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Abstract- Neuroimaging techniques have demonstrated over the years their ability to 

characterize the brain abnormalities associated with different neurodegenerative diseases. 

Among all these techniques, magnetoencephalography (MEG) stands out by its high temporal 

resolution and noninvasiveness. The aim of the present study is to explore the coupling 

patterns of resting-state MEG activity in subjects with mild cognitive impairment (MCI). To 

achieve this goal, five minutes of spontaneous MEG activity were acquired with a 148-

channel whole-head magnetometer from 18 MCI patients and 26 healthy controls. Inter-

channel relationships were investigated by means of two complementary coupling measures: 

coherence and Granger causality. Coherence is a classical method of functional connectivity, 

while Granger causality quantifies effective (or causal) connectivity. Both measures were 

calculated in the five conventional frequency bands: delta (d, 1-4 Hz), theta (q, 4-8 Hz), alpha 

(a, 8-13 Hz), beta (b, 13-30 Hz), and gamma (g, 30-45Hz). Our results showed that 

connectivity values were lower for MCI patients than for controls in all frequency bands. 

However, only Granger causality revealed statistically significant differences between groups 

(p-values < 0.05, FDR corrected Mann-Whitney U-test), mainly in the beta band. Our results 

support the role of MCI as a disconnection syndrome, which elicits early alterations in 

effective connectivity patterns. These findings can be helpful to identify the neural substrates 

involved in prodromal stages of dementia. 
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1. INTRODUCTION 

The concept of mild cognitive impairment (MCI) was first mentioned in the literature in 

the late 80s, as the result of a growing concern in portraying the early stages of dementia [1]. 

However, it was not until 1995 that Petersen defined it as an independent clinical condition 

[2, 3]. MCI is described as a disorder characterized by a cognitive decline higher than 

expected by age and education, but insufficient to meet the criteria for the diagnosis of 

dementia [4]. Even if cognitive activity is impaired, these patients maintain their 

independence in their functional and social skills. Worldwide studies recently estimated the 

overall prevalence of MCI within a range from 12% to 18% for elderly people over 60 years 

[5]. Some of them remain stable or return to normal over time, but more than 50% progress to 

dementia [6]. The conversion rate to dementia due to Alzheimer’s disease (henceforth AD) is 

approximately 15% per year [7], although MCI can be also a prodromal stage of other 

dementia subtypes, such as vascular dementia [8], dementia with Lewy body [9] or 

Parkinson’s disease [10]. For this reason, current perspectives on MCI interpret this condition 

as a risk state and/or prodromal stage for various types of dementia, and not as an independent 

clinical condition [11, 12]. Pharmacological intervention is currently unsuccessful in the 

treatment of MCI or dementia. However, an early and conclusive diagnosis is necessary, since 

the medication used to delay the symptoms and optimize the overall clinical and functional 

condition of the patient is more effective in the first stages of dementia [13, 14]. 

During the last decades, functional magnetic resonance imaging (fMRI) and positron 

emission tomography (PET) have been used to investigate cerebral changes in AD and MCI. 

Previous fMRI studies reported impairments in brain functional activity in the default mode 

network of MCI subjects [15, 16]. During associative encoding of picture-word pairs, MCI 

subjects exhibited increased fMRI responses in the posterior hippocampal, parahippocampal 

and fusiform regions [17]. On the other hand, PET studies suggested that changes in glucose 
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metabolism might be useful to predict the conversion from MCI subjects to AD [18]. Other 

authors demonstrated that the retention of an amyloid-imaging PET tracer in MCI subjects is 

at an intermediate level between healthy controls and AD patients [19]. PET and fMRI exhibit 

a good spatial accuracy, but both offer a poor temporal resolution to study brain dynamics. On 

the other hand, electroencephalography (EEG) and magnetoencephalography (MEG) have 

much higher temporal resolution than fMRI and PET, allowing the real-time recording of 

neural activity. EEG and MEG have also proved their usefulness to characterize the brain 

abnormalities associated with MCI and AD [20–37]. Compared to EEG, MEG offers 

reference-free recordings. Additionally, the effect of the heterogeneous conductivity of the 

skull and scalp is significantly lower for magnetic fields. Finally, MEG provides better spatial 

resolution than conventional EEG. Due to the aforementioned advantages of MEG over other 

neuroimaging modalities, neural dynamics in MCI were evaluated in the current study using 

this non-invasive technique.  

The characterization of AD and MCI using MEG has been addressed in the last decades 

applying different signal processing techniques. Until the introduction of methods derived 

from nonlinear dynamics, MEG signals were explored with linear techniques based on 

spectral analyses [26, 32]. The most common marker in AD and MCI patients is a slowing of 

MEG activity during resting-state. In particular, MCI subjects showed intermediate median 

frequency values between AD patients and controls [26]. Several non-linear analysis methods 

suggested that AD and MCI elicit a complexity decrease in spontaneous brain activity as well 

as an increase of regularity [27, 28]. Using Lempel-Ziv complexity, Fernández et al. [27] 

showed that AD patients and controls exhibit a parallel tendency to diminished complexity 

values as a function of age, but MCI patients did not show such normal tendency. All these 

methods (both the spectral and the non-linear ones) measure local activation patterns in 

individual sensors. However, it has become clear that simple activation studies are no longer 
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sufficient for a full characterization of brain dynamics [36]. For this reason, attention has 

shifted to coupling analyses during the last years. For instance, Escudero et al. [25] found that 

AD and MCI cause slight alterations in the MEG connectivity. Another study [29] revealed 

significant differences between MCI subjects and controls in the beta frequency band for both 

coherence (COH) and synchronization likelihood (SL). A more recent measure, called phase 

lag index (PLI), revealed that AD is associated with a synchronization decrease in the lower 

alpha and beta bands [34]. Bajo et al. [22] analyzed the MEG activity obtained during a 

memory task in 22 MCI subjects and 19 controls by means of SL. Their results revealed an 

increase in long distance inter-hemispheric connections in MCI, but a decrease in 

anteroposterior functional connectivity [22]. All these coupling methods (COH, SL, PLI, etc.) 

measure functional connectivity (i.e. dependencies between remote neurophysiological 

events) [37]. However, although awareness of the existence of a connection is important, 

mapping the directional relationships is essential to fully characterize information flow 

dynamics in MCI. For this reason, measures of effective or causal connectivity (i.e. the 

influence that one neural system exerts over another) are needed to overcome the limitations 

of the aforementioned analyses [37]. 

The aim of this study is to analyze MEG connectivity patterns in MCI by means of COH, a 

classical measure of functional connectivity, but also using Granger causality (GC), a measure 

of effective connectivity. To our knowledge, this is the first study that uses an effective 

connectivity measure to characterize the MEG brain dynamics in MCI. We want to address 

the following research questions: (i) Can these measures (COH and GC) be useful to identify 

MCI as a disconnection syndrome?; (ii) Can GC provide further insights about the abnormal 

connectivity patterns in MCI to those obtained using COH?; (iii) Which measure provides a 

better discrimination between controls and MCI subjects? 
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2. MATERIALS AND METHODS 

2.1. Subjects 

In this study, MEG signals were recorded from 44 subjects: 18 patients diagnosed with 

MCI and 26 controls without past or present neurological disorders. Clinical diagnosis was 

determined through psychiatric and neurological examinations at San Carlos University 

Hospital (Madrid, Spain). MCI patients were diagnosed according to the National Institute on 

Aging-Alzheimer Association (NIA-AA) criteria [11]. Based on their cognitive profile, all of 

them were classified as amnestic MCI patients. Besides meeting the core clinical criteria for 

MCI, patients also exhibited significant hippocampal atrophy according to the evaluation of 

an experienced neuroradiologist, who was blinded to the clinical outcome. Consequently, 

patients were categorized as “MCI due to AD intermediate likelihood” [11].  

For each subject, cognitive grade was assessed by means of the Mini Mental State 

Examination (MMSE) test [38], while functional status was evaluated with the Global 

Deterioration Scale/Functional Assessment Staging (GDS/FAST) system [39]. The main 

clinical and socio-demographic data are summarized in Table 1. There were not statistically 

significant differences between both populations in terms of age (p > 0.05, Mann-Whitney U-

test) and gender (p > 0.05, Chi-square test). 

The local Ethics Committee of San Carlos University Hospital approved this investigation. 

Controls and patients’ caregivers signed the informed consent for the participation in this 

study, which was conducted in accordance with the Declaration of Helsinki guidelines. 

 
DISPLAY TABLE 1 AROUND HERE 
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2.2. MEG acquisition and pre-processing 

Continuous resting-state MEG activity was acquired by qualified technicians using a 148-

channel whole head magnetometer (MAGNES 2500 WH, 4D Neuroimaging) placed in a 

magnetically shielded room at the MEG Centre Dr. Pérez-Modrego (Madrid, Spain). The 

participants laid awake in a stretcher with closed eyes. For each subject, five minutes of MEG 

data were acquired at a sampling frequency of 678.17 Hz. A process of down-sampling by a 

factor of four was accomplished to reduce the data length, with a subsequent sampling rate of 

169.55 Hz. 

For each MEG recording, the following pre-processing procedure was applied: (i) 

application of independent component analysis (ICA) to minimize the presence of artifacts; 

(ii) data filtering with a 1-65 Hz band-pass filter and a 50 Hz notch filter; (iii) visual 

inspection to select artifact-free epochs of 5 s (848 samples); and (iv) normalization of the 

artifact-free epochs to have zero-mean and standard deviation of 1. Signal pre-processing was 

conducted using Matlab (version 8.4, Mathworks, Natick, MA). 

2.3. Connectivity measures 

The study of neural interactions seeks to understand how different regions of brain 

communicate with each other. In this research, we focused on two complementary points of 

view, which have been developed to analyze neural connections: COH and GC. Both 

measures were computed for the five conventional frequency bands: delta (d, 1-4 Hz), theta 

(q, 4-8 Hz), alpha (a, 8-13 Hz), beta (b, 13-30 Hz), and gamma (g, 30-45 Hz). The result of 

computing each measure for all pair-wise combinations of channels was an M × M matrix (M 

= 148), where each entry Mjk contains the COH or GC value between the channels j and k. 

The matrix was symmetric for COH, whereas it was asymmetric for GC, as it is an effective 

connectivity measure. Afterwards, connectivity results were grouped into eight brain areas 

(see Figure 1), and intrahemispheric (i.e. between two different areas within one hemisphere) 
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and interhemispheric (i.e. between homologue regions of two hemispheres) connectivity 

patterns were calculated. The connectivity value between two regions was estimated 

averaging values for pairs of sensors, where each sensor was in a different brain region. 

 
DISPLAY FIGURE 1 AROUND HERE 

 
 

2.3.1. Coherence (COH) 

COH is a well-known method to assess brain connectivity. It measures the existing linear 

pair-wise correlations between two time series in a specific frequency band. This method has 

been widely used to study the coupling patterns in AD and MCI [23, 29, 31]. However, COH 

is not able to provide information about the direction in which the neurophysiological 

connections are addressed. 

Let xj(t) and xk(t) the time series from two MEG channels j and k. Their complex Fourier 

transforms can be expressed as: 

( ) )exp( jjj iafX j= ,      (1) 

( ) )exp( kkk iafX j= ,      (2) 

where aj and ak are the amplitudes, while jj and jk are the phases of the time series at a given 

frequency f. The power auto spectral density function Sjj(f) of channel j (analogous expression 

for channel k) and the cross-spectral density function Sjk(f) for channels j and k are defined as 

[40]: 

( ) )()( * fXfXfS jjjj = ,     (3) 

( ) )()( * fXfXfS kjjk = ,     (4) 

where * designates the complex conjugate and á · ñ the inner product. 

COH between channels j and k is defined as the absolute value of the normalized cross-

spectrum [29, 40]: 
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where Dj is the instantaneous phase difference between the time series xj(t) and xk(t). COH 

values range from 0 to 1, indicating the degree of connectivity between the aforementioned 

two signals. In our study, the COH algorithm was applied to each pairwise combination of 

MEG channels. 

2.3.2. Granger Causality (GC) 

Effective (or causal) connectivity measures emerge as key tools to deal with the evaluation 

of the directionality in which a neurological event is exerted [37]. One of the most popular 

measures of causal connectivity is the GC, which has been applied in a wide range of areas, 

such as economy [41] or meteorology [42]. The idea of causality was proposed by Wiener in 

1956 [43]: one signal xj(t) is called causal to other xk(t) if the prediction of the second one is 

improved by adding past information of the first one, compared to past information of xk(t) 

only. Subsequently, Granger reformulated this statement in terms of autoregressive models 

[44]. Let xj(t) and xk(t) denote the time series from two MEG channels j and k. The bivariate 

autoregressive models for xj(t) and xk(t) could be written as [45]: 
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where gj(t) and gk(t) are the prediction errors at each time instant and A(u) are model 

parameters. If the variance of gj(t), denoted by Gj, is reduced by the inclusion of the xk terms in 

the first equation, then it is possible to say that xk causes xj. 

As neurophysiological time series contain relevant information in the frequency domain, 

causal interactions are usually represented with a spectral approach. Geweke [46] 
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reconstructed the time-domain Wiener-Granger Causality into its spectral configuration. This 

current study relies on this spectral representation for the analysis of MEG causality. To 

examine the causal relations in the spectral domain, the Fourier transforms of the bivariate 

autoregressive models of equations (6) and (7) can be represented as follows [45]: 
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where the elements of A(f) matrix are: 
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Multiplying both sides of the equation by the inverse of A(f) matrix, the following 

expression is obtained: 
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where H(f) is called the spectral transfer matrix. 

Finally, GC from signal xj(t) to xk(t) is given by [47]: 
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In pursuance of a best fit of the real system to the autoregressive model, an appropriate 

model order p should be determined. As the model order represents the total number of past 

samples considered, a low value provides a sparse representation of the data, while high 

model values overestimate the system. In this research, an autoregressive model order of p = 

28 was selected from the minimum obtained after applying the Akaike and the Bayesian 

Information Criterion [48]. 
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2.4. Statistical analysis 

Firstly, a descriptive analysis was carried out to study the distribution of the connectivity 

results. Kolmogorov–Smirnov and Shapiro–Wilks tests were used to evaluate the normality of 

the data, whereas Levene test was employed to assess the homogeneity of variances. As COH 

and GC results did not meet the parametric test assumptions, statistical differences between 

MCI patients and control subjects were evaluated with the Mann-Whitney U-test. In order to 

deal with the multiple comparisons problem, resampling-based false discovery rate (FDR) 

was applied [49]. Finally, receiver operating characteristic (ROC) curves, with a leave-one-

out cross-validation procedure, were used to assess the ability of COH and GC to discriminate 

MCI patients from elderly controls. Statistical analyses were performed using Matlab (version 

8.4, Mathworks, Natick, MA). 

3. RESULTS 

Connectivity patterns obtained for each frequency band are presented in Figures 2 (COH) 

and 3 (GC). For both figures, the first column shows the results for the healthy group, while 

the outcomes for MCI group are presented in the second column. Finally, between-groups 

statistical results are illustrated in the third column. Note that only statistically significant 

differences (FDR-corrected Mann-Whitney U-test) between MCI and control groups are 

displayed using a color-code: red color tones indicate significant connectivity increases in 

MCI patients in comparison with controls, whereas blue color tones denote significant 

decreases. 

Our COH results showed that MEG activity in MCI patients is characterized by an overall 

connectivity decrease in all frequency bands. Statistically significant differences between 

groups were found before the FDR correction for the following interactions: between left-

frontal and right-frontal (q band), between right-lateral and right-posterior (q band), between 
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left-lateral and left-posterior (a and b bands), and finally between left-central and left-

posterior at (b band). However, no connections remain statistically significant after FDR 

correction, as Figure 2 shows. GC results supported the connectivity loss previously found 

using COH measure. With this effective connectivity measure, statistically significant 

differences were obtained in all frequency bands, with the exception of d band (see Figure 3). 

Particularly, almost all interhemispheric and intrahemispheric connections remain significant 

after FDR correction in b band. 

 
DISPLAY FIGURES 2 AND 3 AROUND HERE 

 
 

ROC curves with a leave-one-out cross-validation procedure were used to assess the ability 

of each intrahemispheric and interhemispheric connectivity value to classify MCI patients and 

control subjects. The highest accuracy for COH results was achieved in g band for the 

interhemispheric connection between central areas: 77.27% (sensitivity = 44.44%; specificity 

100%; area under the ROC curve = 0.72). With GC, the highest accuracy values (accuracy = 

79.54%; sensitivity = 77.78%; specificity 80.77%; area under the ROC curve = 0.83) were 

reached for two different connections in b band: from left-posterior to right-posterior and 

from left-anterior to left-central.  

4. DISCUSSION AND CONCLUSIONS 

The goal of this study was to evaluate the presence of disconnection patterns in the 

prodromal stage of dementia. For that purpose, a measure of functional connectivity (COH) 

and one of effective connectivity (GC) were applied to spontaneous MEG recordings from 18 

MCI patients and 26 control subjects. 

4.1. MCI as a disconnection syndrome 

The first research question pointed out in the introduction posed the issue whether COH 
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and GC can be useful to identify MCI as a disconnection syndrome. Our COH results 

revealed that MCI group is characterized by a global decrease of functional connectivity in all 

frequency bands. However, no significant differences were found between MCI and control 

groups. Evidence for a functional connectivity loss in AD comes from several previous 

studies. For instance, Besthorn et al. [23] found a COH decrease in AD. This effect was most 

pronounced in frontal and central EEG channels in q, a and b frequency bands [23]. An EEG 

study revealed diminished SL values for AD patients in all frequency bands, in comparison 

with subjects with subjective memory complaints [33]. However, SL significantly decreased 

only in the 14–18 and 18–22 Hz bands [33]. Other functional metrics, such as PLI [34, 50] 

and global field synchrony (GFS) [30] confirmed the disconnection syndrome in AD. 

Although the study of neural coupling patterns in MCI is less common, some previous studies 

also suggested that this disorder is also associated with disrupted brain networks. Koenig et 

al. [30] showed that MCI is associated with decreased GFS values in a, b and g frequency 

bands. A global connectivity decrease in b band was also reported using SL [29]. The same 

measure revealed significant differences between MCI subjects and elderly controls in d and 

a at frontoparietal electrode pairs [20]. Other study showed decreased levels of local and 

large-scale connectivity in d and q during eyes-closed condition [35]. These studies agree 

with our results and support the notion that the functional disconnection between brain 

regions is a characteristic feature of MCI [35]. 

Besides that, our GC results also suggest that the brain dysfunction of MCI patients is 

associated with reduced values of effective or causal connectivity. To date, there are only a 

few MCI studies that analyzed the causal interactions between different brain regions. 

Dauwels et al. [24] applied different connectivity measures based on GC, observing a 

reduction of EEG synchrony in MCI patients with most measures. In a previous fMRI study 

[51], a loss of causal interactions among the resting state networks was reported in MCI 
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patients compared with normal controls. Babiloni et al. [21] highlighted the loss of the 

parieto-to-frontal coupling, suggesting that the posterior regions operate over the frontal ones 

in MCI. However, this disrupted coupling is also a significant feature in AD and in dementia 

with Lewy bodies [52, 53]. 

In sum, our research and all these previous studies support the hypothesis that AD, and 

also MCI, can be identified as disconnection syndromes [54]. This decrease in functional and 

effective connectivity is typically identified with neuronal loss and neocortical disconnection, 

which gradually increment as dementia progresses [23]. 

4.2. Abnormal connectivity patterns in MCI 

The second research question was aimed at analyzing whether GC provides more 

information than COH about the abnormal connectivity patterns in MCI. Our results suggest 

that GC is more adequate than COH to characterize the neural coupling patters in MCI. GC 

provides information on the directionality of the connections, but it also showed statistical 

differences between groups that COH could not detect. Particularly, statistically significant 

differences were found in all frequency bands with the exception of d band. Interhemispheric 

GC decrements were found between frontal areas (both directions) in q, a and b, from left 

central to right central in q, between posterior brain regions in a and b, and finally between 

temporal areas (from right to left in q, and in both directions in a, b and g). This 

interhemispheric disconnection syndrome may be associated with the memory and cognitive 

deficits in AD and MCI [55]. 

On the other hand, statistically significant differences in intrahemispheric couplings were 

found mainly between frontal, lateral and posterior areas, but also from these aforementioned 

areas to central regions, and between posterior and frontal regions. These results agree with 

previous EEG, MEG and fMRI studies, which showed decreased levels of connectivity 

between different brain areas [21, 31, 56]. An fMRI study revealed that posterior areas and 
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medial temporal lobes show remarkable disturbances in neuronal communication in early 

phases of dementia [56]. These alterations can be due to the deposition of neurofibrillary 

tangles and to brain atrophy [56]. However, other authors suggested that these changes may 

also affect other areas [57, 58]. Moretti et al. [31] reported a COH decrease of 

intrahemispheric fronto-parietal couplings at both hemispheres. Babiloni et al. [21] found that 

parietal to frontal direction of the information flux within EEG functional coupling was 

stronger in controls than in MCI subjects, specifically at a and b rhythms. Actually, this 

disconnection effect was still significant when grey matter volume is included in the analyses 

as a covariate [59]. This fact may suggest that this connectivity loss contributes to the 

impairment of episodic memory retrieval in MCI patients [59]. 

The aforementioned studies support evidences for considering MCI as a disconnection 

syndrome, although the involved brain areas differ. This disparity on the results could be due 

to the heterogeneity of MCI, the different neuroimaging techniques used to measure the brain 

activity, the different connectivity methods applied, or a combination of these factors. 

Notwithstanding, all these studies seem to link up MCI with a connectivity loss, at least at a 

and b bands. Our results confirmed these findings. These abnormal connectivity patterns may 

be due to the brain structural changes suffered by MCI patients: decrease in the size of the 

hippocampus, high atrophy in the medial temporal lobe, white matter damage in posterior 

areas, and loss of the global volume of the gray matter [60–63]. 

4.3. Discrimination of controls and MCI patients  

We raised the third research question about which measure (COH or GC) provides a better 

discrimination between MCI and control groups. For this purpose, ROC curves were 

calculated for each connection and frequency band. Our results showed that the highest 

classification accuracy obtained with GC (79.54%) was slightly better than COH results 

(77.27%). The best classification results were obtained in the b band. Previous studies 
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reported that this frequency range is related with the impairment of cognitive functions, such 

as language and memory [64, 65]. Therefore, b rhythms may be of diagnostic importance in 

dementia, especially in its early stages [29, 33].  

Other coupling measures and ROC curves have been used to distinguish MCI patients from 

controls. Bajo et al. [22] achieved values of area under the ROC curve between 0.72 and 0.82 

for a MEG database composed by 22 subjects with MCI and 19 controls. In another MEG 

study [29], accuracy values of 69.8% were reached using COH and SL. Other authors 

implemented more complex classification approaches to help in MCI diagnosis. For instance, 

the use of linear and quadratic discriminant analysis, combining results from full-frequency 

directed transfer function (DTF) and stochastic event synchrony methods, yielded 

classification rates of 83% [24]. Lastly, Escudero et al. [25] distinguished MCI subjects from 

controls with an accuracy of 77.3% using stepwise logistic regression. It is important to note 

that all these results should be cautiously understood due to the use of different databases, 

usually with small sample sizes. 

4.4. Limitations and future research lines 

Several issues of this research merit further consideration. Firstly, the sample size is too 

small to prove the usefulness of our methodology as a diagnostic tool. For this reason, larger 

patient populations should be analyzed in the future. Secondly, connectivity values were 

grouped into eight pre-defined brain regions to facilitate the interpretation of the results, 

despite the loss of MEG spatial resolution. Future studies might benefit from exploring the 

affected regions in detail. Additionally, only two connectivity metrics (COH and GC) have 

been applied in this study to characterize the connectivity patterns in MCI, but several others 

(e.g. SL, PLI, GFS, DTF) might also provide valuable information about neuronal 

disturbances in this disorder. Finally, it is noteworthy that both COH and GC are influenced 

by volume conduction [66, 67], which can cause artificial synchrony between MEG channels. 
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However, we can assume that, in our study, volume conduction affects the connectivity 

estimations in a similar way for controls and MCI patients. Nevertheless, in order to mitigate 

this problem, future studies should estimate the connectivity at the source level or apply other 

measures that eliminate (or at least reduce) volume conduction effects, such as the imaginary 

part of COH, the phase-slope index or the transfer entropy [66–68]. 

4.5. Conclusions 

This study investigated COH and GC of MEG signals in MCI patients. Our results 

suggested that MCI is associated with a widespread loss of functional and effective 

connectivity. However, significant differences between groups were found only with GC, 

mainly in the b frequency band. Moreover, GC provided a maximum accuracy of 79.54% to 

discriminate MCI patients from controls. Our results agree with previous studies that 

associated AD and MCI with a disconnection syndrome. This decrease in functional and 

effective connectivity exposes the cerebral histopathological abnormalities detected in these 

brain disorders. 
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TABLES 

 

Table 1. Socio-demographic and clinical data from MCI patients and healthy controls 

        *SD = Standard deviation 

 

 

 MCI patients Controls 

Number of subjects 18 26 

Age (years) (mean ± SD)* 74.89 ± 5.57 71.77 ± 6.38 

Gender (Female:Male) 10:8 17:9 

MMSE (mean ± SD)* 25.67 ± 1.82 28.88 ± 1.18 

FAST (mean ± SD)* 3.00 ± 0.00 1.73 ± 0.45 



  29 

FIGURE LEGENDS 

Figure 1. Distribution of MEG channels into eight brain regions: left-anterior (dark 

orange), left-central (dark purple), left-lateral (dark blue), left-posterior (dark green), right-

anterior (light orange), right-central (light purple), right-lateral (light blue), and right-posterior 

(light green). Midline MEG sensors were not used for our connectivity analyses. Examples of 

artifact-free epochs at different MEG channels from a control subject (blue) and a patient with 

MCI (red) are also displayed. 

Figure 2. COH results for each frequency band. Left and central columns depict COH 

values for controls and MCI patients, respectively. Right column displays statistically 

significant values between groups, where connections between regions were only displayed 

when statistically significant within-group differences within groups were obtained (Mann-

Whitney U-test, FDR-corrected p-values < 0.05). Red color tones indicate significant 

connectivity increases in MCI in comparison with controls, whereas blue color tones denote 

significant decreases. 

Figure 3. GC results for each frequency band. Left and central columns depict GC values 

for controls and MCI patients (the arrows indicate the directionality of GC for a specific 

coupling between regions), respectively. Right column displays statistically significant values 

between groups, where connections between regions were only displayed when statistically 

significant within-group differences were obtained (Mann-Whitney U-test, FDR-corrected p-

values < 0.05). Red color tones indicate significant connectivity increases in MCI in 

comparison with controls, whereas blue color tones denote significant decreases. 


