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Abstract Classification rules that incorporate additional information usually present
in discrimination problems are receiving certain attention during the last years as they
perform better than the usual rules in poor discrimination problems. Fernández et al
(2006) proved that these rules have a lower unconditional misclassification probabil-
ity than the usual Fisher’s rule but they did not consider the estimation of the condi-
tional error probability when a training sample is given (the so-called true error rate)
which is a very interesting parameter in practice.

In this paper we consider the problem of estimating the true error rate of these
classification rules in the classical topic of discrimination among two normal popula-
tions. We prove theoretical results on the apparent error rate of the rules that expose
the need of new estimators of their true error rate. Our proposal is to also consider
the additional information in the definition of the true error rate estimators. We pro-
pose four such new estimators. Two of them are defined incorporating the additional
information into the leave-one-out-bootstrap. The other two are the corresponding
cross-validation after bootstrap versions. We compare these new estimators with the
usual ones in a simulation study and in a cancer trial application, showing the very
good behavior, in terms of mean square error, of the leave-one-out bootstrap estima-
tors that incorporate the available additional information.
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1 Introduction

Consider the classical discrimination problem with two populations Π1 and Π2. De-
note the training sample from which the rule is built as Mn = {(Xi,Yi) , i = 1, ...,n},
where X is the p−dimensional vector of classifiers and Y = 1,2 is the binary vari-
able identifying the population. Denote also as PXY the joint distribution of the vector
(X ,Y ). With this scheme, a classification rule is an application Rn : {Rp ×{1,2}}n ×
Rp −→ {1,2} that classifies a new observation u ∈ Rp into one of the two available
populations, Rn (Mn,u) ∈ {1,2}.

In applications it is usual that some additional information is available. Recent pa-
pers considering additional information issues are, for example, Beran and Dümbgen
(2010) and Oh and Shin (2011). It is frequent that this information tells us that the
observations from one of the populations, for example Π1, take higher (or lower)
values than those coming from the other, i.e. Π2. The incorporation of this kind of
information into the classification rules has been shown to improve the performance
of the rule. To our best knowledge, the first paper in this line was Long and Gupta
(1998). More recently, Fernández et al. (2006) generalized and improved the results
in that paper and proposed rules that take into account this additional information and
have lower total misclassification probabilities (TMP) than the classical rules that do
not consider this information. A good example of this situation appears in Section
?? where bladder cancer patients are known to usually take higher values in some
variables (and lower in others) than healthy people. This information is then used to
build a classification rule that outperforms Fisher’s rule.

There are other important issues in a classification rule. One of them is the robust-
ness of the rule with respect to its theoretical assumptions. The robustness properties
of the rules that incorporate additional information have been studied in Salvador
et al. (2008). Another issue, at least as important as the robustness of a rule, is the
proper evaluation of the error of the rule in practice. This should be done estimat-
ing the true error rate En of the rule Rn, which is the misclassification probability
of the rule conditioned to the available training sample. Namely, En = Error(Rn) =
PXY

(
Rn (Mn,X) ̸= Y

/
Mn

)
. In Fernández et al. (2006) the behavior of the ‘restricted’

rules is evaluated using the TMP which is the expected, or unconditional, true error
rate E (En). This allows the study of global properties of the rule but not the evalua-
tion of En for a given sample Mn.

It is well known that the best way of estimating the true classification error of
a classification rule is the use of an independent sample, usually called test sample.
However, in practice it is common that the sample size is not large enough to split
it into a training and a test sample as that would decrease the efficiency of the rule.
For this reason, the estimation of En for the usual rules such as Fisher’s linear rule,
the quadratic discriminant rule, the nearest neighbors rules or random forest rules,
is a topic widely studied in the literature. Parametric and non-parametric estimators
of En have been proposed and non-parametric estimators based on resampling have
shown a good performance for the above mentioned rules. Schiavo and Hand (2000)
summarizes the work made on this topic until that date. More recent references are,
for example, Steele and Patterson (2000), Wehberg and Schumacher (2004), Fu et al.
(2005), Molinaro et al. (2005), Kim and Cha (2006) or Kim (2009).
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In this paper, we deal with the important issue of estimating En for the restricted
rules. In Section ??, we start reviewing the restricted rules defined in Fernández et
al. (2006). In Section ??, we prove some interesting results on the apparent error rate
(also known as resubstitution error) of the restricted rules that point to the need for
new estimators of En. Then, in Section ??, we briefly review the usual estimators
of En based on cross-validation and bootstrap and we propose new estimators of En
specific for the restricted rules. The main idea under these new estimators is to use
the additional information also on the definition of the estimators. The good behavior
of the new estimators of En is evaluated in a simulation study appearing in Section ??
and in a real data case dealing with bladder cancer presented in Section ??. Finally,
in Section ?? we discuss the results and summarize the conclusions.

2 Classification rules with additional information

From now on, we assume two p-dimensional normal populations Π1 and Π2 with
means µ1 and µ2 and common covariance matrix Σ . Using the notation given in
the Introduction we have that, X

/
Y = j ∼ Np (µ j,Σ). Let us denote as X j, j = 1,2,

the sample mean vector of the observations coming from population j (i.e. X j =(
Σ n

i=1XiI(Yi= j)
)
/
(
Σ n

i=1I(Yi= j)
)

for j = 1,2) and S the pooled sample covariance ma-
trix. We also assume that we have additional information on the mean vectors that
can be translated as δ = µ1 − µ2 ∈ C, where C is a closed, convex, polyhedral cone
in Rp.

Let us further assume, without loss of generality, equal a priori probabilities π j
and misclassification costs. If we denote as u ∈Rp a new observation to be classified,
the optimal (theoretical) Bayes rule is:

Classify u in Π1 iff
(

u− µ1 +µ2

2

)′
Σ−1δ ≥ 0. (1)

The usual linear classification rule, also known as Fisher’s discriminant rule, is
obtained replacing the unknown parameters µ1, µ2 and Σ by their estimators X1, X2
and S:

Classify u in Π1 iff
(

u− X1 +X2

2

)′
S−1δ ≥ 0, where δ = X1 −X2.

In order to obtain a classification rule that incorporates the additional information
available for the problem, Fernández et al (2006) start rewriting rule (??) as

Classify U in Π1 iff (U − (c1µ1 + c2µ2)+ cδ )′ Σ−1δ ≥ 0,

where ci = ni/(n1 +n2), i = 1,2 and c = (c1 − c2)/2. The new classification rule
is then obtained replacing Σ by S, c1µ1 + c2µ2 by c1X1 + c2X2 and the restricted
parameter δ by an estimator that incorporates the additional information. To be more
precise, δ is replaced by a member of the family δ ∗

γ , with γ ∈ [0,1], defined as the
limit of the following iterative procedure that Fernández et al. (2006) show to be
convergent. Let δ̂ (0)

γ = X1 − X2, and δ̂ (i)
γ = pS−1

(
δ̂ (i−1)

γ /C
)
− γ pS−1

(
δ̂ (i−1)

γ /Cp
)
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for i = 1,2, ... where pS−1 (Z/C) is the projection of Z onto cone C with the metric
given by S−1 and Cp = {z ∈ Rp : z′x ≤ 0,x ∈C} the polar cone of C. In this way
the following family of new classification rules Rn(γ) = Rn(γ,Mn) with γ ∈ [0,1] is
obtained

Classify u in Π1 iff
(
u−

(
c1X1 + c2X2

)
+ cδ ∗

γ
)′ S−1δ ∗

γ ≥ 0.

For more details on these rules and their properties the reader is referred to
Fernández et al (2006).

3 Apparent Error Rate

The resubstitution estimator or apparent error rate, APP, estimates the true error rate
as the proportion of observations in the training sample that are wrongly classified by
the rule. It is well known, see, for example, McLachlan (1976) or Efron (1986), that
APP is a biased estimator that underestimates the true error rate because the training
sample data are used twice, both to build the rule and to check its accuracy.

In this section we obtain some properties of APP. In particular, in proposition ??
we prove that APP is less optimistic for the rules Rn(γ), γ ∈ [0,1] than for Fisher’s
rule. Consequently, we can expect that the usual estimators of the true error rate do
not work well for these rules and new estimators of this parameter, specific for these
rules, should be defined.

We can assume that Σ = I without loss of generality. If the a priori probabili-
ties for each population are equal the apparent error rate of rule Rn(γ), γ ∈ [0,1] is
APP(γ) = (APP1(γ)+APP2(γ))/2, where

APP1(γ) =
1
n1

n

∑
i=1

I[
(Xi−(c1X1+c2X2)+cδ ∗

γ )
′δ ∗

γ <0
] I[Yi=1]

APP2(γ) =
1
n2

n

∑
i=1

I[
(Xi−(c1X1+c2X2)+cδ ∗

γ )
′δ ∗

γ >0
]I[Yi=2],

are the apparent error rates of populations Π1 and Π2 respectively.
Now, the expected apparent error rate for Π1 is

E (APP1(γ)) = P
((

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
)′ δ ∗

γ < 0,Y1 = 1
)

= E
[
P
((

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
)′ δ ∗

γ < 0,Y1 = 1
/

X1,X2

)]
.

Proposition 1

P
((

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
)′ δ ∗

γ < 0,Y1 = 1
/

X1,X2

)
= Φ

−
√

n1

n1 −1

(
c2δ + cδ ∗

γ

)′
δ ∗

γ√
δ ∗′

γ δ ∗
γ

 .
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Proof In order to make the proof clearer and to remark the dependence of δ ∗
γ on X1

and X2 during the proof we will write δ ∗
γ as δ ∗

γ
(
X1,X2

)
. It is easy to check that(

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
(
X1,X2

))′ δ ∗
γ
(
X1,X2

)
= (X1 −X1)

′δ ∗
γ
(
X1,X2

)
+
(

c2δ + cδ ∗
γ
(
X1,X2

))′
δ ∗

γ
(
X1,X2

)
so that

P
((

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
(
X1,X2

))′ δ ∗
γ
(
X1,X2

)
< 0,Y1 = 1

/
X1 = t1,X2 = t2

)
= P

(
(X1 −X1)

′δ ∗
γ
(
X1,X2

)
<−(c2δ + cδ ∗

γ
(
X1,X2

)
)′δ ∗

γ
(
X1,X2

)
,Y1 = 1

/
X1 = t1,X2 = t2

)
= P

((
X1 −X1)

′δ ∗
γ (t1, t2)<−(c2 (t1 − t2)+ cδ ∗

γ (t1, t2)
)′ δ ∗

γ (t1, t2) ,Y1 = 1
/

X1 = t1,X2 = t2
)
.

Now, (X1 −X1)
′δ ∗

γ (t1, t2)∼ N
(

0, n1−1
n1

δ ∗
γ (t1, t2)

′ δ ∗
γ (t1, t2)

)
is an ancillary statis-

tic as its distribution does not depend on µ1 or µ2. As
(
X1,X2

)
is sufficient and

complete, from Basu’s theorem we have that (X1 −X1)
′δ ∗

γ (t1, t2) and
(
X1,X2

)
are

independent. From this fact we have that

P
((

X1 −X1)
′δ ∗

γ (t1, t2)<−(c2 (t1 − t2)+ cδ ∗
γ (t1, t2)

)′ δ ∗
γ (t1, t2) ,Y1 = 1

/
X1 = t1,X2 = t2

)
= P

((
X1 −X1)

′δ ∗
γ (t1, t2)<−(c2 (t1 − t2)+ cδ ∗

γ (t1, t2)
)′ δ ∗

γ (t1, t2) ,Y1 = 1
)

= Φ

−
√

n1

n1 −1

(
c2 (t1 − t2)+ cδ ∗

γ (t1, t2)
)′ δ ∗

γ (t1, t2)√
δ ∗

γ (t1, t2)
′ δ ∗

γ (t1, t2)

 .

See Lehmann and Casella (1998) page 93 for the same argument in a similar situation.

In a similar way, for Π2 we have

E (APP2(γ)) = P
((

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
)′ δ ∗

γ > 0,Y1 = 2
)

= E
[
P
((

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
)′ δ ∗

γ > 0,Y1 = 2
/

X1,X2

)]
and

P
((

X1 −
(
c1X1 + c2X2

)
+ cδ ∗

γ
)′ δ ∗

γ > 0, Y1 = 2
/

X1,X2

)
= Φ

−
√

n2

n2 −1

(
c1δ − cδ ∗

γ

)′
δ ∗

γ√
δ ∗′

γ δ ∗
γ

 .

And following the same lines we can also prove that for Fisher’s rule

E(APP1 (Fisher)) = E
[
P
((

X1 − 1
2

(
X1 +X2

))′ δ < 0, Y1 = 1
/

X1,X2

)]
E(APP2 (Fisher)) = E

[
P
((

X1 − 1
2

(
X1 +X2

))′ δ > 0, Y1 = 2
/

X1,X2

)]
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and

P
((

X1 −
1
2
(
X1 +X2

))′
δ < 0, Y1 = 1

/
X1,X2

)
= Φ

(
− 1

2

√
n1

n1−1

∥∥∥δ
∥∥∥)

P
((

X1 −
1
2
(
X1 +X2

))′
δ > 0, Y1 = 2

/
X1,X2

)
= Φ

(
− 1

2

√
n2

n2−1

∥∥∥δ
∥∥∥) .

Proposition 2 If n1 = n2 then, for any γ ∈ [0,1],

E (APP(γ))≥ E (APP(0))≥ E (APP(Fisher)).

Proof As n1 = n2 we have that c = 0 and c1 = c2 =
1
2 . Now, δ ∗

0 = p(δ/C) and δ ∗
γ ∈C

so taking into account Theorem 1.3.2 in Robertson et al. (1988),
(

δ −δ ∗
0

)′
δ ∗

0 = 0

and
(

δ −δ ∗
0

)′
δ ∗

γ ≤ 0. From this,

δ ′δ ∗
γ√

δ ∗′
γ δ ∗

γ

≤
δ ∗′

0 δ ∗
γ√

δ ∗′
γ δ ∗

γ

= ∥δ ∗
0 ∥cos

(
δ ∗

0 ,δ ∗
γ
)
≤ ∥δ ∗

0 ∥=
δ ′δ ∗

0√
δ ∗′

0 δ ∗
0
≤
∥∥∥δ

∥∥∥ ,
and the result follows from Proposition ??.

Remark 1 In Fernández et al. (2006) it is proved that, if n1 = n2, the true error rate of
rules Rn(γ), γ ∈ [0,1], is lower than that of Fisher’s rule. Moreover, in all simulations
performed the true error rate of rules Rn(γ) is higher than their expected apparent
error rates. As from Proposition ??, E (APP(γ)) ≥ E (APP(Fisher)), this suggests
that if n1 = n2 the bias of APP for rules Rn(γ), γ ∈ [0,1] is lower than that for Fisher’s
rule.

A possible explanation for this is that the restricted rules are less dependent from
the training sample values than Fisher’s rule, as they are built not only using the
training sample but also the additional information available for the problem.

4 Resampling based estimators

There are many non parametric estimators for the true error rate of a classification
rule based on resampling techniques. In this section we describe the most usual ones
and propose new estimators based on resampling techniques especially designed to
cope with the inclusion of additional information in the classification rule.

4.1 Usual estimators

The cross-validation, or leave-one-out, method was proposed in Lachenbruch and
Mickey (1968). With this method one of the observations in the training sample is
left out, then the classification rule is computed and the excluded observation os clas-
sified. This is repeated with each of the observations in the training sample. Then the
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cross-validation error CV is just the proportion of observations misclassified using
this procedure. It is well known that this estimator has lower bias than APP.

Efron (1983) shows that the CV has a low bias but a not so low variability and
proposes estimators based on the bootstrap methodology. Let us denote as Mn =
{(Xi,Yi) , i = 1, ...,n} the original training sample. A bootstrap training sample M∗

n =
{(X∗

i ,Y
∗
i ) , i = 1, ...,n} is a size n sample obtained randomly (with replacement) from

the original training sample (i.e. P((X∗
i ,Y

∗
i ) = (Xs,Ys)) =

1
n with s, i ∈ {1, ...,n}). The

probability that an observation from the original training sample is not included in the
bootstrap training sample depends on n and is approximately 0.368. The bootstrap
version of the classification rule is the rule based on the bootstrap training sample.
From this methodology Efron proposes several ways of estimating the classification
error. We consider two of them, the leave-one-out bootstrap (LOOBT ) and the boot-
strap 632 (BT 632).

For the LOOBT estimator, B bootstrap training samples are considered and B
bootstrap versions of the classification rule are obtained. Then each of these rules
is used for classifying the original observations not belonging to the correspond-
ing bootstrap training sample. Finally, LOOBT is the proportion of observations not
correctly classified using this procedure. Efron notices that LOOBT tends to over-
estimate the true error rate and then proposes BT 632 = 0.368APP+ 0.632LOOBT .
In certain cases the value of APP is close to 0 (overfitting) so that BT 632 is close
to 0.632LOOBT and the true error is underestimated. For these situations with high
overfitting, Efron and Tibshirani (1997) propose the bootstrap 632+, defined as BT 632+=
(1−α)APP+αLOOBT , with α > 0.632. In Section ?? we have proved that APP
for rules Rn(γ), γ ∈ [0,1], is higher than APP for Fisher’s rule. Consequently, the
overfitting problem for these rules is less important and we do not consider BT 632+
in our study.

More recently, Fu et al. (2005) propose a method based on cross-validation after
bootstrap (BCV ) that has a lower relative mean squared error than LOOBT and BT 632
for small training samples. In this procedure B bootstrap samples M∗

b ,b = 1, ...,B
are obtained from Mn. Let CVb be the true error rate estimator obtained using the
cross-validation method on sample M∗

b . The final true error rate estimator is now
BCV = B−1∑B

b=1CVb.

4.2 New proposals

In this paper, we propose new true error rate estimation procedures for the rules that
take into account the additional information. These methods modify the LOOBT and
the BCV to make them able to cope properly with the information included in the rule.
We will denote as BT 2 and BT 3 the methods generated from the LOOBT method and
BT 2CV and BT 3CV the ones coming from the BCV procedure.

The additional information we are considering can be written as δ = µ1−µ2 ∈C,
where C =

{
z ∈ Rp : a′jz ≥ 0, j = 1, ...,m

}
is the appropriate cone of restrictions. Let
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us denote as C the following random cone generated by δ

C =

{
z ∈ Rp :

a′jz ≥ 0, if a′jδ ≥ 0
a′jz ≤ 0, if a′jδ < 0

, j = 1, ...,m

}
.

The true error rate estimator BT 2 is computed in a way similar to LOOBT but
considering bootstrap classification rules generated using projections onto cone C
instead of C for each bootstrap training sample. In other words, for each bootstrap
sample M∗

b =
{(

X∗b
i ,Y ∗b

i
)
, i = 1,2, ...,n

}
we compute the bootstrap version of the

estimator of δ that we denote as δ ∗b
γ (with γ ∈ [0,1]) defined as the limit of the

following iterative procedure similar to the one considered in Section ??. Let δ̂ (0)b
γ =

X∗b
1 −X∗b

2 and δ̂ (i)b
γ = pS−1

(
δ̂ (i−1)b

γ
/

C
)
−γ pS−1

(
δ̂ (i−1)b

γ
/

Cp
)

for i = 1,2, . . .. Now

we denote as R∗b
n (γ) the bootstrap versions of the classification rules Rn(γ) defined

as,

Classify u in Π1 iff
(

u−
(

c1X∗b
1 + c2X∗b

2

)
+ cδ ∗b

γ

)′
S−1δ ∗b

γ ≥ 0.

For each rule R∗b
n (γ), b = 1,2, ...B, we classify the observations in the original

training sample that do not belong to the bootstrap sample M∗
b . The true error rate

estimator BT 2 is the proportion of observations wrongly classified.
The heuristic under BT 2 is that the “bootstrap world” should mirror the “real

world”. In the “real world” the original training sample Mn is obtained from the pop-
ulations Π j, j = 1,2, that verify δ = µ1 −µ2 ∈C. In the “bootstrap world” the pop-
ulation is Mn, which verifies δ = X1 −X2 ∈ C. Therefore, the bootstrap versions of
the rules should be obtained replacing the cone C by C.

Our second proposal to use the additional information in a way that the “bootstrap
world” imitates the “real world”, is to adapt the original training sample, instead of
modifying the cone, as follows.

Assume that the original training sample Mn does not verify the restrictions, i.e.
δ = X1 −X2 /∈C. For any γ ∈ [0,1], we can use δ ∗

γ , the restricted estimator of δ , to
obtain estimators for µi i= 1,2. As µ1 = (µ1 +µ2 +δ )/2 and µ2 = (µ1 +µ2 −δ )/2,
we can consider µ∗

γ1 =
(
X1 +X2 +δ ∗

γ
)
/2 and µ∗

γ2 =
(
X1 +X2 −δ ∗

γ
)
/2 as estimators

for µ1 and µ2 respectively. Now, we transform the original training sample in such
a way that the difference of the new sample means belongs to C. The transformed
training sample is {(Wi,Yi) , i = 1,2, ...,n} where

Wi = Xi −X j +µ∗
γ j if Yi = j, j = 1,2.

In this way W 1 −W 2 = µ∗
γ1 −µ∗

γ2 = δ ∗
γ ∈C. Now, the proposed estimator of the

true error rate that we denote as BT 3 is the LOOBT replacing the original training
sample by the transformed one. In this way, the bootstrap samples are extracted from
populations that verify the same property that is fulfilled by the populations from
which the original training sample is extracted.

We also consider the cross-validation after bootstrap versions of BT 2 and BT 3.
They are denoted as BT 2CV and BT 3CV respectively.
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5 Estimators behavior. Simulation study

The behavior of an estimator Ê of the true error rate En is analyzed through the
distribution of the random variable Ê−En. This distribution has been called deviation
distribution of the error estimator by Braga-Neto and Dougherty (2004). As a global
measure of the behavior of Ê we will use E

[
(Ê −En)

2
]
. As usual, this measure can

be decomposed in a variance and a bias component since E
[
(Ê −En)

2
]
= Var(Ê −

En)+
[
E(Ê −En)

]2
.

In this section, we conduct a simulation study to compare the behavior of the esti-
mators, APP(γ), CV (γ), LOOBT (γ), BT 632(γ), BCV (γ), BT 2(γ), BT 3(γ), BT 2CV (γ)
and BT 3CV (γ) of the true error rate, En(γ), of the restricted classification rules Rn(γ).

The purpose of this study is to propose a reasonable estimator of En(γ) when
the training sample does not fulfill the restrictions. For simplicity we consider p = 3
and identity covariance matrix and study the positive orthant restrictions case, i.e.
δ ∈ O+

3 =
{

x ∈ R3 : xi ≥ 0, i = 1,2,3
}

. We generate training samples of size n1 =
n2 = 10, from populations Π1, N3(δ ,Σ), and Π2, N3(0,Σ), for different values of
δ and Σ . Since in practice the sample sizes are usually larger than these values and
the covariances are also larger, we have also run the simulations with bigger sample
sizes (n1 = n2 = 50), rescaling the covariance matrix accordingly, obtaining similar
results. The simulations were performed for many values of δ both in the interior
of the cone and on the frontier of O+

3 and for several values of Σ . However, since
there was no significative variation in the results, in order to save space, we only
present here the results obtained for values of Σ = I and when δ is the vertex of
the cone (0,0,0) or is in the interior of O+

3 . To be more precise we show the results
for values of δ in the diagonal direction of the cone, i.e. δ = λ (1,1,1) with λ ≥ 0.
The values of λ have been chosen so that ∥δ∥2 = 0,0.25,0.5, ...,2.5. Notice that
the 11 values considered cover the situations where discrimination is easy since the
distance between the means ∥δ∥2 is large and others where the samples from the
populations are much more likely to overlap. Larger values of ∥δ∥2 are not given
since for those values the restrictions are almost always fulfilled and therefore the
true error estimation procedures are equivalent.

For each scenario, we generate 1000 training samples for which the rules Rn(γ),
with γ ∈ {0,0.5,1}, are determined. For each of these three rules we compute APP,
CV, LOOBT, BT 632, BCV , BT 2, BT 3, BT 2CV and BT 3CV . The number of bootstrap
replicas considered for the estimators involving bootstrap was B = 100. The true er-
ror rate En for each training sample was computed using a test sample with 1000
observations from each of the two populations. Using this procedure we have 1000
values of the deviation distribution of each of the 9 error estimators. With these val-
ues we approximate the values of (E[(Ê −En)

2])
1
2 and E(Ê −En) that we will denote

as A(Ê) and B(Ê) respectively. For example, if we denote as BT 2i(0.5) and E i
n(0.5)

the values of BT 2 and En obtained from the i-th training sample for rule Rn(0.5)
we can estimate A(BT 2(0.5)) = (E[(BT 2(0.5)−En(0.5))2])

1
2 and B(BT 2(0.5)) =
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E(BT 2(0.5)−En(0.5)) by ( 1
1000 ∑1000

i=1 [BT 2i(0.5)−E i
n(0.5)]

2)
1
2 and 1

1000 ∑1000
i=1 [BT 2i(0.5)−

E i
n(0.5)] respectively.

Again, in order to save space, as the results obtained for the three classification
rules were similar, in Table ?? we only present the values for γ = 1. For each value
of ∥δ∥2, the two lowest values of A(Ê) appear in bold. Notice that the lowest values
are the ones for BT 2 and BT 3 for almost all values of ∥δ∥2.

Table 1 Simulations results for the 9 estimators under Σ = I and γ = 1.

∥δ∥2

Estimator 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

APP A 0.144 0.141 0.141 0.137 0.133 0.133 0.129 0.131 0.121 0.122 0.115
B -0.015 -0.054 -0.071 -0.076 -0.076 -0.074 -0.080 -0.080 -0.075 -0.081 -0.072

CV A 0.130 0.126 0.126 0.123 0.118 0.125 0.114 0.119 0.112 0.104 0.104
B 0.001 0.008 0.001 0.006 0.003 0.009 0.000 0.006 0.008 -0.006 0.005

LOOBT A 0.085 0.090 0.091 0.092 0.090 0.097 0.094 0.098 0.094 0.092 0.091
B -0.005 0.008 0.006 0.014 0.015 0.018 0.014 0.019 0.022 0.014 0.024

BT 632 A 0.104 0.102 0.102 0.098 0.095 0.100 0.095 0.098 0.091 0.091 0.087
B -0.009 -0.015 -0.022 -0.019 -0.018 -0.016 -0.021 -0.017 -0.014 -0.021 -0.011

BCV A 0.114 0.114 0.112 0.108 0.105 0.107 0.103 0.103 0.097 0.097 0.092
B -0.011 -0.033 -0.045 -0.046 -0.049 -0.048 -0.052 -0.049 -0.046 -0.053 -0.043

BT 2 A 0.094 0.079 0.086 0.088 0.088 0.093 0.093 0.096 0.095 0.091 0.092
B -0.069 -0.010 -0.002 0.010 0.013 0.015 0.013 0.018 0.021 0.014 0.024

BT 3 A 0.093 0.078 0.084 0.087 0.087 0.094 0.092 0.096 0.094 0.091 0.091
B -0.069 -0.012 -0.002 0.010 0.013 0.016 0.013 0.018 0.021 0.014 0.024

BT 2CV A 0.146 0.109 0.109 0.105 0.102 0.103 0.102 0.100 0.097 0.096 0.091
B -0.129 -0.074 -0.068 -0.059 -0.057 -0.055 -0.055 -0.052 -0.048 -0.054 -0.044

BT 3CV A 0.145 0.110 0.108 0.104 0.102 0.103 0.102 0.100 0.097 0.097 0.091
B -0.128 -0.076 -0.067 -0.058 -0.057 -0.055 -0.056 -0.053 -0.048 -0.054 -0.044

In Figure ??, we represent the values of A(Ê) and B(Ê) depending on ∥δ∥2 for
the 9 estimators of the true error rate that we are considering. As in other simulation
studies APP generally has the largest negative bias, CV has the lowest bias but is
the one with highest variance and LOOBT shows a positive bias. Estimators BCV ,
BT 2CV , BT 3CV and BT 632 exhibit a negative bias. The new estimators proposed
in this paper BT 2 and BT 3, which modify the bootstrap in order to cope with the
additional information incorporated to the rules, have similar behavior. This is some-
how surprising since they are based on very different ideas. They are also the best
estimators of the true error rate for the smallest values of ∥δ∥2. These are obviously
the most interesting situations in practice, as they correspond to scenarios where the
discrimination is more difficult and where the additional information is more likely
to play a key role in the rule.

In order to have a more thorough idea of their behavior, we also obtained kernel
estimators of the density of the deviation distribution for each of the 9 estimators of
En. The kernel density estimators corresponding to scenario ∥δ∥2 = 0.3 for the new
estimators proposed in this paper, namely BT 2, BT 3, BT 632, BT 2CV and BT 3CV ,
are represented in Figure ??. From this Figure it is clear that the kernel estimators for
BT 2 and BT 3 have the lowest values of bias and variance among the 5 represented
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Fig. 1 A(Ê) and B(Ê) for the true error rate estimators for Σ = I and γ = 1

in the graph. The estimators BT 2CV and BT 3CV have a similar variance component
but are much more biased, while the BT 632 has a higher variance component than
the rest.
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Fig. 2 Kernel estimators for the density function of Ê −En for several estimators for ∥δ∥2 = 0.3

6 Application. Bladder cancer data

The data considered in this application come from a bladder cancer project aimed
to select classifiers in the context of an in vitro diagnostic tool for the disease. Our
industrial and pharmaceutical partners in this research are Proteomika S.L. and Lab-
oratorios SALVAT, S.A. For intellectual property reasons, the names of the proteins
used in this study are not disclosed in the paper.

Patients were classified in five levels based on cytoscopy. First level is control
level (i.e. negative result of cytoscopy, therefore considered as absence of bladder
cancer) and the other four are denoted as Ta, T1G1, T1G3 and T2, each of them
corresponding to increasingly advanced levels of cancer. This combines the TNM
grading (see UICC (2009)) and the grading. To be more precise, stage T describes the
size of the tumor and whether it has spread and grade G refers to the appearance of
the cells under the microscope. For this example, and in order to keep the populations
balanced we will consider the control level as population Π1 and levels T1G3 and T2
as population Π2.
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As usual in this kind of research, an initial database was provided. The purpose
of this pilot study was to confirm or discard the associations among the proteins and
the illness in order to establish a larger multicenter study. The data set, D1, contained
information on 41 patients from Π1 and 32 from Π2 and 11 proteins together with
the real stage of the illness the patients belonged to. This is the initial data set and it
is the one we will use to build the rules. In the usual statistical terminology this is the
training set.

For this example, we only consider 4 of the 11 available proteins. We will denote
these proteins as P1, P2, P3 and P4. For each of these 4 proteins it was expected that
higher values on the proteins were related to more advanced stages of the illness. As
usual the values of the proteins levels have been transformed logarithmically in order
to approach the variables to normality. The mean values in each of the populations
and the pooled covariance matrix obtained from this data set appear in Table ??. From
this table it is obvious that the additional information was not fulfilled by the training
set so the classifications rules Rn(γ) are relevant in this problem. Table ?? contains
the values for the restricted estimator δ ∗

γ appearing in these rules for γ ∈ {0,0.5,1}.

Table 2 Mean for each group and pooled covariance matrix from D1

Means
N log(P1) log(P2) log(P3) log(P4)

Π1 41 1.416 1.356 3.879 1.417
Π2 32 1.409 0.976 4.348 1.578

S =


1.065 0.455 −0.154 0.106
0.455 0.515 −0.052 −0.053
−0.154 −0.052 0.544 0.148
0.106 −0.053 0.148 0.450



Table 3 Values of δ ∗
γ for the Rn(γ) rules built from D1

γ δ ∗
γ

0 (0.328,0,0.430,0.123)
0.5 (0.496,0.190,0.411,0.103)
1 (0.664,0.380,0.392,0.084)

Moreover, in this bladder cancer research, a second data set D2, containing mea-
sures on the same 11 proteins and the real illness stage for a different set of 118
patients was received in a later stage. We use this second set as a test set in order to
obtain an estimator of the true error rate of the rules. In this way we will be able to
compare the estimators of the true error rate previously defined with another value
obtained from an independent sample and evaluate the behavior of the true error rate
estimators in this example.

Table ?? contains the results obtained with the 9 estimators of the true error rate
considered in the paper and the independent estimation obtained from D2. The boot-
strap values have been obtained generating B = 100 bootstrap samples as in the sim-
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Table 4 Estimations of the true error rate of the rules

Estimator Fisher γ = 0 γ = 0.5 γ = 1

APP 30.14% 32.88% 41.10% 50.68%
CV 36.99% 36.99% 43.84% 49.32%

LOOBT 36.49% 39.05% 45.52% 48.93%
BT 632 34.15% 36.78% 43.89% 49.57%
BCV 29.37% 32.95% 41.07% 45.15%
BT 2 − 35.53% 35.07% 34.76%
BT 3 − 41.77% 43.45% 42.80%

BT 2CV − 29.05% 29.05% 29.33%
BT 3CV − 34.67% 36.71% 37.03%

Estimation from D2 39.83% 36.44% 35.59% 33.90%

ulations section. There are several questions that are worth noticing. One of them
is the fact that, as mentioned in Section ??, APP increases with γ , which is logical
since the rules with higher values of γ are less dependent from the original training
sample. Another interesting fact is that, for the data in the example, APP is higher
than the independent estimation of the true error obtained from D2. This is not usual
for Fisher’s rule although it may happen more frequently for the new rules since APP
usually increases and the true error decreases with γ . Notice, however, that from the
results obtained in the simulations section APP still has a negative bias as estimator of
the true error rate. We can see that, even in this not standard case, the BT 2 estimator,
which had the second best behavior in the estimations, has a very good performance,
for all the values of γ considered.

7 Discussion

Fernández et al. (2006) defined new classification rules that take into account the
additional information that is frequently available in classification problems. They
showed that these rules have lower misclassification error than the usual Fisher’s
rule. However, the question of the estimation of the true error rate, i.e. the error rate
of a given training sample, for those rules is a very important problem that has not
been considered so far.

In this paper we check that the true error rate of the new rules has a different be-
havior than that of Fisher’s rule. Namely, in Proposition ?? we prove that the expected
apparent error of these rules is higher than that of Fisher’s rule. As the true error rate
of Fisher’s rule is higher than that of the new rules, this means that these new rules
do not suffer so much overfitting as Fisher’s rule. Consequently, the usual procedures
for estimating the true error rate such as CV , LOOBT , BT 632 or BCV do not work
as well as they should and new estimators for the true error rate of these new rules
are needed. We consider 2 methods based on different bootstrap procedures that take
into account the additional information available on the problem. The first one, that
we denote as BT 2, adjusts the cone of restrictions to the training sample while the
second, denoted as BT 3, adjusts the training sample to the cone of restrictions. The
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corresponding cross-validation after bootstrap versions of these procedures, BT 2CV
and BT 3CV , are also considered.

Based on a simulation study and on the results obtained with a real data appli-
cation we check that the new procedures BT 2 and BT 3 generally perform better as
estimators of the true error rate, En, than the usual estimators designed for rules that
do not account for additional information. Their performance is especially good for
situations where the populations are not too separated. This is the scenario where the
new rules are more interesting since it is the case where training samples not fulfilling
the restrictions are more likely to appear.

We can also notice that for these rules it is not necessary to perform cross-
validation after bootstrap, since BT 2CV and BT 3CV do not behave better than BT 2
or BT 3. Therefore, we conclude with the recommendation of estimators BT 2 and
BT 3 to evaluate the true error rate of the discrimination rules defined in Fernández et
al. (2006).
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