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Abstract In fuzzy clustering, data elements can belong to more than one
cluster, and membership levels are associated with each element, to indicate
the strength of the association between that data element and a particular
cluster. Unfortunately, fuzzy clustering is not robust, while in real applica-
tions the data is contaminated by outliers and noise, and the assumed under-
lying Gaussian distributions could be unrealistic. Here we propose a robust
fuzzy estimator for clustering through Factor Analyzers, by introducing the
joint usage of trimming and of constrained estimation of noise matrices in
the classic Maximum Likelihood approach.

1 Introduction

Clustering can be considered the most important unsupervised learning prob-
lem. It is a process of partitioning a set of data (or objects) in a set of
meaningful sub-classes, called clusters. A cluster is therefore a collection of
objects which are similar to one another and thus can be treated collec-
tively as one group. Clustering algorithms may be classified into Exclusive
(or Crisp, Hard), Overlapping, Hierarchical and Probabilistic. To recall some
well known examples, K-means [12] is an exclusive clustering algorithm, Fuzzy
C-means [2] is an overlapping clustering algorithm, Single-linkage [1] is an ag-
glomerative Hierarchical clustering and lastly Mixture of Gaussian is a prob-
abilistic clustering algorithm. In the present work, we will introduce a Fuzzy
version of Mixtures of Gaussian Factor Analyzers.
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Starting from Wee and Fu’s seminal work [16], fuzzy clustering has re-
ceived an increasing attention by researchers from several fields in the last
fifty years. The aim is to discover a limited number of homogeneous clusters
in such a way that the objects are assigned to the clusters according to the
so-called membership degrees ranging in the interval [0, 1]. In real applica-
tions, the data is bound to have noise and outliers, and the assumed models
such as Gaussian distributions are only approximations to reality. Unfortu-
nately, one of the main limitations of all clustering algorithms is that they
are not robust to noise: a small fraction of outlying data may drastically de-
teriorate the clustering ability. Hence we will provide robustness properties
to our estimator for Gaussian Factor Analyzers, by trimming those observa-
tions that are less plausible under the estimated model. According to [10], a
robust procedure can be characterized by the following: 1) it should have a
reasonably good efciency (accuracy) at the assumed model; 2) small devia-
tions from the model assumptions should impair the performance only by a
small amount; and 3) larger deviations from the model assumptions should
not cause a catastrophe. We will see that our proposal satisfies the three
properties.

2 Fuzzy clustering through Gaussian Factors

Suppose that we have n observations {x1 . . .xn} in R
p and we want to fuzzy-

classify them into k clusters. Therefore, our aim is to obtain a collection of
non-negative membership values uij ∈ [0, 1] for all i = 1 . . . n and j = 1 . . . k.
Increasing degrees of membership are allowed when uij ∈ (0, 1), while uij = 1
indicates that object i fully belongs to cluster j and, conversely, uij = 0
means that it does not belong to this cluster. We will denote an observation
as fully trimmed if uij = 0 for all j = 1 . . . k and, thus, this observation has
no membership contribution to any cluster.

Further, we want to employ Factor Analysis and suppose that, as in many
phenomena, the p observed variables could be explained by a few unobserved
ones. Factor Analysis is an effective method of summarizing the variability
between a number of correlated features, through a much smaller number of
unobservable, hence named latent, factors. Under this approach, each single
variable (among the p observed ones) is assumed to be a linear combination
of d underlying common factors with an accompanying error term to account
for that part of the variability which is unique to it (not in common with
other variables). We will assume that the distribution of xi can be given as

xi = µ+ΛUi + ei for i = 1, . . . , n, (1)

where Λ is a p × d matrix of factor loadings, the factors U1, . . . ,Un are
N (0, Id) distributed independently of the errors ei. The latter are indepen-



Fuzzy clustering through robust Factor Analyzers 3

dently N (0,Ψ ) distributed, and Ψ is a p×p diagonal matrix. The diagonality
of Ψ is one of the key assumptions of factor analysis: the observed variables
are independent given the factors. Note that the factor variable Ui models
correlations between the elements of xi, while the errors ei account for in-
dependent noise for xi. We suppose that d < p. Under these assumptions,
xi ∼ N (µ,Σ), where the covariance matrix Σ has the form

Σ = ΛΛ′ + Ψ . (2)

Given a fixed trimming proportion α ∈ [0, 1), a fixed constant c ≥ 1 and a
fixed value of the fuzzifier parameter value m > 1, a robust constrained fuzzy
clustering problem can be defined through the maximization of the objective
function

n∑

i=1

k∑

j=1

umij logφ(xi;mj,Sj), (3)

where φ(·;m,S) is the density of the multivariate Gaussian with mean m

and covariance S, and the membership values uij ≥ 0 are assumed to satisfy

k∑

j=1

uij = 1 if i ∈ I and
k∑

j=1

uij = 1 otherwise, (4)

for a subset
I ⊂ 1, 2, . . . , n with #I = [n(1 − α)], (5)

where m1, . . . ,mk are vectors in R
p, and S1, . . . ,Sk are positive semidefinite

p×p matrices satisfying the decomposition in (2), i.e. Sj = ΛjΛ
′

j+Ψ j . With
reference to the diagonal elements {ψk}k=1,...,p of the noise matrices Ψ j , it is
required that

ψj1h ≤ cnoise ψj2l for every 1 ≤ h 6= l ≤ p and 1 ≤ j1 6= j2 ≤ k (6)

The constant cnoise is finite and such that cnoise ≥ 1, to avoid the |Σg| → 0
case. This constraint can be seen as an adaptation to MFA of those introduced
in [11], [5], and is similar to the mild restrictions implemented for MFA in
[7]. They all go back to the seminal paper of [9].

Notice that ui1 = . . . = uik = 0 for all i /∈ I, so these observations do not
contribute to the summation in the target function (3).

Our fuzzy method is based on a maximum likelihood criterium defined
on a specific underlying statistical model, as in many other proposal in the
literature.

After the introduction of trimmed observation, the second specific features
of the proposed methodology is the application of the eigenvalue ratio con-
straint in (6). This is needed to avoid the unboundedness of the the objective
function (3), whenever one of the mj is equal to one of the observations xi,
setting uij = 1, and for a sequence of scatter matrices Sj such that |Sj | → 0.



4 Luis Angel Garćıa-Escudero, Francesca Greselin, and Agustin Mayo Iscar

This problem is recurrent in Cluster Analysis whenever general scatter matri-
ces are allowed, and has been already noticed in fuzzy clustering, among other
authors, by [8]. In our approach, the unboundedness problem is addressed by
constraining the ratio between the largest and smallest eigenvalues of the so-
called noise matrices Ψ j . Larger values of c lead to an almost unconstrained
fuzzy clustering approach.

It is well known that the use of an objective function like that in (3) tends
to provide clusters with similar sizes, or more precisely, with similar values of∑n

i=1
umij . If this effect is not desired then it is better to replace the objective

function (3) by
n∑

i=1

k∑

j=1

umij log pjφ(xi;mj ,Sj), (7)

where pj ∈ [0, 1] and
∑k

j=1
pj = 1 are some weights to be maximized

in the objective function, as in the entropy regularizations in [14]. Once
the membership values are known, the weights are optimally determined as
pj =

∑n

i=1
umij/

∑n

i=1

∑k

j=1
umij (see [?], for a detailed explanation). Finally,

considering (7) as our target function, and performing trimming and con-
strained estimation along the EM algorithm we obtain a robust approach to
fuzzy clustering through factor analyzers.

More precisely, we consider an AECM algorithm, where we incorporates
a concentration step, as in many high-breakdown point robust algorithms
like [15], before each E-step. After selecting the set of observations that con-
tributed the most to the target function (concentration step), at each itera-
tion, given the values of the parameters, the best possible membership values
are obtained (E-step). Afterwards, the parameters are updated by maximiz-
ing expression (7) on the parameters (M-step). The name of AECM (that
appeared in the literature for the case of mixtures of Gaussian factor analyz-
ers, see [13]) comes from the fact that the M-step is performed alternatively
on a partition of the parameter space. When updating the Sj matrices the
constraint on the eigenvalue ratios are imposed accordingly, along the lines
of [3].

Finally, it is worth to remark that the general approach presented herein
encompasses the soft robust clustering method introduced in [6], and leads
to hard clustering for m = 1. For m > 1 it provides fuzzy clustering.

3 Numerical results

We present here a first experiment on synthetic data, to show the performance
of the proposal. We choose a two component population in R

10, from which
we draw two samples. Aiming at providing a plot of the obtained results,
we work with unidimensional factors (otherwise we could not find a unique
space, for the two components, to represent the data). The first population
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X1 is defined as follows:

X11 ∼ N (0, 1) + 4 X12 ∼ 5 ∗X11 + 3 ∗ N (0, 1)− 6;

and the second population X2 is given as:

X21 ∼ N (0, 1) + 4 X22 ∼ X21 + 2 ∗ N (0, 1) + 19.

After drawing 100 points for each component, to check the robustness of our
approach, we add some pointwise contamination X3 to the data, by drawing
10 points as follows

X31 ∼ N (0, 1) + 4 X32 ∼ 50 + 0.01 ∗ N (0, 1);

and 10 more points, denoted by X4, where

X41 ∼ N (0, 1) + 6 X42 ∼ −20 + 0.01 ∗ N (0, 1).

Finally, we complement the data matrix with Xij ∼ N (0, 1) for i = 1, . . . , 4
and j = 3, . . . , 10. In this way we have built a dataset where one factor is
explaining the correlation among the 10 variables, in each component.

Figure 1 shows that the estimation is robust to the most dangerous outliers,
in the form of pointwise contamination. In all our results we observed that
small deviations from the model assumptions impair the performance only
by a small amount, and that good efficiency is obtained on data without
contamination.
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3. Fritz H, Garćıa-Escudero LA, Mayo-Iscar A (2013) A fast algorithm for robust con-
strained clustering, Computational Statistics & Data Analysis, 61: 124–136.
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Fig. 1 Fuzzy classification of the synthetic data. Blue points are the projections of the 10-
dimensional data in the latent factor space of the first component. Black points are trimmed
units. The strenght of the membership values is represented by the color saturation level.
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