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Abstract

In this paper we present a Stackelberg differential game to study the dynamic interaction
between a polluting firm and a regulator who sets pollution limits overtime. At each time,
the firm settles emissions taking into account the fine for non-compliance with the pollution
limit, and balances current costs of investments in a capital stock which allows for future
emission reductions. We derive two main results. First, we show that the optimal pollution
limit decreases as the capital stock increases, while both emissions and the level of non-
compliance decrease. Second, we find that offering fine discounts in exchange for firm’s
capital investment is socially desirable. We numerically obtain the optimal value of such
discount, which crucially depends on the severity of the fine. In the limiting scenario with
a very large severity of the fine, the optimal discount implies that no penalties are levied,
since the firm shows adequate adaptation progress through capital investment.
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1 Introduction

Pollution limits or standards are frequently used by regulators to deal with pollution problems.

A pollution standard defines the maximum allowed amount of a certain pollutant that polluting

sources, typically firms, can release. When deciding on the level of the standard, regulators

must take into consideration that firms may decide to exceed the limit. This may occur if firms’

expected costs of violating the limit are smaller than firms’ compliance costs. Then, the choice

of the appropriate level of the standard must account for monitoring and enforcement elements

(basically inspection frequencies and fines for non-compliance), which crucially affect firms’

induced pollution levels and the resulting environmental damages.

The analysis of pollution standard setting and compliance issues has been traditionally stud-

ied in static contexts. Several authors have explored the relationship between regulatory strin-

gency and monitoring and enforcement strategies under alternative modeling structures in one

period models, see, for example, Downing and Watson (1974), Harford (1978), Veljanovski

(1984), Kambhu (1989), Jones (1989), Jones and Scotchmer (1990), Keeler (1995), or Arguedas

(2008, 2013).

However, the static approach is of limited applicability when one seeks to explain the pro-

gressive implementation of more stringent limits overtime, as well as firms’ progressive adap-

tation to harsher regulatory environments. A dynamic framework that addresses this adaptation

process while at the same time allows firms to exceed the emission limits (while paying the

corresponding fines) is crucial in addressing these issues. But, to our knowledge, this problem

has not been explored before, as we show in the literature discussion later on. This is, therefore,

the purpose of the present paper.



In particular, we aim to answer two research questions. The first question is whether pol-

lution limits should be soft in the beginning and progressively tighter while the firm adapts its

production technology. Our second question is whether it would be socially beneficial that regu-

lators offer penalty discounts in exchange for environmentally-friendly actions to help facilities

to better adequate to more stringent regulations.

Our analysis is motivated by some common characteristics of many regulatory programs

dealing with pollution. For example, the US National Pollutant Discharge Elimination System

(NPDES) permit program under the Clean Water Act contains a number of programs and initia-

tives which require polluting facilities to obtain permits to release specific amounts of pollution

into waters of the US.1 Among others, the Multi-Sector General Permit for stormwater dis-

charges associated with industrial activity and the Vessel General Permit for Vessel Discharges

have been progressively tightened since their respective initial issuances.2

An example about fine discounts can be found in the EPA’s Audit Policy, which lists some

conditions for enforcement relief with the NPDES programs. In particular, fines for non-

compliance can be reduced up to 100% of the nongravity-based part and up to 75% of the

gravity-based component if firms promptly disclose and correct any discovered violations as a

result of a self-audit procedure.3 These practices generally involve large investment efforts in

compliance-promoting activities, including information costs such as training personnel about

regulatory requirements. Overtime, the likelihood of violations decreases because facilities are

1Consult the Environmental Protection Agency (EPA)’s webpage for additional information
(http://cfpub.epa.gov/npdes/).

2The first one has been progressively tightened in 2000, 2008 and 2013, since the initial issuance on September
29, 1995 (http://cfpub.epa.gov/npdes/home.cfm?program id=6 for details). The second one was issued initially in
2008, and then reissued in 2013 (http://cfpub.epa.gov/npdes/home.cfm?program id=350).

3Incentives for Self-Policing: Discovery, Disclosure, Correction and Prevention of Violations − Final Policy
Statement, 60 Fed. Reg. 66,706 (December 22, 1995), revised on April 11, 2000.
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able to identify and correct problems before they become violations, see Stafford (2005).

We model the dynamic interaction between a representative polluting firm and a regulator

by means of a differential game played à la Stackelberg. Emissions are considered as an input

to produce a consumption good. The regulator sets the pollution standard overtime, while the

firm settles emissions and invests to enlarge a capital stock (which is a substitute for emissions

in the production of output). At each point in time, the firm can either comply with the stan-

dard or pollute above the standard and then be subject to a fine for non-compliance. The firm

faces a double dilemma. On the one hand, the firm balances the productive gains from higher

emissions with the associated increase in the fine for non-compliance. On the other hand, the

firm balances the current cost of investment in the capital stock with the future fine reductions

from lower emissions. At each point in time the level of this capital stock determines the regula-

tor’s decision on the pollution standard. We assume that the firm seeks to maximize discounted

profits throughout an infinite time horizon. By contrast, the regulator is concerned about so-

cial welfare, that is, firm’s profits net of environmental damages and the administrative costs of

imposing sanctions.

To answer our first research question, we consider a base model where the fine is quadratic

in the degree of non-compliance and penalty discounts are not allowed. Assuming that the

initial capital stock is small, we analytically show that the pollution standard decreases while

the capital stock increases overtime. Interestingly, the induced emissions and the induced degree

of non-compliance decrease as well. Note that the feature that a tighter standard induces a lower

rate of non-compliance cannot be explained in a static setting (in there, a tighter standard always

predicts a larger gap between emissions and the standard). However, in a dynamic context

the firm can progressively adapt to a stricter standard by means of capital investment. Within
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this base model, we also perform a comparative statics exercise with respect to the severity of

the fine (that is, for a given degree of non-compliance, we analyze variations in the resulting

penalty). We find that the severity of the fine must be kept bounded to reach maximum social

welfare.

Next, we extend our base model to explore the consequences of offering discounts in the

fine for non-compliance in exchange for the firm’s investments in capital, which is the purpose

of our second research question. Technically, we do so by introducing the concept of effective

standard, which is the pollution level above which the fine for non-compliance is truly imposed.

This effective standard is laxer than the announced standard if the firm invests to increase the

capital stock. The level of non-compliance is now a broader concept, which depends on the

stock of capital, the level of emissions, the capital investment and the pollution limit. In this ex-

tended scenario, we confirm similar patterns for the evolution of the relevant variables as those

found in the base model, that is, increasing capital stock and decreasing standards, emissions

and degree of non-compliance. But most importantly, this extended model allows us to find that

offering fine discounts in exchange for firm’s capital investment is socially desirable. We indeed

obtain the value of the discount that maximizes social welfare numerically. In contrast with the

base model, the severity of the fine does not need to be kept bounded to reach maximum social

welfare when penalty discounts are allowed. In fact, for large fine discounts, the severity of the

fine that maximizes social welfare is infinitely high. This limiting situation induces full compli-

ance with the effective pollution limit, since the firm is threatened by a very large punishment

if it pollutes above that limit. Emissions are still above the pollution limit imposed by the regu-

lator, but due to fine discounts no penalties are levied. Indeed, the corresponding social welfare
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level obtained in this limiting situation is very close to the first-best level.4

In the dynamic context, the endogenous determination of the regulatory standards and the

monitoring and enforcement issues have been considered separately in the literature.5 On the

one hand, all the papers that deal with standard setting assume perfect compliance and, there-

fore, abstract from modeling inspection frequencies and fines for non-compliance. On the other

hand, all the papers that deal with dynamic enforcement do so assuming exogenous (or constant

overtime) regulatory regimes. We now elaborate on these two related strands of the literature.

Regarding the literature that considers dynamic problems of regulatory standard setting as-

suming perfect compliance, Beavis and Dobbs (1986) is probably the first study of this kind.

There, the environmental authority selects the pollution limit and the time at which that limit

comes into force. Fines for non-compliance are not specifically modelled, since it is assumed

that the firm complies with the standard once the regulatory period starts. Our paper is similar to

Beavis and Dobbs (1986) in two respects. First, we share a similar spirit, which calls for the so-

cial convenience of polluters’ gradual adaptation to new environmental regulations. Second, we

do not consider cumulative pollution effects, as theirs. Cases that we have in mind are those of

degradable pollution, assimilative waste or flow pollutants, in which per-period environmental

4In a static framework, Arguedas (2013) finds three critical conditions for the social convenience of penalty
reductions: (i) administrative costs of sanctioning, (ii) imperfect compliance, and (iii) fines progressive in the
degree of non-compliance. We confirm that such penalty discounts are socially convenient in a dynamic setting as
well. Arguedas (2013) does not calculate the value of the optimal discount. In contrast, we numerically obtain that
value, and we find that it crucially depends on the severity of the fine.

5In the case of tradable permits, only Innes (2003), Stranlund et al. (2005) and Lappi (2013) jointly consider
enforcement issues and intertemporal permit trading, although neither of them jointly considers the endogeneity of
the permits and the possibility of non-compliance with these permits overtime. Both Innes (2003) and Stranlund
et al. (2005) constrain the analysis to enforcement policies that induce full compliance, such that the former
assumes an enforcement strategy which consists only of a costly penalty for permit violations, while the second
considers the reporting and monitoring functions of enforcement altogether. Lappi (2013) allows for the possibility
of non-compliance, assuming that the auditing probability is subjective and, therefore, compliance decisions are
made according to the firms’ beliefs about that probability. However, emission permits are also exogenous in that
setting.
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damages are mainly affected by per-period pollution.

However, the main difference with Beavis and Dobbs (1986) is that we model a more re-

alistic progressive tightening of the standard, which induces a decrease in the degree of non-

compliance overtime. Beavis and Dobbs (1986) only consider a first period of no regulation

where compliance is not an issue, and a second period of full compliance with the regulation.

This difference allows us to explain the progressive decrease in non-compliance levels, even

under more stringent pollution limits, a result that cannot be explained in the context of Beavis

and Dobbs (1986).

Some extensions of pollution standards setting in dynamic contexts include uncertainty

about the exact pollution limit and the time at which the regulatory period starts (Hartl, 1992),

persistent pollution (Conrad, 1992, Falk and Mendelsohn, 1993) or incentive-compatibility is-

sues (Benford, 1998) among others. Two distinctive features of all these studies versus the

present paper are that (i) polluters are assumed to comply with pollution limits, and the enforce-

ment aspects of the policy are absent; and (ii) they all consider cumulative pollution effects.

Regarding the literature on dynamic enforcement, relevant references are Harrington (1988),

Harford and Harrington (1991), Raymond (1999) and Friesen (2003). A common feature of all

these studies is the specific modelling of monitoring decisions. There, budget constrained reg-

ulators distribute inspections in response to compliance information, thus prompting increased

compliance. However, in all these studies firms are assumed to undertake discrete decisions

whether to comply or to violate a given regulation, and then be moved to the bad group in

the case of non-compliance. Therefore, the progressive tightening of the regulations cannot be

explained in these models either.

An extensive number of works in the literature suggests that fines for non-compliance should
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be bounded. Our paper also fits with this literature showing the conditions under which the fine

which maximizes social welfare is bounded. Besides the above mentioned papers that include

the possibility of targeting enforcement in dynamic settings, the literature gives alternative jus-

tifications for such a conclusion. Examples include self-reporting of emission levels (Livernois

and Mckenna 1999), penalty evasion (Kambhu 1989), possible inverse relationships between

fines and conviction probabilities (Andreoni 1991), marginal deterrence (Shavell 1992), spe-

cific versus general enforcement (Shavell 1991), hierarchical governments (Saha and Poole

2000; Decker 2007), regulatory dealing (Heyes and Rickman 1999), or others.

Finally, our paper is also related to the literature that analyzes the incentives set by different

policy measures for investing in greener technologies, see Jaffe et al. (2003) or Requate (2005)

for detailed overviews. The first works within this literature are those of Downing and White

(1986) and Milliman and Prince (1989), who show that taxes and auctioned permits generally

provide the largest innovation and adoption incentives. Later studies analyze the consequences

of partial diffusion of new technologies (Requate and Unold, 2003), imperfect competition

in the supply of abatement technology (Maia and Sinclair-Desgagné, 2005), uncertainty with

regards to abatement costs or permit prices (Zhao, 2003 and Insley, 2003), uncertainty with

regards to regime changes (Nishide and Nomi, 2009), international competition (Feenstra et al.,

2001), induced technological progress (Krysiak, 2011), etc.

The remainder of the paper is organized as follows. In section 2 we present the base model,

where the fine depends only on the degree of non-compliance. In section 3, we present the

characteristics of the optimal policy in the base model. In section 4, we extend the model to

allow for fine discounts. In section 5, we discuss on the possiblity of over-compliance in our

setting. We conclude in Section 6. All the proofs are in the Appendix.
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2 The base model

A representative firm produces a consumption good with capital and emissions as inputs.6 Let

Y (t), K(t), E(t) respectively denote the levels of production, capital and emissions of the

facility at time t. For mathematical convenience we assume that the production function is

linear quadratic, as follows:

Y (K(t), E(t)) = K(t) + σE(t)− [K(t) + σE(t)]2

2
. (1)

Note that this is a concave function with a constant marginal rate of technical substitution

between emissions and capital given by σ > 0.

The flow of emissions is a decision variable of the firm, while capital is accumulated over

time according to the investment decision, I (t), such that

K̇ (t) = I (t)− δK (t) , K(0) = k0, (2)

where δ > 0 is the rate of depreciation of capital and k0 ≥ 0 is the level of capital at t = 0.

At each time t, investment costs are a quadratic function of the investment level, given by

C(I(t)) = cI2(t)/2, with c > 0.

From the point of view of the firm, capital accumulation is costly while emissions are free in

the absence of any regulation. However, instantaneous emissions cause environmental damages,

given by the quadratic expression D(E(t)) = d(E(t))2/2, with d > 0. 7

We assume that an environmentally concerned regulator wants to make the firm (partially)

responsible for the environmental damages caused. The regulator imposes an emission tar-

6Copeland and Taylor (1994) and some other papers cited therein also consider emissions as an input in the
production process.

7As mentioned in the Introduction, in this paper we do not consider cumulative pollution effects.
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get or pollution limit which can vary across time, L(t). At each time t, the firm faces a fine

which depends on the level of non-compliance with the regulation, given by N(E(t), L(t)) =

E(t)− L(t), as long as E(t) > L(t). We assume the fine to be quadratic in the degree of non-

compliance, that is, F (E (t) , L (t)) = f [E (t) − L (t)]2/2, or zero under compliance, where

f ≥ d measures the severity of the fine.8

One possible interpretation for the fine is to consider that the firm is risk neutral and the

fine is actually an expected fine, which embeds the sanction itself times the probability of being

discovered and penalized. The convex specification of the fine well reflects the fact that firms

are more likely caught and punished when the degree of non-compliance is large than when it is

small. In particular, it captures the feature that the marginal (expected) fine for an infinitesimal

violation is negligible. We depart from this latter assumption in Section 5.9

The specific level of the standard upon which the firm can be penalized is variable through

time, as well as the firm’s decisions on emissions. This implies that the amount of the fine also

varies, since it depends on the degree of non-compliance. However, we assume that the specific

shape for the fine is time-invariant. In particular, this implies that the severity of the fine, f , is

exogenous in the model. However, later on in Sections 3 and 4 we perform several comparative

statics exercises to obtain the desirable level for this parameter from the regulator and the firm

viewpoints.

Apart from tractability considerations, the reason for this modeling is that we believe that in

practice the general structure of the fines is less flexible than the level of the standard itself. As

mentioned in the Introduction, the different permit programs under the Clean Water Act contain

8The assumption f ≥ d allows us to concentrate on the subset of most intuitive results. In particular, this
assumption ensures a non-negative optimal standard.

9For tractability reasons, we abstract from specifically modeling monitoring issues.
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specific timings for the progressive tightening of the standards. However, the general structure

of the sanctions is common to all the programs.10 Thus, from the perspective of the design of

a particular permit program, there is flexibility to change standards through time, although the

nature of the sanctions cannot be varied within that program itself.

Following the standard literature on pollution regulation, we consider a differential game

played à la Stackelberg in feedback strategies, where the regulator is the leader and the firm

is the follower. We assume that the regulator has a stagewise first-mover advantage, i.e. an

instantaneous advantage at each time. This type of solution, denoted as stagewise feedback

Stackelberg solution following the terminology in Başar and Olsder (1982), is commonly used

in the literature (see, for example, Dockner et al., 2000, Long, 2010, and Haurie et al., 2012).

As it is usual for this type of differential games with an infinite time horizon, we assume that

the agents (the firm and the regulator) employ stationary strategies, i.e, their strategies and

value functions do not explicitly depend on time, but exclusively on the capital stock (see, for

example, Dockner et al., 2000).

An alternative approach is to find the global Stackelberg solution, under which the leader

selects and announces his strategy at time zero which gives him a global first-mover advantage

(see Dockner et al. (2000)). Long (2010) provides some examples to illustrate that the leader

attains a higher payoff under the global Stackelberg solution (when the leader is restricted to

linear stationary strategies) than under the stagewise feedback Stackelberg solution. However,

we consider that the stagewise feedback Stackelberg solution is more appropriate in our con-

text, for two main reasons. The first reason is that the global Stackelberg solution requires

10Consult the Criminal Provisions of the Clean Water Act in the EPA webpage
(http://www2.epa.gov/enforcement/criminal-provisions-clean-water-act) for more information on this issue.
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commitment for the leader to follow the announced strategy throughout the time horizon. If this

commitment is credible, then the global Stackelberg solution gives the leader a mechanism to

influence the follower’s valuation of the state variable. However, as pointed out in the literature

(see, for example, Dockner et al. (2000), Haurie et al. (2012)) this commitment could not be

always credible.

The second reason is that we consider a model of a representative firm, that is, a firm that

represents a large number of firms that are subject to the same regulation.11 In this context,

a single firm is too small to recognize that its investment in “its own” capital stock would

affect the “aggregate” capital stock,12 and, hence, future values of the announced pollution

limit. Therefore, the mechanism through which the leader influences the firm’s valuation of the

capital stock does not operate.

To characterize the stagewise feedback Stackelberg solution, the firm, who acts as the Stack-

elberg follower, chooses emissions and investment in order to maximize the present value of

profits over an infinite time horizon, taking into account the time evolution of the capital stock.

Instantaneous profits are given by the income from production, minus the investment costs and

the fine for non-compliance. Considering the consumption good as the numéraire, the dynamic

11An example of the use of the stagewise feedback Stackelberg solution for the case of a continuum of followers
can be found in Long (2010, page 217).

12Considering a continuum of firms defined over the unit interval, the firm’s capital stock and the aggregate
capital stock coincide.
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maximization problem for the firm is the following:13

max
I,E

∫ ∞
0

[Y (K,E)− C(I)− F (E,L)] e−ρtdt

s.t.: K̇ = I − δK, K(0) = k0, (3)

where ρ > 0 is the discount factor.

The regulator acts as a Stackelberg leader and decides upon the optimal pollution limit rule,

L(K), taking into account the firm’s optimal response to the policy, Î(K;L) and Ê(K;L) (i.e.,

the investment and emissions reaction functions that solve problem (3) as functions of the state

variable, K, and the pollution limit, L, settled by the regulator). The regulator is concerned

about the firm’s profits, the environmental damages and the social cost of sanctioning. We

define the latter as a proportion h ∈ (0, 1) of the fine for non-compliance, which reflects the

existence of positive social costs associated with imposing penalties, such as administrative

costs of court processes, citizens’ discomfort with law transgressions, etc.14

The dynamic maximization problem for the regulator is then the following:

max
L

∫ ∞
0

[
Y (K, Ê(K;L))−C(Î(K;L))−D(Ê(K;L))−hF (Ê(K;L), L)

]
e−ρtdt

s.t.: K̇ = Î(K;L)− δK, K(0) = k0. (4)

Once the optimal pollution limit policy is determined, the corresponding optimal policies

for capital investment and emissions, as well as the optimal time-path of the capital stock can

be obtained. All the characteristics of the solution are analyzed in the following section.

13The time argument is omitted here and henceforth when no confusion can arise. As a general principle,
upper-case letters denote time-dependent (either state or control) variables, while lower-case letters denote time-
independent parameters.

14We assume that the administrative costs of imposing sanctions are increasing in the level of non-compliance.
Sanctioning costs may increase with this level (and eventually, with the level of the fine) since individuals can
strongly resist to the imposition of larger fines, engage in avoidance activities,etc., see Polinsky and Shavell (1992).
Stranlund (2007) or Arguedas (2008, 2013) also consider sanctioning costs dependent on the level of the fines.
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3 The optimal solution in the base model

In this section, we characterize the optimal policy that solves problem (4) and the corresponding

optimal policies for emissions and investments. From these, the optimal time-path of the capital

stock can be computed. The regulator fixes the pollution limit, L(K), knowing the best-reaction

functions of the firm. The firm’s best-reaction function for emissions is positively related with

the emission limit. Interestingly, the firm’s best-reaction function for investment in this base

model does not directly depend on the pollution limit set by the regulator (see (28) in the

Appendix). Therefore, the accumulation of capital is unaffected by the decision taken by the

regulator, who in consequence behaves as a static player.

The following proposition presents the characteristics of the optimal policy in the base

model (all the proofs are in the Appendix). In view of the linear-quadratic structure of the

problem we conjecture quadratic value functions leading to optimal linear strategies.15

Proposition 1 In the base model, the optimal pollution limit strategy is given by:16

L∗b(K) = L∗b0 (1−K), L∗b0 =
σ(f + hσ2 − d)

Ψ
> 0, (5)

where Ψ = f(d + σ2) + hσ4; the induced optimal emissions and capital investment strategies

15For tractability, in this model and also in the extended model presented in the following section we substitute
the piecewise fine by the quadratic expression F (E,L) = f [E − L]2/2, both under non-compliance and over-
compliance. This assumption artificially rules out all the solutions that imply over-compliance, since their opposed
solutions with non-compliance lead to the same penalty but higher production. However this is not problematic if
(as we will prove) we find strict non-compliance along the optimal trajectory at any time. That being true, perfect
compliance is never optimal under this artificial specification. Under the real piecewise fine, over-compliance
would imply the same (null) penalty but lower production, and hence it could not be optimal either. In consequence
the optimal solution obtained under the artificial specification of the fine coincides with the optimal solution for the
real piecewise fine. In Section 5, we discuss on the possibility of over-compliance with alternative penalty-subsidy
schemes.

16Superscript b stands for base model.
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are:

E∗b(K) = E∗b0 (1−K), E∗b0 =
σ(f + hσ2)

Ψ
> 0, (6)

I∗b(K) = I∗b0 + I∗b1 K, I∗b0 =
bbF
c
, I∗b1 =

abF
c
, (7)

where

abF =
c(ρ+ 2δ)−

√
∆b

2
< 0, bbF =

2cd2f(f + σ2)

(cρ+
√

∆b)Ψ2
> 0, (8)

∆b = c2(ρ+ 2δ)2+
4cd2f(f + σ2)

Ψ2
; (9)

and the optimal time-path of the capital stock is given by:

Kb(t) = (k0 − K̄b)eθ
bt + K̄b, (10)

where the steady-state value of the capital stock and the speed of convergence towards this

value are respectively given by

K̄b =
d2f(f + σ2)

d2f(f + σ2) + cδ(δ + ρ)Ψ2
∈ (0, 1), θb =

cρ−
√

∆b

2c
< 0. (11)

The optimal policy for the pollution limit, given by expression (5), is inversely related to

the stock of capital, which is characterized in (10). If initially the stock of capital is small (k0 <

K̄b), then the stock of capital increases towards its long-run value from below.17 Therefore, the

regulator fixes a lax emission limit at the beginning, and this limit becomes more stringent over

time as the capital grows. The pollution standard converges towards its steady-state value, L̄b,

17This is the interesting case, in which the firm faces the dilemma between adaptation through capital investment
or paying the fine for non-compliance. The alternative case where k0 > K̄b would lead the firm to destroy capital
along the optimal trajectory.
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which is given by the following expression:

L̄b =
σ(f + hσ2 − d)

(
1− K̄b

)
Ψ

=
cδ(δ + ρ)σ(f + hσ2 − d)Ψ

d2f(f + σ2) + cδ(δ + ρ)Ψ2
. (12)

From expression (5), and since Kb(t) ≤ K̄b < 1, we can infer that the standard is always

positive (recall that we have assumed that f ≥ d).

Correspondingly, both the optimal emissions and capital investment policies characterized

in (6) and (7) are also inversely related to the capital stock. Therefore, provided k0 < K̄b, both

the optimal emissions and capital investment decrease to their steady-state values, Ēb and Īb,

which are the following:

Ēb =
σ(f + hσ2)

(
1− K̄b

)
Ψ

=
cδ(δ + ρ)σ(f + hσ2)Ψ

d2f(f + σ2) + cδ(δ + ρ)Ψ2
, (13)

Īb = δK̄b =
δd2f(f + σ2)

d2f(f + σ2) + cδ(δ + ρ)Ψ2
. (14)

The optimal pollution limit decreases over time, as well as the associated degree of non-

compliance. The reason is that the firm progressively adapts to more stringent standards through

capital investment and, therefore, the induced emissions are closer to the required limits, even

if those limits have become more stringent. This can be easily seen substracting (5) from (6) ,

which results in:

E∗b(K)− L∗b(K) = (1−K)
σd

f(d+ σ2) + hσ4
. (15)

The optimal degree of non-compliance in the long run converges to a positive value, given

by the combination of expressions (12) and (13), as follows:

Ēb − L̄b =
cδ(δ + ρ)σdΨ

d2f(f + σ2) + cδ(δ + ρ)Ψ2
. (16)

Finally, it is easy to prove that D(E∗b(K)) − f(E∗b(K) − L∗b(K))2/2 > 0 if and only if
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df − (f + hσ2)2 < 0. Therefore, whenever f ≥ d, the fine for non-compliance does not exceed

environmental damages, no matter how severe the fine is (i.e., how large f is).

We now compare optimal emissions, investment and capital time-paths under the optimal

policy characterized in Proposition 1 with the corresponding paths under no regulation and the

first-best scenario. In the scenario of no regulation, the firm does not have to comply with any

pollution limit. Therefore, the maximization problem of the firm in this case simply reads:

max
I,E

∫ ∞
0

[Y (K,E)− C(I)] e−ρtdt

s.t.: K̇ = I − δK, K(0) = k0. (17)

The solution is denoted as (ENR, INR, KNR), where the superscript stands for the no-regulation

scenario, and is given in (30) in the Appendix. Under no regulation, the firm does not have any

incentives to invest in capital. Then, the optimal capital stock depreciates until zero while the

emissions increase towards the long-run value 1/σ (the inverse of the marginal rate of substitu-

tion between emissions and capital).

On the other hand, the first-best solution arises when the firm fully accounts for the environ-

mental damages in its optimization problem. This solution is defined by the optimal investment

and emission policies that maximize the difference between the value of production and the sum

of investment costs and environmental damages, as follows:

max
I,E

∫ ∞
0

[Y (K,E)− C(I)−D(E)] e−ρtdt

s.t.: K̇ = I − δK, K(0) = k0. (18)

The solution is denoted as (EFB, IFB, KFB), where the superscript stands for the first-best sce-

nario, and is given in (31) and (32) in the Appendix. In the first-best solution, if the initial
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capital stock is small the investment effort is initially strong and, as the optimal capital stock

increases towards its long-run value, investments are reduced to the amount strictly necessary

to replace the depleted capital. Correspondingly, emissions decrease to the steady-state value.

The following proposition shows that the optimal emissions and capital accumulation time-

paths associated with the optimal policy characterized in Proposition 1 evolve between the paths

in the two extreme scenarios presented in (17) and (18) , for all t, while it is not necessarily true

that capital investment levels under the optimal policy are lower than those under the first-best

scenario for all t.18

Proposition 2 Assuming f ≥ d, the steady-state values and optimal paths in the base model

can be related to the no regulation and the first-best outcomes as follows:19

(i) Capital stock:

K̄FB > K̄b > 0, and KFB(t) > Kb(t) > KNR(t) for all t > 0.

(ii) Investment:

ĪFB > Īb > 0, although it is not necessarily true that IFB(t) > Ib(t) for all t ≥ 0. In the

particular case where k0 = 0, IFB(0) > Ib(0) > 0.

(iii) Emissions:

ĒFB < Ēb < 1/σ and EFB(t) < Eb(t) < ENR(t) for all t > 0.

18In the particular case with h = 0, the regulator could induce the firm to act as in the first-best scenario, if the
severity of the fine were f = d, which then implies L∗b(K) = 0 at any time. Note that under this strict liability
specification, the firm’s maximization problem is identical to the first-best maximization problem. This particular
case is out of the scope of this paper.

19Ki(t), Ei(t), Ii(t) refer to the optimal capital stock, emissions and investment time paths for the different
scenarios, i ∈ {NR,FB, b}.
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We are now interested in performing a comparative statics exercise about the effect of the

severity of the fine, f , on the optimal policy characterized in Proposition 1. In particular, we

want to analyze the consequences of a rise in f on the long-run values of emissions, the capital

stock, the pollution limit and the degree of non-compliance. Remember that the severity of the

fine is not a regulator’s decision variable, but a given parameter which determines the final fine

the firm has to face in case of non-compliance, as well as the social costs born by the regulator.

In consequence, the outcome of the optimal policy characterized in Proposition 1 is clearly

influenced by this parameter.

Starting at a low level of f , an increase in f results in a greater capital stock, lower emissions

and a better compliance, while the effect on the pollution limit is ambiguous. However, if the

social cost per unit of the fine is not too large, these effects are reversed at certain values of f ,

except for the degree of non-compliance, which decreases monotonically with f . In particular,

increases in f above a certain value f̂ bL, result in a loosening of the pollution limit. Thus, from

this value on, the severity of the fine and the pollution limit are substitute instruments in the

regulatory problem. The following proposition summarizes this interesting finding.

Proposition 3 The effect of a more severe penalty, characterized by a higher value of parameter

f , over steady-state values of the more relevant variables of the model can be summarized as:20

i) If 0 < h < hmax ≡ d+σ2

2σ2 , then there exist a finite f̂ bK and f̂ bE such that:

(K̄b)f , (Ī
b)f , |θb|f

{
> 0 if f ∈ [0, f̂ bK),

< 0 if f > f̂ bK ,
(Ēb)f

{
< 0 if f ∈ [0, f̂ bE),

> 0 if f > f̂ bE,

0 < f̂ bK ≡
hσ4

d+ σ2(1− 2h)
< f̂ bE. (19)

20The subscript f denotes partial derivative with respect to f .
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ii) If 2d
2d+σ2

d+σ2

2σ2 ≡ hmin < h < hmax ≡ d+σ2

2σ2 , then:

There exists a f̂ bL ≥ 0 such that (L̄b)f > 0 for any f > f̂ bL.

Furthermore, max
{
d, f̂ bL

}
< f̂ bK < f̂ bE.

iii) (Ēb − L̄b)f < 0, for any h > 0, f ≥ 0.
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Figure 1: K̄b, Ēb w.r.t. f (left); L̄b, Ēb − L̄b w.r.t. f (right)

The analytical results in Proposition 3 can be explained with the help of Figure 1. For the

numerical illustration, here and hencefoth, the parameters values are:

c = d = 1, ρ = 0.05, δ = 0.15, σ = 2, k0 = 0, h = 0.3. (20)

Figure 1 illustrates21 the relationship between the severity of the fine (i.e., the value of f , in the

horizontal axes) and the long-run values of the capital stock, emissions, the pollution limit and

the degree of non-compliance (in the vertical axes), for h ∈ (hmin, hmax).
22 For low values of f ,

an increase in this parameter is associated with higher capital and lower emissions in the long

21Capital and emissions are measured respectively on the left and right vertical axes of Figure 1 (left), while the
pollution limit and the degree of noncompliance are measured, respectively, on the left and right vertical axes of
Figure 1 (right).

22For this specification h ∈ (hmin, hmax) = (0.2083, 0.625).
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run. Moreover, the speed of convergence of these variables towards their steady-state values is

also increased. However, the effect of a more severe penalty on these variables is reversed for

a certain value of f . Thus, further increases in f above f̂ bK will decrease the capital stock, and

above f̂ bE will increase the emissions in the long run, see Figure 1 (left). Correspondingly, as

shown in Figure 1 (right), for this example23 an increase of f below f̂ bL tightens the emission

limit, although in any case an increase in the severity of the fine above f̂ bL will lead to a laxer

emission limit in the long run.24 Thus, for values of the fine above f̂ bL, the pollution limit and the

severity of the fine are substitutes, while in this example they are complementary instruments for

values of f below this bound. Finally, the degree of non-compliance decreases monotonically

with the severity of the fine.

Note that the effect of a higher f on the evolution of the variables over time is the same

as that at the steady state, with some exceptions: the effect of a higher f on emissions at a

particular time t is ambiguous in the interval
(
f̂ bK , f̂

b
E

)
; the corresponding effect on the optimal

pollution limit at time t is ambiguous in the interval
(
f̂ bL, f̂

b
K

)
; and, finally, the effect of a higher

f on the degree of non-compliance at time t is ambiguous for f > f̂ bK .

The next question is to analyze the effect of a more severe fine on the accumulated profits of

the firm and, more importantly, on the accumulated social welfare. Due to its analytical com-

plexity, we rely on a numerical simulation, which is robust to changes in the parameters values.

Here and in the next section, a numerical result is robust when it is valid for the parameters

values considered in (20), but also after a variation in any one of the parameters keeping all

23For f ∈ [0, f̂ bL), and for the vast majority of the values for h, L̄b decreases monotonously with f . However,
for h close to hmin, L̄b either always increases or it increases within a first period and decreases henceforth.

24In the example, f̂ bL < d, although for greater values of h (for example h = 0.5), f̂ bL > d, and L̄b would be
U-shaped within the interval we are interested in, that is, f ∈ [d,∞).
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others unchanged. Parameters changes analyzed are:

c, d∈{0.8, 1.2}, ρ∈{0.04, 0.07}, δ∈{0.1, 0.2}, σ∈{1.5, 2.5}, h∈{0.21, 0.4}, k0 = 0.5. (21)

Figure 2 shows the relationship between the value function of the firm, V b
F (k0), and the

social welfare, V b
R (k0), with respect to the severity of the fine, f .
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Figure 2: V b
R (k0), V

b
F (k0) w.r.t. f

We first observe that social welfare is improved and firm’s profits lessens when moving from

no regulation (f = 0) to a regulatory scenario in which the firm is marginally penalized when

polluting above the pollution standard specified by the regulator. But the effect of successive

increments in the severity of the fine is not monotonous. Firm’s profits reach a minimum at

f̂ bK , which coincides with the value of f for which the firm’s capital investment is maximum.

Focusing on social welfare, we also observe that it improves with the severity of the fine up to

a maximum, f̂ b, which lays not only to the right of f̂ bK , but it is also greater than f̂ bE .25

Our interpretation of this non-monotonic effect of the severity of the fine f on firm’s profits

and social welfare is centered on the different valuation of non-compliance by the firm and

25The parameter values presented in (20) result in f̂ bL = 0.18223 < f̂ bK = 1.84615 < f̂ bE = 2.6723 < f̂ b =

2.73391. The numerical result f̂ b > f̂ bK is robust to parameter changes, as long as h ∈ (hmin, hmax).
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the regulator. Since h ∈ (0, 1) , a more severe penalty affects the firm more strongly than the

regulator. In consequence, when the severity of the fine is low, a more severe penalty will push

the firm to better comply with the environmental standard, increasing capital investments and

reducing emissions. This will reduce firm’s profits, but will increase society’s welfare, which

bears a lower damage from pollution. Nevertheless, from the viewpoint of the regulator (less

concerned on compliance than the firm), an excessively severe penalty might eventually lead

the firm to focus too much on compliance and too little on production. Hence, the regulator

would decide a laxer standard, making it easier for the firm to comply with higher emissions

and production. Higher production will increase firm’s welfare, but the damage linked with

higher emissions will lead social welfare down.

To conclude this section, Table 1 summarizes the effects of increases in f on the long-run

values of the relevant variables of the model (the capital stock, emissions, the pollution limit,

and the degree of non-compliance) as well as on the optimal firm’s profits and social welfare,

for the values of the per-unit social cost of imposing fines such that hmin < h < hmax.

If the social cost satisfies h ∈ (0, hmin), the results presented in Table 1 are still valid.

However, since the relevant range of values for f is [d,∞), some of the non-monotonic effects

disappear. Since now f̂ bL < f̂ bK < d, increments in f always reduce the capital stock and

increase firm’s profits and the pollution limit. As h becomes smaller, f̂ bE might turn lower than

d, which implies that emissions increase monotonously with f . Likewise f̂ b decreases as h

tends to zero.26 Then for very small values of h, f̂ b might also be lower than d and a more

severe fine would unequivocally reduce social welfare.

26Numerical simulations show that as h decreases, V b
R (k0) reaches a higher maximum at a lower f̂ b, and hence

social welfare increases as the social costs associated with imposing penalties decrease.
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f < f̂ bL f̂ bL < f < f̂ bK f̂ bK < f < f̂ bE f̂ bE < f < f̂ b f > f̂ b

K̄b ↑ K̄b ↑ K̄b ↓ K̄b ↓ K̄b ↓
Ēb ↓ Ēb ↓ Ēb ↓ Ēb ↑ Ēb ↑
L̄b ↓ L̄b ↑ L̄b ↑ L̄b ↑ L̄b ↑

Ēb − L̄b ↓ Ēb − L̄b ↓ Ēb − L̄b ↓ Ēb − L̄b ↓ Ēb − L̄b ↓
V b

F (k0) ↓ V b
F (k0) ↓ V b

F (k0) ↑ V b
F (k0) ↑ V b

F (k0) ↑
V b

R (k0) ↑ V b
R (k0) ↑ V b

R (k0) ↑ V b
R (k0) ↑ V b

R (k0) ↓

Table 1: Effect of a more severe penalty for different ranges of the penalty f

4 The extended model: allowing for fine discounts

In this section, we analyze the optimal policy if the firm is not or is less penalized for polluting

above the emission limit set by the regulator as long as it invests to increase the stock of capital.

We broaden the concept of non-compliance, as follows:

N(K(t), E(t), I(t), L(t)) = E(t)− [L(t) +βK̇(t)] = E(t)− [L(t) +β(I(t)− δK(t))], (22)

where β ≥ 0, and the equation (2) has been considered.

Note that β = 0 corresponds to the base case analyzed in the previous section. Now, β > 0

allows the regulator to be more flexible with respect to the imposition of the fine and take into

account the investment efforts of the firm. In this case, the effective standard is L(t) + βK̇(t).

Therefore, a laxer effective limit is imposed if the firm invests to increase the capital stock.

The level of non-compliance now depends on the stock of capital, the level of emissions, the

capital investment and the pollution limit, i.e., N(K,E, I, L). Then again, the fine is quadratic

in the degree of non-compliance, that is, F (K,E, I, L) = f [E− (L+ β(I − δK))]2/2, or zero

under compliance.27 The fine is now a function of the gap between emissions and the effective

27Applying the same reasoning as in footnote 15, the equilibrium is characterized substituting the piecewise fine
by the quadratic expression. For this extended model we will show a positive degree of non-compliance at any
moment in time through numerical simulations.
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emission limit, L + β(I − δK). Considering this broader concept of the fine in the dynamic

maximization problem for the firm described in (3), modifies the best-response functions of the

firm.28 Now, the pollution standard chosen by the regulator does not only affect the emissions

of the firm, but it also has a direct effect on its investment decisions. A tighter pollution limit

(a lower L) induces a rise in the investment effort of the firm, and correspondingly, a higher

pollution limit discourages investment affecting the accumulation of capital. In consequence,

the regulator who fixes the optimal emission limit knowing the best-response functions chosen

by the firm in (35), is no longer a static player as in the case with β = 0.

The following proposition presents the characteristics of the optimal policy in the extended

model.

Proposition 4 In the extended model where fine discounts are allowed (i.e. β > 0), the optimal

strategies for the pollution limit, emissions and investment in capital are given by:

L∗(K) = L∗0 + L∗1K, E∗(K) = E∗0 + E∗1K, I∗(K) = I∗0 + I∗1K, (23)

with

VF(K) = aF

K2

2
+ bFK + cF, VR(K) = aR

K2

2
+ bRK + cR, (24)

being the value function of the firm and the regulator, respectively, and

L∗0 = (cd+ (bR − bF)βσ
3)
σΦ− 2hσ3Ω

Φ2
, L∗1 = −(cd+ (aF − aR)βσ

3)
σΦ− 2hσ3Ω

Φ2
,

E∗0 =
f 2βσ3(bF − bR) + Φ− cdf 2

σΦ
, E∗1 = −f

2βσ3(aR − aF) + Φ− cdf 2

σΦ
.

I∗0 =
bF

c
+
f 2βσ[cd+ (bR − bF)βσ

3]

cΦ
, I∗1 =

aF

c
− f 2βσ[cd+ (aF − aR)βσ

3]

cΦ
.

Ω = cf + (c+ fβ2)σ2 > 0, Φ = cΨ + f 2β2σ4 > 0.

28See the proof of Proposition 4 in the Appendix for the detailed expressions.
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The optimal time-path of the capital stock reads:

K(t) = (k0 − K̄)eθt + K̄, (25)

where

K̄ =
f 2β2σ4bR + f 2βσcd+ bFcΨ

f 2β2σ4(aF − aR) + f 2βσcd+ Φ(cδ − aF)
,

θ =
f 2β2σ4(aR − cδ)− f 2βσcd+ (aF − cδ)cΨ

cΦ
.

In contrast with the results presented in the previous section, no closed form solutions can be

obtained from the Riccati equations for the coefficients of the value functions. In consequence

in the subsequent analysis we will rely on numerical simulations. Now we cannot provide gen-

eral conclusions about the evolution of the different variables through time. However, for the

parameters values presented in (20), the capital stock converges towards a positive long-run

value from below, with a speed of convergence given by |θ|. The temporal evolution of the

optimal time-paths of emissions and the pollution limit are equivalent to those without fine dis-

counts. The effective pollution standard is initially laxer, and it becomes tighter over time as the

capital stock grows. Nevertheless, although the effective pollution limit becomes more strin-

gent, capital growth allows the firm to reduce the degree of non-compliance overtime. These

results are robust to the changes in parameters values collected in (21). Moreover, focusing

on the steady state, the environmental damage always surpasses the fine from non-compliance.

Again this result is robust to the same sensitivity analysis.

In what follows, we are interested in performing two exercises. The first is similar to the one

performed in the previous section: When fine discounts are allowed, is there a bounded value of

the severity of the fine for which social welfare is maximum? The second one is idiosyncratic
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of this section: Does the existence of fine discounts associated with investment in capital give

room for social welfare improvements?

We then perform a comparative statics analysis on parameter f , which measures the severity

of the fine, and parameter β, which defines to what extent the emission limit can be raised with

the capital investment of the firm. This analysis is carried out numerically, and results are robust

to the changes in the parameters values presented in (21) unless said otherwise.

We first start with the comparative statics on the severity of the fine (that is, parameter f ).

Let us recall that in the base model, (β = 0), where the pollution limit was independent of the

investment decisions, the effect of a more severe penalty was, in general, non-monotone (see

Proposition 2). In particular, when the fine was low, a rise in f increased social welfare but the

reverse occurred when the fine was large (see Figure 2). In consequence, we could compute the

magnitude of the fine, f̂ b, which resulted in the highest social welfare level.

The following claim29 characterizes the effect of a change in the severity of the fine on social

welfare when fine discounts are allowed, i.e. assuming β > 0.

Claim 1 For a given fine discount β > 0,

i) If β is small, then there exists f̂ ∈ (f̂ b,∞) such that:

(VR(k0))f

{
> 0 if f ∈ [0, f̂),

< 0 if f > f̂ .

Furthermore, f̂ increases with β, lim
β→0

f̂ = f̂ b and lim
β→0

VR(k0) = V b
R (k0).

ii) If β is large enough, then (VR(k0))f > 0 for all f > 0.

29From now on since our results have been generated numerically, but cannot be proven analytically, we state
them as claims rather than propositions.
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When the allowed fine discount is not too large (part i of the claim), initial rises in the

severity of the fine increase social welfare, up to a certain value, from which further increases

result in social losses. Then, there exists a finite value f̂ at which the society attains the highest

social welfare level. Also, the level of the fine which maximizes social welfare is more severe

the larger the discount, i.e., f̂ increases with β. Moreover, when the fine discount is very small

(β approaches zero), f̂ approaches f̂ b and social welfare matches its value when fine discounting

were not allowed.

When the firm is allowed to discount a large part of its investments (part ii of the claim),

social welfare increases monotonously with the severity of the fine. In this case, from a social

perspective the fine should be set as large as possible.30

Next, we perform a comparative statics exercise on the fine discount β, taking the severity

of the fine, f , as given. We ask whether fine discounts are socially desirable. The result is

presented next.

Claim 2 For a given severity of the fine f > 0, there always exists a bounded fine discount

β̂ ∈ (0,∞) such that

(VR(k0))β

{
> 0 if β ∈ [0, β̂),

< 0 if β > β̂.

30We cannot characterize analytically the value of β above which an infinite punishment for non-compliance
would be socially desirable. For the values in (20) it holds that this threshold (0.217) is smaller than the marginal
rate of technical substitution 1/σ = 0.5 between capital and emissions.
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Furthermore, there exist β̂F , β̂E and β̂L with 0 < β̂F < β̂L < β̂ < β̂E such that

(VF(k0))β

{
< 0 if β ∈ [0, β̂F ),

> 0 if β > β̂F ,

(
Ē
)
β

{
< 0 if β ∈ [0, β̂E),

> 0 if β > β̂E,

(
L̄
)
β

{
< 0 if β ∈ [0, β̂L),

> 0 if β > β̂L,(
K̄
)
β
> 0,

(
N(K̄, Ē, Ī, L̄)

)
β
< 0 ∀β > 0.

The previous claim suggests that switching from the base scenario where fine discounts are

not allowed to the extended model in which fine discounts are allowed results in a social welfare

improvement as long as β is small enough (within 0 and β̂). However, when the allowed fine

discount is sufficiently large (larger than β̂), further discounts reduce social welfare. Thus, for

a given f , society would attain a maximum welfare level at β̂.

The explanation for this result is the following. Starting from the base scenario without

fine discounts, we analyze successive increases in the fine discount, β. Due to the greater

incentive to invest in capital, the stock of capital at the steady state increases. A greater capital

stock allows the firm to produce with lower emissions and the regulator to implement a more

stringent pollution standard at the steady state. Still the degree of non-compliance decreases.

The firm is pushed to invest but since the regulator has tightened the standard, the associated

investment costs exceed the gains from a better compliance, hence firm’s profits are reduced.

Correspondingly, the social welfare is increased due to a lower environmental damage together

with a lower social cost from non-compliance. Because the social costs associated with non-

compliance are softer than the penalty paid by the firm (h < 1), the incentive to rise investment

linked to a rise in the fine discount is differently perceived by the firm and the regulator. Thus,

when the fine discount is already too high, the firm reaction to further increases is still a rise
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in investments in order to reduce the fine for non-compliance. However, for the regulator, the

reduction in the social costs associated with non-compliance, the increase in production and the

lower environmental damage might not be enough to counterbalance the rise in the investment

costs. Thus, instead of tightening the standard, the regulator would relax the standard making it

easier for the firm to comply and therefore, alleviating the incentive to invest in capital. A softer

emission standard increases firm’s profits, but the slight increase in emissions worsens social

welfare.

By comparing the corresponding long-run values under β = 0 and β = β̂ (where the social

optimum is maximum), we observe that long-run emissions, the effective pollution limit and

the degree of non-compliance are lower under β = β̂. In fact, these results (and also the fact

that the capital stock is larger under β = β̂) also hold for any time period, as shown in Figures

3 and 4.31
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Figure 3: Emissions (left); Effective emission limit (right)

In Claim 1 we have analyzed the effect of the magnitude of the fine assuming that the

allowed discount is fixed (which may or may not be monotone). Analogously, Claim 2 describes

31We have considered the same parameter values as in (20), and also f = 2 > d = 1, β = β̂ = 0.807.
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Figure 4: Degree of non-compliance

the effect of the fine discount given the magnitude of the fine. Our next question is whether a

combination of parameters values (f, β) exists, for which the solution of the Stackelberg game

reaches its maximum.

Figure 5 depicts the social welfare level when the initial capital stock is zero as a function of

the fine discount, β, for different values of the magnitude of the fine, f . For f = 1, the dashed

line reaches its maximum at β̂ w 1.1232, with VR(k0) = 9.5482. Increasing the magnitude

of the fine to f = 2 leads to a new and higher maximum of social welfare at β̂ w .807, with

VR(k0) = 9.55416. Further increases in the magnitude of the fine are associated with new β̂ at

which the social welfare is increased. This process continues indefinitely.32

This new finding is then summarized in the following:

Claim 3 There is no pair of parameters (f, β) ∈ (0,∞) × (0,∞) for which VR(k0) reaches a

maximum.

In consequence, the best option for the society would be to penalize as much as possible,

32We have numerically computed a rise in the maximum value of VR(k0) when switching from f = 1012 to
f = 1013. Interestingly, the value of β that maximizes social welfare when the severity of the fine tends to infinity
converges to a strictly positive finite value, β̂.
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Figure 5: VR(k0) w.r.t. β for different values of f .

and for this magnitude of the fine select the fine discount β̂ which maximizes social welfare.

This limiting case when f tends to infinity is equivalent to a new scenario where full compliance

with the effective pollution limit is assumed (and therefore, no penalty is levied). In this context,

the firm is allowed to exceed the pollution standard set by the regulator in its net investment

times the fine discount β̂. Once the pollution standard is chosen, investment must guarantee

full compliance with the effective pollution limit, Ĩ(E,L,K) = δK + (E − L)/β̂. The firm

maximization problem then reads:

max
E

∫ ∞
0

[
Y (K,E)− C(Ĩ(E,K,L))

]
e−ρtdt

s.t.: K̇ = Ĩ(E,L,K)− δK, K(0) = k0.

Knowing the best-reaction function of the firm, Ê(L;K), the regulator solves the following

dynamic optimization problem:

max
L

∫ ∞
0

[
Y (K, Ê(K;L))−C(Ĩ(Ê(K;L), K, L))−D(Ê(K;L))

]
e−ρtdt

s.t.: K̇ = Ĩ(Ê(K;L), K, L)− δK, K(0) = k0.

Denoting the social welfare in this full compliance scenario as V FC
R (K), for the parameters
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values considered we obtain the following ranking of social welfare levels:

V NR(k0) = 7.5 < V b
R (k0) = 9.3772 (for f̂ b) < V FC

R (k0) = 9.56632 (for β̂) < V FB(k0) = 9.56702.

If we compute the distance to the social welfare in the first-best scenario, we observe that the

scenario with no fine discounts (V b
R (k0)) distances 1.98%, while the scenario with discounts

and full compliance (V FC
R (k0)) distances 0.0073%. Therefore, this limiting scenario results in a

social welfare level roughly equal to the first-best level.

5 A discussion on the possibility of over-compliance

All the previous analysis in both the base and the extended models is based on the assump-

tion that the fine is quadratic under non-compliance and zero under compliance. Particularly,

we have assumed that the marginal fine for an infinitesimal violation is negligible, and this is

the reason that results in strict non-compliance along the optimal trajectory. This means that

this particular specification for the fine rules out the possibility of full compliance or over-

compliance, and this is the reason why considering a quadratic fine under non-compliance and

zero fine under compliance gives the same result as considering a quadratic fine for both non-

compliance and over-compliance, see footnotes 15 and 27.

In this section, we analyze the possibility of over-compliance under an alternative fine spec-

ification that punishes non-compliance but subsidizes over-compliance, as follows33:

F S(E,L) = f

[
(E − L)2

2
+ η(E − L)

]
.

The introduction of the linear term η(E−L) increases the fine in the case of non-compliance

(E > L), and induces a fine discount (that indeed turns it into a subsidy) for over-compliance

33From now on, superscript S refers to the scenario with the subsidy.
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(E < L). Parameter f again measures the severity of the fine in case of non-compliance, and

in this new scenario, it also measures the generosity of the subsidy in case of over-compliance,

when the full term (E − L)2/2 + η(E − L) is negative. Parameter η is also a measure of the

magnitude of the subsidy.34

The firm maximizes the same problem as in (3), replacing F (E,L) by F S(E,L). Taking into

account the investment and emission reaction functions of this problem, the regulator maximizes

a problem identical to (4), where the social costs associated with either non-compliance or over-

compliance are given by:

H(ÊS(K;L), L) = hg(f, η)
(E − L)2

2
.

In the event of non-compliance, this function represents the administrative costs associated

with collecting fines previously described in the model section, which are increasing in the level

of non-compliance. However, in the event of over-compliance, this function also accounts for

the social opportunity costs associated with giving subsidies, which are increasing in the level

of over-compliance.35

Given the lack of evidence on the comparison between the social costs of imposing fines and

the social costs of giving subsidies, we treat them in a symmetric way, and we assume that these

costs depend on the distance of the pollution level to the emissions standard (since the larger

the gap, the larger the fine or subsidy, everything else equal). Also, we assume these costs to

be increasing in the intensity of the fine/subsidy, f , and also non-decreasing in the subsidizing

34It represents the level of over-compliance at which the subsidy reaches its maximum (further emissions reduc-
tions will decrease the total subsidy).

35In many instances, raising funds for subsidies requires exacerbating tax distortions elsewhere in the economy,
imposing a loss on society in the range of $0.20 – $0.30 for every $1 raised, see, for example, Laffont and Tirole
(1996a, 1996b) and Ruggeri (1999).
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parameter, η. Hence, function g is assumed to satisfy gf > 0, gη ≥ 0. Finally, for comparison

purposes, we assume g(f, 0) = f . Thus, the case η = 0 collapses into the base model with no

subsidy analyzed in Section 3.

The optimal level of non-compliance for this problem is given by:

N S(K, η) = ES(K)− LS(K) =
dσ(1−K)− ηf(d+ σ2)

Ψ̂
, (26)

where Ψ̂ = f(d + σ2) + hσ4g/f . In consequence, for a given value of K at a given time t,

over-compliance results if and only if:

N S(K, η) < 0⇔ η >
d

f

σ(1−K)

d+ σ2
≡ d

f
EFB(K).

According to this condition, over-compliance is linked to parameter η being larger than a

specific bound. This bound however, decreases as the capital stock grows towards its long run

value, giving rise to several possibilities. If η is greater than this lower bound for the initial

capital stock k0, the firm over-complies along the whole planning period. If η is lower than

the lower bound at the limit (when the capital stock reaches its maximum), non-compliance is

the recurrent behaviour of the firm. Finally, a situation of non-compliance in the beginning and

over-compliance henceforth is also possible.

To characterize the different scenarios, we specify a functional form for g. For the ease of

presentation we consider g(f, η) = f + ξη, with ξ ≥ 0, and we study two cases. First, we

analytically study the case ξ = 0 in which the social costs are not dependent on parameter η.

Second, we numerically analyze the case ξ = 1. As we will see later on, results are qualitatively

similar in both cases.

The new fine, which penalizes further non-compliance and subsidizes over-compliance,

gives the firm an incentive to reduce emissions. To partially counterbalance this emission reduc-
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tion, the regulator correspondingly fixes a laxer standard. The following proposition character-

izes the conditions under which this double effect results in over-compliance for the particular

case ξ = 0. The proof is in the Appendix.

Proposition 5 When g(f, η) = f , the compliance behaviour of the firm crucially depends on

parameter η as follows:

1. Non-compliance at all times, if η ≤ η̃;

2. Non-compliance followed by over-compliance, if η ∈ (η̃, η0);

3. Full-compliance exclusively at the starting date followed by over-compliance, if η = η0;

4. Always over-compliance, if η ∈ (η0, η̄],

with η̃ < min {η0, η̄}, and η̃, η0 and η̄ given in the Appendix. For parameters values

satisfying η0 > η̄, cases 3 and 4 would not be feasible, and case 2 would hold for η ∈ (η̃, η̄).

As a result, over-compliance arises as long as the subsidizing parameter η is large enough.

Furthermore, in this case with g(f, η) = f, it is easy to prove that over-compliance is associated

with emissions below the first best, ES(K) < EFB(K) < LS(K), while non-compliance leads to

emissions above the first-best, LS(K) < EFB(K) < ES(K). Obviously full-compliance would

imply LS(K) = EFB(K) = ES(K).

We now turn to the case where g(f, η) = f + η. Here, we carry out a numerical analysis

considering parameters values already used in previous numerical simulations, see (20), and we

also assume f = 5. For these values, we obtain η̃ = 0.026 < η0 = 0.08 < η̄ = 0.188. For

η ∈ (0, η̃) the firm does never comply. For a higher η in the interval (η̃, η0) the firm emits above
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the limit within a first period, but over-complies henceforth. By contrast, for η ∈ (η0, η̄] the

firm always over-complies. Figure 6 shows that for the cases η = 0, the base model with no

subsidy, and η = 0.02 < η̃, non-compliance is observed at all time. For η = 0.06 ∈ (η̃, η0) the

firm does not comply within a first period and over-complies from a given time on. Finally, for

η = 0.1 > η0 over-compliance holds at any time.

Figure 6: Non-compliance for different η.

From the definition of non-compliance in (26) and regardless of whether ξ = 0 or ξ = 1,

the degree of non-compliance decreases with η. In fact, Proposition 5 and also our numerical

simulation show that over-compliance can emerge for a sufficiently large η.

Regardless of the value of η and the consideration of ξ being zero or positive, so far we

have seen that the possibility to subsidize over-compliance induces emissions reductions and

laxer emission standards. An interesting question now is to see if this necessarily leads to emis-

sions closer to the standard, which may result in lower social costs of administering sanctions/

subsidies, as compared to the models without subsidies. Or put differently, is this new enforce-

ment mechanism that considers the possibility of subsidizing over-compliance more effective

in inducing emission levels closer to the standard? We will prove (again analytically for ξ = 0

and numerically for ξ = 1) that although this is generally true, this effectiveness worsens if
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parameter η is very large.

We define the gap between emissions and the emission standard as |N S(K, η)| = |ES(K)−

LS(K)|. Therefore, the effectiveness of the emission limit when a subsidy for over-compliance

exists (η > 0) is greater than in the case with no subsidy (η = 0) if and only if36 m(Kb(t), KS(t), η) =

N S(Kb(t), 0)− |N S(KS(t), η)| is positive.

Proposition 6 When g(f, η) = f , a subsidy for over-compliance might increase or decrease

the effectiveness of the enforcement mechanism, depending on η, as follows:

1. Higher effectiveness at every time if η ≤ 2η̃.

2. Higher effectiveness followed by lower effectiveness if η ∈ (2η̃, 2η0).

3. Lower effectiveness at every time if η ∈ [2η0, η̄).

For parameters values satisfying η̄ < 2η0, case 3 never applies and case 2 would hold for

η ∈ (2η̃, η̄). If further η̄ < 2η̃ the subsidy always increases effectiveness for any η ≤ η̄.

According to this proposition, incorporating a subsidy for over-compliance would increase

effectiveness if parameter η is small. As this parameter increases above certain value, the gains

in effectiveness only last for a first period, while effectiveness worsens from a certain time

on. In fact, for sufficiently large η, it follows that the subsidy implies a loss of effectiveness

through the whole period. We have also observed this same behaviour numerically, for the

more general case where g(f, η) = f + η. This is shown in Figure 7, which displays the

absolute value of non-compliance for the base case (thick solid line) and different values for

36The solution without subsidy is characterized by non-compliance and hence |N S(K, 0)| = N S(K, 0) for any
K ≤ K̄b.
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η. For small values of η < 2η̃ considering a subsidy is more effective at any time, either

with non-compliance at any time η = 0.025 (dotted line), or with non-compliance followed

by over-compliance η = 0.04 (dashed line). For a higher η = 0.07 ∈ (2η̃, 2η0) (solid line)

the subsidy increases effectiveness within a first period and reduces effectiveness henceforth.

Finally, for a sufficiently large η = 0.17 > 2η0 incorporating the subsidy always implies a

lower effectiveness.

Figure 7: Absolute value of non-compliance for different η.

6 Conclusions

Our paper constitutes a first attempt in the literature to address the determination of optimal

pollution standards overtime in a context of imperfect compliance. Considering a representative

firm which uses emissions as an input to produce a consumption good and invests to increase

a capital stock, we have assumed that the firm can decide to exceed the pollution limit set by

the regulator at any time, and then be subject to a fine if it finds it profitable to do so. In the

base model, we have considered a fine quadratic in the degree of non-compliance, defined as the

difference between firm’s emissions and the pollution limit set by the regulator. In the extended

model, we have introduced the concept of effective pollution limit, and we have redefined the
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fine as being quadratic in the difference between emissions and the effective pollution limit,

which is laxer than the pollution limit set by the regulator if the firm invests to increase the

capital stock.

We have shown that the optimal time-path for the effective pollution limit gradually de-

creases while the capital stock increases, resulting in a decrease in emissions. Interestingly,

while the firm faces a more stringent pollution limit, however the degree of non-compliance

decreases. This result is valid in both the base and the extended models. While this result can-

not be found in static models of regulatory enforcement typically considered in the literature

(in those settings, a tighter standard always results in a larger gap between emissions and the

standard), however in a dynamic context the firm can progressively adapt to more stringent reg-

ulations by means of capital investment. In fact, a fine dependent on emissions in excess of the

effective pollution limit helps the firm to decrease the level of non-compliance even more, since

the firm is induced to invest in capital accumulation even more than without discounts.

We have analyzed the question of how severe the penalty for non-compliance should be. To

that aim, we have performed a comparative statics analysis regarding the severity of the fine.

In the base model where the fine depends on emissions in excess of the pollution limit set by

the regulator, we have generally found non-monotone relationships between the main variables

and the severity of the fine, ceteris paribus. In general, the optimal pollution limit decreases

with the severity of the fine for rather low values of the fine, but it always increases for large

values of the fine. This means that the pollution limit and the fine act as substitute instruments

provided the level of the fine exceeds a certain threshold, whereas they might be substitute or

complementary instruments when the level of the fine is below this threshold. The induced

emissions and capital stock are, respectively, U-shaped and inverse U-shaped in the severity of
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the fine and, finally, the degree of non-compliance decreases with the severity of the fine. All

this results in a first decreasing and then increasing relationship between firm’s profits and the

severity of the fine, and also in a first increasing and then decreasing relationship between social

welfare and the severity of the fine. The latter implies that there always exists a bounded value

of the severity of the fine that maximizes social welfare.

In the extended model where fine discounts are allowed, we are able to affirmatively an-

swer our second research question: Should the fine be reduced in exchange for firm’s capital

investments? Moreover, for a given severity of the fine, we can always find the finite value

of the fine discount at which social welfare attains its maximum. The first question on the

severity of the fine can also be studied in the extended model. We have numerically found the

same sort of non-monotonicity only when the fine discount is small. If, to the contrary, the fine

discount is large, social welfare increases monotonically with the severity of the fine. Finally,

if we compute the fine discount which maximizes social welfare for successive values of the

severity of the fine, we observe that the value of social welfare increases with the severity of

the fine at the social maximizing fine discount. A limiting scenario with a very large severity

of the fine would be equivalent to an alternative scenario of full compliance with the effective

pollution limit, since the firm is threatened by a very large punishment if it pollutes above that

limit. Emissions are still above the pollution limit imposed by the regulator, but no penalties are

levied. This scenario roughly mimics the first-best scenario in terms of social welfare levels.

All these results have been derived assuming that the marginal fine for an infinitesimal vi-

olation is negligible. This has resulted in strict non-compliance along the optimal trajectory

and, therefore, the possibility of over-compliance has been ruled out. We have then modified

the penalty to incorporate a discount in the fine if the firm decides to pollute below the stan-
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dard, which finally results in a net subsidy for over-compliance. Taking into account that both

administering fines and giving subsidies may be costly for society, we have found that over-

compliance can arise as long as the discount for over-compliance is large enough, although this

does not necessarily result in lower social administration costs.

Several extensions of our model are possible, such as including monitoring issues, cumula-

tive pollution effects, or imperfect information on the part of the regulator and/or the polluting

firm. All these issues deserve further research.

7 Appendix

Proof of Proposition 1.

This proof characterizes the stagewise feedback Stackelberg equilibrium strategies (see, for

example Haurie et al. (2012), page 278). Under the assumption of stationary strategies, it

involves the resolution of two Hamilton-Jacobi-Bellman equations:

ρV b
F (K) = Y (K,φE(K))− C(φI(K))− f (φE(K)− φL(K))2

2
+ (V b

F )′(K)(φI(K)− δK),

ρV b
R (K) = Y (K,φE(K))− C(φI(K))−D(φE(K))− hf (φE(K)− φL(K))2

2

+ (V b
R )′(K)(φI(K)− δK),

where (φF(K), φR(K)) is a feedback strategy pair, with φF(K) = (φE(K), φI(K)) and φR(K) =

φL(K). To obtain this pair, we first compute the best reaction functions of the firm as the solution

to:

max
I,E

{
Y (K,E)− C(I)− f (E − φL(K))2

2
+ (V b

F )′(K)(I − δK)

}
.

In view of the linear-quadratic structure of the problem we conjecture a quadratic value function
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for the firm in K:

V b
F (K) =

abF
2
K2 + bbFK + cbF. (27)

Therefore, the best-response functions of the firm are then given by:

Êb(K;φL(K)) = Eb+ELbφL(K)+EKbK, Îb(K;φL(K)) = Îb(K) = Ib+ILbφL(K)+IKbK,

(28)

Eb =
σ

σ2 + f
, ELb =

f

σ
Eb, EKb = −Eb, Ib =

bbF
c
, ILb = 0, IKb =

abF
c
.

Knowing the best-reaction functions of the firm presented in (28), now the regulator fixes

the pollution limit, to maximize:

max
L

{
Y (K, Êb(K;L))− C(Îb(K;L))−D(Êb(K;L))− hf [Êb(K;L)− L]2

2

+(V b
R )′(K)(Îb(K;L)− δK)

}
.

Notice, however that ILb = 0 and therefore, Îb(K;L) does not actually depend on L. The

regulator cannot directly influence investment, and hence behaves as a static player. His optimal

strategy is then to set an emission limit which satisfies:

YE(K, Êb(K;L)) = D′(Êb(K;L)) + hf [Êb(K;L)− L]
ELb − 1

ELb
.

From this condition, the optimal emission limit is the affine function of the stock of capital,

L∗b(K), given in (5). As long as h < 1, it follows that
(
L∗b0
)
f
> 0.

From the optimal emission limit in (5) and the best-response functions of the firm, the

optimal emissions and investment are given by the expressions in (6) and (7). And it is easy to

see that
(
E∗b0
)
f
< 0 for all f . Further, from the Riccati equations the coefficients which define

the firm’s value function, V b
F (K), defined in (27) can now be computed and are given by (8)
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and:

cbF =
(bbF)

2 + c

2cρ
− d2f(f + σ2)

2ρΨ2
> 0. (29)

Once the optimal investment strategy is known, integrating the differential equation which de-

fines the capital stock dynamics, the optimal time path of the capital stock is given by (10).

Proof of Proposition 2

We first characterize the optimal strategies for the case of no regulation and the first-best

scenario, and then we compare these two cases with the stagewise feedback Stackelberg equi-

librium characterized in Proposition 1.

First, with no regulator the Hamilton-Jacobi-Bellman equation for problem (17) is:

ρV NR
F (K) = max

I,E

{
K + σE − (K + σE)2

2
− cI

2

2
+ (V NR

F )′(K)(I − δK)

}
.

We again conjecture a quadratic value function in K, denoted by V NR
F (K):

V NR
F (K) =

aNR
F

2
K2 + bNR

F K + cNR
F ,

and aNR
F , b

NR
F , c

NR
F are unknowns to be determined. The only feasible solution for these unknowns

associated with a convergent time path of the capital stock is: aNR
F = bNR

F = 0, cNR
F = 1/(2ρ).

Therefore, the solution under no regulation is the following:

I∗NR = 0, E∗NR(K) =
1

σ
(1−K), and KNR(t) = k0e

−δt, (30)

where the optimal time path of capital is obtained by solving (2) once the optimal investment

strategy has been replaced.

In the particular case k0 = 0, then K(t) = 0, E(t) = 1/σ for any t ≥ 0 and the social

welfare is V NR(0) = 1/(2ρ)− d/(2ρσ2).
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The first-best solution to problem (18) can be found by solving the following Hamilton-

Jacobi-Bellman equation:

ρV FB(K) = max
I,E

{
(K + σE)− (K + σE)2

2
− cI

2

2
− dE

2

2
+ (V FB)′(K)(I − δK)

}
,

where V FB(K) denotes the value function of the problem. Following the same procedure as

above, we then easily obtain the following optimal strategies:

I∗FB(K) =
bFB

c
+
aFB

c
K, E∗FB(K) =

σ

d+ σ2
(1−K), (31)

where V FB(K) = aFBK2/2 + bFBK + cFB, with

aFB =
c(ρ+2δ)−

√
∆FB

2
< 0, bFB =

2cd

(d+ σ2)
[
cρ+

√
∆FB

] > 0,

cFB =
(bFB)2

2cρ
+

σ2

2ρ(d+ σ2)
> 0, ∆FB = c2(ρ+ 2δ)2 +

4cd

d+ σ2
,

and the optimal time-path of the capital stock is:

KFB(t) = (k0 − K̄FB)eθ
FBt + K̄FB, (32)

K̄FB =
d

d+ c(d+ σ2)δ(δ + ρ)
> 0, θFB =

cρ−
√

∆FB

2c
< 0,

where K̄FB is the long-run value of the capital stock, and |θFB| is the speed of convergence

towards this value.

The corresponding long-run values of emissions and investment read:

ĒFB =
σ

d+ σ2

(
1− K̄FB

)
=

cδ(δ + ρ)σ

d+ c(d+ σ2)δ(δ + ρ)
, ĪFB = δK̄FB =

dδ

d+ c(d+ σ2)δ(δ + ρ)
.

Finally, we compare the optimal time paths under no regulation, the first best and the base

model.
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(i) Since f ≥ d, it follows that K̄FB > K̄b and both are positive. Moreover, under this

condition it is also true that ∆FB > ∆b > 0, hence inequality θFB < θb follows. It is

immediate to verify that θb < −δ. Then KFB(t) > Kb(t) > KNR(t) for all t > 0 follows.

(ii) ĪFB > Īb > 0 follows straightforwardly from part (i). Since f ≥ d, then aFB < abF < 0

immediately follows from ∆FB > ∆b. Moreover, proving bFB > bbF is equivalent to proving:

∆FB − c2(ρ+ 2δ)2

2cd(cρ+
√

∆FB)
>

∆b − c2(ρ+ 2δ)2

2cd(cρ+
√

∆b)
.

Provided that f(x) = (x−c2(ρ+2δ)2)/(cρ+
√
x) is an increasing function and ∆FB > ∆b,

bFB > bbF follows. Thus, I∗FB(0) = bFB/c > bbF/c = I∗b(0) > 0. However, nothing can be

said of the comparison between Ib(t) and IFB(t) for t > 0.

(iii) The results immediately follow from part (i), the expressions of E∗NR(K), E∗FB(K),

E∗b(K), and inequalities:

1

σ
>
σ(f + hσ2)

Ψ
>

σ

d+ σ2
.

Proof of Proposition 3

i) From (8), (29) and (11) it follows that sign|θb|f =sign(K̄b)f =sign(Īb)f is given by:

sign(hσ2(2f + σ2)− (d+ σ2)f) = sign(2hσ2(f + σ2)−Ψ). (33)

Here and henceforth we will be assuming d+σ2(1− 2h) > 0, i.e. h < (d+σ2)/(2σ2) =

hmax. Under this condition, the sign in (33) is positive for f ∈ [d, f̂ bK), and negative for

f > f̂ bK , with f̂ bK given in (19).37

37If h > (d+ σ2)/(2σ2) = hmax the sign in (33) would be positive for all f ≥ 0.
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The effect on emissions is obtained from (13),

(Ēb)f = −dhσ
3

Ψ2

(
1− K̄b

)
− σ(f + hσ2)

Ψ
(K̄b)f .

In consequence, if (K̄b)f > 0 then (Ēb)f < 0, implying f̂ bE > f̂ bK > 0 for all h > 0.

To prove that f̂ bE is finite it is sufficient to see than (Ēb)f is positive for sufficiently large

values of f : limf→∞(Ēb)f =∞.

ii) The effect of f on the emission limits can be computed from (12):

(L̄b)f =
dσ(d+ (1− h)σ2)

Ψ2

(
1− K̄b

)
− σ(−d+ f + hσ2)

Ψ
(K̄b)f , (34)

where 1− K̄b can be written as a function of (K̄b)f , and then:

(L̄b)f =

{
[d+ (1− h)σ2][d2f(f + σ2) + cδ(δ + ρ)Ψ2]

Ψdσ(2hσ2(f + σ2)−Ψ)
− σ(f + hσ2 − d)

Ψ

}
(K̄b)f .

We know that (K̄b)f < 0 if and only if f > f̂ bK , i.e. 2hσ2(f + σ2) − Ψ < 0. Then, a

sufficient condition for the expression in brackets to be negative is f + hσ2 − d > 0. In

consequence, if f̂ bK > d, then (K̄b)f < 0 implies (L̄b)f > 0 and therefore f̂ bL < f̂ bK . It is

easy to prove that

f̂ bK > d⇔ h >
2d

2d+ σ2

d+ σ2

2σ2
≡ hmin.

Thus (L̄b)f > 0 for all f > f̂ bL. To study the sign of (L̄b)f for f ∈ [0, f̂ bL), expression

(34) can be re-written as an expression which sign is given by a second-order convex

polynomial in f . Depending on whether this polynomial has no real roots or it has two

roots with different or equal sign, the different behaviours in footnote 23 appear.

iii) The derivative (Ēb − L̄b)f can be computed and proved negative for any positive h.

Proof of Proposition 4
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For the dynamic maximization problem for the firm described in (3), assuming a quadratic

value function for the firm, VF(K) in (24), and following the same reasoning as in the proof of

Proposition 1, the best-response functions of the firm are given by:

Ê(K; ζL(K)) = E + ELζL(K) + EKK, Î(K; ζL(K)) = I + ILζL(K) + IKK, (35)

where (ζF(K), ζR(K)) is a feedback strategy pair, with ζF(K) = (ζE(K), ζ I(K)) and ζR(K) =

ζL(K) and:

EL =
cf

Ω
, E =

σ

f
EL +

fβ(bF + βσ)

Ω
, EK =

EL − 1

σ
+
fβ(aF − cδ)

Ω
,

IL = −fβσ
2

Ω
, I = −I

L

σ
+
bF(f + σ2)

Ω
, IK =

IL(1− βδσ)

σ
+
aF(f + σ2)

Ω
,

with Ω = cf + (c+ fβ2)σ2, EL ∈ (0, 1), and IL < 0. This last inequality is the main difference

with the base model with β = 0 where ILb = 0 (see (28)). Therefore, the regulator, taking

into account the best-response functions in (35), now behaves as a dynamic player. It fixes the

pollution limit in order to maximize:

max
L

{
Y (K, Ê(K;L))−C(Î(K;L))−D(Ê(K;L))−hf [Ê(K;L)−(L+β(Î(K;L)−δK))]2

2

+(V b
R )′(K)(Î(K;L)− δK)

}
.

Assuming a quadratic value function for the regulator, VR(K) in (24), the optimal emission

standard strategy, L∗(K) in (23) follows. The optimal emissions and investment strategies,

E∗(K) and I∗(K) in (23) immediately follow from the best-response functions in (35) once

L∗(K) is known.

From the optimal investment strategy in (23) and the capital stock dynamics in (2), the

optimal time path of the capital stock can be written as in (25).

Proof of Proposition 5
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For g(f, η) = f , the optimal strategies of the problem in Section 5 are:

ES(K) = σ
(f + hσ2)(1−K)− ηfhσ

Ψ
, IS(K) =

(V S
F )′(K)

c
, (36)

LS(K) =
(f − d+ hσ2)(1−K) + ηf(d+ (1− h)σ2)

Ψ
, (37)

with V S
F (K) being the value function of the firm when a subsidy for over-compliance exists.

The optimal time path of the capital stock reads:

KS(t) = (k0 − K̄S)eθ
bt + K̄S, K̄S =

df(f + σ2)(d+ hησ3)

d2f(f + σ2) + 4cδ(ρ+ δ)Ψ2
> K̄b. (38)

The capital stock grows higher than in the case without a subsidy, and the speed of convergence

is identical, θb. Assuming the same initial value, k0, it follows that Kb(t) < KS(t) < K̄S for all

t > 0.

From (36), an upper bound for η ensures non-negative emissions. This bound is minimum

for the long-run capital stock. Hence, a necessary and sufficient condition which guarantees

positive emissions along the whole planning horizon is:

η ≤ η̄ ≡ cδ(ρ+ δ)(f + hσ2)Ψ

fhσ[d(f + σ2) + cδ(ρ+ δ)Ψ]
,

with η̄ being the value of η for which emissions are null at the steady state. This condition also

ensures that K̄S < 1.

Focusing on the starting date, we define η0 as the value of η for which full compliance

initially holds, that is, N(k0, η
0) = 0:

η0 =
dσ(1− k0)
f(d+ σ2)

.

Since N S
η < 0, then the firm initially over-complies if η > η0 and vice versa. Furthermore,

since N S
K < 0 and K grows with time, then if the firm initially over-complies, η > η0, it will

over-comply henceforth.
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Focusing on the steady state, K̄S(η), we define η̃ as the value of η for which full compliance

holds, that is, N(K̄S(η̃), η̃) = 0:

η̃ =
dcδ(ρ+ δ)σΨ

f [d2(f + σ2) + cδ(ρ+ δ)(σ2 + d)Ψ]
< η0.

Since dN S/dη < 0, then at the steady state the firm over-complies if η > η̃ and vice versa.

Further, since N S
K < 0 and K grows with time, then if the firm ends-up with non-compliance,

η ≤ η̃, the firm does not comply along the whole period.

From the behaviour at the initial time and at the steady state, and the fact that η̃ < min {η0, η̄},

the results in Proposition 5 follow.

Proof of Proposition 6

This proof distinguishes two cases depending on the value of η :

a) η ≤ η̃ (Non-compliance for all t ≥ 0)

m(Kb(t), KS(t), η) = N S(Kb(t), 0)−N S(KS(t), η) =
dσ(KS(t)−Kb(t))

Ψ
+η

f(d+ σ2)

Ψ
.

Since KS(t) > Kb(t) for all t > 0, then m(Kb(t), KS(t), η) > 0 for all t ≥ 0 and the

consideration of the subsidy increases the effectiveness of the enforcement mechanism

along the whole period.

b) η̃ < η

b1) η̃ < η < η0 (Non-compliance for t ∈ [0, t̂) and over-compliance for t ≥ t̂)

Within the interval [0, t̂) effectiveness increases following the argument in case a).

Within the interval [t̂,∞) function m reads:

m(Kb(t), KS(t), η) = N S(Kb(t), 0) +N S(KS(t), η)

=
dσ(2−KS(t)−Kb(t))

Ψ
− ηf(d+ σ2)

Ψ
. (39)
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At time t̂, N S(KS(t̂), η) = 0 and therefore, m(Kb(t̂), KS(t̂), η) > 0. Taking into ac-

count (10) and (38), it immediately follows thatm(Kb(t), KS(t), η) is monotonously

decreasing with time. Finally, at the steady state m(K̄b, K̄S(η), η) is a decreasing

function of η which vanishes for η = 2η̃. Therefore:

i. If η ≤ 2η̃, then m(K̄b, K̄S(η), η) ≥ 0 and since m is decreasing with time,

m(K̄b, K̄S(η), η) > 0 for all t ∈ [t̂,∞). In consequence, the effectiveness of

the enforcement mechanism increases for the whole period.

ii. If η > 2η̃, then m(K̄b, K̄S(η), η) < 0 but, at time t̂, m(Kb(t̂), KS(t̂), η) > 0.

In consequence, the effectiveness is improved within a first interval longer than

[0, t̂), but worsens from a given time on.

b2) η̃ < η0 ≤ η (Over-compliance for all t > 0)

Functionm is given in equation (39). At time 0,m(k0, k0, η) is positive if and only if

η < 2η0. Under this condition, the same reasoning as in the case b1) for the interval

[t̂,∞) now applies for [0,∞). Therefore either the effectiveness of the enforcement

mechanism increases for the whole period if η ≤ 2η̃, or it increases within a first

period but worsens henceforth, if η > 2η̃.

Finally, η > 2η0 implies m(k0, k0, η) < 0 and since this function decreases with

time it will remain negative. Therefore, the consideration of the subsidy would im-

ply a reduction in the effectiveness of the enforcement mechanism along the whole

period.
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