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Abstract: The theft of personal information to assume the identity of a person is a common threat.
Individual criminals, terrorists, or crime rings normally do it to commit fraud or other felonies.
Recently, the Spanish identity card, which provides enough information to hire on-line products
such as mortgages or loans, was updated to incorporate a Near Field Communication (NFC) chip
as electronic passports do. This contactless interface brings a new attack vector for these criminals,
who might take advantage of the RFID communication to secretly steal personal information. In
this paper, we assess the security of contactless Spanish identity card against identity theft. In
particular, we evaluated the resistance of one of the contactless access protocol against brute-force
attacks and found that no defenses were incorporated. We suggest how to avoid brute-force attacks.
Furthermore, we also analyzed the pseudo-random number generator within the card, which passed
all performed tests with good results.

1. Introduction

Identity theft is defined as the theft of personal information, such as name, date of birth, etc. –
that is, any data that allows a party to fake the identity of another party [24]. Each country defines
different laws that protect their citizens from this kind of theft. For instance, the Spanish law
punishes the use of personal information to fake the identity of an individual and perform actions
on its behalf with up to three years of prison [2].

In Spain, this personal information is collected in the Spanish identification (ID) card, abbre-
viated as DNI (Documento Nacional de Identidad, in Spanish), which is issued to any Spanish
citizen. Data contained on this card is, among others, the first name, the family names, the unique
identification number of the citizen, and the birth date.

An identity theft is normally performed by an individual criminal, a terrorist, or a crime ring,
who will take advantage of the identity to commit fraud or other felonies [42]. In Spain, data
written on the DNI are enough to hire different on-line products (as telecommunication services,
mortgages, or loans). Some reports quantified a total of 4.5 million of these cases in Spain, with
an average fraud of 8000e per case [15].

Some examples of felonies performed by criminals after the theft of Spanish ID cards are re-
ported in [43]. For instance, during 2010 a Spanish male citizen repetitively stole DNIs from gym
lockers to later obtain personal information (such as tax information) and then ask for credit cards
and loans on behalf of victims. The DNI of a female citizen was stolen in Madrid subway, and
then used by a convenience marriage mafia. Another Spanish male citizen went to Italian jail for
626 days after he sold his DNI, which was later used to check-in in Italian hotels by a Napolitan
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mafia-related drug dealer.
Recently, the DNI card was updated to incorporate a Near Field Communication (NFC) chip,

as electronic passports (e-passports, for short) do [5]. NFC is a bidirectional short-range (up to 10
cm) contactless communication technology operating in the 13.56 MHz band based on the ISO-
14443 [22] and the Sony FeLiCa [25] Radio Frequency Identification (RFID) standards. NFC is
vulnerable to multiple threats such as eavesdropping, data modification (i.e., alteration, insertion,
or destruction), or relay attacks [18, 29, 40]. NFC is emerging in a wide range of applications,
from ticketing, staff identification, or physical access control, to cashless payment, to name a
few. Following this trend, to date, almost 300 different NFC-enabled phones are (or will be soon)
available at the market [34]. Hence, the eruption of NFC-enabled phones (or devices) may bring
criminals a new attack vector to these NFC-enabled ID cards, as DNI or e-passports.

In this paper, we performed an independent security assessment of the NFC-enabled DNI. In
particular, we evaluated the possibility of stealing personal information from a Spanish citizen
without his/her knowledge using NFC capabilities. Our experiments showed that, in general, the
protocols used to communicate via contactless with a DNI are secure enough and well coded.
However, we discovered that the DNI did not incorporate any mechanism to prevent (on-line)
brute-force attacks. We also proposed a defense mechanism. Our findings were communicated to
the Spanish National agency in charge of the Spanish ID card development, who acknowledged us
by taking our defense proposal into consideration for future revisions.

This paper is organized as follows. Section 2 gives some background, in particular regarding
the Spanish ID card and the ISO/IEC 14443 standard. Section 3 introduces the protocols used
to communicate with NFC-enabled DNI (namely, the Basic Access Control and the Password
Authenticated Connection Establishment protocols). Security assessment is detailed in Section 4.
Section 5 reviews the related work. Finally, Section 6 concludes the paper.

2. Background

In this section, we first review the evolution of Spanish ID card. Then, we first briefly introduce
the ISO/IEC 14443 standard [22] in which the latest version of electronic Spanish ID card relies
on.

2.1. Spanish Identity Card

The first Spanish ID card dates back to the first years after the Spanish Civil War, in 1941. On
those dates, it was issued by local governments. Ten years later and after a national decree, the first
DNI was issued to the Spanish general and dictator Francisco Franco Bahamonde. These ID cards
where issued first to persons on probation and prisoners, then to frequent male travellers (due to
their business or profession), and later to male population residing in cities with more than 100000
inhabitants. After that, it was issued to male population residing in cities within 25000 and 100000
inhabitants and then to frequent female travellers, and so on and so forth until reaching the whole
of society.

In the following years, several revisions of the DNI were proposed, sometimes adding or remov-
ing personal data (civil status, blood type, and economic status were present during first versions,
later removed). The first electronic DNI, named DNIe2.0, was issued in 2006. It incorporated
an electronic chip and several physical security elements to prevent card forging. The electronic
chip is a 32K STMicroelectronics ST19WL34. According to official documents [12], data within
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Fig. 1. (a) Front side and (b) reverse side of the Spanish contactless ID card (extracted from [13]).

the chip is divided into three different zones: a public zone, which contains the intermediate CA
certificate, Diffie-Hellman keys, and the X.509 certificate (read with no restrictions); a private
zone, which contains the signature and authentication certificates of the citizen (only accessible
through a PIN); and a security zone, which contains the citizen data (all data printed also on the
front of DNI), facial picture, and the handwritten signature image (only accessible through special
locations).

Recently, in 2015, the electronic DNI was improved by adding contactless capability into it.
This revision was named as DNIe3.0. In particular, it adds a Near Field Communication (NFC)
chip. Furthermore, it also adds new physical elements to make forging even harder. The chip is
an Infineon Technologies SLE78CLFx408AP with 400K of capacity and 8KB of RAM [13]. This
chip has successfully passed the Common Criteria EAL5+ certification. It supports several crypto-
graphic algorithms, such as RSA (through a built-in RSA library following the PKCS#1 standard
for key generation), SHA-256 hashing to validate authentication commands and certificate vali-
dation, and 3DES and AES symmetric-key algorithms. According to official documents [13], in
this case data within the chip is divided into two different zones: a public zone, which contains the
intermediate CA certificate, Diffie-Hellman keys, X.509 certificate, and the signature and authenti-
cation certificates of the citizen (read with no restrictions); and a security zone, which contains, as
before, the citizen data (all data printed also on the front of DNI), facial picture, and the citizen’s
scanned handwritten signature (only accessible through special locations). Let us remark that we
were able to access to the security zone without being in a special location, contrary to it was stated
in the official documents. All those data are divided into four different data groups. Based on our
finding, facial and handwritten signature pictures are stored in JPEG2000 format and contain no
meta-data.

2.2. ISO/IEC 14443 Standard

Spanish ID cards rely on the ISO/IEC 14443 standard [22] to communicate through NFC. ISO/IEC
14443 is a four-part international standard for contactless smartcards operating at 13.56 MHz [22].
The NFC cards, also termed as Proximity Integrated Circuit Cards (PICC) or tags, are intended to
operate up to 10 cm of a reader antenna, usually termed as Proximity Coupling Device (PCD).

ISO-14443-1 standard defines the size, physical characteristics, and environmental working
card conditions. Part 2 of the standard defines the RF power and signalling schemes. In particular,
two signalling schemes are defined (Type A and Type B). Both schemes are half duplex with a data
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rate of 106 kbps (in each direction). DNIe3.0 follows the Type-B signalling scheme. ISO-14443-3
describes initialisation and anti-collision protocols, as well as commands, responses, data frame,
and timing issues. Part 4 defines the high-level data transmission protocols. A PICC fulfilling all
parts of ISO/IEC 14443 is named IsoDep card (for instance, contactless payment cards). Apart
from specific protocol commands, the protocol defined in Part 4 is also capable of transferring
Application Protocol Data Units (APDUs) as defined in ISO/IEC 7816-4 [23] and of application
selection as defined in ISO/IEC 7816-5 [21]. In particular, DNIe3.0 uses T = 0 ISO/IEC 7816 and
T = CL ISO-14443 as transmission protocols.

3. Contactless Protocols used by DNIe3.0

This section briefly summarizes the protocols used by DNIe3.0 to communicate through the NFC
interface. In particular, we first describe the Basic Access Control protocol and then the Pass-
word Authenticated Connection Establishment protocol. Both protocols are also used in electronic
passports [7]. Furthermore, we also analyze here the entropy of their key space.

3.1. Basic Access Control Protocol

Basic Access Control (BAC) protocol was included in Document 9303 [20], promoted by the
International Civil Aviation Organization (ICAO), as a control mechanism to access to data stored
in a secure chip through an RFID interface.

BAC was designed to protect less sensitive data and, in particular, to defend against skimming
and eavesdropping threats [7]. To do so, it uses symmetric key device authentication. After a
successful mutual authentication, the parties (reader and card) agree on a session key used to
encrypt the subsequent exchange of information between these parties. The protocol uses as initial
key some parts of the Machine Readable Zone (MRZ), located at the bottom of the reverse side
of the DNIe3.0, which serves to verify physical access to the document. The necessary fields are,
namely, the serial number of the identity card, date of birth, and expiry date (both expressed in
American format, “aammdd”).

The strength of the key used to encrypt and authenticate the contactless communication is di-
rectly proportional to the strength of the MRZ-derived password, due to the use of symmetric
cryptography. Considering only the fields used in DNIe3.0, the maximum entropy of the MRZ can
be estimated as follows:

• Serial number: this field is composed of 3 alphabetic characters plus 6 digits. Assuming
random characters and digits, this corresponds to log2(263 + 106) = 34.0329 bits.

• Date of birth: assuming a maximum age of 100, this corresponds to log2(100 · 365.25) =
15.1566 bits. Open-source intelligence (OSINT) techniques may reduce this value up to zero.

• Expiry date: the DNIe3.0 can have different expiry dates, depending on the age of the individ-
ual. Namely, the expiry date is 5 years from the issue date when the age is lower than 30 years,
or 10 years otherwise. There is no expiry date when the age of the individual is greater than 70
years. Assuming validity period of 10 years, this corresponds to log2(10 · 365.25) = 11.8347
bits. We use this ballpark estimate as our working hypothesis, but the model can be refined
(for instance, considering only working days).

Hence, at best, the strength of the key used by BAC is about 61 bits, which is less than the 80

4



bits recommended by both NIST and ECRYPT to protect against eavesdropping and other offline
attacks [6, 14].

3.2. Password Authenticated Connection Establishment Protocol

The Password Authenticated Connection Establishment (PACE) protocol was proposed as an alter-
native to BAC, offering excellent protection against offline attacks [11]. The PACE protocol uses a
weak password (with low entropy), verifies it, and generates cryptographically strong session keys.

In particular, the PACE protocol works as follows. First, the chip randomly chooses a number,
encrypts it with a password-derived key and sends it to the terminal. Second, both the chip and
the terminal map the random number to a specific set of parameters for asymmetric cryptography.
Third, the chip and the terminal perform a Diffie-Hellman protocol based on those parameters.
Later, the chip and terminal derive session keys, which are confirmed by exchanging and checking
the authentication tokens.

As a password-derived key, it uses a 6-digit length number termed as Card Access Number
(CAN), which is printed on the front side of the DNIe3.0. The entropy of this key is almost 20 bits
(log2 106 = 19.9316), in contrast to the random numbers used by PACE with an entropy of 128
bits.

4. Security Assessment

This section introduces our security assessment of the Spanish contactless ID card. Note that the
chip within DNIe3.0 will answer to requests with both the BAC and the PACE protocols. Since
the key entropy used by PACE protocol is much lower than the key entropy used by BAC protocol,
we focus on PACE protocol instead of BAC. Thus, we first study how DNIe3.0 behaves against a
brute-force attack on the password-derived key used by the PACE protocol.

Recall that to establish a PACE protocol connection, the chip generates a nonce of 128 bits and
sends it encrypted with the CAN to the reader. Therefore, security of the system also depends on
the properties of the pseudo-random number generator used. Hence, we also evaluate the degree
of randomness within a set of collected random numbers.

4.1. Brute Forcing Password-derived Keys

We developed an Android app1 taking AndroSmex2 as a code skeleton to perform the brute force
attack. AndroSmex provides a basic implementation of connection through PACE protocol with the
German ID card. As a hardware platform, we used a SONY Xperia Z3 Tablet Compact, which has
a 2.5GHz Qualcomm Snapdragon 801 MSM8974AC quad-core processor, 3GB RAM memory,
and a Broadcomm NFC chip.

We first measured how long it took to perfom 500 PACE protocol connection attempts. Figure 2
plots the time spent in each attempt. Our findings show that every PACE protocol connection
took, on average, 1.4509 seconds, independently of the password-derived key used. This time was
(roughly) divided as follows: 200 ms to generate and operate with random numbers, 1200 ms to
perform Diffie-Hellman protocol, and 100 ms to generate, exchange, and check the authentication
tokens.

These timing results show that even when the password-derived key used is incorrect, the imple-
1Source code is released under GPLv3 license and available at https://github.com/VictorSanchez94/DNIe3.0_brute_force_v2.
2Source code available at https://github.com/tsenger/androsmex.
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Fig. 2. Time spent in each PACE protocol connection attempt.

mentation of PACE protocol continues execution until the last step, in which authentication tokens
mismatch and then connection is closed. Thus, the current implementation of PACE protocol in
DNIe3.0 does not exfiltrate whether the password-derived key used is correct until the protocol
ends. This is technically correct and desired, since no clue is given to a brute-force attacker.

However, these results also evidence that there exists no defence implemented against on-line
brute-force attacks. Regardless of connection attempts, the execution time of the PACE protocol
remains the same. Hence, supposing a compromised Android smartphone with NFC capabilities
and assuming a DNIe3.0 continuously in NFC range, in the worst case personal data could be
stolen in near to 17 days.

This scenario is unlikely, since of course to communicate with a NFC card during 17 days with-
out any interruption (and without any notice from the owner) is almost impossible. Nonetheless,
targeted attacks may occur to specific individuals of interest. Furthermore, these attacks might
be more feasible if DNIe3.0 fingerprinting is available and the attacker can stop and resume the
brute-force attack whenever the card is at reach. We aim to further investigate this issue as future
work.

Suggested improvement: We suggest to improve the PACE protocol algorithm to defend
against on-line brute-force attacks. Thus, we envision that the revised PACE protocol may take
different times to complete, depending on sequential connection attempts. French and Belgian
electronic passports, for instance, already use this defense mechanism [5]. Consider that the exe-
cution time (in seconds) of the revised PACE protocol is given by a function f as follows:
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Fig. 3. Time spent in each PACE protocol connection attempt with a defense against brute-force
attacks (excerpt of first 50 attempts).

f(i) =


t when i ≤ 5,
max(t, 1.1i) when i ≤ 15,
15 when i > 15

where i is the sequential number of the connection attempt and t is the execution time of PACE
protocol. Note that we have arbitrarily set the connection attempt limits to 5 and 15. The specific
limits are an implementation decision.

Figure 3 plots both the execution time of PACE protocol as giving by f (solid line) and the
execution time achieved by previous experimentation (dashed line) for an excerpt of 50 connection
attempts. As observed, this little improvement would make infeasible an on-line brute-force attack
against the DNIe3.0.

We communicated our findings to the National Coinage and Stamp Factory – Royal Mint, the
Spanish National agency in charge of the development of the electronic Spanish ID card. They
acknowledged our suggestions and told us to be taken into consideration for future DNIe3.0 im-
plementation revisions.

4.2. Randomness analysis of the nonces used by PACE

The PACE authentication protocol includes single-use bit sequences, or nonces, in order to make
each communication step unique. Nonces help, among other things, to prevent replay and of-
fline attacks. Predictable random sequences can significantly weaken authentication protocols as
evinced by the attacks to the WEP wireless security protocol that predict its initialization vector
and compromise the security of a Wi-Fi connection [9, 10].
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In this section, we analyze the random nonces generated by the DNIe3.0 during the PACE pro-
tocol. As previously described in Section 2.1, the DNIe3.0 includes Infineon’s SLE78CLFX408AP
chip [13], which is used in a similar context in the German electronic passport, where its use of the
PACE protocol was certified to be in accordance with the Common Methodology for IT Security
evaluation [3, 4].

In this part of the study, we are concerned with the pseudo-random number generator in the
card, which satisfies the requirements to be considered as a class PTG.2 chip according to the
BSI (Bundesamt für Sicherheit in der Informationstechnik) recommendation AIS 31 for physical
random number generators [17]. This means the chip should include a physical source of entropy
that is later fed into a software random number generator. The output is then processed and checked
for errors and statistical deviations from randomness.

While a good certification procedure is essential, there have been examples of certified elec-
tronic ID cards with weak random number generators. For instance, the Taiwan ID card had a
good random number generation procedure, but some cards did not enforce it and, as a result, there
was a series of cards with weak keys [8]. For that reason, it is worth making additional evaluations
to discover problems early on.

In order to give an independent test of the random number generator used by the card during
the PACE protocol, we collected the nonces from a series of failed PACE connection attempts. For
each connection request, the card answers with a new challenge that includes a random number.
Using the known CAN number from the card, we were able to decode these random nonces and
abort the connection by sending a malformed message. In total, we collected 105 nonces of 16
bytes each.

We analyzed these nonces to assess their randomness and found them to be of robust against
the most common tests. In the following, we briefly describe these tests.

As preliminary test, we checked there was no repeated nonce in the 105 captured values as
expected. Each nonce has 16 bytes and a loose birthday paradox estimation gives us an expected
probability of collision of the order of 10−3 for our long capture time.

Checking the resulting sequences for randomness is more tricky. There is no way to determine
whether a finite sequence has been produced randomly or not. The bits 00 are no more or less
random than 10. There are, however, multiple statistical tests that can estimate how likely it is that
our bit sequence comes from a uniform random process [27].

From the possible testing options, we chose a few methods compatible with our (relatively
short) collection of random bits. First, we used the utility ent [41] on the binary nonces with a
result:
$ ent nonces.bin

Entropy = 7.999894 bits per byte.

Optimum compression would reduce the size

of this 1600000 byte file by 0 percent.

Chi square distribution for 1600000 samples is 234.59, and randomly

would exceed this value 75.00 percent of the times.

...

The entropy per byte is almost 8 and there is no appreciable size reduction with compression,
which is consistent with a random output. A more sensitive test is Pearson’s χ2 test, which checks
for deviations from the expected statistics of a uniform distribution [16]. These results are as well
within the expected values for a random sequence.

We also submitted the collected nonces to the FIPS 140-2 randomness tests [33] as implemented
in the utility rngtest from rng-tools [1]. The program tested blocks of 20000 bits and all the
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tests were passed (see below).

$ cat nonces.bin | rngtest

rngtest 4

Copyright (c) 2004 by Henrique de Moraes Holschuh

This is free software; see the source for copying conditions. There is NO

warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

rngtest: starting FIPS tests...

rngtest: entropy source drained

rngtest: bits received from input: 12800000

rngtest: FIPS 140-2 successes: 639

rngtest: FIPS 140-2 failures: 0

...

rngtest: Program run time: 240792 microseconds

The FIPS tests check for the expected probability of sequences of consecutive zeros and ones of
different lengths (runs) and the frequency of fixed-size bit combinations, among others, and are
designed to detect failures of a device while in operation. Our collected nonces pass the tests with
success.

We also tried a more visual test, the delayed-coordinates method [44], previously used to test
the random nonces in the PACE protocol as implemented in the German ID card [32], which indeed
shares many details with the Spanish ID card. In the delayed coordinates method, we take each
nonce together with its three predecessors and map them into a three-dimensional phase space to
look for attractors in the dynamics of the random number generator. Let n(i) be the ith nonce.
Hence, we convert it to a 128 bit positive integer and define three coordinates as:

x(i) = n(i)− n(i− 1), (1)
y(i) = n(i− 1)− n(i− 2), (2)
z(i) = n(i− 2)− n(i− 3). (3)

These coordinates define a series of points in the phase space. When the nonces that are generated
around the same time are correlated, we expect the points in the phase space to cluster in some
attractor.

Figure 4 shows the result of our experiment. The point distribution in the phase space is consis-
tent with a uniform random number generator. While this test will not necessarily show long term
correlations, when we consider it together with the previous results, it increases our confidence
that the nonces in the protocol are indeed random.

Finally, we tested the nonces with the NIST Statistical Test Suite [37], also with good results.
The limited size of our data has prevented us to perform certain additional tests. For instance, in
the NIST suite, we could not get a significant result for Maurer’s universal test [30].

To conclude, while no finite amount of testing can discard hidden correlations, nonce generation
in the chip seems to be free from obvious defects.

As final experiment, we also tested the behaviour of the DNIe3.0 just after power-up. The NFC
chip gets its power from the signal of the reading device and the card must initialize its entropy pool
every time it becomes active. With this test we want to check problems during the initialization
phase. On certain occasions, random number generators can reset to a default state or start before
gathering enough entropy and produce predictable outputs. For instance, a faulty initialization in
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(a) Delayed coordinates 3D (b) Delayed coordinates X-Y axes

(a) Delayed coordinates X-Z axes (b) Delayed coordinates Y-Z axes

Fig. 4. Delayed coordinates graph and projections to each bidimensional plane. Each coordinate
is defined from the nonces following Eq. 1. The points cover the phase space as expected for a
random distribution.
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the electronic keno machine at the Montreal casino made the numbers repeat on power-up and an
observant gambler took advantage of the failure to make more than half a million dollars [36]. To
avoid these problems, the security requirements for cryptographic modules in FIPS 140-2 include
a power-up test [33].

To test the nonces on initialization, we repeated the collection procedure with a failed PACE
request but, this time, we made just one request before turning the communication off and leaving
the card without any power. The collection is slower and thus, we only captured a total of 450
nonces where we found no repeated values. The results from ent and the FIPS tests are still
consistent with a random sequence. While there is a limited amount of data due to the large
waiting time, the initialization procedure looks adequate.

5. Related Work

Most previous existing works on the topic of NFC documents focus on electronic passports (e-
passports). In [38], general NFC security threats as skimming or eavesdropping were remarked.
Security and privacy issues of the European e-passport threats were largely detailed in [19]. Simi-
larly, the risks of adding RFID to the US e-passports were reported in [31].

A good review on security features among e-passports of different countries was given in [26].
A FPGA implementation to crack BAC keys (mainly for German and Netherlands e-passports)
was introduced in [28]. This implementation, termed as COPACOBANA, achieved a key search
speed of 228 BAC keys per second. In [35], the authors proved that it was possible to fingerprint
e-passports from different countries. As stated by the authors, fingerprinting e-passports opens the
window to the possibility of passport bomb, designed to implode when some with a e-passport of
a certain nationality comes close enough.

Regarding security assessment of e-passports, it is worth mentioning [39], where the authors
identified security weaknesses in the Australian e-passport implementation using model-checking
techniques. The low entropy problem in the password-derived key used by BAC was already
pointed out in [7], where the authors also introduced the PACE protocol as a way to overcome the
BAC protocol weaknesses.

To the best of our knowledge, we were the first to assess the security of the Spanish contactless
identity card outside the official certification process. Other works, such as [32], evaluate the
security of the German electronic contactless identity card.

6. Conclusions

In this paper, we evaluated the security of the PACE protocol as implemented in the Spanish con-
tactless ID card (DNIe3.0). The protocol uses an initial common key (the Card Access Number,
CAN) to encrypt a single-use bit sequence (nonce) generated by the card, later used to derive a
secret Diffie-Hellman key to communicate the parties. We tested the protocol against brute-force
attacks for an attacker that tries to guess the CAN and evaluated the randomness of the nonces the
card generates.

A brute force attack seems unlikely, since for the measured execution times and the entropy of
the CAN, an attacker would need to be in close proximity to the card for around 17 days. However,
we found out the current implementation has no defense mechanism to hamper repeated failed re-
quests. We suggest a simple modification that introduces a delay after the first few communication
attempts and would make any brute force attack even less likely. We commented this modification
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to the organism responsible for the implementation of the DNIe3.0, which confirmed it would be
considered in future versions.

We also checked the randomness of the nonces the card generated during the protocol. The
times involved in the protocol make it difficult to collect large sequences for exhaustive randomness
tests, but the relatively short samples we captured seem to be free from obvious correlations. The
collected sequences were submitted to different randomness test, including an entropy assessment,
the FIPS140-2 battery, and a delayed coordinates test. All these tests were successfully passed.
Finally, we tested the behaviour of the card at power-up. The random number generator seems
to produce robust sequences from the first moment and we have found no deviation from the
behaviour of the card in continuous operation.
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