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Abstract

ELignocellulosic biomassoming from holm oak-thelm-eakyas fractiomted, solubilizingtwe+ - - {Con formato: Sangria: Primera linea: 0"

of-their-major-constituentdiemicellulose_andcellulose. This procedure was performed in two
stages of temperature, lower one (180 °C) optimittiehemicellulose extraction and higher one
(260 °C) aiming to extract the major proportiorceflulose and the hard hemicellulose remaining
in the insoluble lignin structure. Three differefdvwis of waterwas wereemployed, reaching
sugar yields from 71 to 75% mainly in oligomer foamd low amount of subproducts (eg. 5.9%
retro aldol product, 0.8% acetic acid and 2.5% 5MThis stream was feed togetheth a
near and supercritical water stream in a sudden sigramicroreactor—which-the-time—of

resideneewhere the residence ticmuld be precisely controlled. Temperature, pressnc:

residence timetime-ofresidensas weremodified in order to maximize the yield #fe-preducts

from-retro aldolcondensation produets—pathwaihe main products of this further hydrolysis

were pyruvaldehide and lactic acid, reaching yield®6% (at 350°C, 160 bar and 8.3 s) and 27%
(at 400°C, 245 bar and 0.23 s) respectively. A disongssed on the known reaction pathway is
proposed. This combined process, performs the vatmmizaf real lignocellulosic biomass
avoiding the costly process of extreme grinding neéede their fluidization ina continuous

process.
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Introduction

Even if it is reasonably assumed th&trtbiomassrom plantswill be themain carbon source
in the future, the choice about which reaction medishould be used to depolymerize and
valorize biomass has not been taken yet. Pressurizdd,fespecially sub and supercritical water
(Tc=374°C and Pc= 22.1 MPa), can be pointed as migiry alternative to depolymerize and
valorize biomass (Akiya & Savage, 2002; Canterd.eR@14; Peterson et al., 2008; Ragauskas

et al., 2006; Savage et al., 199Bhysical and chemical properties of water can be fyndyi

adjusting pressure and temperature around the critigat, -Areund-the-eritical-point-of-water it

temperaturanaking water a reaction mediunhich-isable to favor different kind of reactions

(Akiya & Savage, 2002).

For this reason, pressurized water has been used d@emeaetlium for fractionation (Cantero
et al., 2015; Gullén et al., 2012; Kim & Lee, 20@3saki et al., 2003) , hydrolysis (Cantero et
al., 2013b; Fang & Fang, 2008; Sasaki et al., 288d)valorization of biomass (Chen et al., 2015;

Holgate et al., 1995; Wang et al., 2013; Yan ¢t28110).

The average composition of lignocellulosic biomassc@tulose £40% wt.), hemicellulose
(=25% wt.), lignin €25% wt.), extractives and ashes (10% wt.) (Boblet®84). Although
biomass is composeaf—by diverse and complex moleculest can be fractionated
principallymainly into C-6 sugars (mainly glucose), C-5 sugars (mainlipse) and lignin
(Cantero et al., 2014). These three fractions cafutieer modified to produce a wide range of
products like: ethanol, hydrogen, glycolaldehydeupgldehyde, lactic acid and 5-HMF among
others (Bicker et al., 2005a; Bicker et al., 2006antero et al., 2014; Kabyemela et al., 1997a;
Kabyemela et al., 1999; Kabyemela et al., 1997b&ISbka, 2012; Roman-Leshkov et al., 2010;

Sasaki et al., 2002).

The fractionation of biomass can be defined astieining selective separatiohC-5 sugars,
C-6 sugars and lignifrom the original biomass-in-separate-streams-frasmbss This process

was studied under hydrothermal condig@mdifferent ways of operation: batch, semi batet a
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continuous (Cantero et al., 2014, Elliott et a@12).Fhe-s®&mi batch and continuous processes
allow to obtain higher yields of sugars and chemicahpoundsrespect te-thabatch reactors
because it is possible to control the temperaturer(@ tlaeresidencdime of-residenedtr) more
accuratly ethanitis-achievedn thebatch processedhe-c®ntinuous processes are the most
appropriate to control the reaction conditions (@ &), however, in most cases it is necessary to
apply some expensive pretreatments to the raw ragbeid+beforethe fractionation — hydrolysis
process, for example: exhaustive size reduction (YW@& 2011). In addition, the continuous
processhoeuld carbeset performeat differentoperatingconditionsif-it-s-desired-to in order to

separate the C-5 sugars from the C-6 sugars.

In a first step, carried out at temperatures betvi@&C and 260°C, and reaction times between {c:;n formato: Sangria: Primera linea: 0"

0.1 min and 1 min, hemicellulose is extracted amdtdiyzed.

After thisfirst-hydrolysisprocess two products are obtainediguid-and-a-selid—Fhelmuid wil-
becomposed mainlgf-by C-5 sugas while-theand asolid witk-be-composedt-by C-6 sugars

and lignin. These two products can foether separated splittdaly operations of liquid-solid

separation, like filtration. Then, the solid canhyelrolyzed at supercritical conditions to obtain

the a water solution d2-6 sugarsa-the-liguid-proeduet and a solid enriched-in-digdin-as-selid

This processs-can becarried out in two reactors with a filtration opévatin between, but can

be intensified by using onl-A-similarfractionatioancbe-done-in-onereactorifitisused a one

fixed bed reactor. In such a casegbetbiomass ised-toloaded irthe reactor and the hydrolysis

temperature is changed in order to hydrolgz=C-5 or C-6 sugars (Kilambi & Kadam, 2013).
The semi batch process allows high performances on igigsyof C-5 sugars hydrolysis.
However, when the reaction temperattsethe-hydrolysis-sheuld-beiacreased to hydrolyze
recalcitrant cellulose and hemicellulose, the yidldugarsecevery recoveredecreases because

of the increment of the sugars degradation reactiGastero et al., 2013b; Sasaki et al., 2004).
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The continuous reactors have been employed in nygplications for the valorization of sugar
streams allowing a precise control over the reaciiiabyemela et al., 1997a; Kabyemela et al.,
1999; Kabyemela et al., 1997b). These reactionsbeamanaged using pressurized water by
choosing the adequate reaction conditions. For exanapltemperatures between 200°C and
300°C (25 MPa) the water moleculesi-bearehighly dissociated favoring the ionic reactions,
like the production of 5-HMF from fructose and glaedAkiya & Savage, 2002). On the other
hand, at 400°C (25 MPa) the water molecwuléisbearehighly associated favoring the non-ionic

reactions, like the retro aldol condensation reast{@ikiya & Savage, 2002).

In this article,a novel integrated fractionation-valorization pregiewas designed and bud#t— - - {Con formato: Sangria: Primera linea: 0"

ant wooddiomass as raw

material andwater -using gulrritical and supercriticalwateras reaction medium. Thelant
wooderbiomass was fractionated in a fixed bed reactoiffgrent temperatures. The solubilized
products were directly injected to a continuous rueiical water reactor to efficiently convert
C-5 and C-6 sugars into valuable products, like gbidehyde, pyruvaldehyde and lactic acid
avoiding a further hydrolysis to organic acids. Bhgective of this research paper was to design
a novel process capable of convertiapt lignocellulosibiomass into valuable products eluding

the excessive milling of biomass and decreasing théauof reactorsOptimum conditions for

the fractionation of holm oak in a fixed bed reaetere found, followed by a valorization process

of C-5 and C-6 sugars in the continuous reactor.

1. Experimental

2.1 Materials

Type 2 wateffrer-distilled withElix® Advantage purification systerwas used as the reaction - {Con formato: Sangria: Primera linea: 0"

medium to run the experiments. The standards used iRnligh Performance Liquid

Chromatography (HPLC) analysis were: cellobios@806), glucose*99%), xylose ¥99%),
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galactosex99%), mannose>09%), arabinose>Q9%), glyceraldehyde>p5%), glycolaldehyde
dimer £99%), lactic acidX85%), formic acid$98%), acetic acid>99%), acrylic acidX99%),
furfural (99%) and 5-hydroxymethylfurfurat99%) purchased from Sigma. 0.01 N solution of
sulphuric acid (HPLC grade) in Type 1 Milli®Qvaterand-werewassed as the mobile phase in
the HPLC analysis. Sulfuric acig96%) and calcium carbonate99%) supplied by Panreac,
Spain, were used as reagents for the quantificatiocedure of structural carbohydrates and
lignin_(Sluiter, 2011 Also, Milli-Q® water was used in this determination. Holm oak woset

as raw material came frofurku-and-surrounding-area;—FinflandSpairthe wood was milled to
obtainfibers shapewith average wide of-62 mmandaverage length & mm,wide-andlength

average-sizes;respectiveds it is shown in Figure S1 of Supplementary Makteria

2.2 Analytical methods

The composition of the holm oakood raw material, exhausted solahd the—liqueﬁeetﬂ{ Con formato: Sangria: Primera linea: 0"

biemassextracted liquavere determinetly-means-oftreughthrougtvo Laboratory Analytical

Procedures (LAP) from NREL (Sluiter, 2011; Sluit2f06). The procedure for solid sample
consiss in quantifying the structural carbohydrates and lignin in the besn@&-brief-deseription

is-as-follow as followa) biomassvas weighted before and after beindiged in an air driven

oven at 105 °C for 24 hours in orderdbtain calculatehe moisture content, Bxhaustive
extraction—isperformeddried biomass was treaiea Soxhlet equipmentith usirgn-hexane

leaving a solid free of oils and otherbstancesextractives) a-first-acid-hydrelysis-is-perfermed

t6-300 mg offree- extractivesolid from step (b)vere hydrolyzedn a-with 3 ml of 72% wt

sulphuric acid solution at 30 °C for 30 min order to break the bonds between biopolymeiis

and themain solid structure, d) the mixtucé oligomers obtained +#-cdtep (c) is diluted using

84 ml of deionized watdbra-second-acid-hydrolysisand waatil20 °C for 60 min with the aim
to break internal bonds in hemicellulose and ce#labligomersto obtain their correspondent

monomersa-selution e) the solid is separated from the solution by vacfiitration, f) thetotal
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mass of solubilizedugarscententarewaguantifiedby-weightas thalifferencein weightwith

betweenthe original solidand the exhausted solafter oven drying at 105 °C in oven for 24

hours, g)exhausted solid is placed in a muffle at 550 °C #bh2nd the remaining residue was

weighted to calculate the insoluble lignin and &lsb content of the sample—inseluble-lighin and

pd-the

iferenceh) a liquid aliguot was
analyzed with UV-Vis spectrophotometer at 320 nm wittinction coefficient of 34 Ldcnt?
(S.-N. Sun, 2014) to calculatthe amount of soluble lignin—s—ebtained—by—UV-\is
spectrophotometer-at 320-nm-with-extinction-coedficof 34 Lglcm ' (S.-N.-Sun, 2014jrom
a-liquid-aliguef i) another liquid aliquot is neutralized to pH gan6 to 7, then it is filtered using

a 0.2 pum membrane and analyzed by HPLC determihi@garbohydrates composition. This
procedure is performed using a column SUGAR SH-18hbdex) with a 0.01 N of sulfuric acid
solution as a mobile phase. To identify Henicellulosescellulesesand-reduced-sugarssoluble
products,two detectors were used: Waters IR detector 2418 (2&h) and Waters dual
absorbance detector 2487 (254 nm). In order to kedécthe amount of carbohydrates, each
chromatogram was decomposed into a sum of 9 to 13 @ayssaks by means of a commercial
software, minimizing chi squared function of a Lebwerg-Marquardt-Flecher algorithm
(Fletcher, 1971). Pyruvaldehyde and GlycolaldehyeeHd—not—be—reselved—by—this

configurationsresulted to be overlappsiice the retention time of their standards are edhe

close (11.99 vs 12.24 minutes, respectivélypm-the-analysis{Sluiter; 2041) & raw material

contained 1.6 % wt. extractives, 1.8% wt. moist@% wt. ashes, 24.2% wt. Klason lignin

(from which 4.0% corresponds to soluble lignin), 45W#%oof hexoses, 23.9% wt. pentoses, the

sunmation of all the components represents the 97.4% of vee#dht_the discrepancy of 2.6%

is due to experimental errors like the loss of solidemalt after the recovery at the end of the

experiments, or the inhomogeneity of the materiattvhan have slightly different compositions

depending on the analyzed aliquot

The amount of C6 was calculated as the sum of glucediebiose and fructose concentragon

the only C5 detected was xylose, acetic acid was dered to come from thecety-greups
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bonded-todeacetylatioof xylanes forming hemicelluloseluring—inthe fractionation process
hewever oras-is-explained in the next sectignisceuld-be-produceffom an-exhaustive the
hyerelisishydrolysisof piruvaldehyde. Hydrolysis products from hexoses pedtoses were
mainly glyceraldehyde, glycolaldehyde, piruvaldetyidctic acid 5-hydroxymethylfurfural and
in some caseserilicacrylicacid were detected in very low concentration.

The procedure followeébeto analyzdiquid samples consist in the steps (), and (i)abeve

describedabove Furthermore, the carbon contesitthis—fractionliquid solutionss determined

by total organic carbon (TOC) analysis using a Shimad2C-VCSH equipment. Each sample
is-waspreviously filtered using a 0.2 pm syringe filtedaa-diluted 1:10 times with Type 2

Millipore water.

2.3 Experimental setup and procedure

The setup used in this work is shown in Figure 1. dgsledsystem consisted in two reactors - {Con formato: Sangria: Primera linea: 0"

integrated: a) the fractionation process, from whiehiguefiedbiomasdiquid stream solution

is produced, b) the supercritical reactor hydrolysisich converts all theiemass-streamsoluble
compoundsinto added value products. The fractionation limedmposed by a water deposit
(D.1), downstreams an American Lewa EK6 2KN high prespump (P.1, maximum flow rate
1.5 kg/h) propels water through a pre-heater (H)0,@n of 1/8” SS 316 pipe, electrically heated
by means of two resistors of 300 W) which ensuresrdform temperature at the reactor inlet.
The reactor (R.1), a tube of SS 316, 40 cm lerig?¥, cm O.D., is heated by three flat resistors
of 560-300W each, placed axially along a machined aluminumwith 5.08 cm O.D. Both,
preheater and the reactor are located insidesven-ef formerchromatograpic ovenHP5680
for security reasons. Thastoutflow streamef-from the fractionation line is mixed with the

supercritical water streanentering in a sudden expansien-directly-at-thetinf-the-sudden

expansienmicro-reactor (SEMRJR.2). The supercritical water lings composed by a heater

(H.2), a tube of 20 m, 1/8 in O.D. SS316 wrappezlad a brass cylinder and heated by two
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cartridges and two flat resistors, which provided sidjole power of up to 10 kW, in order to
control the temperature of this stream. The wéader fs generated by a Milton Roy XT membrane
pump (P.2, maximum flow rate 6 kg/fhe-main-advantages-ef tSEMRare:allows a fast-the
heating of the biomass stream, which is mixed almagaimaneously with the supercritical water
stream andthe-a-ceelingrapid cooling—precest the productswhich takes placéythrough
meansa sudden expansion which efficiently stops the hydrslyin this way, the reaction time
could be precisely calculatgdekeause athe reactor works isothermally. Pressure is generated b
closing a Micro Metering valve 30VRMM4812 from Autace Engineering (V.4)A-detailed

deseription—of-beth- s8upsof the two reactorswere presented idetail in previous works

- {Con formato: Resaltar

6.12+0.03 gr of holm oak biomasse werded into the fractionation reactor. Two metallitefis

are wereused, locateér-onthe top and bottom of the reactaxoiding the removal of the solid

during the experimentsto-keep-theraw-materialliee A pressure test with cold pressurized

water was carried out-Celd-water-ispressurized-raestistenbefore each experiment, with the
aim to check the presence of leaké-aetionationlinethe system

Then, the supercritical lins-washeatedin-erderto _ensure the functioning of the system at

required operating conditio

flewing-through-fractionationineOnce this conditionare werestable, thelowpumps were

momently switched off-is-steppehd both, the preheater and the fractionation oeaete were

heated upuntil the-—\When-the-contrdémperature-reacheethe the respectivset valusg, then

both pumpsare were switch on again-started,dhd flow and pressurgre wereadjustedwith

\4+to the desired conditionsZero time was defined at that momentthenzave-is-considered

Six experiments were performed varying the tempegatuthesupereritical micraeactor from
subcritical (350°C) up to supercritical (400°C) dtinds, maintaining the pressure at 25.0+1.0
MPa.-Alse—{The rectionsidencdime of-liguefied-biomasin this reactomas-vared-from-0-25

sup-to-12 s—whiclasebtained modifiedhy medifying varyingthe water flowrateand changing

this-sensetwo-reactors-with-2.2-and-12-4were-utilized Three different water flows (11, 17,
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26 cn¥/min) in-the-fractionation-linavere testedn the fractionation linemaintainingconstant

the ratio with the flow of supercritical water stream-erderto get the desired conditions during
thefurther hydrolysis.

The feed composition to the SEMR was analyzed bwyicay out -Alse;three fractionations

without the second hydrolysis stage the same conditions of temperatures, flow-rates a

pressure tested with the coupled reactionwere-peebimthe-same-conditionswith-the-aim to
lepevrthofecdcompaciionlethe SEMIR.
Fractionation+In fractionation the fixed berkactorwas performed itwo stagesnarked by two

distinct temperatureswererun-at-different-tempeeat@80°C to extract the hemicellulose and

260°C to removenost ofthe cellulose fraction from thew biomass. Heating time between both

periedfor the experiment at 26 éfmin. In order to follow the reaction evolutiongtpH of the
product_outletstream was measured onlibetween—periedswith intervalsf 1 min, using an
electronic pH-meter (Nahita model 903). Liquid saesp30-40 ci) were taken following the
pH variations, between 5-20 min for the experimarticni/min, and every 2-8 min for the
other experiments. The final time varies from 11@a6d 45 min for the experiments at 11, 16,
26 cni#/min, respectively (named here as (1), (2) and @&)er the last sample was withdrawn,
the heating was shut off and the fractionation reasts|et to -graduatycooled down to room
temperaturevith-air-flux. Both pumps were set to zero flow and the systemdepressurized.
The solidwas removed frominside tfiereactor reacterwas-cellectdiltered and dried 24<mat

105°CHor—further—analysis After cleaning, thefractionation fixed bed reactaieactor was

were performed (3 fractionations and 7 coupled reas},characterizing obtaining total of 130

liquid and 10 solid samplgsharacterized with-byhe methodsibevedescribedabove

3. Results and Discussion

3.1. Biomass fractionation



P55 The total amount of solublexaterials compounds-ef-unmedified-holm-oak-biemadsinravw— - - {Con formato: Sangria: Primera linea: 0"

256

iayvas equal

P57 to 4.65x0. 03gcorresponding tdhe 72.1% of the raw biomasseight Frem-this—seluble

P58 materal,In details3.02+0.02g are hexoses (C6), 1.58+0.01g are pent68¢s-The residence _ - {Con formato: Resaltar

P59 time of the liquid {), depends is determinadainly en-bythe liquid flow rate ann-bythe
P60 averagd bedporosityof the bed(€aw=0.71+0.05) Fhis-last-is-calculated-based onThe last was

P61 calculated as in equation 1, by considetimginitial andthefinal fraction of void volume of the

P62 bed due to the shrinking size of the biomass parictegiconsidering constant the density of

P63 the water(Gallina et al., 2016{since its variation with temperature is less thar) 28fd the

264  density of the holm oak woofl (800 kdindry basedaveragefor holm oak specig) (Galinaet - {Comentado [u2]: Referencic bibliografica de la densid

P65 ak20186). Residence time for the liquid inside tire=d-bedreactor was in the range d0 min

P66 26-min><><2.6 minl-0-min

(mo—my) - -| Con formato: TA_Main_Text, Izquierda, Sangria: Izquierda:
— _ . : TA_Main_Text, , : :
P67 & €0 + (1 50) mg (l)L 0.5", Primera linea: 0", Interlineado: sencillo, Ajustar
N espacio entre texto latino y asidtico, Ajustar espacio entre

N Sz -
texto asiatico y numeros

268  Figure 2 shows theumulatedmassgquantified by TOC and HPLC technique total soluble~ \\{c rormato: Fuonte: 13 oo Core
~ on formato: ruente: pto, Cursiva

269  materiab-guantified-by-FOC-and-HPLC technigute-ameunts-ebligomers and monomers of {Con formato: Sangria: Primera linea: 0"

P70 C5 and Céas,well-as-the-mass—ef-thgroductsderiving -ebtainedrom the dehydration-the
P71 hydrolysisof thesesugars- al-of them-incummulative-values-for-differentained by changing

R72 #Heows-efwaterflow-ratesin the fractionation line.

{Con formato: Fuente: 11 pto

273  Break points in the curvesignals indicat¢he transition betweehetwo temperature stages. The ,/{ Con formato
Il

! /{ Con formato: Fuente: Sin Cursiva

P74  totalmass oboluble compounds detected-productsfrormOLC were wasalculated by dividing /1

I u{ Con formato

I

275 the value of total organic carbon concentratistngnized-detectduly the equipment by factor ,/,/,/{ Con formato

I
i H//{ Con formato
!

P76 0.42(equation 2) / /////////{Con formato

Loy

/1| Con formato

!
P77  This factor is the sum of the mass fractions of egzempound in the raw material multipliedgby//'y//m
7777777777777777777777777777777777777777 ~ 7| Con formato
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P78 the ratio between the molar weight of carbon anel tholar weight of the compound’”””/{Con formato

wmirs oy
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P80 The factor r indicates the ratio between the molowkight of the soluble compounds extraeted {Con formato: Fuente: 11 pto

h ‘[Con formato: Sangria: Primera linea: 0"

281  from holm oak and the molecular weight of the atoifnsarbon of the same compounds. It allows_ { con formato: Fuente: 11 pto
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P82 to compare values directly obtained by TOC analystsl(amount of C) with values obtained by

283 HPLC (total amount of soluble compounds).

284

285

P86 in-each-ofthe-components-detected-by-HPIBe mass balangalculated by summing-dhe

P87 smass of theddid recovered from the reactor at the end of tkgeementaddedto the mass of

288 the soluble material quantifigesm-by TOC analysisandto the mass of insolublégringlignin

289 flushedin-bythe water stream was equal to 103.8, 93.7 and 84bt8e totabiomass fed to the

290  reactdl, respectively.

- {Comentado [u3]: No se entiende bien de cuales experimento}s

P91 In the first row of graphs in Figure 2 are compateximass of soluble material obtained by TOC
292  with the same values obtained by HPLC for each sanigie number in the figure is the

293

294 same—vame—in—the—mw—ma{erialyjeﬂrom the graphs is clear that thiéference discrepancy _ - {Comentado [u4]: Hacer una tala con todos los rendimient ]

P95 between the values obtained withbetwderth-the twotechniques is reduced when the water

296 flow-ratethrough the fractionation reactordsigmented increas¢@3.6, -4.1 and -3.2% for the - - comentado [u5]: Unidades de medida )

297  three flowg, respectively). This could indicate thia¢re are sub-products from the suggts{Comenmdo [u6]: Especificar los caudales (for.....respectly) ]

298 hydrolysis (mainly organic acids) not identified bPEC. In fact, some peaks identified were not
P99 completely resolved, then, the calculation of tremavas not a trivial taskhe-Sgecond line of
300 graphics in Figure 2, shows the sugars and solublerobgs of C5 and C6 obtained from
BO1 fractionation in the two temperature stagése-mayerfractionMosof the hemicellulose is

302

ftooligomers., in fact

B03  Hhemicellulose is highly soluble in water becaes#-has-a-lebf the abundance afcetyl groups
B04 in theirits-structure—as-well-as-itasnorphousstructure(Miller-Chou, 2003) and after the first

BO5 breaking leads to the production-of—Se—it-woulddxpected-that-predusseluble oligomers

306  (fwhich size would be arouhd 200 mono

307 [Thelyield of C5 at the end of second stage of tenperavas 87.3, 89.8 and 93.1%, respectively.- { comentado [u8]: Tabla (ver comentario al final) )

B08 AtOn thecontrary, cellulose is insoluble in water due to itgstallinity-and-itslow-acetyation

B09 degree so only oligomers with a very low molecular weigituld be water soluble (e.g. 10
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glucose! units)| In this sense, the amount of hexosderin of oligomers is similar to the - | comentado [u9]: Referenci

monomers at lower flow (experiment 1) and this défere is enlarged with the flow increase (2
of thehidregen hydrogebonds between celluloses and ¢tie4 glycosidic bond, which is knaw
that is favored at subcritical conditiofi€antero DA 2013; Sasaki et al., 2004). The lastobw
graphs in Figure 2 displays different amounts ofipods from hydrolysis of xyloseglucose and
fructose. These amounts atespreciabledepreciabile the first stage andre-entargedincreased
to-in-the-second-stage_ofafter increadeimperature, however, they are one order of madmit
lower thante the soluble sugaréin example is 5 HMF, which takes places mainly indeeond
temperature stage where conditions makes water higyfitymedium in the fractionation reactor.
The main components in this graphs are pyruvaldeljdmlaldehydeand lactic acid. The
decrease of the residence time-sugarsof liquidinside the reactor diminish their further

hydrolysis or transformatio

3.2Biomass valorization with sub and supercritical fast hydrolysis

Comentado [u10]: Low flow-rates, so high residence time
enhance the hydrolysis of oligomers to monomers

|

\[Comentado [u11]: No entiendo bien la frase

)

Theeuput outlestreanef-from thefractionator fixed bed reactwras feed to the SEMR togetker - {Con formato: Sangria: Primera linea: 0"

with the-a distillatewater stream at temperatured-pressure-aroeund-theireritical-pointat near

critical conditions of temperature and presswwith the aim to obtain a fast and selective

hydrolysisof the oligomers extracted from the biomaksie-ofresidenceThe reaction tir(te)

waswedified variedn order tofind-a-majeryield-te-sememodify the selectivity tutain different

valuable chemicals.

Optimum temperatures and flow-rate for the extoacthave been identified in experiment 1, as

chosen for most of the experiments; only experisméftand 11 were performed with the same

liquid flow-rates used in the fractionation experittse2 and 38 (...and ...respectiviely).

This approach, moreover, allows to know the commosibf the stream entering in the SEMR.

__— { comentado [u13]: flujos




B38 In-this-sense; dfht experiments were performetis shown in—and-theirwerking-conditions<are- {Con formato: Sangria: Primera linea: 0"

B39  summed-up-HTable 1. Three temperaturés.|) and 6 reaction times (.| wyere tested in the _ - { comentado [u14]: temperature

- ‘[Comentado [u15]: tiempo:

B40 SEMR keeping constant the temperatures of sub-criticednmtarough the fixed bed reactor, and

341  of|super-critical water to hydrolyze the oligomers. - {Comentado [u16]: Especificar flujc

342
343

B44  buratthe-same-flows-than-experiments2-antind -reactions (7 and 9) were carried guia

345

346

B47  {reaction 6-see-Fable-1)-with-the-aito observe the influence dfie variation of-thalensity
B48  wvariatienin the product distribution.

B49 Global mass balance, calculatedasss-commented describatisection 3.1;is presenteéh-the
B50 feurth-ecolumn—ofTable 1. The values (avg=96.9%, sd=6.5 %) indicates tlo significant
B51 gasification takes place in the supercritical reactor.

B52  First row of graphs inhe-Figure 2 (b), (c) and (Bre presentthe mass balance between the
B53 soluble materialin the raw biomass and the mass quantified in theubstpeam of SEMR by
B54 meansoffOC and HPLC technigues. Some difference betweesethwe analytic procedures is
B55 observable, mainly at the second stagesfperarutetemperatuot the fractionation or at high

B56 sugars conversions. This findcould be due to the productiosf small organic acids, ketones

357 and aldehydes (levulinic and acrylic acids, dihygemetone, formaldehyde) and other
358 compounds not identified in the HPLC analysis, se@r g2 in Suplementary Material. This

B59 hypothesis agree with the decrease of the mass difeiadentified by both techniques when a

360 high water flow i involved (see first row of graghsFigure 2 (d)). - {g:r?;jnatt?oio [u18]: Especificar: less residence timess
361 ; |

362

363

364 3.2.1 Oligomers and sugars conversion



365 Oligomer conversion to C5 and C6 monomers was cledilby difference between the stream- { con formato: Sangria: Primera linea: 0"

B66 entering to the SEMR (composition obtained in experit 1), and the stream leaving the reactor

B67 after the hydrolysis.
368

369

370

371 the runs, oligomers conversion was higher than 86&texception seems to be experiment (11),
372 inwhich the smallr and high dilution of the inlet stream could be thase of the low conversion.
B73 Sugarsin-C5 (xylose) and C6 (cellobiose, glucose and fructase)ntermediary compounds in
374  the reaction pathway. From Figure 2, comparingatineunt of sugars C6 and C5 in experiments
B75 4 and 5, it is shown that the conversion of sugarsther productss faster tharithe oligomers

B76 hydrolysisto monomers-atsubcritical temperatures, even at temperatures htgharthe water

377 critical point (380 °C), however near to 400 °ke lin experiment 9, oligomers conversion is
378 faster than sugars hydrolysis, in agreement with tieewations reported in the literature for
B79 oligomersoriginating from microcrystalline cellulose (Peterson et al.0@gCantero et al.,

380 2013b). SuprirsinglySurprisinglythe time needed for complete conversion of sugatpiite

381 greater largethan the pure cellulose hydrolysis at the same ternpergeg. 350°C: 2 s vs 12 s), - [ Comentado [u20]: referencia

882 which could be related with the hydrolysis of flzed biomass microparticles whiting the - [ Con formato: Sin Resaltar

AT T e IR IR U DR M TR A e T O R e T Y Y

B83 fractionation stream, which contain an insolublailigstructure where C5 and C6 were contained
B84 inside of it. Also-concentration of the biopolimers and the presencshefr ions or substances
B85 could be linked to this atenuation.

386

387 3.2.2 Added value products (AVP) produced from the sugars hydrolisis

388 Thirth row of Figure 2 (b), (c) and (d) displays théded value chemicals produced from

89 further hydrolisisfrem-of cellobiose, glucose, fructose and xylose. Reactionwzgthof
390 cellulose hydrolisis involving oligomers and celladgoas intermediaries was reported in the
391 literature (Cantero et al., 2013a; Kabyemela etl@PB7a; Kabyemela et al., 1999; Kabyemela

392 et al., 1997b; LU & Saka, 2012; Sasaki et al., 2@xgaki et al., 2002). Xylose hydrolisis in
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near critical and supercritical water was analizeddyeral authors (Aida T.M. et al., 2010;
Sasaki M. et al., 2003). The combined reaction payhis presented in Figure 3. Not all the
products involved in this scheme was identified inlifpeid chromatography. The cellulose
pathway shown in Fig. 3 involves two main steps:stsp in which the oligosaccharides are
hydrolyzed to glucose and xylose; 2nd step in whidkase and xylose are involved in two
possible pathways: isomerization and dehydratiorewo+aldol condensation (Aida T.M. et
al., 2010; Sasaki et al., 2002). Glucose can folloveersible isomerization to produce
fructose, however, the reverse reaction, is almoghited at the same conditions (Kabyemela
et al, 1999; Kabyemela et al., 1997b). Glucose a#&o be transformed into 1,6
anhydroglucose and fructose can be transformed irftpdBexymethylfurfural through a
dehydration reaction (Kimura et al., 2011). Theeothlternative of glucose conversion is the
retro-aldol condensation reaction that produces ¢dyadehyde and erythrose (Cantero et al.,
2013a). Erythrose is further transformed into glyl#ayde by the same reaction mechanism
(Sasaki et al., 2002). The other important reaabifmuctose is the retro-aldol condensation
to produce glyceraldehyde and dihydroxyacetones&eolecules are further isomerized into
pyruvaldehyde (Kabyemela et al., 1997a) that is clemed as a lactic acid precursor. From
the hemicellulose hydrolysis, depolymerization tgilese up to xylose, and after that, xylose
can be isomerized to D-xylulose, assuming that D-rglellas an intermediate for furfural and
retro-aldol products (glyceraldehyde, pyruvaldehydiactic acid, glycolaldehyde,
dihydroxyacetone, formaldehyde) (Aida T.M. et &Q10; Sasaki M. et al., 2003). This
reaction pathway consists, a Lobry de Bruyn-Albeda ¥kenstein (LBET) a retro-aldol
reaction from D-xylose and D-xylulose similar to thatolving D-glucose and fructose.

In all theecases-the-products-distribution-is-complexexperimehisigh-majora considerable
amount of pyruvaldehydelycolaldehydeand lactic acid is observed. From Figure 2 (a) and

319.7 kg/M and 5 16 vs 1 1, respectively) (Akiya N. & Savage P.E., 2002), whineans
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different concentration of Hand OH (1.2 vs 22.810 M) coming from water dissociation are

: Sin Resaltar

the hydrolysis of the fractionation stream seemstadso different. This behavior could be
explained by the presence of large amounts*aforhing from the fractionation in addition to

that produced in the water ionization, since thelydrolysis produces acetic acid and other

ions. Under such conditions, isomerization of puedlutose to fructose is favored and - [ Con formato

: Sin Resaltar

dehydration reactions could be favored,too (Kinetral., 2011). In spite of this, retro aldol - [ Con formato,

: Sin Resaltar

o ‘[ Con formato

: Sin Resaltar

pathways seems to take place as well, which is eviderme the high vyields of

: Sin Resaltar

similar temperature and pressure but involving deepeversion in the last case (tr = 1.06 vs
11.15 s, respectively). For this one, the acetid agiount is highly increased, mostly in the
first stage of temperature of the fractionation reacthis amount of acetic acid, exceeds the
amount produced in the hemicellulose hydrolysis mecehis finding could indicate that the
retro aldol pathway coming from Xylose by means bfc@raldehyde route, must contribute
mainly to the acetic acid production obtained dlyefrom lactic acid decarbonylation (Jin et
al., 2005). The contribution to the acetic acid Idonot only be considered from the
hemicellulose source, since there is also a largestwration of C6 in monomer and oligomer
form in the first fraction of the inlet stream (sdgufe 2 (a)), which could also contribute to
the glyceraldehyde route. Figure 4 displays the pth@butput stream after the Fractionation
(1) and the-Fractionation+Hydrolysis coupled process (4),(5)d@l (8). The pH after a
further hydrolysis is lower than the outcoming frone fractionation during the first stage,
and after this, the pH values becomes similar, co@tto the fact that extra amounts of acetic
acids are produced when a deeper hydrolysis is pegtb(tand 8). Similar result is observed
from reactions 5 and 8, however in this case largeusinof formic acid is observed than the
above mentioned (see Figure 2 (c)).

The pressure change has no great effect on the gsodistribution (see reactions 5 and 6).
This observation means that the density as well as Kiatian, do not modified largely the

selectivity between isomerization-dehydration aetdoraldol pathways like it does in the pure



449 cellulose hydrolysis, where isomerization of glucosefructose is highly inhibited by
50 decreasing density (Cantero DA 2013). Thenajer— highest vyield of

51 pyruvaldehydgglycolaldehydavas obtained at this conditioif24.4%). A Bifferent different

452 product distribution is observed in the reaction @)gere lactic acid is the most abundant
453 product and the acetic acid amount is depleted coedp® the reactions above mentioned
454 (see Figure 2 (d)). This finding could be explaingdshort time of residence of the mixture

455 at high temperature condition in which the reactiamne stopped at lactic acid stage in the
456 glyceraldehyde route, inhibiting the acetic acidriation. This selectivity seems to take place
457 principally during the first stage of temperaturgha fractionation reactor, because after that,
458 the production of lactic acid and pyruvaldehydéiser. The major yield of lactic acid was

59 found at this condition$25.5%). Theaugment increasaf water flowratein the fractionation

460 reactor has no clear effect on the product distioutsee reactions 10 and 11 in Figure 2 (d)).
461 In both cases the retro aldol pathways are followedtatiyely in both stages of temperature

62 producing pyruvaldehyde and lactic aéighweverore-acetic-acid-sformed-inreaction 10

63 forwhich-we-have-no-explanation..
464

465 Conclusions

466

'467 B ‘[Con formato: Sangria: Izquierda: 0"
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List of Figures

Figure 1. Experimental setup coupling Fractionation-Hydradysiactors.

D.1, D.2: Type Il Millipore water deposits, P.1: Ariean Lewa EK6 2KN High pressure piston
pump. P.2: Milton Roy XT membrane pump, V.1, V.2rler check valve. H.1: Electric low
temperature heater, 100 cm of 1/8 in SS316 pipimty2akW resistor. H.2: 1800 cm of 1/8 in
SS316 piping and, high temperature heater and $deitor. R.1: Fractionation reactor, 40 cm
length, %2 in O.D. SS316 piping. V.2: Parker religadse. R.2: Sudden Expansion Micro-Reactor
(SEMR) built with % in O.D. SS316 tubing. Two rearet sizes were used 11 cm and 100 cm of
length. V.3: Parker relief valve. V.4: high tempere valve Autoclave Engineers
30VRMM4812, IE: 200 cm of concentric tube heatteger %2 in- ¥4 in. V5: Three way Parker

valve, D.3: Falcon® flasks. D.4: 25 L polyethylenedhuicts deposit.

Figure 2. Product distribution and mass balance in the biomalssization.
(a) Results from the fractionation withostpereritical furthehydrolysis for differenf{ water
percentage of soluble sugdmguefied-identifiedby total organic carboiTOC) and

HPLC techniques. Second row of graphs in Figure 2 stibevamount of carbohydrates

Comentado [u23]: Falta lista tablas.

*Se podria poner otra tabla con los rendimientdsdies los
compuestos después del fraccionamento, despuégpdenkera
temperatura, y después de la segunda.

«Otra tabla con los rendimientos de los compuestspuks de |
hydraolisis.

temperaturas del fraccionamento.

]as
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in the form of-sugars and oligomers. The last row displays the timéugon of the
products derived from the hydrolysis of sugars in thetfonation reactor.
(b) [Products distributiomround aB80°C

(c) Product distributiomreurd aB50°C

(d) Product distributiomreund ad00°C and short residence times _ -1 Comentado [u25]: «Poner la incertidumbre de las
temperaturas.
. . . . " +Yo pondria las fi den de t tuBsQab 380,
Figure 3. Combined reaction pathway of oligomers C5 and Cidting the glucose and xylose w000y o rades enorten de lemperals RS0
«Especificar los caudales de fraccionamento
further reactions. *Una linea vertical cuando hay el cambio de tempeaat

Figure 4. pH vs time comparison of the reactions at low (4 %mhd high conversions (7 and 8)

at sub and supercritical conditions of water.
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-| Comentado [u26]: Poner misma formatacion en todas las

graficas
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fables,

Experiment T [°C] P [MPa] tr [s] MBoc[%]

4 383.7+£5.1 2457+ 4.6 1.06 92.2

5 3525+4.4 241.3+3.7 2.10 89.3

6 355.9+5.7 161.8+1.1 8.31 97.3

7 377.2+35 251.9+59 11.15 105.9

8 3499+24 239.6+4.2 12.50 103.1

9 396.1+3.6 249.1+51 0.23 103.6

10 401.2+2.8 252.2+39 0.24 93.0

11 398.3+3.0 250.9+34 0.24 91.2

=

Comentado [u27]: Juntar longitud reactor y caudales (sub y
supercr)




