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Summary: Applications of circular regression models appear in many different fields such as evolutionary psychology,

motor behavior, biology, and ,in particular, in the analysis of gene expressions in oscillatory systems. Specifically,

for the gene expression problem, we need to model the relation among peak expressions of cell-cycle genes in two

species with different cell phase lengths. This challenging problem reduces to the problem of constructing a piecewise

circular regression model and, with this objective in mind, we propose a flexible circular regression model which allows

different parameter values depending on sectors along the circle. We give a detailed interpretation of the parameters

in the model and provide maximum likelihood estimators. We also provide a model selection procedure based on the

concept of generalized degrees of freedom. The model is then applied to the analysis of two different cell-cycle data

sets and, through these examples we highlight the power of our new methodology.
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1. Introduction

Analysis of circular data has a long history with well-developed theory and methodology

documented in several books (see, for example, Fisher (1993); Mardia and Jupp (2000)).

Until recently much of the literature was developed for describing circular models and

drawing inferences on individual angular parameters, such as comparing the mean directions

of two or more populations. In recent years, the circular-circular regression problem (i.e.

when both regressor and response are circular variables) has received some attention (Kato

and Jones (2010), Di Marzio et al. (2013)). Although there are some previous models for

this problem (Sarma and Jammalamadaka (1993), Lund (1999)), the first tractable and

interpretable model was proposed by Downs and Mardia (2002) under the assumption that

the angular variables were distributed according to the von Mises distribution. More recently,

several extensions to Downs and Mardia model were considered under different distributional

assumptions. For example Kato et al. (2008) replaced von Mises by the wrapped Cauchy

distribution and Kato and Jones (2010) considered extensions to von Mises and wrapped

Cauchy distributions. More recently, a non-parametric approach to the problem was taken

in Di Marzio et al. (2013), with Oliveira et al. (2014) providing the appropriate software for

fitting the corresponding model. However, as we see below, we have found that none of these

approaches gives plausible results for the application motivating this paper; the details of

our application are as follow.

This paper is motivated by a problem encountered in cell biology where researchers are

interested in correlating angular data from two or more sources (e.g. experiments or species).

A cell-cycle among eukaryotic cells goes through four major phases of distinct biological

functions, namely the G1, S, G2 and M phases. Genes participating in the cell-cycle tend to

have a periodic pattern of expression over time. Consequently, the time to peak expression

(known as the phase angle) of such genes can be mapped onto a unit circle.
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Cell-biologists are often interested in drawing inferences regarding the phase angle of cell-

cycle genes since they are considered to be associated with the gene’s biological function

(Jensen et al. (2006)). Often two types of inferences are of interest. For example, using

the data obtained from a single experiment on a given species, one may be interested in

estimating the phase angle of a set of cell cycle genes in that species when the relative order

of peak expression is known (Rueda et al. (2009)). Another question of interest is to detect

whether the order of the phase angles of a set of cell-cycle genes is consistent across multiple

experiments on the same species (Liu et al. (2004)), or more broadly if the order of the phase

angles of a set of cell-cycle genes is same across multiple species (Fernández et al. (2012)).

In this paper we develop a piecewise regression model able to relate the phase angles of two

sets of data, such as data on two different experiments on the same species or two different

species. While the regression model proposed in Downs and Mardia (2002) is likely to perform

well when the duration of time spent by a cell in different phases of a cell-cycle is same across

all species, it may be too rigid when the duration of time is not same across different species

as the lengths of the four phases in which the cell-cycle is divided change from one species to

another, so that the functional relationship between species may be different in each of the

phases. For this reason, in Section 2 of this paper we introduce a flexible piecewise regression

model that can be useful for drawing inferences when the duration of time spent in different

phases by a cell varies across species.

Piecewise regression, although not defined for manifolds until now, has been well studied

in the linear setting (see Seber and Wild (1989) or Motulsky and Christopoulos (2004)). To

highlight some challenges in circular piecewise regression, we consider the simplest linear

case. Namely, the case of a single change point with no error

y = a1 + b1x, x 6 c

y = a2 + b2x, x > c
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with the continuity constraint

a1 + b1c = a2 + b2c. (1)

We note that if x is a circular variable, the change point c has no meaning so there should

be at least two change points. Further, in the linear case, this problem for computational

purpose can be reparameterized as

y = A+Bx+ C(x−D)SGN(x−D) (2)

where now

c = D, a1 = A+ CD, a2 = A− CD, b1 = B − C, b2 = B + C

so the constraint (1) is included in (2). We will see that such a simplification i s not available

for the circular case. Of course, where the noise is added the inference problems become

more intricate.

As we already mentioned, a possible non-parametric circular approach to tackle our prob-

lem might be that in Di Marzio et al. (2013). However, we note that this approach is

not meaningful since in the cell-cycle the function relating the peak expressions has to be

increasing as there is no return possible in the cycle and that the response run has to one

cycle as the explicative variable runs through one cycle. These conditions are not always

fulfilled when this non-parametric approach is considered.

There are many interesting biological questions related to cell cycle that can be answered

from the circular piecewise model that we propose in this paper. Our proposed methodology

can be useful for answering a variety of questions that are of potential interest to biologists.

For example, we can test whether there is a significant difference in the duration of time

spent by cells in different phases in two given species. Similar to Liu et al. (2004), we can

test if the phase angles of cell-cycle genes from different labs/experiments on the same species

are equal. We can also evaluate if the phase of peak expression has evolutionarily changed.

To illustrate the methodology we use cell-cycle data available from the cyclebase data base
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www.cyclebase.org (Santos et al. (2015)). This database contains data obtained from 20

different experiments conducted in different laboratories on budding yeast (S. cerevisiae),

fission yeast (S. pombe).

The methodological contributions of this paper are provided in Section 2 where we develop

the piecewise circular regression model (which is our first contribution), describe the inter-

pretation of its parameters and their estimation. In this same Section, we also develop the

other main contribution of this paper, namely, the construction the construction of a model

selection procedure based on a recent criterion called Generalized Akaike Criterion.

In Section 3 we apply the proposed model to the analysis of cell-cycle gene expression

data, which was the motivation for the methodology developed in this paper. We consider

two different situations. In the first example, both data sets are from the same species but

from different laboratories. In the second example, the data are obtained from two different

species, namely, fission yeast and budding yeast. As noted in the literature (e.g. Fernández

et al. (2012)), these two species of yeasts spend drastically different amounts of time in the

different phases of cell cycle. Consequently, in this example we expect the proposed model

to outperform the Downs-Mardia model. We illustrate how the model selection procedure

distinguishes between these two cases and draw the appropriate conclusions for each case.

Finally, in Section 4, we discuss variety of other biological applications, and indicate why

the model is very general.

2. The circular piecewise regression model

In Section 2.1, we define the piecewise circular regression model with as many different func-

tional relationships of the type of those in Downs and Mardia (2002) as sectors established

in the circle. As usual with piecewise models we impose continuity on the global circular

relationship. In this way, the model can cope with situations where the circular relationship

among variables changes between those sectors. In the subsequent sections, Section 2.2–
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Section 2.3, we describe the interpretation of the parameters and the maximum likelihood

estimators; we show why the model is very flexible in the sense that conditions such as

monotonicity can be imposed easily to allow for the restrictions on the parameters when

needed. Section 2.4, contains the definition of a criterion for model selection based on the

concept of generalized degrees of freedom by Ye (1998).

2.1 The Model

Consider a circular response variable ψ and a circular independent variable θ. We will denote

as k the number of different pieces or sectors in the unit circle and as θ∗i , i = 1, 2, ..., k the

sector borders (or change/break points in the linear piecewise regression model in the line)

and we assume here that these borders are known. We denote as Θ the vector of values for

the independent variable with components θij with i = 1, 2, ..., k and j = 1, 2, ..., ni, where

the first index is the sector the observation belongs to, so that θ∗i < θij 6 θ∗i+1 with θ∗k+1 = θ∗1,

the second index j is the number of the observation in the corresponding sector, ni is the

number of observations in sector i and N =
∑k

i=1 ni is the total number of observations.

Accordingly we denote as Ψ the vector of observed values and as ψij the corresponding

components of this vector. We further assume that ψij given θij comes from independent von

Mises distributions M(µij, κ) with density function f(θij, µij, κ) = 1
2πI0(κ)

eκ cos(θij−µij), where

I0 denotes the modified Bessel function of the first kind and order 0.

We now describe the circular–circular (c–c) regression model of Downs and Mardia (2002)

where we take the circular response variable ψ, and the circular independent variable θ but in

this case, there are no borders for θ. Further, ψ given θ comes from a von Mises distribution

with M(µ, κ) and

tan
1

2
(µ− β) = ω tan

1

2
(θ − α), (3)

where α and β are angular location parameters and ω is a slope parameter which is restricted

to the closed interval [−1, 1] by adjusting α and β appropriately. Next, we propose our
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piecewise circular regression model with

tan
1

2
(µij − µ) = ωi tan

1

2
(θij − νi) for j = 1, . . . , ni and i = 1, . . . , k, (4)

where, to ensure continuity, we take

ωi tan
1

2
(θ∗i − νi) = ωi−1 tan

1

2
(θ∗i − νi−1) for i = 1, . . . , k, (5)

and ν0 = νk, ω0 = ωk. This model maintains the functional relationship of the Downs

and Mardia model but allows a different parameters in each of the sectors while imposing

continuity on the global function. Equivalently, our model (4) can be rewritten as

µij = µ+ 2 arctan

(
ωi tan

1

2
(θij − νi)

)
, (6)

or, simply µij = f (θij, µ, ω1, ν1, . . . , ωk, νk) for j = 1, . . . , ni and i = 1, . . . , k.

Note that obviously k > 1 and that for the simplest case of k = 2, the model reduces to the

Downs and Mardia model since from (5) ν2 = ν1, ω2 = ω1. Further, in view of the continuity

condition, at least three sectors of the circle are required in order to fit a piecewise regression

model on the circle.

2.2 Interpretation of the model parameters

Since the meaning of the parameters in our model is not straightforward (as for example

in the normal linear regression model), we will give detail interpretation of each of them.

Parameter µ can be interpreted as a global location parameter quantifying the rotation of

the response that allows effective alignment with the independent variable. Since there are

different sectors, different rotation parameters in each of the sectors are also needed for an

appropriate alignment between the independent variable and the response; this is accounted

for by the νi parameters. The ωi are slope parameters for the θij observations in the sector

(θ∗i , θ
∗
i+1]. It is important to note that (i) there is dependence among the νi and the ωi

parameters as the continuity condition (5) has to be fulfilled and (ii) the model is piecewise

non-linear so a higher ωi does not always mean a steeper curve.
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To illustrate these points we consider the following example coming from the data analyzed

in Section 3.2. That is, we assume a model with the known parameters (estimated in

Section 3.2) as given in Table 2 for which the sector boundaries considered are θ∗ =

(θ∗1, θ
∗
2, θ
∗
3, θ
∗
4) = (2.1, 2.8, 4, 5.75). From these parameters it may appear that the slope on

the first sector (2.1, 2.8] (ω1 = 1.658) should be lower than in the fourth one (5.75, 2.1]

(ω4 = 6.517) while it is clear from the model graph at Figure 1 (bottom) that it is not so.

From the same Figure, when compared with the third sector (4, 5.75], it is also apparent that

the slopes in the sectors are not constant. The ω3 parameter of this third sector (65.711) is

the highest of the four but there are some parts of the sector where the curve is not steep.

To give further detail on the relationship between the νi and the ωi parameters, consider

Figure 1 (top left); it gives the four curves from which the model is built. The blue curve

corresponds to ω1 = 1.658, the red one to ω2 = 0.066, the grey one to ω3 = 65.711 and the

green one to ω4 = 6.517. The νi parameters determine which part of each curve is used in

the model. Depending on νi, the same ω value can translate into a more or less steep curve.

[Figure 1 about here.]

Figure 1 (top right) shows how these curves are combined in Figure 1 (top left) using the

νi parameters, finally leading to the model graph as shown in the bottom of the Figure 1

(bottom). The solution appearing in Figure 1 (bottom) follows the thin blue line from 2.1

(where it intersects the green line for the second time) to 2.8 (where the thin blue line

intersects the red line), then the red line from 2.8 to 4 (where the red line intersects the grey

line), next the grey line from 4 to 5.75 (where the grey line intersect the green line) and

finally the green line from 5.75 to 2.1.

It is also importance to note that, this behavior also happens with the circular-circular

model of Downs and Mardia (2002) as the parameters are not uniquely determined. For

example, if in the circular-circular model we consider µ′ = µ − π, ω′ = 1/ω and ν ′ = ν − π
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the model does not change. However, in the piecewise model it is not possible to make a

transformation to ensure that ωi ∈ [−1, 1] simultaneously for all i = 1, . . . , k as that would

require more than one value for the single µ parameter.

2.3 Estimation

We now describe how to obtain the maximum likelihood estimates. Under our assumption

that the response components are independent M(µij, κ), the log-likelihood is given by

max
κ,µ,ω,ν

[
−N ln I0(κ) + κ

k∑
i=1

ni∑
j=1

cos

(
ψij − µ− 2 arctan

(
ωi tan

1

2
(θij − νi)

))]
(7)

This expression is to be maximized under the continuity condition (5) which leads to the

following constrains on the parameters for the existence of a non-trivial continuous solution.

tan

(
θ∗1 − νk

2

) k−1∏
i=1

tan

(
θ∗i+1 − νi

2

)
=

k∏
i=1

tan

(
θ∗i − νi

2

)

ωi =
tan
(
θ∗i+1−νi+1

2

)
tan
(
θ∗i+1−νi

2

) ωi+1 for i = 1, . . . , k − 1.

(8)

These constraints (8) are general for our piecewise circular regression model.

However two additional conditions have to be imposed for the cell-cycle application. One

is the condition for monotonicity and another is of “synchronicity” which we now describe.

The monotonicity condition ensures that the solution is an increasing function which leads

to the following constrains:

ωi > 0 for i = 1, . . . , k. (9)

By “synchronicity” condition, we mean that the response runs only one cycle as the

explicative variable runs one cycle. For this purpose, we impose the constrains that the

solution only crosses the 0 barrier once. Let

zi = νi + 2 arctan

(
1

ωi
tan

(
−µ
2

))
for i = 1, . . . , k.
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The zi value is the possible zero of ith piece of the function. It will be a zero of the global

function if this value belongs to the appropriate interval. Thus, the constrains under the

synchronicity condition can be written as

]
{
zi : zi ∈

(
θ∗i , θ

∗
i+1

]}
= 1, (10)

with θ∗k+1 = θ∗1. Hence, we need to optimize the log-likelihood (7) with the additional

constrains given by (9) and (10).

Implementation. In order to compute the maximum likelihood estimates of our model,

we rewrite the model as the circular-linear model

tan
1

2
(µij − µ) = ω1X1 + . . . ωkXk,

where the explanatory variables Xi are defined as Xi = tan
(
θij−νi

2

)
I(θ∗i<θij6θ∗i+1]

. Now,

we can compute the maximum likelihood estimates of {κ, µ, ω1, ν1, . . . , ωk, νk} using the

theory developed by Fisher and Lee (1992) for circular-linear models, and the R package

of Agostinelli and Lund (2011); the optimization has to be performed under the constrains

given by (8), (9) and (10).

2.4 Model selection

In applications of our piecewise model, we need to have a procedure to assess our model

(k > 2) versus the Down and Mardia model (k = 2). The question of model selection has

received a lot of attention in the literature in the past (starting with the well-known paper

by Akaike (1973)), and also in recent years due, among other reasons, to the increasing

complexity of modeling approaches. To our best knowledge, the question has not been

specifically considered in the context of circular models. We introduce briefly the question in

the next paragraphs, including some important references. A more complete discussion on

the problem is out the aim of this paper.

A simple strategy for the selection of models is to measure how well each model fits the
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data. A simple approach would be to use the model residuals that can be defined using the

circular variance as

eij = 1−
(

cos

(
ψij −

(
µ̂+ 2 arctan

(
ω̂i tan

1

2
(θij − ν̂i)

))))
, (11)

and define a circular distance criterion (CDC) as CDC = 1
N

∑k
i=1

∑ni

j=1 eij.

Although the difference between the two CDC values may give some insight, it is not a

good idea to decide between the models on this basis as a complex model (the piecewise

model) will always have a lower CDC than a simpler one (the circular-circular model). If

we try to correct this as it is usually done in model selection (for example, in the normal

linear regression model), the number of parameters in the model, and the related concept of

degrees of freedom (DF) and the AIC (Akaike Information Criterion) play a major role.

The value of AIC for a model M is defined as AIC(M) = 2 ln(l(M)) − 2D where l(M)

is the model likelihood and D is a penalization factor, originally (Akaike (1973)) equal to

p, the number of parameters in the model. The model with highest value of AIC is then

selected. It also usual to use DF instead of p, DF coincides with p for simple models as the

normal linear regression model and with the number of free parameters or the parameters

of the final model, in other cases. However, this is not always so simple for more complex

models like the lasso or shrinkage estimation (Kato (2009), Tibshirani and Taylor (2012)),

or in the presence of mixed effects (Muller et al. (2013)). This is also the case in our context.

On one hand, we have 3 parameters in the original circular-circular model (not including κ),

also 3 are the free parameters or the DF of the model. On the other hand, in the piecewise

model, we have 2k + 1 parameters and k restrictions (8) which reduce the number of free

parameters, or DF, initially, to 1 + k. However, this number does not take into account the

effect of the restrictions (9) and (10).

A lot of work has been done during last years in deriving measures of the complexity of

models in complex cases, to be used, particularly, as a penalization factor in the AIC. One
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of the proposed solutions is to use the concept of divergence, which is an estimate of the

effective degrees of freedom. See, for example, Rueda (2013) or Hansen and Sokol (2014).

In fact, for piecewise regression on the line, some authors have also used modified AIC

or Bayesian Information Criteria (BIC) criteria for selecting the best model (Muggeo and

Adelfio (2011); Malash and El-Khaiary (2011); Painting and Holwell (2013)), although these

proposals obviously do not take into account the restrictions (10) or the manifold we are

considering in this paper.

Other works dealing with model selection have used a related but different concept, the

Generalized Degrees of Freedom (GDF), originally defined in Ye (1998) for normal models

and also considered in different models by Gao and Fang (2011), Zhang et al. (2012) among

others. The most interesting advantages of GDF are its applicability to complex modeling

procedures and also its ease of calculation using a data perturbation approach. We propose

to use the GDF approach to measure the model-complexity in the same way as defined in

Ye (1998). The GDF are based on the sum of sensitivity of each fitted value to perturbation

in the corresponding observed value. In fact, in a normal linear regression model with p

parameters, if we denote as Y the N dimensional vector of observed response values and as

µ̂ the corresponding vector of predicted values, Ye (1998) shows that GDF = p =
∑N

i=1
∂µ̂i
∂yi

.

where Y = (y1, ..., yN) and µ̂ = (µ̂1, ..., µ̂N). The data perturbation and the GDF estimation

procedure we use in this paper are similar to those one proposed in Ye (1998), taking into

account that we are denoting as Ψ the response vector. These procedures are detailed in Web

Appendix A. Once we finally compute the estimated generalized degrees of freedom ĜDF ,

we use the Generalized Akaike Criterion given by,

GAIC = AIC(M) = 2 ln(l(M))− 2ĜDF

to choose among different models.
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3. Applications

When a study or experiment is conducted/repeated by multiple labs then it is common to

ask how reproducible the data and results are. With the advent of microarray technology,

during the past decade multiple labs conducted cell-cycle experiments to compare phases of

cell-cycle genes in the genome of various species. However, researchers have been concerned

about the reproducibility of results across labs even within the same species. If the phase

angles, within the same species, obtained from different labs or experiments poorly correlate

with each other then it will be difficult to compare phase angles of cell-cycle genes across

multiple species. There is a need for a methodology to assess relations among phase angles

between a pair of experiments. However, with the exception of the geometric approach of Liu

et al. (2004), to the best of our knowledge, there does not seem to exist a formal statistical

procedure to make such diagnostics for angular data. Often biologists use visual displays such

as the heatmaps (e.g. Peng et al. (2005)) when assessing similarities between experiments or

studies. Such graphical tools ignore variability in the data and hence are not very satisfactory.

Using some recently published cell-cycle data, in the following we demonstrate that the

methodology developed in this paper can be used to assess correlations between a pair of

experiments. We consider two examples. In the first example we apply our methodology on

a pair of experiments conducted in two different labs on the same species of yeast, namely,

S. cerevisiae. In the second example we apply the methodology on data from two different

species of yeast, namely, S. cerevisiae and S. pombe, conducted in two different labs.

3.1 Within species between labs correlation of phase angles of cell-cycle genes

In this example we considered phase angle estimates of 32 S. cerevisiae cell-cycle genes

obtained from Spellman cdc experiment (Spellman et al., 1998) and from Pramilla38 exper-

iment (Pramila et al., 2006). The phase angle data obtained from Spellman cdc experiment

were taken to be regressors (θ) and those from Pramilla38 experiment were taken to be the
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response variables (ψ). Using the information available in the cyclebase database, we placed

the change points at θ∗ = (θ∗1, θ
∗
2, θ
∗
3, θ
∗
4) = (1.5, 2.8, 4, 5.75). The estimated phase angles, for

the 32 cell-cycle genes, the sector they are placed in and a scatterplot of these data can be

found in Web Table 1 and in Web Figure 1 respectively.

Using the proposed piecewise circular regression model we obtain the results summarized

in Table 1. The fitted model is plotted in Figure 2 while the residuals (as in (11)) are in Web

Figure 2. For comparison purposes, in each table and graph we also provide results using the

circular-circular model (c-c model throughout this Section) by Downs and Mardia (2002).

[Table 1 about here.]

[Figure 2 about here.]

The circular correlation coefficient of Jammalamadaka and Sarma (1988) for these variables

takes a value of 0.829 indicating good association among the two experiments. The value of

the CDC measure for the piecewise model is 0.138 while for the c-c model is 0.148. The CDC

has been reduced by 6.76%. To evaluate better if this improvement is big enough we consider

the selection diagnostics we defined in subsection 2.4. The GDF values appearing in Table 2

are the mean values obtained averaging the results of several runs of the GDF algorithm with

different values of the tuning parameter τ . The value of the generalized Akaike information

criterion GAIC for the piecewise model is 55.474 while for the c-c model is 55.977 so that

there is no evidence of significant improvement due to the piecewise model.

If the role of the variables is reversed, i.e. the Pramilla38 experiment is taken as regressor

and the Spellman cdc experiment is taken as response, and the appropriate change points

are considered the same result is obtained. The GAIC of the piecewise model is lower than

that of the c-c model.

As the piecewise model does not yield a significant improvement in this case over the

c-c model, we can infer that there is no need for different functional relationships in the
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different cell phases. In this sense we may also say that there is congruence between these

two experiments performed by different laboratories.

3.2 Between species and between labs correlation of phase angles of cell-cycle genes

In this example we considered phase angle estimates of 32 cell-cycle genes obtained from

two different species S.cerevisiae and S. pombe. Furthermore, the data were obtained from

two different labs. We used the phase angle estimates from Spellman cdc (Spellman et al.

(1998)) on S. cerevisiae as the regressors (θ) and those from Oliva elut2 experiment (Oliva

et al. (2005)) on S. pombe as the response variables (ψ). For this case, we placed the change

points at θ∗ = (θ∗1, θ
∗
2, θ
∗
3, θ
∗
4) = (2.1, 2.8, 4, 5.75). There is only a small change in the first

change point with respect to the previous example that is also congruent with the information

available in the cyclebase database. The estimated phase angles for the 32 cell-cycle genes,

the sector they are placed in and a scatterplot of the data can be found in Web Table 2 and

in Web Figure 3 respectively.

Using the proposed piecewise circular regression model we obtain the results summarized

in Table 2. The fitted model is plotted in Figure 3 and the residuals are plotted in Web

Figure 4. As in the previous example, for comparison purposes, in each table and graph we

also provide results using the c-c model by Downs and Mardia (2002).

[Table 2 about here.]

[Figure 3 about here.]

Unlike in the previous example, where the data were obtained from the same species,

in this present example, consisting of data from different species, the circular correlation

coefficient of Jammalamadaka and Sarma (1988) for these variables takes a value of −0.391

which indicates a poor circular-circular association between the regressors and the response

variables so that we are not expected to find as good fits as in the previous example. The value
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of the CDC measure for the piecewise model is 0.332 while for the c-c model is 0.394. The

CDC has been reduced by 9.91%. As in the previous example the values of the GDF appearing

in Table 2 are obtained averaging the results from several runs of the GDF algorithm with

different values of the tuning parameter τ . The value of the generalized Akaike information

criterion GAIC for the piecewise model is 19.809 while for the c-c model is 19.412 so that

there is some evidence of improvement due to the piecewise model in spite of its higher

complexity. The difference between these two values is not as big as might be expected

from the log-likelihood values (16.448 for the piecewise model and 13.553 for the c-c model,

see Table 2) as the GDF are 6.544 and 3.847 for the for the piecewise and the c-c model

respectively. Notice that our model selection proposal is somehow conservative as considering

the usual DF values (5 for the piecewise model and 3 for c-c would give a bigger difference

(22.896 vs 21.106) between the models. As this conservative approach still yields a difference

in favor of the piecewise model we are reinforced in our conclusions. Moreover, reversing the

role of the variables as we did in the previous example also yields the same result as the

GAIC for the piecewise model is higher than that of the c-c model.

Another application of our method is to estimate the duration of time the cells spend

in various phases of cell-cycle. It is well-known among cell biologists that during the cell-

division cycle, S. cerevisiae spends equal time in all phases (nearly 25% in each phase)

whereas S. pombe spends a large proportion of time (according to some estimates nearly

70%) in the G2 phase. Interestingly, our method allows us to estimate these phase durations.

More precisely, the images of the change points θ∗ = (θ∗1, θ
∗
2, θ
∗
3, θ
∗
4) = (2.1, 2.8, 4, 5.75) by

the piecewise model are (5.613, 6.248, 1.476, 4.762). Thus the lengths of the phases in the

regressor species (S. cerevisiae) are (0.7, 1.2, 1.75, 2.633), while using the piecewise model

the estimated phase lengths for the response (S. pombe) are (0.635, 1.511, 3.286, 0.851) so

that there are differences in the 3rd and 4th sectors which correspond to cell phases G2 and



16 Biometrics, February 2015

M respectively. Thus according to our estimates, S. cerevisiae spends 27.85% time spent in

G2 phase whereas S. pombe spends 52.30% of its time in the G2 phase during the cell-cycle.

4. Discussion

Piecewise regression models have proved very useful in the case of data on the line to describe

multi-linear relationships representing the different effects of the explicative variable on the

response before and after some change points values on the explicative. Something similar

is likely to occur in circular models. This paper is a first contribution to the study of these

models in the circular setting. The model where the break points are assumed to be known

have been described, estimated and applied to cell-cycle gene expression data.

It is to be noted the model we propose is not only interesting for cell biology applications. As

seen from recent literature, related problems arise naturally in a wide range of fields. Some

examples include circadian biology (Cermakian et al. (2011), Kondratova and Kondratov

(2012)), metabolic cycle (Slavov et al. (2012)), evolutionary psychology (De Quadros-Wander

and Stokes (2007)) or motor behavior (Baayen et al. (2012)).

Another application appears when dealing with woman’s menstrual cycle. These cycle

consists of three phases, namely, follicular, ovulation (single point) and luteal. Although the

blood or urine concentration of hormones such as estrogen and progesterone are periodic

during the approximate 28 day cycle, they have distinct patterns according to the phase

of the cycle. For example, during the follicular phase, beginning with the menses, the

concentration of estrogen sharply rises (almost like an exponential curve) and the blood

estrogen levels sharply drop to the baseline at ovulation and then start to rise during the

luteal phase and attain its peak in the middle of the luteal phase and begin to drop slowly

towards the end of the monthly period. Humans are exposed to thousands of compounds and

some of which are known to be estrogen like compounds such as, for example, bisphenol A

(BPA), dichlorodiphenyltrichloroethane (DDT) or polychlorinated biphenyls (PCBs). Many
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of these chemicals are often used in the manufacture of pesticides, flame retardants, etc.

Effects of these compounds on the reproductive health (especially during puberty) is of great

interest to researchers (see Kanno et al. (2003)). Among various concerns is the changes

in the menstrual cycle among girls/women who are exposed to such endocrine disrupting

estrogen like compounds. The piecewise regression model developed in this paper will be

useful for characterizing patterns of various hormones during the menstrual cycle and use

these characterizations to compare women in different chemical exposure groups.

From the methodological point of view, there are some extensions of the proposed model

that can be dealt with not only in the model formulation but also in the estimation of the

parameters and in the model selection issues.

One of these extensions is the inclusion of other explanatory variables in the model. In

the linear piecewise regression literature this is done assuming that the breakpoints depend

on only one of the explanatory variables or on the time the observations are taken (see, for

example, Liu et al. (1997); Qu and Perron (2007)). In this way, it is easy to include other

circular variables θ2, . . . , θs and/or linear ones Z1, . . . , Zt in the model, replacing formulation

(6) by

µij = µ+ 2 arctan

(
s∑
l=1

ωil tan
1

2
(θijl − νil) +

t∑
m=1

βimzijm

)
,

where βim is the slope of the linear variable Zm in sector i and replacing also the continuity

conditions (5) by the corresponding ones. Notice that, since our estimation scheme relies on

the circular-linear model from Fisher and Lee (1992) the estimation of the parameters can

be performed when only one circular explanatory variable is present although restrictions

on the parameters may be more involved. The same holds for model selection. Our GAIC

criterion and its computation does not depend on how many variables are in the model, or

if they are circular or linear, thus making easy the task of variable selection.

Another extension that can be solved easily is that of dropping the known θ∗i assumption
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and estimating the phase borders as unknown parameters, or even the assumption of an

unknown number of sectors. As with the previous extension no change on the estimation or

model selection procedure is needed. However, it is obvious that the computational burden

of both parameter estimation and model evaluation will be highly increased.
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Figure 1. Top left: curves used in the piecewise model; Top right: curves used in the
piecewise model shifted to their actual location; Bottom: final regression curve.
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Figure 2. Fit of the estimated models for the S. Cerevisiae data (piecewise at left and c-c
at right).
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Figure 3. Fit of the estimated models for the two species data (piecewise at left and c-c
at right)
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Table 1
Maximum likelihood estimates and diagnostics under the piecewise regression model and the c-c model for the S.

Cerevisiae data

Parameters Estimated values (piecewise) Estimated values (c-c)

µ -0.840 3.099
ω (1.491, 1.664, 0.485, 3.416) 0.546
ν (5.214, 5.138, 0.003, 5.828) 3.032
κ 3.734 3.511

CDC 0.138 0.148
ln(l(m)) 32.723 31.421
GDF 4.986 3.432
GAIC 55.474 55.977
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Table 2
Parameter estimations and diagnostics obtained using the piecewise regression model and the c-c model for the two

species data

Parameters Estimated values (piecewise) Estimated values (c-c)

µ 1.646 -0.725
ω (1.658, 0.066, 65.711, 6.517) 0.244
ν (3.986, 5.824, 4.003, 2.774) 0.897
κ 1.822 1.592

CDC 0.332 0.394
ln(l(M)) 16.448 13.553
GDF 6.544 3.847
GAIC 19.809 19.412


