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Abstract In a framework where experts or agents express their opinions in a
dichotomous way, we analyze the cohesiveness of their opinions on a fixed set
of issues in a population. A parametric family of related measures are intro-
duced and axiomatically characterized. They are ordinally equivalent when the
population is fixed, and some further properties are proved. In order to argue
that this restricted dichotomous situation is nevertheless versatile, the paper
ends with several empirical illustrations based on real forecasts (for the 2012
American presidential election) and elections (with real data from referenda
in two countries and from elections in several scientific societies).
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1 Introduction

Reaching consensus in group decision making problems, as well as its mea-
surement, are prominent and active research areas in Decision Making Theory
(see Alonso et al (2009), Herrera-Viedma et al (2011), and Xu and Cai (2013),
among others) and in Social Choice Theory (see Alcalde and Vorsatz (2013),
Alcantud et al (2013) and Bosch (2005)). This increasing attention is moti-
vated by real-life problems where one would like to assess how much consensus
an arrangement or configuration conveys to the group.

In this paper we contribute to the question: how can the similarity of the
opinions in a group be measured? In social debates one is often faced with as-
sertions like “the more agreement on a list of issues there is in a collectivity, the
greater its cohesion”. However, how can we tell whether or not there is a high
degree of agreement in the collectivity? We aim at contributing to that topic.
To be precise, we focus on the case where the opinions of the group on the issues
are dichotomous. Alcantud et al (2013) first posed this problem, which is both
theoretically tractable and empirically versatile. In fact that paper mentions
real-world situations where Approval Voting (AV) is applied as a first field of
application. This is the case of many organizations and scientific societies: e.g.,
the Mathematical Association of America (MAA), the American Mathematical
Society (AMS), the Institute for Operational Research and Management Sci-
ences (INFORMS), the American Statistical Association (ASA), or the Society
for Social Choice and Welfare as a sample. A second example from Alcantud
et al (2013), Section 5, concerns the predictions made by three polling agen-
cies about the results of the 2012 presidential elections in several states of the
USA. Now by contrast with the voting situations, which are further explored
in this paper, the alternatives (either party R or D would win the state) are
evaluated by each outfit, and no comparison among them is involved or could
be reasonably induced. Another problem that is usually modelled in terms of
dichotomous opinions is group identification or the qualification problem (see
Dimitrov (2011) for a recent survey). 1 As to normative analyses, Alcantud
et al (2013) prove axiomatic characterizations of two families of elementary
dichotomous cohesiveness measures.

The generic problem under inspection has been explored from the perspec-
tive of ordinal preferences in a few studies. An early antecedent in statistics is
Kendall (1962), who proposed a well-known measure of the degree of similarity
between two rankings, namely, Kendall’s τ . In the seminal Bosch (2005) and
the later work by Alcalde and Vorsatz (2013), particular formulations for ab-
solute measures of consensus or cohesiveness whitin a group are proposed and
axiomatized. Bosch dealt with some simple measures and then Alcalde and
Vorsatz made a more elaborated analysis which included the characterization
of a family of measures (and of a focal subfamily). In both cases it is assumed
that the agents linearly order the alternatives. However in our analysis the

1 We appeal to the standard model where each person either qualifies or disqualifies each
member of the collective. Ju (2013) refers to a more general domain condition that allows
neutral opinions.
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agents are not asked to compare the alternatives but grade them instead. This
nuance is important because axioms and properties designed for the analysis
of preferences could be meaningless for analyzing dichotomous evaluations.
Irrespective of the allowed description of the agents’ attitudes, they partake
of a list of internal characteristics whose cohesiveness could be used to assess
similarity of the members of a group or group cohesion (Alcalde and Vorsatz,
2013, Section 1).

To fulfil our purpose we appeal to dichotomous consensus measures or
DCMs, a technical tool introduced in Alcantud et al (2013).

Our first objective is to define some noteworthy examples of DCMs and
explore their performance.

Firstly we introduce a measure of the cohesiveness of dichotomous opinions
with a probabilistic interpretation. We call it Pairwise dichotomous cohesive-
ness measure (PDCM), a specific type of dichotomous cohesiveness measure
(i.e., mappings from the class of dichotomous opinions on the set of options to
the unit interval for which 1 is attained exactly when all opinions on each op-
tion are coincident). In our construction we first compute the degree to which
the agents coincide in their evaluations of each alternative, and then we take
the average of these values (one for each alternative). As is the case of the
Shapley value or the Banzhaf power index, this has a probabilistic interpre-
tation: it is the probability that for a randomly chosen option, two randomly
chosen agents of the society have the same opinion upon it.

Secondly, we correct the PDCM in order to procure two appealing proper-
ties. Many authors assume that a perfectly divided society should have a null
cohesiveness measure; this property is violated by PDCM. Besides, it could
be the case that the size of the society is not known but only proportions of
answers are available (e.g., the example in Subection 5.4 below). This setup
would not permit to evaluate cohesiveness by PDCM. We prove that a minor
modification of the PDCM, namely the Modified PDCM (MPDCM), permits
to overcome these difficulties at the cost of losing its probabilistic interpreta-
tion.

Thirdly, we introduce an index, namely the Proportional PDCM (PPDCM),
that shares nice features with the previous cases for large populations: it de-
pends on proportions only, and when the number of agents is large it ap-
proximates the value of PDCM so it is virtually the probability measured by
PDCM.

Our second objective is to define and axiomatically characterize a family
of DCMs that abstracts the spirit of the previous ones. Three necessary and
sufficient conditions are employed, and the aforementioned central instances
are characterized by stipulating the content of one of them.

Finally, the paper provides several empirical illustrations. They show the
applicability of our indexes to real situations with different characteristics, like
forecasts (for the 2012 American presidential election) and elections (with data
from real referenda in Switzerland and Italy, and from elections in scientific
societies as the 2012 Council elections of the Society for Social Choice and
Welfare).
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The paper is structured as follows. Section 2 is devoted to introduce basic
terminology, as well as the general concept of (normal) dichotomous cohe-
siveness measure. Section 3 introduces and discusses our three noteworthy
specifications, namely PDCM, MPDCM, and PPDCM. Section 4 introduces
our generic family of DCMs. We prove that our definition generates normal
DCMs and includes the three aforementioned indexes. Then we provide three
axioms that jointly characterize such family of DCMs. We also prove that all
members of the family are ordinally equivalent in the common case where pro-
files with the same population size are compared. Our empirical illustrations
are given in Section 5. We conclude in Section 6. An Appendix provides other
relevant properties of our family of measures.

2 Notation and definitions

The remaining of this Section borrows notation and definitions from Alcantud
et al (2013).

Let X = {x1, ..., xk} be the finite set of k options, alternatives or candi-
dates. It is assumed that X contains al least two alternatives, i.e., that the
cardinality of X is greater or equal than 2, |X| > 2. Abusing notation, on
occasions we refer to option xs as option s for convenience. A population of
agents or experts is a finite subset N = {1, 2, ..., N} of natural numbers.

We consider that each expert can vote for or approve of as many options,
alternatives or candidates as he/she wishes, thus showing extreme and dichoto-
mous opinions. In order to formalize these assessments Alcantud et al (2013)
propose the following model:

Definition 1 A dichotomous profile of a society N on the set of alternatives
X is an N × k matrix

M =

M11 . . . M1k

...
. . .

...
MN1 . . . MNk


N×k

where Mij is the opinion of the expert i over the alternative xj , in the sense

Mij =

{
1 if expert i approves the alternative xj ,
0 otherwise.

We write MN×k for the set of all such N×k matrices. For convenience, (1)N×k
denotes the N × k matrix whose cells are universally equal to 1.

Remark 1 Alcantud et al (2013) discuss alternative formal modelizations of
the same information on the agents’ opinions that we do not use here.
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Any permutation σ of the experts {1, 2, ..., N} determines a profile Mσ by
permutation of the rows of M : row i of the profile Mσ is row σ(i) of the profile
M . Similarly, any permutation π of the alternatives {1, 2, ..., k} determines a
profile πM by permutation of the columns of M : column i of the profile πM
is column π(i) of the profile M .

For each dichotomous profile M , its restriction to a subprofile on the alter-
natives in I ⊆ X, denoted M I , arises from exactly selecting the columns of M
that are associated with the respective alternatives in I (in the same order).
In particular, and dropping brackets for simplicity, M{j} = M j is column j
of M , and M i,j is the two-column submatrix of M that consists of columns i
and j (in the same order). An s-restricted profile of M is the restriction of M
to a subprofile on s alternatives.

Any partition {I1, ..., It} of {1, 2, ..., k}, that we identify with a partition
of X, generates a decomposition of M into subprofiles M I1 , ... , M It .2

For each dichotomous profile M on k alternatives, by nj0 we denote the

number of agents that disapprove of alternative j, and by nj1 we denote the
number of experts that approve of alternative j. When k equals 1, i.e., for
profiles on one alternative, we drop the super-index to write n0 and n1. Of
course, N = nj0 + nj1 for each j.

A dichotomous profile M is unanimous if the set of approved alternatives
is the same across experts. In matrix terms, if the columns of M ∈MN×k are
constant.

An extension of a dichotomous profileM of the society N onX = {x1, ..., xk}
is a dichotomous profile M̃ on X̃ = {x1, ..., xk, , xk+1, ..., , xk′} such that the
restriction of M̃ to the first k alternatives of X̃ coincides with M .

An expansion of a dichotomous profileM of the society N onX = {x1, ..., xk}
is a dichotomous profile M̄ of a society N̄ = {1, ..., N,N + 1, . . . , N̄} on
X = {x1, ..., xk} such that the restriction of M̄ to the first N experts of
N coincides with M .

Finally, a replication of a dichotomous profile M of the society N on
X = {x1, ..., xk} is the dichotomous profile M ] M ∈ M2N×k obtained by
duplicating each row of M , in the sense that rows t and N + t of M ]M are
row t of M , for each t = 1, . . . , N .

The main analytical tool for our purpose is the following:

Definition 2 A dichotomous cohesiveness measure (also DCM for simplicity)
for the group N = {1, ..., N} is a mapping µ : MN×k → [0, 1] that assigns a
number µ(M) ∈ [0, 1] to each dichotomous profile M , with the property:

i) µ(M) = 1 if and only if M is unanimous.

2 A partition of a set S is a collection of pairwise disjoint non-empty subsets of S whose
union is S.
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A dichotomous cohesiveness measure is a collection of dichotomous cohesive-
ness measures for each group N.

Henceforth we restrict our attention to DCMs that are normal, in the
following sense:

Definition 3 A DCM is normal if it further verifies:

ii) Anonymity : µ(Mσ) = µ(M) for each permutation σ of the agents and
M ∈MN×k

iii) Neutrality : µ(πM) = µ(M) for each permutation π of the alternatives and
M ∈MN×k

The inspiring Alcantud et al (2013) explained that further properties must
be imposed on DCMs in order to avoid weird/odd behaviors. Moreover, DCMs
that verify certain lists of properties are identified. Some of these properties
capture very basic notions of cohesiveness as unanimity or perfect agreement,
which are often restrictive. In the following Sections we investigate more so-
phisticated approaches to the measurement of cohesiveness under dichotomous
opinions. They are intended to fit a wider range of applications.

All too often the dichotomous profile M cannot be fully retrieved. For
example, when the available data are aggregated and the underlying dichoto-
mous profile cannot be used to assess the cohesiveness of the opinions. This
is usually the case when the agents are individuals rather than agencies (as
in Subsection 5.1), political entities (as in Subsection 5.2), companies, ficti-
tious or representative agents, . . . . In this case, what matters is the number
of experts that approves of each alternative irrespective of the specific votes
or ballots cast by each expert. In technical terms, one needs to consider the
following restriction called Property (A).

Definition 4 With each dichotomous profile M ∈MN×k we associate PM =
(n11, ..., n

k
1). The DCM µ verifies Property (A) when M,M ′ ∈ MN×k and

PM = PM ′ entail µ(M) = µ(M ′).

Furthermore, in certain polls or surveys the data do not give information
on the size of the populations, and only proportions of agents that approve
or disapprove each alternative are available. This fact motivates the following
restriction called Property (B).

Definition 5 With each dichotomous profile M ∈ MN×k we associate VM =

(
n11
N
, ...,

nk1
N

). The DCM µ verifies Property (B) when M ∈ MN×k, M ′ ∈
MN ′×k, VM = VM ′ entail µ(M) = µ(M ′).

3 Dichotomous Cohesiveness Measures: some noteworthy examples

In this Section we propose three prominent dichotomous cohesiveness mea-
sures. The first one has a probabilistic interpretation, since it is similar in
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spirit to Hays (1960)’s seminal work of a cohesiveness measure for profiles of
linear orders. Our second proposal is a simple modification of the former in
order to procure two appealing properties. Finally, the third one approximates
the first measure when only proportions are available.

3.1 Pairwise Dichotomous Cohesiveness Measure (PDCM)

Definition 6 The pairwise dichotomous cohesiveness measure (PDCM) for
the group N = {1, ..., N} is the mapping Cp : MN×k → [0, 1] given by

Cp(M) = 1−
∑k
j=1 n

j
0 · n

j
1

k · C2
N

(1)

for each dichotomous profile M on k alternatives, where k denotes the cardi-
nality of the set of alternatives.

In words, PDCM measures the cohesiveness of a dichotomous profile as the
probability that for a randomly chosen option, two randomly chosen agents of
the group have the same opinion upon it. Some basic combinatorics prove that
Eq. (1) captures such probability, which is expressed as the following sum of
probabilities of k mutually exclusive conditional events:

k∑
j=1

1

k

(
nj0(nj0 − 1)

N(N − 1)
+

(N − nj0)(N − nj0 − 1)

N(N − 1)

)
,

or equivalently,

1

k

k∑
j=1

N2 − 2Nnj0 + 2(nj0)2 −N
N(N − 1)

=
1

k

k∑
j=1

(
1− 2Nnj0 − 2(nj0)2)

N(N − 1)

)
=

= 1− 1

k

k∑
j=1

Nnj0 − (nj0)2

N(N−1)
2

= 1−
∑k
j=1 n

j
0 · n

j
1

k · C2
N

.

In addition, it is easy to check that Definition 6 provides a normal DCM
and that PDCM satisfies Property (A) but fails to satisfy Property (B).

3.2 Modified Pairwise Dichotomous Cohesiveness Measure (MPDCM)

A possible handicap of PDCM is that it contradicts two properties that in
certain contexts could be natural for a dichotomous cohesiveness measure,
namely balancedness and replication invariance. The first one claims that co-
hesiveness is null when there is an exact half-half distribution of the opinions
in the society. The second one claims that replicating a society preserves the
index of cohesiveness. In technical terms:
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1. A DCM µ is balanced if µ(M) = 0 whenever nj0 = nj1 for each j = 1, ..., k.
To prove that PDCM is not balanced, observe that if M ∈ MN×k verifies

nj0 = nj1 for each j, then Cp(M) = 1− 2
k(n1

0)
2

kN(N−1) = 1− 2
(N

2 )2

N(N−1) > 0.

2. Let us say that a DCM µ verifies replication invariance if µ(M ]M) =
µ(M) for each M ∈ MN×k. 3 Note that PDCM does not verify replication
invariance, because for each N > 2 and each non-unanimous M ∈MN×k it is

easy to show that Cp(M ]M)− Cp(M) =
1−Cp(M)
2N−1 6= 0.

In order to overcome these possible drawbacks we propose a technical mo-
dification of PDCM, namely the modified pairwise dichotomous cohesiveness
measure (MPDCM), that satisfies the two properties above at the cost of
losing the probabilistic and natural interpretation of PDCM. For each group
N = {1, ..., N}, it is defined as follows:

Definition 7 The modified PDCM (MPDCM) for the group N = {1, ..., N}
is the mapping Cm : MN×k → [0, 1] given by

Cm(M) = 1− α ·
2 ·
∑j=k
j=1 n

j
0 · n

j
1

k · N(N − 1)
,

where α = 2 · N−1N for each dichotomous profile M on k alternatives. Therefore

Cm(M) = 1− 4

k

∑j=k
j=1 n

j
0 · n

j
1

N2
= 1− 4

k

j=k∑
j=1

nj0
N

nj1
N
. (2)

It is easy to check that Definition 7 provides a normal DCM too. Observe
that Eq. (2) defines MPDCM in terms of the proportions of agents that approve
or disapprove each alternative, i.e. it satisfies Property (B). This fact decides
the choice between MPDCM and PDCM when the data do not give informa-
tion on the size of population, as as in certain polls or surveys.4 Furthermore,
it ultimately yields the property of replication invariance for MPDCMs. It is
trivial to check for balancedness too.

3.3 Proportional Pairwise Dichotomous Cohesiveness Measure (PPDCM)

The evaluation of the cohesiveness of a profile under PDCM permits to in-
terpret it as a probability but requires to know the size of the population.
However, it can be approximated when the population is ‘large’ (N ≈ N − 1)
by a simplified formula, that only depends on proportions like in the case of
MPDCM. This motivates the definition of the following DCM, namely propor-
tional pairwise dichotomous consensus measure:

3 This is the adapted version of the axiom with the same name in Alcalde and Vorsatz
(2013) in the analysis of coherence in societies with linear orders.

4 Subsection 5.4 below refers to this case in more detail.



9

Definition 8 The proportional PDCM (PPDCM) for the group N = {1, ..., N}
is the mapping C′p : MN×k → [0, 1] given by

C′p(M) = 1− 2

k

k∑
j=1

nj0
N
· n

j
1

N
(3)

A straightforward computation gives Cm(M) = 2C′p(M)− 1 for each M ∈
MN×k, henceforth we deduce Cm(M) ≈ 2Cp(M)− 1 because C′p(M) ≈ Cp(M)
when N is ‘sufficiently large’.

This is worth mentioning because C′p verifies Property (B) and at the same
time provides a reasonable approximation of PDCM –which does not verify
it– for otherwise non-tractable cases like the Italian referenda example in Sub-
section 5.4.

4 A Family of Dichotomous Cohesiveness Measure: Axiomatic
characterization

In this Section we propose and analyze a parametric family of dichotomous
cohesiveness measures, that includes the three measures introduced in the
previous Section. The family is parameterized by a function that weights the
disagreement in terms of the size of the population.

Definition 9 The f-pairwise dichotomous cohesiveness measure (f-PDCM) for
the group N = {1, . . . , N} is the mapping Cf : MN×k → [0, 1] given by:

Cf (M) = 1− f(N)g(N,PM ), (4)

where f : N → (0, 2(N−1)N ] and g : MN×k → [0, 1] is the disagreement quote
given by:

g(N,PM ) = g(N, {nj1}kj=1) =

k∑
j=1

(N − nj1)nj1
k · C2

N

.

Note that the measures Cp, Cm and C′p respectively correspond to the cases

f(N) = 1, f(N) = 2(N−1)
N and f(N) = N−1

N . Since Cp has a probabilistic
interpretation, we can infer that the role of function f(N) in Eq. (9) is to
weight the disagreement quote, and to quantify the impact of the lack of
agreement in the community.

The next lemma shows that each Cf is indeed a normal DCM.

Lemma 1 Every f-PDCM is a normal dichotomous cohesiveness measure.

Proof Firstly, we prove that Cf (M) ∈ [0, 1] for all profile M ∈MM×k. Since f
and g are positive we infer

Cf (M) = 1− f(N)g(N,PM ) ≤ 1.
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On the other hand, we have

Cf (M) ≥ 0⇔ 1− f(N)g(N,PM ) ≥ 0⇔ f(N) ≤ 1

g(N,PM )
.

Now, a simple computation reveals that maxM∈MN×k
g(N,PM ) ≤ N

2(N−1) .

Hence

Cf (M) ≥ 0⇔ f(N) ≤ 2(N − 1)

N

which is the upper bound for f in Definition 9.
Anonymity and neutrality are easily checked. Finally, to show Cf (M) = 1

if and only if M is unanimous, we observe that

Cf (M) = 1⇔ g(N,PN ) = 0⇔ PN =

 (0, . . . , 0)
or

(N, . . . , N)
⇔M is unanimous.

This completes the proof. ut

It is trivial that each f-PDCM verifies Property (A).
Now we proceed to list three properties that permit to completely char-

acterize the f-PDCM family (cf., Theorem 1 below). Later on in Appendix 1,
some further properties are discussed.

Let µ be a normal dichotomous cohesiveness measure.

1. We say that µ verifies 1-reducibility if for each dichotomous profile M on
X,

µ(M) =
1

k

k∑
j=1

µ(M j).

1-reducibility means that the cohesiveness of a dichotomous profile is the
average of the cohesiveness measures of all its subprofiles on one alterna-
tive. As explained in the Introduction, this says that we can first compute
a degree of coincidence in the evaluations of each alternative by the agents
(the proportion of pairs of agents whose opinions coincide), and then ag-
gregate these values by taking their average.

2. We say that the cost of leaving unanimity for µ is equal to c(N) if the
following holds true: when M is a unanimous profile on one alternative,
and exactly one agent changes her/his opinion on it then the evaluation by
µ is reduced by c(N). The amount µ(M)− µ(M ′) = 1− µ(M ′) = c(N) is
called cost of leaving unanimity.

3. We say that µ verifies proportionality if the following holds true. Let
M,M ′,M ′′,M ′′′ ∈ MN×1 be dichotomous profiles on one alternative. As-
sume that when moving from M to M ′ (or from M ′ to M ′′, or from M ′′

to M ′′′) exactly one agent that expresses a 0 opinion has changed to a 1
opinion. Then the difference in cohesiveness from the 1st to the 4th profiles
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is three times as large as the difference in cohesiveness from the 2nd to the
3rd profile. Formally:

Let n1, n
′
1, n
′′
1 , n
′′′
1 denote the number of agents that approve the unique

alternative with the dichotomous profiles M,M ′,M ′′,M ′′′, respectively.
Assume that n′1 = n1 + 1, n′′1 = n′1 + 1 and n′′′1 = n′′1 + 1. Then,

µ(M ′)− µ(M ′′)

µ(M)− µ(M ′′′)
=

1

3
.

We can now characterize the family of f-pairwise dichotomous cohesiveness
measures, in the following terms:

Theorem 1 Let µ be a dichotomous cohesiveness measure on X. Then µ = Cf
if and only if µ verifies 1-reducibility, proportionality, and its cost of leaving
unanimity is 2

N f(N).

Proof Let us first prove necessity. In order to show 1-reducibility, note that
for a profile M ∈MN×k

g(N,PM ) =
1

k

k∑
i=1

ni1(N − ni1)

C2
N

=
1

k

∑
i=1

g(N,PMi)

where M i denotes the subprofile of M on the alternative i. Therefore

Cf (M) = 1− f(N)g(N,PM ) = 1− 1

k

k∑
i=1

f(N)g(N,PMi) =
1

k

k∑
i=1

Cf (M i).

To prove that the cost of leaving unanimity for Cf is 2
N f(N), observe that when

M is a unanimous profile on one alternative and M ′ is the new dichotomous
profile where exactly one agent changes her/his opinion, a direct computation
yields:

Cf (M ′) = 1− f(N)
2

N
= Cf (M)− f(N)

2

N
.

In order to check for proportionality, and assuming the notation in its defini-
tion, we need to show

Cf (M ′)− Cf (M ′′)

Cf (M)− Cf (M ′′′)
=

1

3
,

where M, M ′, M ′′, M ′′′ ∈MN×1 and

PM = (n1), PM ′ = (n1 + 1), PM ′′ = (n1 + 2), PM ′′′ = (n1 + 3).

A straightforward computation gives:

Cf (M ′)− Cf (M ′′)

Cf (M)− Cf (M ′′′)
=
g(N,n1 + 2)− g(N,n1 + 1)

g(N,n1 + 3)− g(N,n1 + 3)

=
N − 2n1 − 3

3N − 6n1 − 9
=

1

3
.
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Let us now prove sufficiency. Due to 1-reducibility, we only need to solve the
case of a single alternative, therefore let us first assume k = 1, and let M
a dichotomous profile on one alternative. From proportionality one obtains
that µ can be expressed as a function of n1, and that it verifies the following
difference equation:

µ(n1 + 1)− µ(n1 + 2)

µ(n1)− µ(n1 + 3)
=

1

3
.

According to Greene and Knuth (1982), page 13, the solution of such equation
is µ(n1) = a + b · n1 + c · n21 for some parameters a, b, c. Let us disclose their
values.

Because µ is DCM, it fullfils unanimity, therefore µ(0) = a = 1 (case n1 = 0:
unanimous rejection) and µ(N) = a + b · N + c · N2 = 1 (case n1 = N :
unanimous approval). Moreover, since the cost of leaving unanimity of µ is
2
N f(N), we obtain µ(n1) = 1 − 2

N f(N) when either n1 = 1 or n1 = N − 1
holds true. These equalities yield the following system of equations:{

b + c = − 2
N f(N)

b + c ·N = 0.

From these equations we easily deduce

µ(n1) = 1− f(N)
2n1(N − n1)

N(N − 1)
= 1− f(N)g(N,PM ).

In case of a general number of alternatives k, 1-reducibility applies and we
obtain the desired conclusion µ = Cf . ut

In particular, the previous Theorem provides an axiomatic characterization
of the pairwise dichotomous measures introduced at Section 3. We rewrite this
result as the following corollary.

Corollary 1 Let µ be a dichotomous cohesiveness measure on X. Then µ =
Cp (resp. µ = Cm, resp. µ = C′p) if and only if µ verifies 1-reducibility, propor-

tionality, and its cost of leaving unanimity is 2
N , (resp. 4(N−1)

N2 , resp. 2(N−1)
N2 ).

The choice of a prominent element of the family as a cohesiveness index is
essentially technical because they are equivalent in the following sense:

Definition 10 Let µ, µ′ be DCMs. We say that µ, µ′ are equivalent if
µ(M) > µ(M ′)⇔ µ′(M) > µ′(M ′), for each M,M ′ ∈MN×k.

Lemma 2 All f-DCMs are equivalent.

Proof It is a consequence of the fact that irrespective of the choice of f ,

Cf (M) ≥ Cf (M ′)⇔ g(N,PM ) ≤ g(N,PM ′), ∀M,M ′ ∈MN×k.

ut
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Moreover, there exists the following relationship between the PDCM and any
generic f-PDCM.

Lemma 3 For every f : N→ (0, 2(N−1)N ],

Cf (M) = f(N)Cp(M) + (1− f(N)) (5)

Proof By Definition 9 and using Definition 6 twice we have

Cf (M) = 1− f(N)g(N,PM ) = (Cp(M) + g(N,PM ))− f(N)(g(N,PM )

= Cp(M) + (1− f(N))(1− Cp(M)),

and we conclude by grouping terms in Cp. ut

Therefore in the case of a fixed population, like the Swiss cantons exercise in
Subsection 5.2 below, when we compare different dichotomous profiles on the
basis of their cohesiveness appraisal by Cp we obtain the same ordering that if
we proceed on the basis of any other Cf instead.

5 Discussion and real examples

In this Section we show the flexibility and applicability of our proposals. Af-
ter discussing the informational basis of the model we exemplify their use in
various real examples. They capture situations of different nature, both with
individual and collective agents.

5.1 Predictions for the 2012 American presidential election

In this Subsection we compute our indexes for forecasts made for the 2012
American presidential election. The information as to the evaluations is com-
plete thus in this exercise the corresponding approval profile is perfectly de-
fined. To be concrete, the exercise consists of measuring the degree of agree-
ment about the electoral predictions among the USA states made by several
agencies. We focus on the forecasts made by the following polling agencies:
New York Times5, Real Clear politics6, Dave Leip’s Atlas of U.S. Presiden-
tial Elections7, Election Projection8, CNN9 and The Huffington Post10. These
agencies have been selected because they conducted surveys for each state.

Table 1 gathers the results of the respective surveys. For convention, ‘1’,
respectively ‘0’, means a prediction that the Democrats, respectively the Re-
publicans, would win the state. One can observe there are eight “swing states”

5 Source: http://elections.nytimes.com/2012/results/president/exit-polls
6 Source: http://www.realclearpolitics.com/polls/
7 Source: http://uselectionatlas.org/PRED/
8 Source: http://www.electionprojection.com/2012elections/president12.php
9 Source: http://edition.cnn.com/ELECTION/2012/

10 Source: http://elections.huffingtonpost.com/pollster
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where the predictions vary with the agency: namely, Nevada, Colorado, Florida,
Iowa, New Hampshire, Ohio, Virginia and Wisconsin. We obtain that the eval-
uation of the cohesiveness in the predictions is 0, 9386 according to PDCM,
0, 8976 according to MPDCM and 0, 9488 according to PPDCM. When we
restrict the analysis to the aforementioned eight conflicting forecasts, the eval-
uations decrease to 0, 6083, 0, 3472 and 0, 6736 respectively.

5.2 Referenda in Switzerland: cohesiveness across cantons

In this Subsection we compute our indexes for results of referenda in Switzer-
land. Since we are using these data for illustrative purposes only, we restrict
our inspection to referenda in 2012-2013. A more extensive discussion with
data since 1991 is available in Alcantud and Muñoz-Torrecillas (2013). In this
reference some related indexes are used to perform an aggregate, intertempo-
ral analysis in order to give quantitative support to the existence of political
periods with different characteristics.

We use aggregate information: for each referendum, we observe if each
canton voted ‘yes’ or ‘no’. Therefore as in Subsection 5.1, the information on
the evaluations is complete and the corresponding dichotomous profile M is
fully known and can be retrieved from the Swiss Federal Statistical Office.
In view that both PDCM and MPDCM verify Property (A) we supply the
corresponding VM instead, which is easier to retrieve and display: for each
referendum, the number of cantons (out of a total of 26) that voted ‘yes’ is
needed. These figures are given in Table 2. The evaluation of the cohesiveness
according to PDCM is 0, 8562, while it is 0, 7234 according to MPDCM and
0, 8617 according to PPDCM.

5.3 Elections in the Society for Social Choice and Welfare and other scientific
societies

Below are but a few examples both of own elaboration and from previously
published material, where voters are individual members of scientific societies.

1. Consider the data in Table 3. It captures the number of votes that each
candidate received in the 2012 Council elections of the Society for Social Choice
and Welfare (SSCW), where the Approval Voting mechanism was used for the
renewal of 8 seats. A total of N = 44 votes were emitted. The evaluation of
the cohesiveness according to measures introduced at Section 3 are 0, 5693 for
PDCM, 0, 1582 for MPDCM and 0, 5791 for PPDCM.

2. Consider the analysis of the 2006 Public Choice Society election of a
new president in Brams et al (2006). As in the case of SSCW, the voting
rule was Approval Voting. The authors explain that “nominations were so-
licited from the membership in the fall of 2005, and five candidates agreed
to run”. They base their analysis on the outcome of the 36 ballots that indi-
cated approval of between one and five candidates. There was another blank
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ballot. Their conclusion is that “AV found a cohesiveness choice (candidate
A)”. Some computations show that the evaluation of the cohesiveness accord-
ing to PDCM is 0, 5225, to MPDCM is 0, 0709 while it is 0, 5354 according to
MPDCM. This indicates less cohesiveness in the reported opinions than in the
case of the Council elections of the SSCW.11

3. Table 3 in Brams and Fishburn (2005) shows data from the 1988 IEEE
election, where a total of N = 54204 voters cast their ballots under Approval
Voting. There were 1100 blank ballots, and 523 voters approved all candidates.
The evaluation of the cohesiveness according to PDCM is 0, 5539, which vir-
tually coincides with the PPDCM index since the size of population is large
enough, while it is 0, 1078 according to MPDCM.

5.4 ‘Large’ populations and a case study: Italian referenda

Table 4 collects data from the eight Italian referenda since 2006 to the present.
To compute PDCM one should know the (size of the) group for which it is
applied. This is not known from publicly available data because abstentions,
modifications of the censuses, et cetera do not permit to infer the total number
of voters involved. Nevertheless for our purposes it seems clearly ‘large’. Of
course MPDCM and PPDCM can be computed directly. We obtain that their
respective values are 0, 5578 and 0, 7778. The last one approximates the value
of the PDCM index.

6 Concluding remarks and future research

In this paper we define measures of the cohesiveness of dichotomous opinions
that are based on pairwise comparisons. For a fixed population, our indexes
are ordinally equivalent: they can be interchangeably used to compare profiles
in terms of their cohesiveness.

To motivate their appeal we have began by discussing intuitions and prop-
erties of three particular cases. Our first index (PDCM) has a probabilistic
interpretation: it is the probability that for a randomly chosen option, two
randomly chosen members of the society have the same opinion upon it. The
second one (MPDCM) corrects the PDCM in order to procure two appealing
properties. For the particular case where the number of agents is unknown,
may vary with the issue, and only proportions of agents with the same opinion
are available, a third proposal (PPDCM) is suggested. This index gives a nice
approximation of PDCM when the population is large enough.

An inspection of the common traits of these related indexes suggests that
a family of measures incorporating these three measures can be abstracted.

11 We do not intend to draw conclusions from these figures. It is known that the adequacy
of AV for the choice of committees and of single candidates is different. For sophisticated
voters as the members of these societies are, the expression of their opinions can easily be
influenced by the type of election.
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We axiomatically characterize such new class by means of three properties.
As corollaries, respective characterizations for the three particular indexes
(PDCM, MPDCM, and PPDCM) follow. We also provide some further prop-
erties of our family of measures.

Several real empirical illustrations show the versatility of the model and
the applicability of our indexes to a variety of real situations.

From another point of view, in contrast with the approach from social
choice that we have followed in this work, Alcantud and de Andrés Calle
(2014) introduce the idea of degree of consensus from a fuzzy viewpoint. To
this purpose, the seminal contribution by Bosch (2005) and other related works
are redefined in terms of fuzzy sets. This is an unexplored area where further
research can be conducted.

7 Appendix 1: Further properties of f-PDCMs

As announced in Section 3, we proceed to prove additional properties for the

family of f-PDCMs. Hence let us fix f : (0, 2(N−1)N ]→ R.

1. Convexity. For each dichotomous profile M ∈ MN×k, and each decom-
position of M into two subprofiles M1 and M2 with k1 and k2 columns
respectively,

Cf (M) =
k1 Cf (M1) + k2 Cf (M2)

k

Convexity means that the measure of a dichotomous profile is a weighted
average of the measures of any decomposition into subprofiles, their weights
being given by their respective relative sizes.

Assuming the notation of the previous paragraph, note that convexity is a
consequence of the fact that

g(N,PM ) =
1

k

k∑
i=1

ni1(N − ni1)

C2
N

=
k1
k
g(N,PM1

) +
k2
k
g(N,PM2

).

It is clear that convexity implies 1-reducibility.

2. Reversal invariance. The complementary dichotomous profile of M , namely
M c = (1)N×k −M , produces the same cohesiveness as M , i.e.,

Cf (M) = Cf (M c)

This fact is trivial because nj0 · n
j
1 = (nc0)j · (nc1)j where (nc0)j resp., (nc1)j ,

denotes the number of agents that disapprove of, resp. approve of, alterna-
tive j in M c.
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3. Convergence to unanimity. If we repeatedly introduce alternatives with the
property that all agents agree on their acceptability then cohesiveness ap-
proaches 1. Formally: Suppose that alternatives k+1, ..., k+ t are added to
the set of alternatives X, and that each alternative is either unanimously
approved or unanimously disapproved by all agents. If the introduction
of new alternatives does not affect the agents’ assessments of past sets of
alternatives, then the cohesiveness measurement of the extended dichoto-
mous profiles M̃ (t) approaches 1 when t tends to infinity.

We want to show limt→∞ Cf (M̃ (t)) = 1 under the aforementioned condi-
tions. Since

lim
t→∞

Cf (M̃ (t)) = lim
t→∞

(
1− f(N + t)

∑k+t
j=1 n

j
0n
j
1

(k + t) · C2
N

)

= lim
t→∞

(
1− f(N + t)

( ∑k
j=1 n

j
0n
j
1

(k + t) · C2
N

−
∑t
j=k+1 0N

(k + t) · C2
N

))

= lim
t→∞

(
1− f(N + t)

2
∑k
j=1 n

j
0n
j
1

(k + t)N(N − 1)

)

then the thesis ensues because f is bounded.

4. Replication monotonicity. If M is not a unanimous dichotomous profile
then Cf (M ]M) > Cf (M) whenever

f(2N)

f(N)
<

2N − 1

2(N − 1)
, (6)

i.e., replicating a non-unanimous profile produces a higher evaluation by
the f-PDCMs that satisfies (6). In fact

Cf (M ]M) > Cf (M)⇔ f(2N)

f(N)
<

g(N,PM )

g(2N,PM]M )
=

2N − 1

2(N − 1)
.

In particular PDCM and PPDCM verify replication monotonicity. Of course,
each DCM µ verifies µ(M ]M) = µ(M) = 1 when M is unanimous due to
Definition 2 i).

5. Replication invariance. If M is not a unanimous dichotomous profile then
Cf (M ]M) = Cf (M) whenever

f(2N)

f(N)
=

2N − 1

2(N − 1)
. (7)

The proof mimics the previous one. In particular, MPDCM satisfies Repli-
cation invariance.
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Note that this property and Replication monotonicity are mutually exclu-
sive thus PDCM and PPDCM fail to verify Replication invariance.

6. Monotonicity in dominant opinions. Let M ∈ MN×k be fixed. Suppose
nj1 > nj0 (resp., nj0 > nj1), i.e., for alternative j the dominant opinion is

approval (resp., rejection). If M̂ is identical to M except in the opinion
of an agent on alternative j, and this agent’s opinion shifts from rejection
to approval (resp., from approval to rejection), then Cf (M̂) > Cf (M). To
prove it,

Cf (M̂) > Cf (M)⇔ Cf (M̂)− Cf (M) > 0

By convexity, we only need to solve the case of a single alternative, therefore
let us first assume k = 1, n̂1 = n1 +1 and n̂0 = n0−1. Then it is necessary
to verify: [

1− f(N)g(N,PM̂ )
]
− [1− f(N)g(N,PM )] > 0

⇔ f(N)
[
g(N,PM )− g(N,PM̂ )

]
> 0

Since f is positive, this latter inequality reduces to 2·(2n1−N+1)
N(N−1) > 0 or

simply n1 − n0 + 1 > 0. The assumption n1 > n0 yields this fact.
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Table 1 Forecasts for the 2012 USA presidential election

State
Ca Co DC Del Hawaii Ill Mass Md Me NJ

New York Times 1 1 1 1 1 1 1 1 1 1
Real Clear politics 1 1 1 1 1 1 1 1 1 1
Dave Leip’s Atlas 1 1 1 1 1 1 1 1 1 1
Election Projection 1 1 1 1 1 1 1 1 1 1
CNN 1 1 1 1 1 1 1 1 1 1
The Huffington Post 1 1 1 1 1 1 1 1 1 1

Total (nj
1) 6 6 6 6 6 6 6 6 6 6

State
NY Ore RI Vet Wash Mich Minn NM Nev Pa

New York Times 1 1 1 1 1 1 1 1 1 1
Real Clear politics 1 1 1 1 1 1 1 1 1 1
Dave Leip’s Atlas 1 1 1 1 1 1 1 1 1 1
Election Projection 1 1 1 1 1 1 1 1 1 1
CNN 1 1 1 1 1 1 1 1 0 1
The Huffington Post 1 1 1 1 1 1 1 1 1 1

Total (nj
1) 6 6 6 6 6 6 6 6 5 6

State
Colo Fla Iowa NH Ohio Va Wis Ariz NC Alaska

New York Times 1 1 1 1 1 1 1 0 0 0
Real Clear politics 1 0 1 1 1 1 1 0 0 0
Dave Leip’s Atlas 1 0 1 1 1 1 1 0 0 0
Election Projection 1 0 1 1 1 1 1 0 0 0
CNN 0 1 0 0 0 0 0 0 0 0
The Huffington Post 0 1 1 1 1 1 1 0 0 0

Total (nj
1) 4 3 5 5 5 5 5 0 0 0

State
Ala Ark Ga Idaho Ind Kan Ky La Mo Miss Mont

New York Times 0 0 0 0 0 0 0 0 0 0 0
Real Clear politics 0 0 0 0 0 0 0 0 0 0 0
Dave Leip’s Atlas 0 0 0 0 0 0 0 0 0 0 0
Election Projection 0 0 0 0 0 0 0 0 0 0 0
CNN 0 0 0 0 0 0 0 0 0 0 0
The Huffington Post 0 0 0 0 0 0 0 0 0 0 0

Total (nj
1) 0 0 0 0 0 0 0 0 0 0 0

State
ND Neb Okla SC SD Tenn Tex Utah W.Va Wyo

New York Times 0 0 0 0 0 0 0 0 0 0
Real Clear politics 0 0 0 0 0 0 0 0 0 0
Dave Leip’s Atlas 0 0 0 0 0 0 0 0 0 0
Election Projection 0 0 0 0 0 0 0 0 0 0
CNN 0 0 0 0 0 0 0 0 0 0
The Huffington Post 0 0 0 0 0 0 0 0 0 0

Total (nj
1) 0 0 0 0 0 0 0 0 0 0
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Table 2 Votes in 2012 and 2013 in Switzerland. Source: http://www.bfs.admin.ch

2012

Initiative No. 1 2 3 4 5 6 7 8 9 10 11 12

No. cantons ‘yes’ 15 5 0 26 6 0 0 0 26 10 1 24

2013

Initiative No. 1 2 3 4 5 6 7 8 9 10 11

No. cantons ‘yes’ 11 26 25 0 26 0 22 21 0 3 0

Table 3 The 2012 Council elections of the Society for Social Choice and Welfare

Candidates a 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Votes 42 18 23 21 23 40 26 33 23 18 13 19 16 15

a The 14 candidates are anonymous and randomly ordered.

Table 4 Results of the Italian referenda in the 2006-2011 period. Source: Italian Secretary
of State, Archivio Storico delle Elezioni (http://elezionistorico.interno.it/)

2006 2009
I I II III

Approve (%) 38.71 77.63 77.68 87.00
Disapprove (%) 61.29 22.37 22.32 13.00
Valid votes 25,753,782 10,372,226 10,362,230 10,908,329

2011
I II III IV

Approve (%) 95.35 95.80 94.05 94.62
Disapprove (%) 4.65 4.20 5.95 5.38
Valid votes 27,200,859 27,277,283 27,265,741 27,197,124


