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Summary

In recent years, mass spectrometry techniques have helped proteomics
to become a powerful tool for the early diagnosis of cancer, as they help
to discover protein profiles specific to each pathological state. One of the
questions where proteomics is giving useful practical results is that of clas-
sifying patients into one of the possible severity levels of an illness, based on
some features measured on the patient. This classification is usually made
using one of the many discrimination procedures available in statistical liter-
ature. We present in this chapter recently developed restricted discriminant
rules that use additional information in terms of orderings on the means,
and we illustrate how to apply them to mass spectrometry data using R
package dawai. Specifically, we use proteomic prostate cancer data, and
we describe all steps needed, including data preprocessing and feature ex-
traction, to build a discriminant rule that classifies samples in one of several
disease stages, thus helping diagnosis. The restricted discriminant rules are
compared with some standard classifiers that do not take into account the
additional information, showing better performance in terms of error rates.

Key words: Mass Spectrometry, Preprocessing, Feature extraction, Mean spec-
trum, Supervised classification, Order restrictions, Restricted discriminant rules,
R dawai package

1. Introduction
Proteomics has become a powerful tool for the early diagnosis of cancer, allowing
to characterize proteins and therefore to identify diagnostic biomarkers from tis-
sues and body fluids (1). Recent advances in mass spectrometry (MS) techniques
have made it possible to discover protein profiles specific to each pathologic state
from high-dimensional MS data (2). In association with other approaches, MS has
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become the central technique used by most proteomic biomarker discovery plat-
forms (3). In cancer, one important proteomic issue is the identification of a panel
of biomarkers suitable for discriminating different pathological states, which helps
to improve the early detection of cancer (4).

Once the biomarkers are identified, the classification of the patients is done
using discrimination techniques. The general discrimination problem deals with
the prediction of the group a patient belongs to, based on some features measured
on the patient. In supervised classification, the discriminant rule is built using a
training sample, that is, a set of patients for which both the features and the group
membership are known. When the underlying distribution of the data is known, the
optimal classification rule is the so called Bayes rule. When it is assumed that the
measurements from each population are normally distributed, linear discriminant
analysis (LDA) and quadratic discriminant analysis (QDA) are two of the most
commonly used in applications discriminant analysis methods. LDA and QDA are
obtained replacing in the Bayes rule the unknown parameters, that is, the means
vectors and the covariance matrix, by their usual estimators, assuming for LDA
that the covariance matrices of the populations are identical. The relaxation of
this assumption leads to the QDA rule, where no equality of covariance matrices
is assumed.

These two classical discriminant rules were followed by a great deal of clas-
sification algorithms such as nearest neighbors (5), classification trees (6), neural
networks (7), support vector machines (SVM) (8) or random forests (RF) (9). All
of them build the corresponding classification rules solely from the information in
the training sample.

In this chapter we describe and show the usefulness of recently developed dis-
criminant rules (10; 11; 12; 13) that use not only the training sample but also
other information called additional information. For instance, in a certain applica-
tion it can be known that certain features of the patients take, on average, higher
values in some groups than in others. Let us suppose that we want to classify pa-
tients in one of the following groups: G1 - healthy, G2 - early-stage disease and
G3 - advanced-stage disease. We know from previous studies that the mean of
variable V1 increases with the severity of the disease and that the mean of vari-
able V2 decreases. This additional information can be expressed in terms of re-
strictions on the model parameters: if µi, j represents the mean of variable Vi in
group G j, i = 1,2, j = 1,2,3, then the additional information can be expressed as
µ1,1 ≤ µ2,1 ≤ µ3,1, µ1,2 ≥ µ2,2 ≥ µ3,2.

Restricted linear and quadratic discriminant rules (10; 11; 12; 13) are obtained
plugging into the respective Bayes rules the estimators of the unknown parame-
ters, defined from the training sample and the restrictions on the means, via an
iterative procedure (10; 11; 13) to ensure that the estimators fulfill the restrictions.

In applications as cancer diagnosis, patients are intended to be classified into
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one of various diagnosis groups based on gene expression or proteomic data. Of-
ten, some of the predictors are known to take higher values in some groups with
respect to the others. Taking into account this underlying order could potentially
result in significantly lower misclassification rates with respect to the standard
classification methods that do not take it into account. In this chapter, we use pro-
teomic prostate cancer data from patients with the following diagnosis groups:
normal prostate, benign prostate conditions, prostate cancer and prostate-specific
antigen (PSA) between 4 and 10, and prostate cancer and PSA levels above 10.

The layout of the chapter is as follows. In Section 2 we start describing briefly
the data set and the software with which we show the use of the restricted dis-
criminant rules. In Section 3 we detail the standard methods used to perform the
preprocessing and feature extraction, in order to obtain the data matrix (patients
in rows, features in columns) needed for classification. Also in this section, a brief
summary of the restricted discriminant rules is presented. The R library dawai
is used in Section 4 with the purpose of showing how the restricted discriminant
rules can be used in practice when additional information is present. These rules,
applied on the mentioned data set, show a significantly better performance than
other usual discrimination rules not considering the additional information such
as LDA, RF or SVM.

2. Materials
MS techniques allow the identification of the amount and type of proteins present
in a sample by measuring the mass-to-charge ratio (m/z) and abundance of gas-
phase ions. A mass spectrum is a plot of the ion signal (intensity) versus m/z.
These m/z ratios can be used to calculate the molecular weights of protein or
peptide. Two broadly used MS techniques for proteome screening are Matrix-
Assisted Laser Desorption and Ionisation (MALDI) and Surface-Enhanced Laser
Desorption and Ionisation (SELDI) with Time-Of-Flight (TOF) tubes.

In this chapter we will apply our restricted discriminant rules (11; 12; 13) to
the proteomic prostate cancer data of JNCI Data 7-30-02.zip (14), which are pub-
licly available at http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.
asp. The data consist of 322 serum spectra measuring peak amplitudes at 15154
m/z values in the range 0-20000 Da. Serum samples provided by patients have
the following frequencies: normal prostate (63), benign prostate conditions (190),
prostate cancer and PSA levels between 4 and 10 (26), and prostate cancer and
PSA levels above 10 (43). Samples were applied to a C16 hydrophobic interaction
protein chip (Ciphergen Biosystems, Freemont, CA) and analyzed as described in
Petricoin et al. (14). Data were generated using the SELDI-TOF MS techniques
and are provided with baseline subtracted. In Figure 1, the mean spectrum, com-
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puted averaging over all raw spectra, is shown.
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Figure 1: Mean spectrum.

We will illustrate how, when additional information on the means of the popu-
lations (normal prostate, benign prostate conditions and prostate cancer) is known,
our restricted discrimination rules can be applied to MS data using the R package
dawai (13), which can be downloaded from http://cran.r-project.org/
web/packages/dawai/.

3. Methods

3.1. Preprocessing
Data from MS measurements usually contain a substantial amount of noise and
show large inter-measurement variation (15). A preprocessing stage is needed,
including, as a first task, noise reduction.

3.1.1. Baseline reduction

Commercial mass spectrometers implement basic noise reduction methods. Some
studies explore methods for reducing noise, especially baseline noise (16; 17).
Most of the studies employing a baseline reduction method estimate the baseline
noise and substract the estimated baseline from the original mass spectrum.

The data we will use to illustrate our methods are already provided with base-
line substracted, so we do not need to care about baseline reduction (14).
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3.1.2. Normalization

A peak in mass spectra indicates the relative abundance of a protein, but mass
spectra cannot be directly compared with each other as MS spectra of similar
samples are not always quantified within the same amplitude range. A second task
in the preprocessing stage is normalization, needed to compare the real intensities,
converting all the spectra to the same intensity ranges.

Many different approaches have been proposed and used to handle this issue.
Normalization of mass spectra typically involves subtracting an offset and divid-
ing by a scaling factor. Such offset and scaling parameters can be defined and
applied globally or locally using a window. One of the most frequently used ap-
proaches is normalization with respect to the total ion current (TIC), i.e., dividing
each intensity by the sum of all the intensities in a mass spectrum (18; 19; 20).
This is equivalent to normalization with respect to the mean of the intensities in
the spectrum (17). One alternative to TIC normalization is scaling by the sum of
the squares of the intensities so the spectrum forms a unit vector (21). Other stud-
ies perform normalization with respect to the largest peak (16) or linear scaling
with the largest and the smallest peak intensities (22; 14), known as min range.

Meuleman et al. (23) compare 8 such normalization procedures for both global
or local normalization, according to two objectives: inter-spectra variance mini-
mization and classification performance maximization. They state that in general
it is better to use a local than a global normalization method. As for the distinct
methods, they show that global mean SD (substracting the global mean and di-
viding by the standard deviation) is the best method attending the classification
maximization objective and one of the best regarding the variance minimization
objective. Here, we follow their advice and normalize our data with this method.

3.1.3. Smoothing

An ion peak may be spread across many data points, so each m/z data point should
not be regarded as the record of a distinct peptide. To reduce this noise, we smooth
the normalized spectra using a Gaussian kernel with a full width at half maximum
(FWHM) of 11 m/z values (17; 24; 25), with the convention FWHM≈ 2.355σ . In
this way, for each m/z value, the normalized intensity x is replaced by a weighted
average of the form Σt t N(t;x,σ) where the summation is over all the 11 m/z
values around x, 5 each side, and N(t;x,σ) is a Gaussian kernel with mean x and
variance σ2.

Other common approaches are smoothing filters (26), wavelet transform (WT)
(27), deconvolution filter (28) and moving average filter (29).
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3.2. Feature extraction
Feature extraction is the process of selecting small sets of relevant features. Be-
cause of the high measurement variation in MS data, peaks are the most suitable
biomarkers (24). A peak is defined as an m/z value with higher intensity than the
nearby values around it and than the average intensity at those nearby values.

Peak detection deals with identifying peaks in a mass spectrum, which is not
simple due to variability between samples in intensity and location. Peak align-
ment is the process of matching peaks that represent the same protein species in
distinct spectra.

Morris et al. (30) propose a method for performing feature extraction that uses
the average spectrum for peak detection. The mean spectrum is computed aver-
aging over all raw spectra. After the mean spectrum is normalized and smoothed,
peaks are detected. Then the peaks are quantified in the individual spectra. We
perform peak detection in this way, using the mean spectrum, and obtain the fol-
lowing 14 m/z peaks: 3116, 3468, 4052, 4133, 4245, 4483, 4662, 4847, 6709,
6912, 8073, 8228, 8462 and 9297.

Once the peaks are identified, they usually do not correspond to local maxima
in the individual processed spectra. Wagner et al. (16) consider the local maximum
within 30 measurements points of the peak mass from the processed spectra as the
features. Petricoin et al. (22) also consider the maximum peak height, but other
metrics as average or median peak height (19) can be considered too. We proceed
as in (16), looking for the maximum heights within 30 measurements points of the
mentioned 14 identified peaks for each of the processed spectra. These 14 values
and the disease stage for each patient serum sample are rendered to a text file.

3.3. Restricted classification rules
Let us consider k disease stages G1, . . . ,Gk, also called groups or populations
throughout this chapter, so that each patient belongs to one and only one of them.
Let π1, . . . ,πk be the a priori probabilities of the groups, with ∑

k
j=1 π j = 1. Let us

suppose that for each patient a p-dimensional vector X of features is measured,
and that X is normally distributed with mean µ j for group G j, j = 1, . . . ,k, and
common covariance matrix Σ. Then, if U is the vector of features measured for
a patient whose disease stage is unknown, the optimal classification rule is the
Bayes rule:

Classify U in G j iff logπ j +(U −µ j)
>Σ−1(U −µ j)≤

logπl +(U −µl)
>Σ−1(U −µl), l = 1, . . . ,k.

Parameters µ j, j = 1, . . . ,k, and Σ are usually unknown, but they can be esti-
mated from a training sample (a set of patients for which the features values and
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the group they belong to are known) by the sample vector meansX j, j = 1, . . . ,k,
and the pooled sample covariance matrix S:

X j =
1
n j

n j

∑
l=1
X jl , j = 1, . . . ,k,

S =
1

n− k

k

∑
j=1

n j

∑
l=1

(
X jl −X j

)(
X jl −X j

)>
,

where n j is the sample size of group G j, j = 1, . . . ,k, and n = ∑
k
j=1 n j.

The linear discriminant rule (LDA) or Fisher’s rule is obtained plugging esti-
matorsX j, j = 1, . . . ,k, and S into the Bayes rule.

In applications, it is usual that some additional information is available, often
through order restrictions on the populations means. Let us suppose that we want
to classify patients in one of the following groups: G1 healthy, G2 early-stage
disease and G3 advanced-stage disease (k = 3), and that two variables V1 and V2
are measured for each patient (p = 2).

If we know that the patients from G1 (the control group) take, in mean, lower
values than those coming from any of the other groups for all variables, in the
usual statistical terminology we can say that there is a “tree order” among the
means of the variables: µ1,1 ≤ µi,1, i = 2,3, µ1,2 ≤ µi,2, i = 2,3.

Another common situation appears when it is known that there is an increase
in the means of the variables. We can say now that there is a “simple order” among
the groups means: µ1,1 ≤ µ2,1 ≤ µ3,1, µ1,2 ≤ µ2,2 ≤ µ3,2.

Let us denote as C the subset of the parameter space where the restrictions on
the means are fulfilled.

The family of restricted linear classification rules (11) that we apply here to
the proteomics data considers estimators for µ j, j = 1, . . . ,k, that take into ac-
count the additional information known about the parameters. When the sample
means do not verify the restrictions, an iterative procedure starting from vector
X = (X

>
1 , . . . ,X

>
k )
> is used to obtain an estimator of the means that verifies the

additional information contained in set C.
A first approach would be to consider the value in C closest to X , that is, the

projection ofX onto C. We call this value µ̂0 (see Figure 2). However, it is known
that that estimator lacks good statistical properties as it is not admissible (31). For
this reason, we consider an estimator that is inside the set C (parameter γ ∈ [0,1]
will control how much inside C is the estimator considered). However, as it can be
seen in Figure 2, we need an iterative procedure to ensure that the final estimator
is inside the set C, as it might happen that trying to put the estimator inside C
takes it to the other side of C. For each iteration, if v is the vector obtained in the
previous iteration and p is the projection of v over C, the new vector is defined
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as p− γ(v− p). The procedure ends when the new vector verifies the restrictions,
i.e., when p− γ(v− p) belongs to C. We denote as µ̂γ the limit of the procedure.
Figure 2 illustrates this process for a set C and an initial estimatorX not belonging
to C for three different values of γ (0,0.5,1). The results in (10; 11) ensure the
convergence of this scheme and the good properties of these estimators.

Figure 2: Set C and estimators µ̂0, µ̂0.5 and µ̂1.

If µ̂γ = (µ̂
γ>
1 , . . . , µ̂

γ>
k )>, the restricted linear classification rules are:

Classify U in Π j iff logπ j +(U − µ̂γ

j)
>S−1(U − µ̂γ

j)≤

logπl +(U − µ̂γ

l )
>S−1(U − µ̂γ

l ), l = 1, . . . ,k.

When the covariance matrices are not assumed to be equal, an analogous fam-
ily of restricted quadratic classification rules is proposed in (13).

4. Notes
Now we go back to our data set and detail how to use the restricted discriminant
rules in a case like this. As it was seen in previous section, after normalization
and feature extraction, the maximum heights within 30 measurements points of
14 identified peaks for each patient serum sample were rendered to a text file.
It consists of a matrix with 322 rows and 15 columns, the 14 features and the
group label, i.e., the group each patient belongs to: 1 - normal prostate, 2 - benign
prostate conditions, 3 - prostate cancer and PSA between 4 and 10, and 4 - prostate
cancer and PSA levels above 10.

Atlhough the restricted discriminant rules have shown good performance un-
der normality assumptions (10; 11; 12; 13), these rules have also good robustness
properties against different types of contamination (32).
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4.1. Results
In this section we illustrate the restricted linear discriminant rules on the men-
tioned data set using the R package dawai that we have developed. R is a free
software environment for statistical computing that runs on a broad variety of
platforms including UNIX, Windows and MacOS. It is widely used for devel-
oping and sharing statistical software, which makes it highly extensible through
user-created packages, and can be easily installed without any cost. R package
dawai depends on boot (33), ibdreg (34) and mvtnorm (35) R packages, that
must be installed before loading dawai.

As we lack the experts knowledge regarding additional information for our
data set, in this example we will consider as restrictions the order restrictions
verified by the total sample. Then we split the sample into training and test sample,
and use the training sample to build the restricted linear discriminant rules and the
test sample to evaluate the accuracy of the rules.

We first load package dawai and read the data file, called data.txt.

R> library(dawai)

R> data <- read.table("data.txt", header=TRUE)

We separate the first variable (data$Class), with the group label for each
patient, from the other ones with the 14 peaks heights.

R> class <- as.factor(data$Class)

R> dataset <- data[, 2:15]

Variable class contains the group label for each patient.

R> table(class)

1 2 3 4

63 190 26 43

These are the number of patients in each of the 4 groups. The groups corre-
spond to increasingly advanced levels of the disease. We join the original groups
3 and 4 into one (the ones with prostate cancer), relabelling them, so that the
groups have enough elements to split the sample into training and test data sets of
reasonable sizes.

R> levels(class) <- c(1, 2, 3, 3)

R> table(class)

1 2 3

63 190 69
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Let us have a look to the order restrictions verified by the total sample.

R> means <- colMeans(dataset[class == 1, ])

R> means <- rbind(means, colMeans(dataset[class == 2, ]))

R> means <- rbind(means, colMeans(dataset[class == 3, ]))

R> rownames(means) <- 1:3

R> t(means)

1 2 3

P3116 0.06 0.60 0.26

P3468 1.64 0.22 0.03

P4052 3.33 3.35 3.65

P4133 0.40 0.47 0.65

P4245 0.88 3.03 2.18

P4483 0.02 0.28 0.09

P4662 3.14 5.76 4.38

P4847 0.54 1.50 0.93

P6709 1.09 0.30 0.11

P6912 2.31 0.59 0.35

P8073 3.35 4.02 3.82

P8228 0.93 1.32 1.44

P8462 1.19 3.58 2.74

P9297 2.50 5.30 3.98

Except for variables 2, 9 and 10, i.e., P3468, P6709 and P6912, all means are
lower for group 1 than for groups 2 and 3. As for variables 2, 9 and 10, means
are higher for group 1 than for groups 2 and 3. Group 1 (normal prostate) can be
regarded as the control group in a decreasing tree order among the mean values of
variables 2, 9 and 10, and an increasing tree order among the rest of the variables.
We change the sign of these three variables so that there is the same tree order on
all predictors.

R> dataset[, c(2, 9, 10)] <- -dataset[, c(2, 9, 10)]

In this way, restrictions in the training sample can now be easily specified
by just restext = "t<1,2,3,4,5,6,7,8,9,10,11,12,13,14". See dawai
package (13) help files (help(rlda)) for advise.

We split the data set into a randomly selected training set and a test set, fixing
a seed in order to get the same results as the reader. We are doing it here in order
to have a test set and to show in an easy way that our rules outperform the usual
ones.
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R> set.seed(4100)

R> values <- runif(dim(dataset)[1])

R> trainsubset <- (values < 0.5)

R> testsubset <- (values >= 0.5)

Now we can build the restricted linear discriminant rules on the training sam-
ple, using γ = 0,0.5,1.

R> obj <- rlda(dataset, class, subset = trainsubset,

restext = "t<1,2,3,4,5,6,7,8,9,10,11,12,13,14",

gamma = c(0, 0.5, 1))

We have not specified prior parameter, so the group proportions of the train-
ing set have been used as the prior probabilities of group membership.

R> obj$prior

class1 class2 class3

0.1863354 0.5838509 0.2298137

Now, let us consider the test set and classify its observations. We know the
groups that the observations in the test set belong to, so we can estimate the true
error rates as the proportion of observations in the test set wrongly classified by
the restricted discrimination rules. The first command below classifies the ob-
servations in the test set. The second command yields the percentages of wrong
classification of these observations.

R> pred <- predict(obj, newdata = dataset[testsubset, ],

grouping = class[testsubset])

R> pred$error

gamma=0 gamma=0.5 gamma=1

True error rate (%): 11.80124 11.18012 10.55901

These results can also be compared with the error rates for some standard
classiffiers that do not take into account the additional information considered
such as LDA in R MASS package (36), RF in R randomForest package (37) and
SVM in e1071 package (38), packages that have to be loaded first. The following
commands load these 3 packages:

R> library(MASS)

R> library(randomForest)

R> library(e1071)
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Now we build the rule and compute the LDA error as we did with the restricted
rules:

R> lda_out <- lda(dataset, class, subset = trainsubset)

R> lda_error <- mean(predict(lda_out, newdata = dataset[testsubset, ])

$class != class[testsubset])*100

R> lda_error

[1] 13.04348

Also for RF:

R> rf_out <- randomForest(class ˜ ., data = dataset,

subset = trainsubset)

R> rf_error <- mean(predict(rf_out, newdata = dataset[testsubset, ])

!= class[testsubset])*100

R> rf_error

[1] 14.28571

And also for SVM, using always the default parameters:

R> svm_out <- svm(class ˜ ., data = dataset,

subset = trainsubset)

R> svm_error <- mean(predict(svm_out, newdata = dataset[testsubset, ])

!= class[testsubset])*100

R> svm_error

[1] 13.04348

We can see that, for γ = 1, the test error rates for the restricted linear rules are
19.04% lower than for LDA and SVM, and 29.09% lower than for RF.

4.2. Variable selection
We finish showing the behavior of the rules when variable selection is performed.
We ask ourselves if we can dispense with redundant or irrelevant variables and
if we can reduce possible overfitting by performing variable selection. We have
searched for the variables maximizing the Mahalanobis (39) distances among G1,
G2 and G3 means. For k = 6, variables selected are P4052, P4133, P4847, P6709,
P6912 and P8462. For k = 10, variables selected are P3468, P4052, P4245, P4483,
P4847, P6709, P6912, P8228 and P8462. For these two reduced sets of variables
we perform the same analysis we have just detailed for the full 14 variables set.
The corresponding error rates for k = 6,10,14 are represented in Figure 3.
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Figure 3: Error rates for k = 6,10,14.

We can see that error rates are quite similar for k = 10 and k = 14, being
significantly lower for both sets of variables than for k = 6. This means that we can
reduce the number of variables from k = 14 to k = 10 without a significant loss of
prediction accuracy, but not from k = 10 to k = 6. In all cases, the restricted rules
perform better than those procedures that do not consider additional information
and the lowest test error rates correspond to the restricted linear rules for γ = 1
(RLDA(1)).
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