A Runtime Analysis For Communication
Calculation on Distributed-Memory Systems

Ana Moreton-Fernandez

Departamento de Informatica, Edif.
Tec. de la Informacién, Universidad
de Valladolid, Valladolid, Spain

ana@infor.uva.es

Abstract

Parallel machines are becoming more heterogeneous, mix-
ing devices with different capabilities in the context of
hybrid clusters, with hierarchical shared- and distributed-
memory levels. Programming for these heterogeneous sys-
tems is challenging and error-prone. Many automatic code
generation approaches have been proposed to transform
high-level parallel programs or sequential codes to low-
level parallel programs for hybrid clusters with distributed
memory. Many of these distributed-memory approaches are
based on compile-time automatic solutions [1-3]. These
techniques abstract many issues related to the execution plat-
form, while still deliver good performance. However, they
generate a generic code that cannot take into account some
specific details about the final machines where the applica-
tion would be executed. As example, the most sophisticated
code generators for distributed memory (in terms of data
volume communicated, and parametric in the number of
processes and problem sizes) still needs to fix a single tile
size at compile time, even if the distributed system has nodes
with different capabilities.

On the other hand, compiler scalability is a well known
problem. Currently, according to [4], the costly integer pro-
gramming algorithms used to generate optimized codes
make their use impractical in real scientific applications for
the common users.

We propose to move to runtime part of the compile-
time analysis needed to generate the communication code
for distributed-memory systems. Communication stages on
distributed-memory systems have a significant impact on
performance, thus the reduction of the communication times
is key for improving performance in terms of runtime execu-
tion. We have developed a technique that uses a hierarchical
tiling array library to represent and manage rectangular in-
dex spaces at runtime. The data to be received and/or sent by
a local process to another one is calculated by intersecting
the set of indexes read or written by a process with the set of
indexes written or read by the local process.

The main advantage of our technique is that it automati-
cally computes, at runtime, the exact coarse-grained commu-

Arturo Gonzalez-Escribano

Departamento de Informatica, Edif.
Tec. de la Informacién, Universidad
de Valladolid, Valladolid, Spain

arturo@infor.uva.es

Diego R. Llanos

Departamento de Informatica, Edif.
Tec. de la Informacién, Universidad
de Valladolid, Valladolid, Spain

diego@infor.uva.es

nications to be used by a distributed message-passing model.
By exact communications we mean: a) only needed data are
communicated; (b) each needed data element is communi-
cated to a target process only once (redundant communica-
tion is avoided due to the runtime analysis); and c¢) no con-
trol information exchange is needed. Additionally, the com-
munications performed are coarse-grained. Communication
calculation is done once for the whole index space mapped
to a process at runtime, independently of the number or the
sizes of tiles generated inside the process afterwards. This
also allows the use, in the same computation, of different tile
sizes for different processes at the same hierarchical level, a
useful feature for distributed-memory systems that include
machines with different architectures [5].

Our experimental results for several cases of study indi-
cate that, despite our runtime calculation, we obtain similar
results to optimized codes directly written with MPI and we
outperform the results of other communication code genera-
tors.

References

[1] U. Bondhugula. Compiling affine loop nests for distributed-
memory parallel architectures. In 2013 SC-International Con-
ference for High Performance Computing, Networking, Storage
and Analysis (SC), pages 1-12. IEEE, 2013.

[2] M. ClaBen and M. Griebl. Automatic code generation for
distributed memory architectures in the polytope model. In
Parallel and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pages 7-pp. IEEE, 2006.

[3] O. Kwon, F. Jubair, R. Eigenmann, and S. Midkiff. A hybrid
approach of openmp for clusters. In Proceedings of the 17th
ACM SIGPLAN symposium on Principles and Practice of Par-
allel Programming (PPoPP), 2012.

[4] S. Mehta and P.-C. Yew. Improving compiler scalability: op-
timizing large programs at small price. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2015.

[5] S. Mehta, G. Beeraka, and P.-C. Yew. Tile size selection revis-
ited. ACM Transactions on Architecture and Code Optimization
(TACO), 10(4):35, 2013.

2016/11/17



