-duality, stability for translations and invariance for
replications, whenever A has these properties.
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2.1.1. The self-dual core of an aggregation function

Aggregation functions are not in general self-dual. However, a self-dual
aggregation function can be associated with any aggregation function in a simple
manner.

Definition 6. Let A : [0, 1]n −→ [0, 1] be an aggregation function. The func-

tion Â : [0, 1]n −→ [0, 1] defined as

Â(x) =
A(x) +A∗(x)

2
=
A(x)−A(1− x) + 1

2

is called the core of the aggregation function A.

Since Â is self-dual, we say that Â is the self-dual core of the aggregation
function A. Notice that Â is clearly an aggregation function.

The following results1 can be found in Garćıa-Lapresta and Marques Pereira
[14].

Proposition 1. An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if

and only if Â(x) = A(x) for every x ∈ [0, 1]n.

Proposition 2. The self-dual core Â inherits from the aggregation function A
the properties of continuity, idempotency (hence, compensativeness), symmetry,
strict monotonicity, stability for translations, and invariance for replications,
whenever A has these properties.

2.1.2. The anti-self-dual remainder of an aggregation function

We now introduce the anti-self-dual remainder Ã, which is simply the dif-
ference between the original aggregation function A and its self-dual core Â.

Definition 7. Let A : [0, 1]n −→ [0, 1] be an aggregation function. The func-

tion Ã : [0, 1]n −→ R defined as Ã(x) = A(x)− Â(x), that is,

Ã(x) =
A(x)−A∗(x)

2
=
A(x) +A(1− x)− 1

2
,

is called the remainder of the aggregation function A.

Since Ã is anti-self-dual, we say that Ã is the anti-self-dual remainder of
the aggregation function A. Clearly, Ã is not an aggregation function. In
particular, Ã(0) = Ã(1) = 0 violates idempotency and implies that Ã is either
non monotonic or everywhere null.

The following results2 can be found in Garćıa-Lapresta and Marques Pereira
[14].

1Excepting that invariance for replications is inherited by the core (the proof is immediate).
2Excepting that invariance for replications is inherited by the remainder (the proof is

immediate).
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Proposition 3. An aggregation function A : [0, 1]n −→ [0, 1] is self-dual if

and only if Ã(x) = 0 for every x ∈ [0, 1]n.

Proposition 4. The anti-self-dual remainder Ã inherits from the aggregation
function A the properties of continuity, symmetry, and invariance for replica-
tions, whenever A has these properties.

Summarizing, every aggregation function A decomposes additively A =
Â+Ã in two components: the self-dual core Â and the anti-self-dual remainder
Ã, where only Â is an aggregation function.

The following result concerns two more properties of the anti-self-dual re-
mainder based directly on the definition Ã = A − Â and the corresponding
properties of the self-dual core (see Garćıa-Lapresta and Marques Pereira [14]).

Proposition 5. Let A : [0, 1]n −→ [0, 1] be an aggregation function.

1. If A is idempotent, then Ã(x · 1) = 0 for every x ∈ [0, 1].

2. If A is stable for translations, then Ã is invariant for translations.

These properties of the anti-self-dual remainder are suggestive. The first
statement establishes that anti-self-dual remainders of idempotent aggregation
functions are null on the main diagonal. The second statement applies to the
subclass of stable aggregation functions. In such case, self-dual cores are stable
and therefore anti-self-dual remainders are invariant for translations. In other
words, if the aggregation function A is stable for translations, the value Ã(x)
does not depend on the average value of the x coordinates, but only on their
numerical deviations from that average value. These properties of the anti-self-
dual remainder Ã suggest that it may give some indication on the dispersion of
the x coordinates.

In Maes et al. [20], the authors propose a generalization of the dual decom-
position framework introduced in Garćıa-Lapresta and Marques Pereira [14],
based on a family of binary aggregation functions satisfying a form of twisted
self-duality condition. Each binary aggregation function in that family corre-
sponds to a particular way of combining an aggregation function A with its
dual A∗ for the construction of the self-dual core Â. As particular cases of the
general framework proposed in Maes et al. [20], one obtains Garćıa-Lapresta
and Marques Pereira’s construction, based on the arithmetic mean, and Silvert’s
construction, based on the symmetric sums formula (see Silvert [24]). However,
the dual decomposition framework introduced in Garćıa-Lapresta and Marques
Pereira [14] remains the only one which preserves stability under translations.

2.2. Dual decomposition of exponential means

Quasiarithmetic means are the only aggregation functions satisfying con-
tinuity, idempotency, symmetry, strict monotonicity and decomposability (see
Kolmogoroff [18], Nagumo [22] and Fodor and Roubens [10, pp. 112-114]).

Exponential means are the only quasiarithmetic means satisfying stability
for translations.
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Given α 6= 0, the exponential mean Aα is the aggregation function defined
as

Aα(x) =
1

α
ln
eαx1 + · · ·+ eαxn

n
.

We now describe the dual decomposition of exponential means (see Garćıa-
Lapresta and Marques Pereira [14, Sect. 6] for more details).

Given α 6= 0, the self-dual core of Aα is the aggregation function Âα defined
as

Âα(x) =
1

2α
ln

eαx1 + · · ·+ eαxn

e−αx1 + · · ·+ e−αxn
.

For every α 6= 0, Âα is continuous, idempotent, symmetric, strictly mono-
tonic, compensative, stable for translations, self-dual and invariant for replica-
tions.

Given α 6= 0, the anti-self-dual remainder of Aα is the mapping Ãα defined
as

Ãα(x) =
1

2α
ln

(eαx1 + · · ·+ eαxn)(e−αx1 + · · ·+ e−αxn)

n2
.

For every α 6= 0, Ãα(x) = 0 if and only if x1 = · · · = xn. Moreover, Ãα
is continuous, symmetric, anti-self-dual, invariant for translations and invariant
for replications.

The previous decomposition will be used in Subsection 3.1.

2.3. Dual decomposition of OWA functions

OWA functions, introduced by Yager [25], are aggregation functions satisfy-
ing continuity, idempotency (hence, compensativeness), symmetry and stability
for translations (see Fodor et al. [9]).

Given a weighting vector w = (w1, . . . , wn) ∈ [0, 1]n satisfying
∑n
i=1 wi = 1,

the OWA function associated with w is the aggregation function Aw : [0, 1]n −→
[0, 1] defined as

Aw(x) =

n∑
i=1

wi x[i] .

Notice that an OWA function Aw is self-dual if and only if wn+1−i = wi for
every i ∈ {1, . . . , n}.

We now describe the dual decomposition of OWA functions (see Garćıa-
Lapresta and Marques Pereira [14, Sect. 5] for more details).

The self-dual core Âw and the anti-self-dual remainder Ãw of an OWA func-
tion Aw can be written as

Âw(x) =

n∑
i=1

wi + wn+1−i

2
x[i] and Ãw(x) =

n∑
i=1

wi − wn+1−i

2
x[i] .

The dual decomposition will be used in Subsections 3.1 and 3.2.
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3. Some applications to welfare economics

In this section we briefly describe some applications of self-duality and the
dual decomposition of exponential means and OWA functions to the field of wel-
fare economics: in the measurement of poverty, inequality, and welfare. Further
details can be found in Garćıa-Lapresta et al. [11] and Aristondo et al. [1, 2].

We consider a population consisting of n individuals, with n ≥ 2. An
income distribution is represented by a vector x = (x1, . . . , xn) ∈ [0, 1]n, where
xi ∈ [0, 1] represents the income of individual i ∈ {1, . . . , n}. The unit interval
is the natural domain in dual decomposition framework, although most of the
constructions and results presented extend straightforwardly to the traditional
income domain [0,∞) (see Aristondo et al. [2, Remarks 2-3]).

3.1. Applications to the measurement of poverty

According to Sen [23], a poverty measure consists essentially of an aggrega-
tion procedure within the poor sector of the population. The identification of
the poor individuals requires the specification of a poverty line z ∈ (0, 1) which
represents the necessary income to maintain a minimum level of living. Given an
income distribution x, an individual is considered to be poor if his/her income
is below the poverty line, x < z. Otherwise he/she is non-poor.

The set of poor individuals in the population is denoted by

Q(x , z) = {i ∈ {1, . . . , n} | xi < z} ,

and q(x , z) denotes the number of the poor, q(x , z) = #Q(x , z).
Once the poor have been identified, an aggregation procedure determines

the extent of poverty in the population.
The first poverty measure introduced in the literature is the headcount ratio,

H : [0, 1]n × (0, 1) −→ [0, 1], defined as

H(x, z) =
q(x, z)

n
,

which measures the percentage of poor individuals in the population.
For all x ∈ [0, 1]n and z ∈ (0, 1), the normalized gap of individual i is

defined as

gi = max

{
z − xi
z

, 0

}
.

Notice that gi ∈ [0, 1], gi = 0 ⇔ xi ≥ z, and gi = 1 ⇔ xi = 0.
At this point it is useful to introduce a special notation for the incomes and

normalized gaps of the poor individuals in the population: xp = (x(1), . . . , x(q))
with x(1) ≤ · · · ≤ x(q) < z, and gp = (g[1], . . . , g[q]) with g[1] ≥ · · · ≥ g[q] > 0,
and g[i] = (z − x(i))/z for i = 1, . . . , q.

In Garćıa-Lapresta et al. [11] the following poverty measure has been pro-
posed.
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Definition 8. Given α > 0, the poverty measure associated with Aα is the
function Pα : [0, 1]n × (0, 1) −→ [0, 1]n defined by

Pα(x, z) =

 H(x, z) ·Aα(gp) =
q

n
· 1

α
ln
eαg[1] + · · ·+ eαg[q]

q
, if q 6= 0,

0, if q = 0,

where q = q(x, z) and g[1], . . . , g[q] > 0 are the normalized gaps of the poor
individuals in the population.

For every α > 0, Pα satisfies interesting properties (see Garćıa-Lapresta et
al. [11, Prop. 17]): Poverty Focus (poverty should not depend on the non-poor
incomes), Poverty Monotonicity (poverty should increase if a poor income de-
creases), Transfer Sensitivity (greater weight should be placed on the poorer
incomes and poverty should decrease if inequality among the poor decreases),
Normalization (if all the individuals are non-poor, then the society deprivation
level is equal to 0), Poverty Symmetry (no other characteristic apart from the
income deprivation matters in defining a poverty index), and Replication In-
variance (if the population is replicated, then poverty should not change; this
allows comparing populations of different sizes).

Every poverty measure should be expressed as a function of three poverty
indicators: incidence, intensity and inequality of the poverty (see Sen [23] and
Jenkins and Lambert [17]).

In our case, for every α > 0, the poverty measure Pα associated with Aα
can be decomposed in the following way:

Pα(x, z) =

{
H(x, z) ·

(
Âα(gp) + Ãα(gp)

)
, if q 6= 0,

0, if q = 0,

where q = q(x, z) and g[1], . . . , g[q] > 0 are the normalized gaps of the poor
individuals in the population.

Thus, the poverty measure Pα is clearly expressed through the three above
mentioned poverty indicators: incidence, intensity and inequality, by means of
H, Âα and Ãα, respectively.

We now discuss an application of the dual decomposition in the context of
a well-known poverty measure proposed by Sen, following Aristondo et al. [1].

An inequality measure is a summary statistics of income dispersion. In turn,
welfare measures depend on the mean income and on the income inequality.

When inequality needs to be assessed, one may focus either on achievements
or on shortfalls. However, the respective inequality rankings do not in general
coincide.

In the framework proposed by Sen, S : [0, 1]n × (0, 1) −→ [0, 1], the poverty
measure is defined as

S(x, z) =
1

qn

q∑
i=1

(2(q − i) + 1) g[i] ,
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and the inequality among the poor is captured by the absolute Gini index, which
can be expressed in terms of achievements xp = (x(1), . . . , x(q)):

GA(xp) = µ(xp)−
q∑
i=1

2(q − i) + 1

q2
x(i) .

or, alternatively, in terms of shortfalls gp = (g[1], . . . , g[q]):

GA(gp) = µ(gp)−
q∑
i=1

2i− 1

q2
g[i] .

In order to understand the actual relation between the two inequality assess-
ments in terms of the absolute Gini index, we consider the dual decomposition
of OWA functions discussed in Subsection 2.3.

In Aristondo et al. [1] the Sen poverty measure is rewritten as

S(x, z) = H(x, z)

q∑
i=1

2(q − i) + 1

q2
g[i] .

The summation multiplying the headcount ratio corresponds to an OWA func-
tion AG : [0, 1]q −→ [0, 1] applied to the normalized poverty gaps,

AG(gp) =

q∑
i=1

wi g[i] , wi =
2(q − i) + 1

q2
, i = 1, . . . , q .

This OWA function AG satisfies continuity, idempotency (hence, compen-
sativeness), symmetry, strict monotonicity, stability for translations, invariance

for replications, and strict S-convexity. Moreover its core ÂG is idempotent,
symmetric, strictly monotonic, and stable for translations. These properties can
be regarded as basic properties of a poverty intensity index.

On the other hand, the anti-self-dual remainder ÃG is symmetric, fulfills
ÃG(gp) = 0 if and only if g[1] = · · · = g[q], and is S-convex. Hence, ÃG is a

measure of inequality among the poor individuals. Since ÃG is anti-self-dual,
inequality among the poor does not change if we focus on poverty gaps, or on
achievements as measured by xp/z. This component is also invariant if the units

in which income is measured change. Moreover ÃG is invariant for translations,
thus it measures inequality from an absolute point of view and remains invariant
if the gaps of all the poor are increased by the same amount.

In the particular case of the Sen index, we can establish that the core ÂG
coincides with the aggregate income gap ratio,

ÂG(gp) =
1

q

q∑
i=1

g[i] = µ(gp) ,

the archetypical measure of poverty intensity. Moreover, the anti-self-dual re-
mainder of the OWA function AG associated with the Sen index corresponds to
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the absolute Gini index of the normalized poverty gaps,

ÃG(gp) = µ(gp)−
q∑
i=1

2i− 1

q2
g[i] = GA(gp) .

Finally, we conclude that the absolute Gini index GA(gp) of the normalized
poverty gaps coincides with the absolute Gini index GA(x p/z) of the poor
incomes normalized by the poverty line (see Aristondo et al. [1, Prop. 10]),

GA(gp) = GA(xp/z) .

3.2. An application to classical inequality measures

One of the most widely used inequality measure is the Gini index ([15]),
based on the absolute values of all pairwise income differences. The Bonferroni
index ([4]) measures inequality comparing the overall income mean with the
income means of the poorest individuals in the population. The De Vergottini
index ([7]) complements the information provided by the Bonferroni index since
inequality is captured by comparing the overall income mean with the income
means of the richest individuals in the population.

The welfare functions associated with the three classical inequality measures
mentioned above are OWA functions. They can thus be analyzed in the frame-
work of the dual decomposition presented in Subsection 2.3, as discussed in
Aristondo et al. [2].

3.2.1. The Gini index

The Gini index is based on the average of the absolute differences between
all possible pairs of incomes,

G(x) =
1

2n2µ(x)

n∑
i=1

n∑
j=1

|xi − xj | , with x 6= 0 .

Mehran [21] highlights the implicit weighting scheme involved in the Gini
index which assigns a particular weight to an individual according to his ranking
in the income distribution,

G(x) = 1− 1

n2µ(x)

n∑
i=1

(2i− 1)x[i] , with x 6= 0 .

When the Gini coefficient is multiplied by the mean income an absolute
index, the absolute Gini inequality index is obtained,

GA(x) = µ(x)− 1

n

n∑
i=1

2i− 1

n
x[i] .

The absolute Gini index GA is anti-self-dual (see Aristondo et al. [1, Prop.
2]),

GA(1− x) = GA(x) .
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The Gini welfare function can be defined as

WG(x) = µ(x)−GA(x) =
1

n

n∑
i=1

2i− 1

n
x[i] .

The dual decomposition of the Gini welfare function is interesting (see Aris-

tondo et al. [1, Prop. 13-14]): ŴG(x) = µ(x) and W̃G(x) = −GA(x).

3.2.2. The Bonferroni and De Vergottini indices

The Bonferroni index [4] is based on the comparison between the partial
means and the general mean of an income distribution. Let us denote by mi(x)
the mean income of the n− i+ 1 individuals with lowest income, that is,

mi(x) =
1

n− i+ 1

n∑
j=i

x[j] .

The Bonferroni index is defined as

B(x) =
1

nµ(x)

n∑
i=1

(µ(x)−mi(x)) , with x 6= 0 .

In analogy with the Gini case, the absolute Bonferroni inequality index is
defined as

BA(x) =
1

n

n∑
i=1

(µ(x)−mi(x)) = µ(x)− 1

n

n∑
i=1

mi(x) .

The Bonferroni welfare function is expressed by

WB(x) =

n∑
i=1

ui x[i] , with ui =

n∑
j=n−i+1

1/(jn) , i = 1, . . . , n .

The De Vergottini index ([7]) captures another aspect of the inequality. It
compares the general mean of the income distribution with the partial means
associated with the richest individuals in the popuation. If Mi(x) denotes the
mean income of the i individuals with highest income, that is,

Mi(x) =
1

i

i∑
j=1

x[j] ,

then the De Vergottini index is

V (x) =
1

nµ(x)

n∑
i=1

(Mi(x)− µ(x)) , with x 6= 0 .

The De Vergottini index V is also a compromise index in the sense that if
multiplied by the mean, then the counterpart absolute index is obtained.
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The absolute De Vergottini inequality index is defined as

VA(x) =
1

n

n∑
i=1

(Mi(x)− µ(x)) =
1

n

n∑
i=1

Mi(x)− µ(x) .

The duality relation between the absolute Bonferroni and the absolute De
Vergottini inequality indices is expressed by

BA(1− x) = VA(x) and VA(1− x) = BA(x) ,

for every x ∈ [0, 1]n (see Aristondo et al. [2, Prop. 15]).
The self-dual core and the anti-self-dual remainder of the Bonferroni welfare

function are given by

ŴB(x) = µ(x)− BA(x)− VA(x)

2
and W̃B(x) = −BA(x) + VA(x)

2
.

We omit the analysis of the De Vergottini welfare function and its dual
decomposition because of its complexity (see Aristondo et al. [2]).

4. Concluding remarks

Although aggregation functions are implicitly involved in welfare, social in-
equality, poverty, health, and quality of life measurement, the potential offered
by the theory of aggregation functions does not emerge explicitly.

As briefly shown in Section 3, the dual decomposition of aggregation func-
tions (Garćıa-Lapresta and Marques Pereira [14]) can provide interesting results
in the field of welfare economics. For further details and references see Garćıa-
Lapresta et al. [11] and Aristondo et al. [1, 2].

Other applications of the theory of aggregation functions to the field of wel-
fare economics, in this case involving Choquet integration - a generalization of
both weighted means and OWA functions, can be found in Bortot and Marques
Pereira [5].
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[22] M. Nagumo, Über eine Klasse der Mittelwerte, Japanese Journal of Math-
ematics 7 (1930) 71–79.

[23] A.K. Sen, Poverty: An ordinal approach to measurement, Econometrica 44
(1976) 219–231.

[24] W. Silvert, Symmetric summation: A class of operations on fuzzy sets,
IEEE Transactions on Systems, Man, and Cybernetics 9 (1979) 657–659.

[25] R.R. Yager, Ordered weighted averaging operators in multicriteria decision
making, IEEE Transactions on Systems, Man and Cybernetics 8 (1988)
183–190.

14


