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Abstract

Unexpected deviations from assumed models as well as the presence of certain amounts of outlying data are

common in most practical statistical applications. This fact could lead to undesirable solutions when applying

non-robust statistical techniques. This is often the case in cluster analysis, too. The search for homogeneous groups

with large heterogeneity between them can be spoiled due to the lack of robustness of standard clustering methods.

For instance, the presence of (even few) outlying observations may result in heterogeneous clusters artificially joined

together or in the detection of spurious clusters merely made up of outlying observations.

In this chapter we will analyze the effects of different kinds of outlying data in cluster analysis and explore several

alternative methodologies designed to avoid or minimize their undesirable effects.
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1.1 Introduction

Robustness in statistics refers to stable behavior of methodology under small changes of data

or models. For example, a small percentage of outliers can have a large impact on many

statistical techniques. Robustness is a desirable property for more or less general statistical

methodology.

In cluster analysis, many methods, be they heuristic or model-based, may suffer from

strong instability from various sources of outlying data, by which data is meant that does

not belong to any clear cluster. Outlying data points can act as “connectors” or “bridge

points” between different groups, or they can play a disaggregating role. They can exhibit

some degree of internal grouping, leading to additional spurious clusters, but they can also

be “radial” or “isolated”.

For illustration, consider the artificial data set in Figure 1.1(a), made up of 3 main groups

and a small fraction of “radial” outliers. If the well-known K-means method with K = 3

is applied, two intuitive main clusters are joined together and a spurious cluster is found,

composed of outlying observations only. Moreover, only one single outlier placed in a remote

position joins together the two main clusters in Figure 1.1(b) artificially when applying

K-means with K = 2.

Similar problems arise when applying data mining techniques that use cluster analysis

in “unsupervised learning” problems with large, complex and high dimensional data sets

collected through automated processes, which often contain many outliers.

A common strategy is to view isolated outliers and small groups of outliers as “clusters

on their own”. This is quite logical since outlying observations are obviously separated from

other existing data patterns. Thus, some statisticians simply recommend increasing the

number of groups in order to detect and isolate possibly outlying data points. For instance,

the case in Figure 1.1(b) could have been addressed by searching for K = 3 clusters instead

K = 2. However, this strategy is not always the most sensible one. For instance, due to prior

knowledge about the problem at hand, the cluster analysis user may know or fix in advance

the number of clusters and may not be aware of the presence of outlying data. Furthermore,
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Figure 1.1: Effect of outliers in K-means cluster analysis: (a) Radial contamination (b) One
single outlier.

in situations like the one shown in Figure 1.1(a), made up of a few main clusters and a

certain amount of “radial” outliers or “background” noise, accommodating them with small

clusters would require a very large number of clusters, which is tedious to interpret and may

incur computational problems.

Note that the clustering problem does not have a general definition. The “correct” clus-

tering of a data set depends on the application and the cluster concept of the user. In some

applications it is fine to handle one or more small “clusters of outliers”, in other applications

only a small number of larger clusters is meaningful and outliers are better excluded from

any cluster. It may also be appropriate to integrate them into the nearest clusters, but it is

hardly desired to give them a strong impact on how the clearly well clustered non-outlying

data points are partitioned. That there often is such an impact is the most serious robustness

problem.

One type of outliers that can be very harmful in cluster analysis is “bridge points” located

between the main clusters (see Figure 1.2). These bridge points are not outlying in any of
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Figure 1.2: Outlying “bridge” points among 3 main clusters.

the coordinates and, thus, they cannot be detected with the use of the standard robust

statistical tools existing in multivariate data analysis.

Another reason for the interest in robust cluster analysis techniques is the connection be-

tween cluster analysis and robust statistics, already pointed out in, e.g., Rocke and Woodruff

(2012), Hennig (2002), Garćıa-Escudero et al. (2003), Hardin and Rocke (2004), Woodruff

and Reiners (2004) and Schynsa et al. (2010). Firstly, as shown in previous examples, the

need for robustness in cluster analysis is evident. Moreover, robust statistics in general can

benefit from cluster analysis techniques, because often the most harmful outliers are those

that appear clustered together (see Rocke and Woodruff (1996)), and cluster analysis is use-

ful when handling groups of clustered outliers. Therefore, robust cluster analysis provides

an appealing unifying framework for addressing both problems simultaneously.

Section 1.2 reviews some of the different robust cluster analysis approaches that have been

proposed in the literature with some emphasis on trimming-based approaches. Subsection

1.2.6 summarizes different tools and approaches that have been employed to qualitatively

and numerically measure robustness in cluster analysis. Section 1.3 discusses different soft-
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ware packages that can be applied in robust cluster analysis. Finally, in Section 1.4 some

concluding remarks and other possible open research lines are presented.

Recent reviews of robust cluster analysis are Garćıa-Escudero et al. (2010) and Banerjee

and Davé (2012). The former is more focused on a statistical approach whereas the latter is

more focused on a “machine learning” approach.

1.2 Robustness in cluster analysis

1.2.1 L1 approaches

Given a sample D = {x1, ..., xn} in Rd, the K-means method searches K point centers

{m1, ...,mK} in Rd and a partition C1, ..., CK of D minimizing

K∑
k=1

∑
i∈Ck

∥xi −mk∥2. (1.1)

Observations are then arranged into K clusters by assigning each observation to its closest

center (Ck = {xi : ∥xi −mk∥ ≤ ∥xi −ml∥ for every l = 1, ..., K}).

As the sample mean (i.e., the 1-mean), the K-means method suffers from a serious lack

of robustness. One single outlying data point placed arbitrarily far away from the others

suffices to spoil K-means, see Figure 1.1(b). In fact, an extreme enough outlier will form a

cluster on its own, so that, for fixed K, at least two original clusters (i.e., clusters found in

the data set without outlier) will be merged.

Statistical methods based on least squares criteria are known to have poor robustness

behavior. The lack of robustness of K-means could be explained by the least squares problem

in (1.1). One could be tempted to try to robustify it by using the same arguments which led

to the use of the sample median as a robust alternative to the sample mean in univariate

location. Recall that the mean (L2 approach) minimizes over m the expression
∑n

i=1(xi−m)2

whereas the median (L1 approach) minimizes the expression
∑n

i=1 |xi −m|.
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Starting from (1.1), this L1-approach leads to the K-medians and the Partitioning Around

Medoids (PAM) methods (see Chapter ?? and references therein), essentially defined through

minimization of
K∑
k=1

∑
xi∈Ck

∥xi −mk∥

(the mk may or may not be restricted to be members of the data set).

Unfortunately, the L1-approach only provides a rather modest robustification. The PAM

method can resist the presence of an outlier such as in Figure 1.1(b) more often than K-

means, but it breaks down if the number of outliers increases slightly or even if a single

outlier is placed in a very remote position (see Garćıa-Escudero and Gordaliza (1999)). This

also happens when considering other non-decreasing penalty functions Φ(∥ ·−mk∥) in (1.1).

The unsuitability of the L1 attempt to derive robust clustering methods is analogous to

what happens in the linear regression setup, where the robustness behavior of L1-regression

is poor in presence of extreme leverage points (Rousseeuw and Leroy (1987)).

1.2.2 Approaches based on trimming

Among the first highly robust regression proposals were the Least Median of Squares (LMS)

and the Least Trimmed Squares (LTS) method (Rousseeuw and Leroy (1987)). This moti-

vates the adaptation of the trimming principle to cluster analysis. Trimming means that a

certain “trimmed” fraction of the observations (the most outlying ones) are not clustered

at all and not taken into account for clustering the remaining data. This is appropriate

in many applications where clusters are interpreted as substantially meaningful if they are

homogeneous and large enough, but where isolated points are not of interpretative use.

Trimming has a long history of providing robustness to statistical methods. For instance,

the univariate trimmed mean removes a proportion α/2 of the largest observations and a

proportion α/2 of the smallest ones before computing the sample mean. Extending this idea

to cluster analysis is not straightforward. Most interesting cluster analysis applications are

multivariate, and a natural geometrical order does not exist for choosing the most extreme
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observations. Moreover, the notion of “outlyingness” must be modified to include potential

bridge points between clusters (recall Figure 1.2).

A sensible way to perform trimming is to let the data decide which observations should

be trimmed in order to find an optimal clustering for the untrimmed ones. This is the idea

behind the aforementioned LMS and LTS regression method as well as the MCD (Mini-

mum Covariance Determinant) and MVE (Minimum Volume Ellipsoid) covariance matrix

estimators, see Rousseeuw and Leroy (1987).

Let φ(·;µ,Σ) be the probability density function of the d-variate normal distribution with

mean µ and covariance matrix Σ. Robust cluster analysis methods with trimming can be

introduced through maximization of the target function (weighted trimmed classification

likelihood or trimmed penalized likelihood, see below)

K∑
k=1

∑
xi∈Ck

log (pkφ (xi;mk,Sk)) , (1.2)

where maximization is in terms of:

(i) K centers mk in Rd,

(ii) K symmetric positive definite d × d scatter matrices Sk (satisfying constraints to be

detailed later),

(iii) K weights in [0, 1] satisfying
∑K

k=1 pk = 1, and,

(iv) a partition C0, C1, . . . , CK of D with Ck containing the observations that are assigned

to cluster k for k = 1, ..., K, and the set C0 with cardinality nC0 = [nα] to include the

observations that are trimmed.

Note that summation goes from k = 1 to K (not from k = 0) and, thus, the observations in

C0 are not taken into account when evaluating the target function. This avoids the harmful

influence of a fraction of at most α of outlying observations.

This approach is called “impartial trimming” in Gordaliza (1991) and Cuesta-Albertos

et al. (1997). Gallegos (2002) and Gallegos and Ritter (2005) introduced an interesting
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probabilistic framework, called “spurious outliers model”, that justifies the consideration of

this type of target function. This model states that the data points are independent, with

a proportion of 1 − [nα] points distributed according to one of K normal distributions de-

fined by K different pairs of mean and covariance matrix, and the remaining [nα] (trimmed)

points distributed according to [nα] different unspecified distributions G1, . . . , G[nα]. In Gal-

legos and Ritter (2005) it is proved under some mild conditions on the set of admissible

G1, . . . , G[nα] that maximizing (1.2) amounts to computing the maximum likelihood (ML)

estimator for all the parameters of the K normal distributions and trimming the set of [nα]

points assigned to but not depending on G1, . . . , G[nα]. Such an ML estimator assumes that

all pk in (1.2) are the same (“classification likelihood”). It is known (e.g., Gallegos and Ritter

(2005)) that this implicitly favors clusters of similar sizes, and allowing flexible pk is a way

to deal with this.

Using such theory, one can see that the trimming approach based on (1.2) uses the normal

distribution as a “cluster prototype shape”, i.e., it is appropriate for clustering applications

in which the clusters are expected or desired to have an approximately normal shape. This

does not necessarily imply that the underlying “true” clusters have to be normal; however,

non-normal clusters will be approximated by normal distributions and one may need more

than K normal distributions to fit K non-normal “clusters”. It is possible to define similar

approaches for other cluster prototype shapes, i.e., other families of distributions.

It is important to note that the maximization of (1.2) without any constraints on the

scatter (covariance) matrices Sk is a mathematically ill-posed problem. To see this, just take

Ck = {xi} for any xi ∈ D, mk = xi and Sk with det(Sk) → 0, which makes (1.2) unbounded.

Different constraints on the scatter matrices have been considered in the literature. Different

cluster analysis methods can be derived depending on whether equal weights (p1 = ... = pK)

are assumed or not.

The first application of this impartial trimming approach was the trimmed K-means

method in Cuesta-Albertos et al. (1997). This is the most constrained case, assuming equal

weights p1 = ... = pK and S1 = ... = SK = s2Id, i.e., spherical clusters with equal within-

cluster variation and (through p1 = ... = pK) a tendency to form clusters of similar sizes.
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The maximization of (1.2) is simplified to the minimization of

K∑
k=1

∑
xi∈Ck

∥xi −mk∥2, (1.3)

with C0, C1, ..., CK being a partition of D with nC0 = [nα].

Figure 1.3 illustrates the ability of the trimmed K-means method to deal with different

kinds of contamination. In both examples, parameter α is set to 0.1, that is, 10% of the data

are trimmed (represented in this graph by circles). K = 3 main groups are detected in spite

of the presence of radial contamination in Figure 1.3(a) and bridge points in Figure 1.3(b).

Problem (1.3) admits a population version. This is a a version of an estimator that is

defined as a functional on the space of probability distributions instead of data sets in such

a way that it generalizes the estimator, i.e., one obtains the estimator if the population

version is evaluated at the empirical distribution of a data set. Well-behaved population

versions of an estimator allow that the estimator is consistent for its own population version

at a given distribution. In cluster analysis, population versions of methods such as K-

means allow to partition the whole space of observations instead of a single data set. The

population trimmed K-means can be viewed as a robustification of the “vector quantizers”

used in signal processing, e.g., Gersho and Gray (1991). Cuesta-Albertos et al. (1997)

established the existence without moment conditions of the sample and population trimmed

K-means. Furthermore, the sample trimmed K-means centers are consistent estimators of

the population ones. A central limit theorem is derived in Garćıa-Escudero et al. (1999).

However, if the underlying distribution is a mixture of normal distributions (with or without

additional outlier generating distributions), the population trimmed K-means centers are

not identical to the means of the normal components for the same reasons as when using

unrobustified K-means, see Section ??.

An efficient algorithm for obtaining the trimmed K-means is available. The trimmed

K-means algorithm given by Garćıa-Escudero et al. (2003) is an extension of the classical

Forgy (1965)’s K-Means algorithm, where some “concentration steps”, similar to the ones

used in the fast-LTS and fast-MCD algorithms (see Rousseeuw and Van Driessen (1999)),
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are applied.

Algorithm Trimmed K-Means

Input parameters K and α

1. Draw K random initial centers m0
1, ...,m

0
K

2. Concentration steps:

(a) Keep the set C of the [n(1 − α)] observations closest to the centers ml
1, ...,m

l
K .

(b) Partition C onto K subsets {C1, ..., CK}, where Ck contains the observations in C

closer to the center ml
k than to the other centers.

(c) Update the centers ml+1
1 , ...,ml+1

K such that each center ml+1
k is the sample mean

of the observations in Ck. Go to (a) unless centers have not changed anymore.

3. keep the optimal centers that minimize (1.3).

Output optimal centers and clustering.

Cuesta-Albertos et al. (1998) introduced a L∞ version of trimmed K-means, called

trimmed best K-nets. It is based on obtaining the K balls with minimal radii that cover a

proportion 1 − α of the data. This approach may be seen as an extension of the LMS and

MVE techniques to cluster analysis and it shares with them their slow rate of convergence

(see Cuesta-Albertos et al. (2002)). Interpretation can be given through the excess-mass

approach in Müller and Sawitzki (1991), i.e., a cluster concept according to which clusters

are interpreted as connected sets of high density. Kumar and Orlin (2008) also consider an

interesting extension of the MVE to cluster analysis. Jolion et al. (1991) use the MVE and

a Kolmogorov-Smirnov test procedure to detect clusters in a data set sequentially.

Since K-means and trimmed K-means are based on the use of Euclidean distances, they

aim at finding spherical groups of points with similar sizes. When researchers are interested

in clusters that strongly depart from this assumption, these methods fail to identify them.

For instance, an elongated group can be split into several clusters, or several elongated groups

located close to each other can be joined together to constitute a single cluster. The search for
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clusters that have different sizes and different scatter structures leads to the “heterogeneous”

cluster analysis problem, for which robustness issues should also be addressed.

With a heterogeneous robust cluster analysis perspective in mind, Gallegos and Ritter

(2005) introduced the determinant criterion to robustify the proposal by Friedman and Rubin

(1967). This implies that equal (but not necessarily spherical) scatter matrices S1 = ... =

SK = S are assumed in (1.2). The criterion in Gallegos (2002) allows for different scatter

matrices, but it implicitly assumes equal scales det(S1) = ... = det(SK). Equal weights

p1 = ... = pK are assumed in both cases. The proposed algorithms (see details in Gallegos

(2002) and Gallegos and Ritter (2005)) are similar to the Trimmed K-Means algorithm,

but Mahalanobis distances are used when computing distances to point centers. Moreover,

they reduce to the fast-MCD algorithm when K = 1. The algorithm in Gallegos (2002)

constrains the Sk scatter matrices to have the same determinant in every concentration

step. This idea was also considered in Maronna and Jacovkis (1974) as a sensible way to

overcome the unboundedness of (1.2) in the untrimmed case. Considering the decomposition

of Sk = s2kUk with s2k as an scale parameter and Uj with det(Uk) = 1 as the shape matrix,

Figure 1.3: Trimmed K-means results with K = 3 and α = 0.1 for two “contaminated” data
sets (Trimmed points=“◦”).
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Garćıa-Escudero and Gordaliza (2007) stated that the proper estimation of the cluster scales

s2k is the most difficult task in (robust) cluster analysis (as long as α and K are fixed) and

proposed an iterative procedure for estimating the scales based on a decreasing sequence of

trimming levels.

In order to rely on more flexible constraints, we could try to extend Hathaway (1985)’s

constraints to the heterogeneous robust cluster analysis framework. Consider the eigenvalues

system of the cluster covariance matrices denoted by λl(Sk), for k = 1, ..., K and l = 1, ..., d,

and their maximum and minimum values

Mn = max
k=1,...,K

max
l=1,...,d

λl(Sk) and mn = min
k=1,...,K

min
l=1,...,d

λl(Sk).

We constrain the ratio Mn/mn to be smaller than a fixed constant c. The use of this type

of constraints together with group weights pk’s in (1.2) lead to the TCLUST approach in

Garćıa-Escudero et al. (2008). The constant c controls the strength of the scatter constraint,

yielding a weighted version of the trimmed K-means when c = 1, and an almost unrestricted

procedure when using a large c value. The Tclust algorithm (Garćıa-Escudero et al. (2008)

and Fritz et al. (2013a)) can be applied to solve this problem approximately. This is a

Classification-EM type algorithm (see Celeux and Govaert (1992)) with concentration steps.

The TCLUST approach admits a population version and a consistency result is available.

Gallegos and Ritter (2009b) proposed a different extension of Hathaway’s constraints

(Hathaway (1985)), called Hathaway-Dennis-Beale-Thompson (HDBT), to the heteroge-

neous robust cluster analysis setup, which defines their version of trimmed model-based

clustering. The Löwner ordering on the space of symmetric matrices is considered to

constrain the scatter matrices. This implies considering the following constraint:

min
1≤l≤d

min
1≤h̸=j≤K

λl(ShS
−1
j ) ≥ 1

c
with c ≥ 1,

resulting in an affine equivariant cluster analysis procedure. Gallegos and Ritter (2010) deal

with the unboundedness of the trimmed likelihood by controlling smaller cluster sizes.

Another application of trimming in heterogeneous robust cluster analysis is the MINO
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(minimum covariance determinant with outliers) approach by Rocke and Woodruff (2012)

and Woodruff and Reiners (2004). Trimmed likelihoods like (1.3) are also considered in

Markatou (2000) and Neykov et al. (2007). The main difference of these trimming approaches

to TCLUST/HDBT is that TCLUST and HDBT place explicit constraints on the relations

between cluster scatters whereas the other methods do not incorporate a mathematically

consistent choice between multiple maximizers of the trimmed likelihood.

Careful monitoring of iterative trimming results is the basis of the “Forward Search”

approach to robust cluster analysis (see Atkinson et al. (2006) and Atkinson and Riani

(2007)). This starts from a large number of small initial potential cluster cores (trimming

effectively the vast majority of points) and adds points successively. Monitoring the change

of within cluster homogeneity over the point addition process can uncover the clustering

structure and potential outliers.

Santos-Pereira and Pires (2002), Hardin and Rocke (2004) and Willems et al. (2009) pay

special attention to how to define and analyze group Mahalanobis distances from a robust

cluster analysis viewpoint. Fixed point clustering (Hennig (2002)) also applies Mahalanobis

distances and concentration steps to discover clusters in a robust way.

1.2.3 Mixture approaches for robust clustering and modeling noise

Instead of discarding outlying observations, alternative approaches are based on fitting data

not belonging to any cluster (so-called “noise”, Fraley and Raftery (1998)) by mixture com-

ponents. It is straightforward to obtain a “crisp” partition of D from a mixture fit, see

Section ??, including points classified as noise.

A popular approach is based on accommodating the noise a uniformly distributed (Poisson

process) “noise component” as done, e.g., in Banfield and Raftery (1993), Dasgupta and

Raftery (1998), Campbell et al. (1997), Campbell et al. (1999), Fraley and Raftery (1998)
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and Fraley and Raftery (2002). It are based on the maximization of log-likelihoods such as

n∑
i=1

log

(
p0

1

Vol(V )
IV (xi) +

K∑
k=1

pkφ(xi;mk,Sk)

)
, (1.4)

where pk ∈ [0, 1] with
∑K

k=0 pk = 1 and V is a set in Rd and Vol(V ) denotes its volume.

Sometimes it is clear which set V should be considered (for instance, the area of a given

image). Otherwise V could be considered as the convex hull of the data or the smallest

rectangle whose sides are parallel to the axes or to the principal components, such that it

contains all data points. For one-dimensional data all these amount to the range. All these

are proposed in Fraley and Raftery (1998). The EM algorithm in Dempster et al. (1977) is

used to estimate the unknown parameters in (1.3) once the set V is fixed. Another alternative

approach is based on estimating V through ML estimation of a uniform distribution on V

(Coretto and Hennig (2011)). All these methods provide some robustification but a single

observation placed in a very remote position could still break down the clustering (Hennig

(2004), Hennig (2008)).

Hennig (2004) also proposed the RIMLE (Robust Improper Maximum Likelihood Esti-

mator), which is based on the maximization of an “improper” likelihood:

n∑
i=1

log

(
p0c +

K∑
k=1

pkφ(xi;mk,Sk)

)
, (1.5)

where c is a tuning parameter that ideally serves to classify as noise observations arising

from areas where components account for density values smaller than c. There are clear

connections of the RIMLE approach with the trimming approach discussed in Section 1.2.2.

Coretto and Hennig (2010) show that this approach has good robustness properties through

a simulation study (the cited results are for one-dimensional data, but can be generalized

to multidimensional data). When maximizing (1.4) and (1.5), constraints on the scatter

matrices Sj are again needed to avoid degeneration.

The main difference between these approaches and trimming is that the mixture-based

techniques allow a smooth transition of the classification between outliers and clusters (and
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between different clusters) through the estimated posterior probabilities of the observations

belonging to the clusters (normal mixture components) and the noise component. Although

they are often used for obtaining a crisp clustering, smoothness still has a certain (usually

small) impact on the parameter estimation of the normal components, which may change

the resulting clustering. Choosing c in the RIMLE approach is analogous to choosing α for

trimming.

A different way to tackle the problem of outlying data points uses heavy-tailed mixture

components to accommodate them. Mixtures of t-distributions with or without estimation of

the degrees of freedom have been considered in, e.g., McLachlan and Peel (2000) and Shoham

(2002). This approach provides a valuable robustification, but Hennig (2004) showed again

that a single extreme outlying value could cause breakdown. Greselin and Ingrassia (2010)

consider appropriate scatter matrices constraints to avoid degeneration in such a setup.

Using mixtures of t-distributions for robustness implies a slightly different “clustering

philosophy” than fitting normal mixtures. When normal mixtures are used for clustering,

the normal distribution defines the “cluster prototype shape” and the idea behind adding

a noise component is to capture points that cannot be assigned to any normal distribution

sufficiently supported by the data. However, when mixtures of t-distributions are fitted

for dealing with outliers, the idea is that only the core of a t-distribution is considered as

“cluster”, whereas points in the tails are interpreted as outliers, see McLachlan and Peel

(2000), Sec. 2.5. This implies that outliers are still assigned to mixture components, even if

they lie far away from all clusters.

Trimming principles were also considered to provide robustness when fitting mixtures.

Such trimmed mixture likelihood methods are introduced in Neykov et al. (2007), Cuesta-

Albertos et al. (2008) and Gallegos and Ritter (2009a).

Robustness in statistics is more general than dealing with outliers, although outliers often

cause the worst robustness problems. Another interesting aspect in the mixture setup is

what happens when normal mixtures are fitted to data where the clusters are actually non-

normal. In some recent work (Tantrum et al. (2003),Hennig (2010),Baudry et al. (2010))

is was noted that when estimating the number of mixture components via the BIC (Sec.
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??), normal mixtures can fit other distributions very well, but the estimated number of

normal components will be higher than the number of interpretable clusters (depending on

how exactly clusters are defined). The cited papers propose schemes to model clusters by

sub-mixtures of normal distributions, i.e., the clusters are obtained by merging some of the

normal components.

Finally, it is important not to confuse the use of the term robustness made in this chapter

with that made in the Bayesian mixture modeling framework where it often means insensi-

tivity to the choice of prior probability distributions.

1.2.4 Robust fuzzy cluster analysis

Whereas hard cluster analysis procedures are aimed at searching for sensible partitions of

data into K disjoint clusters, fuzzy cluster analysis methods provide non-negative member-

ship values of observations for clusters so that overlapping clusters are generated (see, e.g.,

Ruspini (1969), Dunn (1974), Bezdek (1981) and Hathaway and Bezdek (1993), Chapter

??). Models based on mixture models as discussed in the previous section are not normally

regarded as fuzzy clustering methods because the underlying mixture model assumes that

every point was generated by a single mixture component, although they, too, enable “soft

classification” through posterior probabilities of points to belong to clusters.

As before, it is widely recognized that robustness of fuzzy cluster analysis methods is im-

portant for many practical applications. The fuzzy cluster analysis community was perhaps

the first one to take the robustness challenge in cluster analysis seriously. Intuitively, outliers

tend to be approximately “equally remote” to all clusters and, thus, they could have similar

(but not necessarily small) membership values for all clusters. For instance, membership

values for outlying observations could be close to 1/K for all the clusters with K being the

number of groups whenever membership values are assumed to sum up to 1. Moreover, the

way that many fuzzy clustering procedures weight data points is related to the way incor-

porated by M-estimators in robust statistics. Davé and Krishnapuram (1997) gives a review

on robust fuzzy cluster analysis.
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One of the methods which is more widely considered in robust fuzzy cluster analysis is

the fuzzy K-means method with “noise component” introduced in Davé (1991), which has

a plethora of modifications. This method is based on a modification of the fuzzy K-means

algorithm (Sec. ??) that considers a fictitious (K + 1)-th center at the same distance δ from

every point in the data set. Observations that are associated to this fictitious center are

denoted as belonging to the “noise cluster”. This implies that points will have their highest

membership degree for the noise cluster if they are further away than δ from any other cluster

center. The choice of the parameter δ is not an easy task but some sensible heuristic rules

have been proposed (see, e.g., Davé (1991), Davé and Sen (1997), Rehm et al. (2007)). The

methods based on “noise distances” are also refereed as “noise clustering” in the literature.

L1 approaches have been also considered in Krishnapuram et al. (1999) through the proposal

of a fuzzy K-medoids algorithm.

A “least trimmed squares” fuzzy clustering method (closely related to the trimmed K-

means in Section 1.2.2) was introduced in Kim et al. (1996). The proposed method is

based on trimming a fixed fraction α of observations. The fixed trimming level controls the

number of observations to be discarded in a different way than those based on defining a

“noise distance” δ. Discarding a fixed fraction of data has also been considered in Klawonn

(2004).

Possibilistic fuzzy clustering methods (Krishnapuram and Keller (1993)) address the prob-

lem of data with “noise”-observations in fuzzy clustering by relaxing the constraint that the

membership values have to sum up to 1. Outlying observations could then receive arbitrarily

low membership values for all clusters. Although possibilistic fuzzy clustering methods are

more robust against outliers, they tend to produce coincident clusters (Barni et al. (1996))

and, therefore, it is better to see them as “mode-seeking” rather than “partitioning” proce-

dures.

All these approaches inherit from fuzzy K-means their preference for spherical clusters,

and so they are not well suited to detect clusters with very different shapes. Several proce-

dures have been proposed to address heterogeneous fuzzy cluster analysis problems (see, e.g.,

Gustafson and Kessel (1979), Trauwaert et al. (1991) and Rousseeuw et al. (1996)). These
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methods can also be modified by including the possibility of trimming a fixed proportion

α of the data. This would lead to a fuzzy version of the TCLUST procedure described in

Section 1.2.2 as introduced in Fritz et al. (2013b). Robust fuzzy cluster analysis using t-

distributions has been proposed in Chatzis and Varvarigou (2008).  Leski (2003) and Wu and

Yang (2002) give further procedures for robust fuzzy clustering. More interesting references

are in Banerjee and Davé (2012).

1.2.5 Robust non-model based cluster analysis

Some widely applied non-model based cluster analysis approaches suffer from serious robust-

ness problems as well. For instance, anomalous observations often induce spurious “bumps”

in non-parametric methods based on density estimation leading to the detection of artificial

clusters; outlying data points can induce “chaining” effects on hierarchical cluster analysis

methods, and so on.

Some attempts to improve the robustness of these non-model based cluster analysis meth-

ods can be found in the literature. For instance, “denoising” techniques have been proposed

resorting to Voronöı methods in Allard and Fraley (1997), nearest-neighbor methods in Byers

and Raftery (1998) and Minimum Spanning Trees in Jaing et al. (2001).

Some density-based cluster analysis methods like Cuevas et al. (2001) seem to have good

behavior from a robustness point of view. This is due to the fact that points are considered

“outliers” if they lie in regions with low density, so if (given a certain density estimator) points

are only assigned to clusters in areas of high density, these can be expected to be unaffected

by outliers. Such a technique will depend on the typical tuning for density estimators (e.g.

a bandwith for kernels or a neighborhood size) and a density cutoff similar to the c required

for the RIMLE in Section 1.2.3. Robustness can only be expected if these choices are not

dominated by the outliers.

Cluster analysis methods based on statistical depths as in Ding et al. (2007) exist, too.

Robust hierarchical cluster analysis proposals exist as well, such as in Lin and Chen (2005)

and Balcan and Gupta (2010). Balcan and Gupta (2010) assume that there is a “good”



1.2. ROBUSTNESS IN CLUSTER ANALYSIS 19

clustering in the data, demanding that for all points in a subset of the data of size (1 − ν)n

all but αn (α very small) of their nearest neighbors belong to the same cluster, where ν and

α are tuning constants. This means that all but (1 − ν)n points are “strongly clustered” in

the sense above, so that νn outliers are allowed. Their hierarchical algorithm starts by first

partitioning the data set into so-called “blobs” of points, making sure that points that can be

connected by having enough common neighbors are in the same blob. These blobs are then

hierarchically clustered by agglomeration using a score function that considers clusters at the

current agglomeration level as similar if the median distance between a point of one cluster

and all points of the other one is small for at least half of the points of one of the clusters.

The use of medians attempts to make this unaffected by potential outliers in blobs/clusters.

Balcan and Gupta (2010) show that this produces a tree, a pruning of which is the assumed

“good” clustering.

A number of other non-model based clustering methods, e.g., BIRCH, CURE, ROCK,

“Chameleon” and DBSCAN, are also designed in order to provide protection against noise

and outliers. Comments and useful references are given in Banerjee and Davé (2012).

1.2.6 Parameter-based measurement of robustness in cluster analysis

In cluster analysis, and generally in the statistical literature, many methods are advertised as

“robust”. Often this is motivated either by heuristic arguments why a method is supposedly

unaffected by outliers, or by good results in simulation studies or example data sets with

outliers. Although this is better than ignoring the robustness issue altogether, such argu-

ments are unsatisfactory because it is unclear to what extent they generalize to situations

other than those explicitly considered by the authors.

The measurement of the robustness of statistical procedures has been addressed through

two main approaches: Huber’s “minimax” approach and Hampel’s infinitesimal approach

(Huber (1981) and Hampel et al. (1986)). The first approach has only been applied in rather

restricted setups, and up to our knowledge it has not been adapted cluster analysis. We will

focus on the second one.
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Hampel’s approach rests on three fundamental pillars: qualitative robustness, the in-

fluence function, and the breakdown point. All these robustness measures were designed

to be applied to statistical procedures viewed as functionals defined on a suitable space of

probability measures. Qualitative robustness has to do with the continuity of the functional

(population version of an estimator) at the assumed model, the influence function with its

differentiability (therefore they both are “infinitesimal” concepts) and the breakdown point

with the distance from the model to a singularity of the functional.

More precisely, qualitative robustness of an estimator Tn means that, for large enough n,

if two distributions P and Q are close to each other (e.g. one being (1 − ϵ) times the other

plus a proportion of small ϵ of a distribution that generates extreme outliers) according to

a suitable metric for probability measures, the distributions of Tn for i.i.d. samples from P

and Q are close to each other as well.

Given an estimator functional (population version) T , its influence function at a distri-

bution P is limepsilon→0 T ((1 − ϵ)P + ϵδx) − T (P )ϵ as a function of x. This formalizes the

change of T under infinitesimal contamination by a one-point distribution at x. Infinitesimal

robustness, requires this to be bounded.

The breakdown point complements the infinitesimal concepts by looking at to what mini-

mum extent one has to contaminate P in order to drive a functional T as far as possible away

from its value at P , i.e., to a singularity of the parameter space (often infinity, but it can be

zero, e.g., for variances or mixture component proportions). The most popular version of the

breakdown point looks at the infimum ϵ for distributions of the form (1 − ϵ)P + ϵH so that

breakdown happens, where H is chosen as destructive as possible (contamination model).

This is for example zero for the arithmetic mean and 1
2

for the median. Another version of

the breakdown point is the “finite sample breakdown point” of an estimator (Donoho and

Huber (1983)), formalizing what proportion of data points in a data set needs to be replaced

(or added) in order to drive the estimator to a singularity. This is often easier to handle

than the population-based version.

In cluster analysis, one of the advantages of model-based clustering methods is that

clusters can be characterized by features that have a population counterpart. Thus, we can
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view clustering methods as statistical functionals of probability measures (the empirical and

the population one) and then apply Hampel’s classical approach to measure their robustness

behavior.

The qualitative robustness notion is binary; it classifies the functionals as having this

property or not. Garćıa-Escudero and Gordaliza (1999) proved that for distributions with

uniquely defined trimmed K-means, the trimmed K-means are qualitatively robust whereas

K-means and PAM/K-medoids are not. Garćıa-Escudero and Gordaliza (1999) also ad-

dressed the influence functions of K-means and trimmed K-means as estimates of the centers

of the clusters. Influence functions were obtained for replacing the Euclidean norm in (1.3)

by general penalty functions Φ(∥ · −mk∥), and it was shown that they are bounded when

the derivative of this Φ-function is bounded. However, in cluster analysis (as in regression),

it could happen that an estimator with bounded influence is nevertheless highly vulnerable

to outliers. This is, for instance, the case of PAM as reflected through its breakdown point,

which equals zero. Ruwet et al. (2012) showed that all statistical functionals involved in the

TCLUST procedure, i.e. the centers, the scatter matrices and the weights, have bounded

influence functions whenever they are uniquely defined for the underlying distribution P .

Garćıa-Escudero and Gordaliza (1999) pointed out that the finite sample breakdown

point is very data dependent in the context of cluster analysis. For any clustering method

incorporating location parameters, data sets can be designed in which the inherent structure

is so unstable that a single point converging to infinity will eventually attract a cluster.

Particularly if K clusters are fitted to a data set that can be fitted by K−1 clusters without

much loss of quality, if one outlier is added one couldn’t even say that a solution is clearly

“wrong” or undesirable in which the Kth cluster is used to fit the outlier. Instability in

cluster analysis may be caused by an unstable clustering structure of the data set as well as

by choice of a non-robust method. Therefore one cannot hope that any reasonable clustering

method has good breakdown behavior uniformly over all data sets. Non-robust methods

such as K-means and PAM, however, have a zero breakdown point for all data sets.

Garćıa-Escudero and Gordaliza (1999) suggested dealing with “well clustered” data sets in

order to measure and compare the breakdown behavior of cluster analysis methods. Gallegos
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and Ritter (2005), Gallegos and Ritter (2009b) and Gallegos and Ritter (2009a) formalized

the notion of “well clustered” data sets through a cluster separation condition. Moreover,

they introduced a restricted breakdown point notion on the class of data sets satisfying

the separation property and applied this measure to the procedures introduced by them.

Ruwet et al. (2013) studied the restricted breakdown values of the TCLUST procedure and

compared them with other trimming based approaches. In all these papers, the restricted

breakdown point, on the class of data sets satisfying the corresponding separation properties,

is asymptotically equal to the trimming level α, whereas in the case of the untrimmed versions

the restricted breakdown continues to be 0. Ruwet et al. (2013) shows that the separation

criterion for the method in Gallegos and Ritter (2009b) is a bit more restrictive than the

one for TCLUST as a price to be paid for the former’s affine equivariance. In order to

appreciate these results, note that one cannot hope for a better breakdown point in cluster

analysis than the proportion of the smallest cluster (if breakdown is to be achieved by adding

points) or even half that size (for a “replacement breakdown point”), because a sufficiently

homogeneous set of outliers of this size will attract a fitted cluster in a stronger way than the

original smallest cluster. Therefore, the trimming rate α should not be chosen larger than

the smallest cluster of interest could be. Otherwise this cluster could be trimmed. This is

different from classical situations such as regression or location estimation, where the best

achievable breakdown point is often 1
2
.

Hennig (2004) shows that standard ML based on a normal mixture is not breakdown

robust. ML under adding a uniform mixture component over the convex hull of the data or

for t-mixtures have a very similar breakdown point behavior. Their (addition) breakdown

point is 1/(n + 1), which is the smallest possible value. Nevertheless, both the convex hull

uniform noise method and ML for t-mixtures can be robust against one or more outliers of

moderate size. They only break down under very extreme outliers. The RIMLE is proven

to have a better (asymptotically nonzero) breakdown point under a condition making sure

that K clusters can be fitted much better than K − 1 components on the same data set,

which takes the role of the above mentioned “good clustering” assumption.

All the results in the present section assume that the number of clusters K is fixed, which

is required in order to make the parameter space and its boundaries well defined.
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1.2.7 Assignment-based and other robustness measures

It is a matter of controversy to what extent parameter-based robustness measurement cap-

tures the robustness properties of cluster analysis methods appropriately. On one hand,

robustness failure as flagged by these measures is certainly a serious problem. On the other

hand, there are a number of robustness issues that do not show up as “breakdown” or “un-

bounded influence”. Furthermore, these methods cannot be applied to clustering methods

that are not based on estimation of statistical parameters, and they assume the number of

clusters K to be fixed.

Hennig (2004) proposed an amendment of the (finite sample addition) breakdown point

definition for mixture model parameters with K estimated, which declares the estimator as

“broken down” for a data set with K clusters before addition of outliers, if the parameters

of at most K − 1 components do not either reach a singularity or the components vanish.

The idea is that loss of a component is treated as breakdown, whereas adding components

is not a problem, particularly because it can be seen as appropriate that newly added points

require new components to be fitted. The somewhat surprising but intuitively reasonable

consequence of this definition is that if criteria such as the AIC or BIC (see Section ??)

are used to estimate K, all considered methods including ML for plain normal mixtures are

perfectly robust against extreme outliers, and breakdown can only be achieved by closing

gaps between clusters with added “bridge points”. However, as already mentioned, increasing

K with the number of outliers is not always the best possible solution because it could lead

to a large value of K with radial contamination, which may result in computational trouble

when fitting the mixture.

Back to fixed K, another concern regarding parameter-based robustness measurement is

that not all serious robustness problems are caused by parameters diverging to the borders of

the parameter space. One can imagine very different clusterings on the same data set implied

by different parameters that are all finite and far away from the parameter space borders.

According to the classical robustness concepts, this kind of problem should be captured by

the influence function and qualitative robustness. However, these measurements may miss

problems because of the discrete nature of cluster analysis.
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Consider K = 3 (fixed) clusters fitted to a data set in which there are four clearly

visible groups, about equispaced (and maybe a few outliers to be trimmed). Imagine that

trimmed K-means (α chosen so that the outliers but nothing else are trimmed) merges two

of the four clusters, because they may be a tiny little bit less separated from each other

or a tiny little bit smaller than the others. Let us assume that this solution is unique,

but the clustering of the data set is certainly ambiguous and a quite different partition,

merging two other components, may achieve almost the same value of the objective function

(1.3). According to Garćıa-Escudero and Gordaliza (1999), as explained above, the influence

function is bounded, not indicating any robustness problem. However, the decision which

clusters are merged may be switched, changing the solution completely, under adding a few

points or even a single one in one or between two of the clusters, because this may just make

the originally slightly worse partition slightly better with respect to (1.3). The problem is

that in such situations what happens for infinitesimal contamination as formalized in the

influence function is not a good approximation for what may happen under still quite small

contamination, at least if the trimmed K-means objective function is close to non-uniqueness.

In order to address this kind of robustness problem, and also in order to enable robustness

measurement for more general clustering methods, robustness measurement can be based on

the assignment of points to the clusters, and on counting assignment changes between original

and contaminated data.

Such approaches have been used for measuring clustering stability in the machine learning

literature for some time, see von Luxburg (2010) for an overview. One key result is that the

stability of K-means under random variations is strongly connected to the uniqueness of the

solution to (1.1) in the data set, which can be related to the above discussion. Such results

differ from the robustness approach in that worst case behavior is not taken into account.

Hennig (2008) defined general assignment-based robustness measurements for cluster anal-

ysis. The “dissolution point” is an adaptation of the breakdown point. Because in many

data sets some clusters are more clear and more stable than others, a dissolution point is

not defined for a whole data set but for a cluster (in principle one could define an overall

dissolution point by minimizing over all clusters).
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The concept is based on the Jaccard similarity for two data subsets C and D, γ(C,D) =
|C∩D|
|C∪D| . The dissolution point, as the finite sample addition breakdown point, is based on

looking at how many points have to be added to a data set in order to generate a worst case

result, here to “dissolve” a cluster. A cluster C is called “dissolved” if in the clustering of

the new data set after adding points there is no cluster D for which γ(C,D∗) > 1
2
, D∗ being

the intersection of D and the original data set. 1
2

is not the worst possible value, but it is

the maximum worst possible value over all clusters when comparing two partitions of the

same data set, i.e., it is the smallest value which enables every cluster to dissolve.

Hennig (2008) shows dissolution robustness results for various methods, including a

positive result for trimmed K-means, and equivalent results to Hennig (2004) for ML methods

for mixtures, including a positive result for RIMLE. Results for K-means and PAM for fixed

K are negative. There is also an analogous positive result to Hennig (2004) for estimating

the number of mixture components by AIC or BIC. There are positive results for single

and complete linkage hierarchical clustering for cutting the dendrogram at a fixed height

(because this can isolate outliers safely), whereas cutting at a fixed number of clusters is not

dissolution robust. All these results require “good clustering”-conditions as before.

Hennig (2007) uses the Jaccard similarity approach for empirical evaluation of robustness

and stability of clusters in a given data set based on resampling and addition of artificial

data, see also Section ??.

Further, Hennig (2008) defines a method to be “isolation robust” if one cannot merge

clusters bridging an arbitrarily large gap by adding a certain maximum number of points.

It is argued that methods with fixed K can never be isolation robust, because if K is

misspecified, instability of the partition can be achieved in data sets with arbitrarily large

gaps between clusters. Mixture estimation with AIC and BIC and hierarchical clustering

(single and complete linkage) cutting at fixed height are isolation robust. Estimating K

is not isolation robust in general, though, because it is showed that the average silhouette

width method to estimate K (see Chapter ??) is not isolation robust.

Other assignment-based versions of robustness measurement exist. C. and Haesbroeck

(2011) obtained influence functions for the classification error rates of K-means and PAM.
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Results as those in Balcan and Gupta (2010) explained in Section 1.2.5 can also be interpreted

as robustness results under specific “good clustering” conditions.

1.3 Software for robust cluster analysis

Most of the robust cluster analysis proposals cited in previous sections can be easily imple-

mented with standard statistical software. We will focus on their readily available imple-

mentations in R (R Development Core Team (2010)) packages at the CRAN repository.

The L1 approach can be carried out with the pam function included in the cluster

package. The tclust package implements the trimming approaches described in Section

1.2.2. For instance, the graphs shown in Figure 1.3 can be obtained through the use of

function tkmeans(X,k,alpha), where X is the data set, k is the number of clusters and

alpha is the trimming proportion. The tclust function in this package allows to implement

the heterogeneous robust cluster analysis procedures discussed in Section 1.2.2. Here, restr

specifies the type of constraints applied to the scatter matrices and restr.fact is the value of

the constant c. The parameter equal.weights specifies whether equal weights p1 = ... = pk

are assumed in (1.2) or not. The approach introduced in Gallegos (2002) is obtained by

restr="deter" and restr.fact=1, and that introduced in Garćıa-Escudero and Gordaliza

(2005) by restr="sigma". The use of restr = "eigen" (constraints on the eigenvalues)

serves to implement the TCLUST method in Garćıa-Escudero et al. (2008).

In order to illustrate the use of the tclust package, the well-known “Swiss bank notes”

data set in Flury and Riedwyl (1988) will be used. This data set includes 6 measurements

made on 100 genuine and 100 counterfeit old Swiss bank notes. The following code is used

to obtain Figure 1.4:

R > data ("swissbank")

R > clus <- tclust (swissbank, k = 2, alpha = 0.08,

restr = "eigen", restr.fact = 15)
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Figure 1.4: Clustering results with k = 2, α = 0.08 and c = 15 for the “Swiss Bank notes”
data set.

R > plot (swissbank[, 4], swissbank[, 6], pch = clus$cluster + 1)

clus$cluster returns a vector with the cluster assignments for all the observations in the

data set, using the value “0” for the trimmed ones. One of the cluster essentially includes

most of the “forged” bills whereas the other one includes most of the “genuine” ones. Within

the 8% proportion of trimmed observations (α = 0.08), we may identify a subset with 15

forged bills following a clearly different forgery pattern, which has been previously reported

in the literature (see, e.g., Flury and Riedwyl (1988)). More details on the tclust package

are found in Fritz et al. (2012).

The tlemix package Neytchev et al. (2012) implements the trimmed likelihood approach

to robust cluster analysis, Neykov et al. (2007). The internal use of the flexmix package

(Leisch (2004)) yields high flexibility that allows tlemix to be adapted to a large variety of

statistical problems.

The mixture approach with noise component to robust cluster analysis can be carried out
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in R with the Fraley and Raftery (2012)’s mclust package. This package needs an initializa-

tion for the observations that are initially considered as noise through initialization =

list(noise=noiseInit) with noiseInit being a TRUE/FALSE vector with the same length

as the number of observations. The application of the EM algorithm often corrects an im-

proper choice of this vector. One possibility to choose it is through the function NNclean in

the prabclus-package (Hennig and Hausdorf (2012)), which implements the noise detection

method proposed in Byers and Raftery (1998).

The fitting of mixtures of t-distributions can be done through the EMMIX package. Origi-

nally this was written in Fortran. An R version is available on Geoff McLachlan’s web page

McLachlan (2012).

1.4 Conclusion and open problems

The negative effect of outlying observations on many well-established clustering techniques

is widely recognized. Therefore developing cluster analysis methods that are not severely

affected by outliers or small deviations from the assumed models is of much interest. We

have reviewed different robust cluster analysis approaches proposed in the literature.

There are still many open research problems. Some classical robustness measurements

raise some issues when translated into the cluster analysis framework, and new meaningful

and computable robustness measures are still of interest. The measures introduced in Hennig

(2008) can be applied to far more methods than those featuring already in that paper.

Specifically, more robustness analysis of methods involving the estimation of the number of

clusters K, of nonparametric density-estimation based methods and of methods not based on

probability models is required. More can be done as well regarding the systematic comparison

of the various approaches by theory, as far as available, or simulation.

Another important problem that deserves careful attention and further research is the

choice of the number of clusters K. This problem, which is generally notoriously difficult, is

even harder in robust cluster analysis, because it is related to the task of proper estimation
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of the level of underlying contamination, required trimming α, respectively (Section 1.2.2).

There is an inevitable element of user’s choice involved, regarding the question from what size

downward a homogeneous group of points should be treated as “grouped outliers” instead

of a “cluster”. A higher trimming level may “eat” smaller clusters, leading to a smaller

number of clusters to be estimated. On the other hand, non-trimmed outliers might result

in new clusters when choosing α too low. The user needs to decide whether and from what

“borderline size” in the given application very small clusters are meaningful or to be ignored,

be it because they are likely to be erroneous “contamination”, or be it because small groups

are not of interest.

Moreover, the simultaneous determination of the number of groups and the contamination

level also depends on the type of clusters we are searching for and on the allowed differences

between cluster’s scatter matrices. For illustration, consider the data set in Figure 1.3(a).

K = 4 may be chosen if we allow for very differently scattered clusters (the fourth cluster

gathers all the observations far away from the three main clusters), but if clusters are required

to be homogeneous, K = 3 plus a 10% contamination level makes more sense.

From our point of view, it is neither possible nor desirable to have unsupervised method-

ology that could simultaneously tell us the number of groups, contamination level and the

maximum allowed difference between clusters for a given data set. These aspects interact,

and need some amount of user tuning. It is more logical to think of a procedure that is able

to return an appropriate cluster partition or a small list of tentative clustering partitions

whenever at least one of these three ingredients (number of clusters, contamination level and

allowed scatter differences) is available due to some specific knowledge about the problem

at hand. The graphical tools described in Garćıa-Escudero et al. (2011) (see also Fritz et al.

(2012)) have this aim. They rely on proper monitoring of the so-called “trimmed classifi-

cation likelihoods” obtained from the maximum values achieved by (1.2) when varying K,

α and constant c. The consideration of weights pk in (1.2) is recommended for choosing the

number of clusters as it was explained in Bryant (1991). Garćıa-Escudero et al. (2003) was

a first attempt for this monitoring approach, considering trimmed K-means.

Ritter (2015) (who also provides a lot on asymptotic theory for methods based on trim-
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ming) suggests exploring many local optima of the objective function in connection with

using various different covariance constraints. The so-called “Pareto solutions” are cluster-

ings that appear optimal at least for a certain covariance constraint.

The monitoring of trimmed likelihoods with an over-fitting penalty term (“trimmed BIC”)

was considered in Neykov et al. (2007). Baudry et al. (2010) monitor various numbers of

clusters as well in their methodology to merge normal mixture components in order to fit

mixtures with non-normal clusters by normal mixtures. Another monitoring technique is

the “forward search” (see Section 1.2.2). All these authors agree that a dynamic sequence

of images of the data (for instance, resulting from a sequence of different trimming levels)

provides a more useful view of the data set than a single “static” view.

When adopting the mixture fitting approach to robust cluster analysis, the use of BIC-type

criteria provides guidance for determining the number of clusters K and the contamination

level p0 in (1.4). The allowed differences in within-cluster scatter are controlled through the

different parameterizations of the scatter matrices of the mixture components. However, it is

important that the proper choice of the number of clusters in cluster analysis is not exactly

equivalent to that of proper choice of the number of components in a mixture problem (see,

e.g., Celeux and Soromenho (1996),Hennig (2010)). Hennig (2004) and Hennig and Coretto

(2008) provide sensible ways to choose constant c for the RIMLE method. One approach is

to find a c or contamination level that makes the non-noise part of the mixture as similar as

possible to a normal mixture with the parameters estimated for the components in terms of

the Kolmogorov- or another distance between distributions.

In the framework of mixture models, exploring the robustness of further types of mixtures

of non-normal (e.g., skew) distributions (and robustifying them where necessary) is of current

interest.

All the proposals discussed in this review concern the problem of clustering around cen-

troids. There are interesting problems where observations are naturally clustered around

linear and nonlinear manifolds, see also Section ??. Garćıa-Escudero et al. (2009) show

how the trimming principles presented in Section 1.2.2 can be adapted to robust cluster-

ing around linear subspaces through RLGA (robust linear grouping analysis). This method
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is available in the lga R-package (Harrington (2012)). Robust clusterwise regression tech-

niques were introduced in Hennig (2002), Hennig (2003) and Garćıa-Escudero et al. (2010).

Detecting specific shapes and objects in noisy images is a problem addressed by the pattern

recognition community with procedures that often can be adapted to solve specific robust

cluster analysis problems, e.g., Luan et al. (1998). Further robustification problems arise

from clustering functional data (see Garćıa-Escudero and Gordaliza (2005) and Cuevas et al.

(2007), Section ??).
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Garćıa-Escudero, L., A. Gordaliza, C. Matrán, and A. Mayo-Iscar (2008). A general trimming
approach to robust cluster analysis. Annals of Statistics 36, 1324–1345.
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analysis and clustering. In W. Härdle and B. Rönz (Eds.), COMPSTAT 2002 Proceedings
in Computational Statistics, pp. 255–260. Heidelberg:Physica-Verlag.

Rousseeuw, P., L. Kaufman, and E. Trauwaert (1996). Fuzzy clustering using scatter matri-
ces. Computational Statistics and Data Analysis 23, 135–151.

Rousseeuw, P. and A. Leroy (1987). Robust Regression and Outlier Detection. Wiley-
Interscience, New York.

Rousseeuw, P. and K. Van Driessen (1999). A fast algorithm for the Minimum Covariance
Determinant estimator. Technometrics 41, 212–223.

Ruspini, E. (1969). A new approach to clustering. Information and Control 15, 22–32.
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