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Circular Rank Aggregation and its Application to
Cell-cycle Genes Expressions

Sandra Barragán, Cristina Rueda and Miguel A. Fernández

Abstract—The aim of circular rank aggregation is to find a circular rank or order on a set of n items using angular values from p

heterogeneous data sets. This problem is new in the literature and has been motivated by the biological question of finding the order
among the peak expression of a group of cell cycle genes. In this paper, two very different approaches to solve the problem that use
pairwise and triplewise information are proposed. Both approaches are analyzed and compared using theoretical developments and
numerical studies, and applied to the cell cycle data that motivated the problem.
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1 INTRODUCTION

In this paper we deal with the problem of obtaining a
circular rank (order) on a set of n items by using angular
values from p heterogeneous data sets that typically are
observations from experiments conducted under different
conditions.

The question of circular rank aggregation (equivalently
circular order aggregation) has been motivated by an ap-
plication in molecular biology related to the analysis of
expression data from cell cycle genes that play an important
role on the process of cell division.

The circular problem has a counterpart in the line, the
classical problem of determining the true order or rank
among n objects using the ranks assigned by p independent
judges. There exists a huge literature in rank aggregation for
Euclidean data [1, 2, 3, 4]. In fact, a broad list of techniques to
tackle the problem has been developed and numerous set-
tings have been considered. The problem can be presented
in a general form as that of finding the rank that is “closest
to” a given set of data according to an objective function or
criteria. The techniques can be classified considering several
aspects:

1) The type of objective function or criteria.
2) The type of input information (ordinal or cardinal).
3) The mathematical representation of the input infor-

mation: As vectors (when ranks are given by the
judges), or matrices (when the initial information
are multiple preferences between pair of items, see
[5]).

4) The statistical assumptions considered. These may
range assuming fixed distributions for the observed
data to no assumption at all passing by assuming a
distribution on the permutations.

5) The available information, producing supervised
(some information available) or unsupervised (no
information available) aggregation methods.
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The spectrum of the problems where the methodology
of rank aggregation is applied is wide, starting with appli-
cations in social sciences, where the subject initially appears
under the name of social choice problem. In this field the
most studied problem is vote aggregation [6, 7, 8]. Nowa-
days, one of the most relevant areas facing the problem of
rank aggregation is information retrieval. In this area, rank
aggregation methodology is being applied in web searching
[9, 10, 11] and one of the most popular algorithms, the
PageRank algorithm (used by Google) has been developed
[12]. Other areas with interesting applications include biol-
ogy [c.f. 13, 14, 15, 16], sport competitions [17], or quality
assessment [18] among others.

Although rank aggregation is extensively studied in the
line, the problem is practically unexplored in the circular
setting. As we show along this paper, due to the underlying
geometry of the circle, the Euclidean space based methods
cannot be directly applied. Although the problem of circular
order aggregation has been briefly introduced in [19] and
[20], this is the first paper on the subject which is charac-
terized by the use of circular ranks, or angular data sets,
as input information and by formulating the problem as the
search of a common circular order. For a revision of the basic
elements to analyze circular data we refer to the books of
[21] and [22]. Two papers dealing with statistical related
problems are [23] and [24]. The first solves the problem
of estimating points in a unit circle subject to an order
restriction and the second provides a test for testing a given
circular order. In both papers cell-cycle gene expression data
have been analyzed.

To illustrate the difficulties of the problem at hand, see
example in Figure 1 below with three items to be ordered:
1, 2, 3 and two experiments (a),(b). The observed values in
the experiments (a) and (b) verify the same circular order,
that we will denote as 1 ≤ 3 ≤ 2 ≤ 1 to emphasize
its circularity. However, the direct approach to aggregate
angular information, the circular means of the observed
values, do not verify the same order (Figure 1(c)). The
problem is due to the non-convexity of the set of vectors
verifying a circular order. If the data in the same example
are rotated it can be checked that the arithmetic mean is
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not a valid approach either. Then, the classical approach of
Borda method is not appropriate.

Fig. 1. Example: n=3, p=2. Observed scores in (a) and (b). Circular
means in (c)

Many possible techniques can be developed by consid-
ering the different variants of the five aspects enumerated
above about rank aggregation. We have restricted the set
of candidate methods to those designed to solve problems
related to the motivation of our research and those with a
general purpose. In particular, we consider unsupervised
algorithms which search the optimum of an objective func-
tion which is defined as a distance between a target order
and the data sets. We consider, cardinal and ordinal input
data, two different objective functions and we make no
distributional assumptions on the data. We present two dif-
ferent techniques. The originality of these proposals are two-
fold. First, the idea of using the circular isotonic regression
estimator (CIRE), see [23], which allows the definition of a
new objective function for cardinal data. Second, the use of
triplewise information in a novel technique.

This latter novel technique is based on Hodge theory
[25]. The use of triplewise information allows the introduc-
tion of angular preferences between three items by using
triangular flows. To our best knowledge, this is the first time
that a triplewise data approach is proposed in the literature.
In fact, the triplewise data seems to be the natural input
information in the circular setting as three is the minimum
number of items to be uniquely ordered in the circle. In this
setting, we propose a squared-loss optimization problem
in Rn×n×n to obtain the aggregated circular rank and we
develop an algorithm to solve it. We also prove, using
Hodge theory, good theoretical properties for the proposed
algorithm.

Besides Hodge approach, we also consider another tech-
nique based on solving a Traveling Salesman Problem (TSP).
The TSP is one of the most intensively studied problems
in optimization. It can be formulated as the search of the
shortest tour in a graph where the vertexes are the items to
be ordered and the lengths of the edges (between each pair
of vertexes) measure pairwise relationships. This technique
has been previously explored in the works by [19] and [20].

Several interesting examples are included that illustrate
the weaknesses and strengths of the methods, and a very
extensive simulation study is conducted. The value of the
objective functions as well as the computational time are
the criteria used to compare the solutions from the different
techniques.

Moreover, the different approaches are used to solve the
problem of finding the order of activation of cell-cycle genes,
which is the problem which initially motivated this research.

The algorithms developed in this paper have been im-
plemented as part of an R package called isocir (isotonic

inference for circular data), that is available on CRAN [26].
The outline of the paper is as follows. We address the

basic estimation problem in Section 2 where the objective
function and the related elements are defined. The TSP
pairwise proposal, and the Hodge triplewise technique
are presented in Sections 3 and 4 respectively. Section 5
is devoted to the analysis of the numerical results and
Section 6 to the problem of ordering cell-cycle genes from
heterogenous experiments. Finally, conclusions are given in
Section 7.

2 THE ORDER AGGREGATION PROBLEM USING AN-
GULAR DATA

Let V = {1, 2, ..., n} be the set of items to be ordered
on a circle and let j = 1, ..., p be the experiments. We
assume that each experimenter j assigns circular scores
(cardinal information), or gives a circular ordering, (ordinal
information), to a fraction of the i = 1, . . . , n items. We
will see that to find the aggregated order, one may use the
individual observations, θij , directly; pairwise information,
Y jih measuring the degree of preference of item i over item
h ; or triplewise information, Ψj

ihk, measuring the degree of
circular preference of the triplet i, then h then k. Let us also
denote

Θj = (θ1j , . . . , θij , . . . , θnj)
′ for j = 1, . . . , p.

Gathering all such observations from the p experiments
together, we have the matrix Θ = (Θ1, ...,Θp). We also de-
note as Tj = (τ1j , . . . , τnj)

′ the vector of ordered positions
for observations in experiment j. In this way, when cardinal
scores are observed we have,

τij = k, i = 1, ..., n,⇔ θ(k)j = θij .

On the other hand, when only ordinal information is
provided, Tj gives the positions in the order starting with
the item i such that τij = 1 . Both Tj and the angular values
derived from the positions, Tj (assigning θij = 2π (k−1)

n ⇔
τij = k) can be used as inputs depending on the technique.

Let O denote the set of all possible orders among the
n objects and let us denote as α ∼ O when an angular
vector α = (α1, ..., αn)′ verifies the order O ∈ O. Also,

for j = 1, ..., p, let Θ̃
(O)

j = (θ̃
(O)
1j , θ̃

(O)
2j , . . . , θ̃

(O)
n )′ denote

the CIRE of Θj under the circular order O, ie: the vector
verifying the circular order O, closest to (θ1j , ..., θnj)

′ using
the sum of circular errors (SCE) distance:

Θ̃
(O)

j = arg min
α∼O

SCE(θ, α)

= arg min
α∼O

∑n
i=1(1− cos(θij − αi)).

(1)

The CIRE is defined in [23] where also interesting properties
and an algorithm to obtain the CIRE are given.

The distance between Θj and the orderO is then defined
using the mean sum of circular errors (MSCE) as follows:

d(Θj ,O) = MSCE(Θj , Θ̃
(O)

j )

= 1
n

∑n
i=1(1− cos(θij − θ̃(O)

ij )).
(2)

Finally, using the CIRE and the MSCE from the p experi-
ments, we define a distance between the full data set Θ and
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the order O, that is denoted by d∗(Θ,O) and is given by
the weighted mean of the MSCEs as follows:

d∗(Θ,O) = MSCE(Θ, Θ̃
(O)

) =

p∑
j=1

ωjd(Θj ,O), (3)

where ωj is the weight associated with the jth experiment,
which is usually used to take into account differences in
variability within experiments. For instance, assuming θij ∼
M(φij , κj) with κj known, the weights may be defined as
ωj =

κj∑p
j=1 κj

.
With this notation, the problem of searching for a global

circular order, O∗ ∈ O from the information given by the
p experiments, can be written as the following optimization
problem:

O∗ = arg min
O∈O

d∗(Θ,O) = arg min
O∈O

p∑
j=1

ωjd(Θj ,O). (4)

Moreover, there may exist applications where ordinal in-
formation is provided as input. In these cases, the objective
function of interest is defined using the vectors of positions
and the optimization problem is defined as follows,

O∗∗ = arg max
O∈O

p∑
j=1

ωj∆̂(T j ,T ), (5)

where T j is the vector of positions for experiment j, T is the
vector of positions for order O and ∆̂(T j ,T) is the circular
version of Kendall’s Tau defined in [21] that we will denote
as CKτ .

Unfortunately, even the Euclidean equivalent problems
to (4) and (5) are NP-hard [see 9]. This means that there
is no guarantee that the optimum can be attained in poly-
nomial time. In this paper, we design several techniques
that provide good approximations to problems (4) and (5)
and have in common a general structure in two steps. In
a first step an initial solution denoted as Ô

0
is provided,

which is refined in step 2. The final order coming from
the whole procedure is denoted as Ô. In sections 3 and 4
several alternative techniques are proposed to obtain Ô

0

using information of individual scores, pairwise flows or
triangular flows respectively. Step 2 is the same for all these
techniques and it involves the implementation of a local
search algorithm called CLMA (Circular Local Minimization
Algorithm) whose objective is to make local improvements
in Ô

0
. This algorithm is based on a well-known algorithm

for rank aggregation called Local Kemenization and devel-
oped in [9]. CLMA considers each triple of consecutive ele-
ments and checks if a permutation of those items improves
the objective function. Full details on how CLMA works are
given in the Supplementary Information.

3 A PAIRWISE ORDERING TECHNIQUE BASED ON
THE TSP
In this section we present a technique where each experi-
ment j is represented by a directed graph where the nodes
represent the items to be ordered. Each pair of nodes (h, k)
is connected by an edge with length Ejhk that measures the
preference of h over k in experiment j. Different definitions

for the lengths Ejhk are proposed at the end of this section.
The information given by each experiment is aggregated in
a matrix E = (Ehk)n×n of aggregated edge lengths, where
Ehk =

∑p
j=1 ωjE

j
hk.

The problem of finding a circular order using the rep-
resentation of an aggregated directed graph, defined by E,
is reduced to that of finding the shortest tour that passes
exactly once by each of the nodes in the graph, starting and
ending at the same node. Then, an approximate solution to
(4) is given by the circular order associated with the tour
that minimizes the total length. This latter problem is the
well-known Traveling Salesman Problem (TSP) that is one of
the most famous combinatorial problems, and perhaps the
best studied one, in the field of computational combinatorial
optimization and graph theory [27, 28, 29].

Let X be the set of n×n binary matrices. The mathemat-
ical formulation of our TSP is,

X̂ = arg min
X∈X

∑
hk

XhkEhk (6)

restricted to,

(i)
n∑
h=1

Xhk = 1 ∀k = 1, . . . , n

(ii)
n∑
k=1

Xhk = 1 ∀h = 1, . . . , n

(iii)
∑
h,k∈S

Xhk ≤ |S| − 1 ∀S ⊂ V, |S| > 1.

A binary matrix X verifying restrictions (i), (ii) and (iii),
represents a tour that goes exactly once by all nodes in the
graph, starting and ending at the same node with Xhk = 1
iff the edge (h, k) is active in the tour. Therefore, there is an
obvious one to one relationship between matrices verifying
the three restrictions in (6) and circular orders.

The order Ô
0

corresponding to the solution to (6), X̂ , is
the approximate solution to (4) given by this approach.

A major advantage of this formulation is computational
as there are multiple heuristics to solve the TSP offering
good approximations [29].

3.1 Definition of Ejhk
In order to obtain more general results, we consider directed
distances, that allow taking into account the rotation direc-
tion in the definition of the lengths of the edges. This is
the general formulation we use to define the lengths of the
edges.

Ejhk = dα(θhj , θkj) = min (dR(θhj , θkj), α · dC(θhj , θkj)) ,
(7)

where dR and dC are distances, on the rotation direction
and on the opposite direction, respectively, and α ≥ 1 is a
penalization constant. The idea behind this type of penalty
is from a problem presented by [30]. Notice that α = 1
and dR = dC would lead to an undirected distance while
α =∞ would yield a distance that does only allow moving
on the rotation direction. It is also interesting to note that in
order to use the TSP algorithms, it is not necessary that the
distances define a metric, it is enough that they verify some
basic properties, namely they have to be bounded, positive,
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continuous and verify a relaxed triangular inequality (see
Lemma 3.1 below).

Many different choices for dR, dC and α have been
considered in preliminary analysis. From the huge range
of distances considered we have selected the simplest ones
having the best performance in numerical studies. That
selection is given in Table 1, with Table 3 containing a full
description of the labels. Among the TSPα options with
α ∈ [1,∞) we selected for further analysis TSP1 and TSP3,
the first one because is a symmetric distance and the second,
because of its good behavior in simulations (similar that
of TSP2 or TSP4) and also because it has an interesting
geometric interpretation, which can be briefly explained as
follows. Consider a traveler who has reached location k
forgetting to stop at location h. To correct this error he/she
has to go back to h and travel again from h to k to continue
the route. In this way, he/she has traveled a total of three
times the distance between h and k (α = 3).

TABLE 1
Labels and definitions of the edge lengths

Label Selected α Lengths of the edges

TSPb ∞ dR(θhj , θkj) =

 0 if k = h
1 if τkj = τhj + 1 (mod n)
2 if τkj 6= τhj + 1 (mod n)

dC(θhj , θkj) = dR(θkj , θhj)
TSPp ∞ dR(θhj , θkj) = τk − τh (mod n)

dC(θhj , θkj) = dR(θkj , θhj)
TSPα 1,3 dR(θhj , θkj) =

=

{
1− cos(θkj − θhj) if θkj − θhj (mod 2π) ≤ π
3− cos(θkj − θhj − π) if θkj − θhj (mod 2π) > π

dC(θhj , θkj) = dR(θkj , θhj)

It is easy to see that the distances Ejhk defined as in
(7) using the definitions of dR(θhj , θkj) and dC(θhj , θkj)
in Table 1 are positive, bounded and continuous. The re-
quired property of relaxed triangular inequality appearing
in Lemma 3.1 is proved in the Supplementary Information.
Lemma 3.1. Let θi, θh, θk ∈ [0, 2π] and α ≥ 1, then,

dα(θh, θk) ≤ 2(dα(θh, θi) + dα(θi, θk))

As we have noted before, there are multiple heuristics
offering good approximations for the solution of the op-
timization problem. When comparing the heuristics have
found that there is not an absolute winner and that a better
approximation to the optimum is obtained by repeatedly
running different heuristics and selecting the best solution
in terms of the objective function.

In Section 5, where the different alternatives are com-
pared numerically, we consider different TSP methods from
Table 1 as well as different heuristics. Specifically, we use
those implemented in the R package called TSP [31].

4 A TRIPLEWISE ORDERING TECHNIQUE BASED
ON HODGE THEORY

The idea behind this proposal is to use triplewise infor-
mation instead of using scores or pairwise values. In the
same line that skew-symmetric matrices are used to define
pairwise flows, skew-symmetric hypermatrices can be used
to define triplewise flows as we show in this section.

Although from a formal point of view this technique
requires an important theoretical basis the Hodge approach
has the following advantages:

1) The triplewise format is a natural way of repre-
senting information on circular orders (as a set of
three elements is the minimal set with an order
relationship on the circle) that allows to combine
information from different sources directly even if
the starting points of the circle differ among sources.

2) It is flexible in, at least, two senses. On one hand, it
allows alternative ways of introducing the informa-
tion, i.e. by direct specification of relations among
the elements of each triple, or by specification of
individual (using vectors) or pairwise information
(through matrices). On the other hand, it allows
several ways to aggregate the information from the
different sources.

3) The calculations are very simple and thus the ex-
ecution time is very short so that the method is
computationally efficient.

4) Hodge theory allows to define indexes of inconsis-
tency to evaluate the results.

The intensity of the relationship among the elements
of a triple for each experiment j is represented by an
hypermatrix in Rn×n×n that we denote as Ψj . The elements
of Ψj , ψjihk measure the degree of preference of the order
i ≤ h ≤ k ≤ i over the order h ≤ i ≤ k ≤ h in the
jth experiment and verify the basic property of being skew-
symmetric, i.e. ψjihk = ψjhki = ψjkih = −ψjikh = −ψjkhi =
−ψjhki, for any i, h, k = 1, . . . , n and j = 1, . . . , p.

There are many different ways of defining this “degree
of preferences” depending on the problem at hand and on
the objective function. At the end of this section we will see
several ways of defining ψjihk that follow the general rule
given by:

ψjihk = signj(i, h, k) · λjihk, i, h, k = 1, . . . , n,
j = 1, . . . , p,

(8)

where, signj(i, h, k) = signj(θhj−θij)+signj(θkj−θhj)+
signj(θij−θkj) is the sign of the triple (i, h, k) in experiment
j and λjihk is a nonnegative value that measures the degree
of separation of the items i, h, k. Notice that as the ψjihk
values are independent of the starting point of the circle
we can directly aggregate the Ψj hypermatrices into the
hypermatrix Ψ using directly the arithmetic or the circular
mean.

The problem of finding the circular order under Hodge
theory is similar to that of finding a linear rank from
pairwise information given by [25]. For this reason, the
terminology that we describe below has been borrowed
from that paper which in turn comes from graph theory,
linear algebra and topology.

Consider the inner product defined in Rn×n×n as

< Ψ1,Ψ2 >2=
∑
i,h,k

wihkψ
1
ihkψ

2
ihk, (9)

where w is a weight function that may account for missing
information or for the weight of the items and experiments.
In order to simplify the exposition we eliminate the weights
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from now on. Let us also define operators δ∗1 , δ1, δ
∗
0 and δ0

as,

δ∗1(Ψ) = Y ∈ Rn×n with Yih =
∑
k
ψihk

δ1(Y ) = Ψ ∈ Rn×n×n with ψihk = Yih + Yhk + Yki
δ∗0(Y ) = s ∈ Rn with si =

∑
h
Yih

δ0(s) = Y ∈ Rn×n with Yih = sh − si.

Notice that, δ∗1 takes a skew-symmetric hypermatrix Ψ
into a skew-symmetric matrix Y , δ1 takes a skew-symmetric
matrix Y into a score function s, δ∗0 takes a skew-symmetric
matrix into a vector and δ0 takes a vector into a skew-
symmetric matrix and they are defined as follows,

We also need to define the superindex (l) which, in a
subspace or in a subset, indicates that the index l has been
eliminated and the dimension has been reduced in one unit.
This will be useful to pass from a set of circular scores
φi, i = 1, ..., n which define circular order on V , to a set of
scores si = φi − φl, i 6= l which determine a unique rank on
V (l) and also to define a set of circular scores from a set
of Euclidean scores adding the missing element in the right
place as we will se below.

Now, we can defineHC which, as we prove below, is the
subset of skew-symmetric hypermatrices inducing a circular
order.

HC = {Ψ ∈ Rn×n×n : ∃Y ∈MC with Ψ = δ1(Y )},

where,

MC = {Y ∈ Rn×n : Yil = −
∑
j 6=l

Yij and ∃l with Y (l) ∈M(l)
G },

and,

M(l)
G = {X ∈ R(n−1)×(n−1) : ∃s : V (l) → R with Xih = δ0(s)}.

M(l)
G is the set of skew-symmetric matrices that induces

a rank on V (l) = {i1, ..., in−1} (see [25]). Then, a matrix
X ∈ M(l)

G induces a circular order on V via the following
rule. Consider the s function such that Xih = δ0(s) and
assume that s(i1) ≤ ... ≤ s(in−1) (i.e. s defines the order
i1 ≤ ... ≤ in−1 in V (l)). Then the circular order induced in
V is l ≤ i1 ≤ ... ≤ in−1 ≤ l.

Now any hypermatrix Ψ ∈ HC is generated by a matrix
inMC which comes from a matrix inM(l)

G which in turn is
generated by a score function that induces a circular order.
Therefore we have checked that any Ψ ∈ HC induces a
circular order.

Reciprocally, given a set of n circular scores {φi, i =
1, ..., n}, a hypermatrix Ψ ∈ HC can be easily defined as
follows. Take l ∈ V . Then, for i, h ∈ V, i, h 6= l define
si = φi − φl for i = 1, ..., n and Y

(l)
ih = sh − si, Yih =

Y
(l)
ih , Yil = −

∑
h 6=l

Yih. By construction, Y ∈ Rn×n ∈ MC

and Ψ = δ1(Y ) ∈ HC .
The expression of Ψ in terms of the initial scores is given

by:

ψihk = 0 if i, h, k ∈ V (l)

ψlih = φh − φi if h, i ∈ V (l)

ψihk = ψhki = ψkih = −ψhik = −ψkhi = −ψikh
for any i, h, k ∈ V.

(10)

Now, as HC is the subset of hypermatrices inducing a
circular order, the problem of finding the closest circular
order to the aggregated hypermatrix Ψ can be formulated
as follows

Ψ̂ = arg min
Ψ∈HC

||Ψ−Ψ||2. (11)

From the definition of HC it is straightforward that the
latter problem is also equivalent to finding

Ŷ = arg min
Y ∈MC

||Ψ− δ1(Y )||2. (12)

The solution to these problems is given in Theorem 4.1.
The proof of the result, which is obtained solving in
Rn−1×n−1 a well-known problem on Hodge theory (equa-
tion (7) in [25]), is given in the Supplementary Information.

Theorem 4.1. Let Ψ be a skew-symmetric hypermatrix and
Y = 1

nδ
∗
1(Ψ). Then Ψ̂ = δ1(Ŷ ) where,

Ŷil0 = −
∑
j Ŷ

(l0)
ij , Ŷ (l0) = δ0(s), with,

l0 = arg maxl
∑
h Y

2
lh and si = − 1

n−1

∑
h6=l0 Y ih ∀i 6= l0.

The order defining Ŷ is our Ô0 and is derived as follows.
First, the s function in Theorem 4.1 defines a rank in V (l0)

(i1 ≤ · · · ≤ in−1 ⇔ s(i1) ≤ · · · ≤ s(in−1)). Then, the
corresponding circular order in V is given by l0 ≤ i1 ≤
· · · ≤ in−1 ≤ l0, which is, by construction, the order defined
by Ŷ .

As we have commented above, one of the main advan-
tages of this approach is the flexibility in the definition of the
triplewise flow, Ψj . Some alternatives, that share the general
formulation (8) and have been selected from preliminary nu-
merical studies, are given in Table 2, with Table 3 containing
a full description of the labels, and compared in Section 5.

TABLE 2
Labels and descriptions of variants of the Hodge approach

Label λjihk ∀i, h, k ∈ V, j = 1, . . . , p.
HODb 1 ∀i, h, k, j

HODr 1−Rjihk
HODp 0 iff i, h, k ∈ V (l) ; 2π

n
| τhj − τkj | iff h, k ∈ V (l), i = l

HODs 0 iff i, h, k ∈ V (l) ; | θhj − θkj | iff h, k ∈ V (l), i = l

where Rjihk is the mean resultant length of θij , θhj and θkj
(see [22] p. 17).

The selection of the element l in HODp and HODs can
be done in different ways. Using a rule similar to the one
used in the theorem, we propose to select l0 = arg maxl γl
where γl =

∑
hk(ψlhk)2.

In [25] many advantages of the Hodge approach are
commented. We can emphasize that the Hodge approach
is much better adapted to incomplete and unbalanced data
sets. These advantages also appear in the circular case. In
fact, we add as an additional advantage the use of γl to
select l0 which derives in a method that is computationally
effective.

We also want to stress that many other alternatives can
be also considered in the definition of Ψj such as those
based on probabilistic arguments [32] or on the Bradley-
Terry extension [33].
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5 NUMERICAL STUDIES

In this section, examples and numerical studies are consid-
ered to compare the different techniques and their variants.
The complete list of methods is given in Table 3 below.

TABLE 3
Labels for different Circular Order Aggregation Methods

Label Description
TSPb TSP binary length edges
TSPp TSP positions length edges
TSP1 TSP Symmetric distance
TSP3 TSP Penalized distance with α = 3
HODb Hodge binary triplewise flows
HODr Hodge resultant length triplewise flows.
HODp Hodge position-based triplewise flows
HODs Hodge score-based triplewise flows

Table 4 contains several simple examples showing how
the performance of the methods depends on the scenario.
The table includes the data and the MSCE (3) for the
circular order given in Step 1 (as the second step only
makes local changes in the order given by the first step,
similar conclusions would have been obtained also with
two steps approaches if the number of items to be ordered
is increased). The non-optimal solutions obtained for each
example appear in bold in Table 4. From these results we
can conclude that there is not an universal winner and that
several alternatives using the TSP and Hodge approaches
should be considered. This strategy will be better illustrated
in the application.

In the rest of the Section, we compare the results of
different methods proposed using randomly generated data.
We use von Mises distribution (see [22] for its definition) as
it is the most widely used in circular data. We will assume
θij ∼independent M(φij , κj) with i = 1, . . . , n, j = 1, . . . , 6.
We have considered two artificial (EQGR with equally
spaced values of φij in sector circles and EXAM extending
the first example in Table 4) and one “real” scenario. The
real scenario use the estimated values of the κ values and
phases angles from S. cerevisiae data analyzed in Section 6.
The parameter values for the different scenarios are given
in Table 5. Many other scenarios have been considered. As
similar results to those appearing here were obtained, we
only detail the most significant ones in order to simplify the
exposition.

In Table 5 a total of 36 scenarios are described. For each
escenario and each of the two objective functions (4) and
(5) we performed 200 numerical simulations. In this section
we show the most relevant results for these scenarios. Some
more results appear in the Supplementary Material. The rest
of the results would lengthen the paper unnecessarily as
they would lead to the same conclusions that we expose
below.

Figure 2 shows the boxplots for the 200 values from the
first step of MSCE, CKτ and computational time in seconds
for the different aggregation methods considered. It can be
seen that TSPp is the method with poorest results in terms
of the MSCE, while TSP1 is the worst one when CKτ is
the objetive function. HODr is the most computationally
expensive while the rest of the methods are executed in less
than 0.6 seconds being the two fastest HODp and HODs.
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Fig. 2. Values of MSCE (a), CKτ (b) and joint computational time for
MSCE and CKτ (c) from the first step for the scenario EQGR n=10 p=6
κj=8

Then, in Figure 3 an analysis of the behavior of the
criteria when the number of elements n is increased can
be seen. The figure shows the mean values of MSCE (a),
CKτ (b) and computational time in seconds (c) for the best
methods of each technique, namely TSPb, TSP3, HODp
and HODs. TSP1 has been also considered as it yieled
better results than TSPb in other scenarios not detailed here.
HODp and HODs were the best Hodge methods in all the
explored scenarios.

We can observe the evolution of the mean values of the
MSCE when n increases in Figure 3 (a). It is obvious that
TSP3 and HODs are the most stable methods and that they
give the best approximation to the optimum in terms of
MSCE. In Figure 3 (b) we can see that the two best methods
when the objective function is CKτ are clearly those that use
the Hodge approach, HODp and HODs. Figure 3 (c) shows
that, although both approaches have a reasonable execution
time, the TSP approach is moderately faster.
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TABLE 4
Performance of Circular Order Aggregation methods in Simple Examples. MSCE values for step 1

DATA: p vectors in Rn TSPb TSPp TSP1 TSP3 HODb HODr HODp HODs
(0, 1/10, 1/9)π
(0, 1/4, 1/10)π

0.0041 0.0041 0.00001 0.0041 0.0041 0.00001 0.0041 0.00001

(0, 3/4, 1/2)π
(0, 11/6, 1/2)π

0 0 0 0 0 0 0 0.0367

(0, 1/4, 3/4, 5/4)π
(0, 1, 3/4, 5/4)π
(0, 3/4, 1/4, 7/4)π

0.0488 0.0488 0.0615 0.0488 0.0488 0.0488 0.0488 0.0488

(0, 7/11, 9/11, 8/5, 9/5)π
(0, 8/11, 1/2, 3/2, 1/20)π

0.0179 0.0179 0.1349 0.0087 0.0224 0.0179 0.0132 0.0087

(0, 3/4, 1/2, 1, 11/10, 10/9)π
(0, 11/6, 1/2, 1, 5/4, 11/10)π

0.0335 0.0381 0.0335 0.0335 0.0230 0.1202 0.0230 0.0335
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MSCE and CKτ in the first step for the pattern EQGR p=6 κj=20 when
the number of elements n to be ordered increases

TABLE 5
Parameter configuration for the simulation scenarios

Scenario n Φ κj

EQGR 10,15,20 φij = i
π/4
n/2

1 ≤ i ≤ [n/2]
1 ≤ j ≤ p

8,20φij = i
π/8
n/2

+ π [n/2] < i ≤ n

EXAM 25,30,35
φj = (0, 1

10 ,
1
9 )π 1 ≤ j ≤ [p/2]

φj = (0, 1
4 ,

1
10 )π [p/2] < j ≤ p

REAL Taken from S. cerevisiae data in Section 6

The computational effort of all these methods obviously
increases with both the values of n and p. We want to stress
that we have observed that this effort increases much more
when the MSCE is computed so that we recommend to
consider CKτ when n or p is high.

Now, we study in Figures 4 and 5 the improvement
obtained with the Circular Local Minimization Algorithm
(CMLA) performed in step 2 and the increase in the com-
putation time due to this second step. We considered the
5 scenarios in Table 5 with n=10. The mean values of
the MSCE and computation time after each step for the
different methods are represented in Figure 4. In this case we
dropped TSPp as its inclusion would hide the differences
among the rest of the methods due to scale problems (recall
from Figure 2 (a) that it was by far the worst method under
MSCE for the EQGR scenario). In Figure 5 the same type of
analysis is done for CKτ .

We can observe that both the reduction of the mean
values of the MSCE and the increase in the mean values
of CKτ due to the CLMA are higher when the values in the
first step are not too good. On the other hand, this second
step does not improve too much the results for the methods
whose step 1 already yielded good results (such as TSP3
or HODs under MSCE). We can also see that this CLMA
increases the computational effort in all cases and more
significantly if the MSCE criterion is used. For these reasons,
we can say that CLMA is suggested just for those situations
where it is convenient to refine the initial solution.

As final conclusions from the numerical studies we can
say that, although there is not an absolute winner method, in
most of the situations the best methods are TSP3 and HODs
if the MSCE criterion is considered and HODs or HODp if
the criterion used is CKτ . Moreover, the second step of the
proposed methodology (CLMA), can be useful to refine the
approximation but it is not worthy in most of the cases due
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to the increment in execution time.

6 ORDERING CELL-CYCLE GENES FROM HET-
EROGENOUS EXPERIMENTS

According to [34], genes participating in a cell division cycle
have a cyclical pattern of expression with peak (phase angle)
attained just before their function. Therefore, these phase an-
gles, that are circular parameters, are expected to be ordered
on the circle according to the biological functions of the
genes. For this reason, biologists are interested in estimating
the order of the phase angles to know the order of activation
of the genes. However, the task is not easy as the data
available comes from experiments performed in different
laboratories using different technologies (for example the
cells may be arrested at different points of the cell cycle at
the start of the experiment). Due to these heterogeneities
significantly different estimates for the phase angle of a
given gene are obtained from the experiments considered.

In this paper we use data from 10 experiments for S.
pombe [35, 36, 37], 6 experiments for S. cerevisiae [38, 39, 40,
41] and p = 4 experiments for humans (HeLa cells) [42].
These data, which have also been considered in other papers
[23, 24, 26], are publicly available in Cyclebase [43], which
is an online database (www.cyclebase.org) that offers re-
sults from genome-wide cell-cycle-related experiments. As
in [24], for S. pombe we consider 34 genes with a high peri-
odicity level and their corresponding S. cerevisiae orthologs.
For humans, as in [26], we consider 11 genes also with high
periodicity level and with orthologs in both yeasts. The
names of all these genes can be found in the Supplemen-
tary Material of the paper. The phase angle estimators for
these genes were obtained from the Random Periods Model
(RPM), a nonlinear regression model for estimating the peak
expression of a cell-cycle gene from its cyclical pattern of
expression [44]. The weight of each experiment is assigned
depending on the data variability. For these weights, we
refer the reader to [24] where the values used here were
derived.

Tables 6, 7 and 8 show the circular order aggregation
results using the methods TSP3, HODp and HODs rec-
ommended in Section 5. We also compare them with the
results obtained with the orders given by Cyclebase for
each of the species. If we globally compare our results with
the cyclebase order we can see that there are significant
improvements for each of the three species which means
that the orders obtained with our methodology may lead
to relevant biological hypotheses. These orders are also
detailed in the Supplementary Material.

TABLE 6
S.pombe. 34 genes (orthologs with S. cerevisiae)

TAU MSCE
Step 1 Step 2 Step 1 Step 2

TSP3 Order 0.128 0.445 0.084 0.077
HODp Order 0.657 0.686 0.081 0.076
HODs Order 0.503 0.673 0.083 0.075
Cyclebase Order 0.103 0.092

The performance of the methods is globally very good
as for both criteria (CKτ and MSCE) the results improve
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TABLE 7
S. cerevisiae. 34 genes (orthologs with S. pombe)

TAU MSCE
Step 1 Step 2 Step 1 Step 2

TSP3 Order 0.724 0.819 0.030 0.028
HODp Order 0.778 0.816 0.029 0.028
HODs Order 0.723 0.816 0.031 0.028
Cyclebase Order 0.467 0.088

TABLE 8
Human. 11 genes orthologs with S. pombe and S. cerevisiae

TAU MSCE
Step 1 Step 2 Step 1 Step 2

TSP3 Order 0.820 0.890 0.007 0.007
HODp Order 0.890 0.890 0.009 0.007
HODs Order 0.820 0.890 0.007 0.007
Cyclebase Order -0.075 0.099

significantly those obtained from the cyclebase orders. In
the S. pombe case The TSP and Hodge approaches yield
very different orders (see Supplementary Material) which
suggests that there may not be a clear order among the 34
genes. For S. cerevisiae slightly different orders, with only
one of the 34 genes changing its position when the CKτ
criterion is considered, are provided by the TSP and Hodge
techniques so that we may be fairly confident on the results
obtained. Finally, for humans the same order is attained by
the four methods in the second step and the improvement in
the MSCE and CKτ values compared with those of cyclebase
orders is really impressive.

7 FINAL DISCUSSION AND FUTURE RESEARCH

The problem of rank aggregation is formulated in this paper
as an optimization problem with the objective function
defined depending on the input information, based on the
MSCE for cardinal data and based on CKτ for ordinal data.
With the aim of solving that optimization problem, we
have developed methods by using two different levels of
processing the initial information: in pairs and in triples.

The main innovation is the use of triples, which arises
naturally to measure circular association. The information
on triples is represented using hypermatrices. Hodge the-
ory is used to find the closest circular order for a given
hypermatrix measuring the triplewise flows between the
items to be ordered. This approach based on Hodge theory
is computationally very simple and efficient. It provides
results that are good in terms of the objective function and
in comparison with other alternative solutions, and to what
we have seen, also biologically interpretable. Regarding the
TSP approach, although at first it may look not so simple,
it provides very good results in terms of the MSCE in most
scenarios.

As for computational issues, all the methodology and
algorithms developed are implemented in R code as part of
an R package called isocir (isotonic inference for circular
data), that is available on CRAN [26]. Details about the
Circular Local Minimization Algorithm (CLMA) are given
in Supplementary Information. This algorithm is used as a
second step to improve the approximation to the optimum.
However, as it has been shown in the numerical studies, the

improvement is not remarkable and increases significantly
the execution time.

Apart from the theoretical development, we have illus-
trated the use of the methodology in practice by determin-
ing the activation order of cell-cycle genes. There are other
problems in computational biology where the methodology
could be applied, such as those of ordering genes along the
circadian cycle [45], or hormones cycles [46].

In general terms, this methodology is applicable in stud-
ies where the interest is the order of occurrence of cyclic
events. For example, in meteorology, the aim could be to or-
der wind directions from different atmospheric phenomena
or to order the spread of fires [47, 48, 49].

Finally, the ideas that we have presented here, in par-
ticular the use of the Isotonic Regression and the objective
function derived, can also be of interest in the rank aggrega-
tion problem in the Euclidean context. This will be part of
our future research.
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