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Abstract
The aim of this study was to characterize the dynamic
functional connectivity of resting-state electroencephalo-
graphic (EEG) activity in Alzheimer’s disease (AD). The
magnitude squared coherence (MSCOH) of 50 patients
with dementia due to AD and 28 cognitively healthy
controls was computed. MSCOH was estimated in epochs
of 60 s subdivided in overlapping windows of different
lengths (1, 2, 3, 5 and 10 s; 50% overlap). The effect of
epoch length was tested on MSCOH and it was found that
MSCOH stabilized at a window length of 3 s. We tested
whether the MSCOH fluctuations observed reflected
actual changes in functional connectivity by means of
surrogate data testing, with the standard deviation of
MSCOH chosen as the test statistic. The results showed
that the variability of the measure could be due to
dynamic functional connectivity. Furthermore, a signifi-
cant reduction in the dynamic MSCOH connectivity of
AD patients compared to controls was found in the delta
(0–4 Hz) and beta-1 (13–30 Hz) bands. This indicated
that AD patients show lesser variation in neural connec-
tivity during resting state. Finally, a correlation between
relative power and standard deviation was found, sug-
gesting that an increase/peak in power spectrum could be
a pre-requisite for dynamic functional connectivity in a
specific frequency band.

Keywords
Alzheimer’s disease � Dynamic functional connectivity
Electroencephalogram � Neural dynamics
Coherence � Relative power

1 Introduction

Alzheimer’s disease (AD) neurodegeneration has an effect
on the temporally coordinated brain networks, which
underlie cognitive functions. These networks become more
abnormal with the progression of AD, as alterations in the
processing and transmission of information begin to appear
[1]. The aberrant brain networks associated to AD can be
reflected in the alterations of the synchronization patterns
and brain connectivity observed in resting-state electroen-
cephalographic (EEG) recordings [1].

The majority of studies focusing on brain synchronization
and connectivity during resting state assume that functional
connectivity (FC) remains temporally stationary. However, it
is important to take the spontaneous fluctuations of brain
activity into account, as it has been suggested that
resting-state activity is not stationary [2]. Thus, the quan-
tification of dynamic changes in FC metrics could provide
relevant information regarding the stability of brain net-
works [3].

Most dynamic functional connectivity (dFC) studies in
the literature have been performed with functional magnetic
resonance imaging (fMRI) recordings [3]. Therefore, the
study of dFC on electroencephalographic (EEG) recordings
is of great interest. In the specific case of AD, only a small
number of studies have addressed the characterization of FC
variability patterns [3].

This paper presents a novel methodology, aimed at
obtaining a first approximation to the dynamics of FC in AD.
Specifically, this study addresses the following research
questions: (i) what epoch length is needed to obtain stable
connectivity measures?; (ii) can dFC be found in AD
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patients and healthy controls?; (iii) do dFC patterns differ
between both groups?

2 Materials

2.1 Subjects

A population of 28 healthy control subjects (C) and 50
patients with AD was analyzed. The subjects were matched
by age. Patients were diagnosed according to the criteria of
the National Institute on Aging and Alzheimer’s Association
(NIA-AA) [4]. The controls were elderly people without
cognitive impairment, or history of neurological or psychi-
atric diseases. None of the participants took medications that
could influence EEG records.

The socio-demographic characteristics of each group are
specified in Table 1. All participants and caregivers were
informed about the research and study protocol and gave
their written and informed consent. The Ethical Committee
of the “Río Hortega” University Hospital (Valladolid, Spain)
approved the study according to the Code of Ethics of the
World Medical Association (Declaration of Helsinki).

2.2 Electroencephalographic Recordings

EEG signals were recorded using a 19-channel EEG system
(XLTEK®, Natus Medical) at the Department of Clinical
Neurophysiology of the “Río Hortega” University Hospital.
EEG activity was acquired from Fp1, Fp2, Fz, F3, F4, F7,
F8, Cz, C3, C4, T3, T4, T5, T6, Pz, P3, P4, O1 y O2, at a
sampling frequency of 200 Hz. Subjects were asked to
remain with eyes closed, awake, and still during EEG
acquisition. Five minutes of EEG activity were recorded for
each subject. After a preliminary independent component
analysis to remove artifacted components, the EEG record-
ings were then preprocessed in three steps: (i) filtering using
a notch filter (50 Hz) and a Hamming window bandpass
filter ([1 70] Hz); (ii) segmentation into 5 s epochs; and
(iii) visual rejection of artifacts, selecting the first 60 con-
secutive seconds without artifacts for each subject.

3 Methods

3.1 Estimation of Variability

Coherency (COH) is a measure that analyzes the consistency
between the EEG activity of different pairs of electrodes in
order to characterize the connectivity between brain regions.
COH is the standardized cross-spectrum of signals X and
Y across trials, divided by the product of their power spectrum.
Magnitude squared COH (MSCOH) combines sensitivity to
both phase and magnitude synchrony and is defined as [5]:

MSCOHxyðf ; tÞ ¼ COHxyðf ; tÞ
�
�

�
�2¼ SXYðf ; tÞj j2

PXðf ; tÞPyðf ; tÞ ð1Þ

where SXY is the cross-spectrum of X and Y, and PX and PY

are the power spectral density (PSD) of X and Y, respec-
tively. The relative power (RP) was computed from the PSD
in the conventional frequency bands: delta (d, 1–4 Hz), theta
(h, 4–8 Hz), alpha (a, 8–13 Hz), beta-1 (b1, 13–19 Hz),
beta-2 (b2, 19–30 Hz) and gamma (c, 30–70 Hz).

3.2 Protocol

In order to study the dynamic properties of functional con-
nectivity coupling patterns, MSCOH was computed between
each pair of electrodes over the 60 s epochs by means of
sliding windows with 50% overlap. Afterwards, the mean
value of MSCOH (µMSCOH) and the standard deviation
(jMSCOH) were obtained. jMSCOH was used as the test
statistic in order to detect the existence of dFC [6]. The
connectivity matrixes for each frequency band were grouped
into five regions (frontal, left-temporal, right-temporal,
central and parieto-occipital) and inter-regional and
intra-regional µMSCOH and jMSCOH values were averaged
among the electrodes within each region pair. After this
procedure, the connectivity matrix was reduced to a 5 � 5
size (5 regions). All subsequent analyses were performed on
these matrixes. This procedure was performed on windows
of 1, 2, 3, 5 and 10 s, in the aforementioned 6 conventional
frequency bands.

Table 1 Socio-demographic and clinical data. Mean values ± standard deviation. A: primary education or below; B: secondary education or
above; MMSE: Mini-Mental State Examination

Data Alzheimer’s disease Controls

Number of subjects 50 28

Age (years) 79.9 ± 5.8 76.1 ± 34.0

Gender (male:female) 21:28 8:20

Education level (A:B) 37:13 9:19

MMSE 21.2 ± 4.0 28.9 ± 1.1
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3.3 Statistical Analysis

Shapiro-Wilk and Levene tests showed that µMSCOH and
jMSCOH values did not meet parametric test conditions.
Then, the Mann-Whitney U-test was used to evaluate the
differences between groups across each frequency band and
region. An FDR correction was performed in order to correct
for multiple comparisons. Furthermore, a Spearman corre-
lation analysis was performed between the RP values and the
average jMSCOH values of each channel.

3.4 Analysis of Window Stability

The Friedman test was used on the µMSCOH values to detect
the effects of window length on the MSCOH measures. In
case the Friedman test showed a significant effect, Dunn’s
multiple comparison test was applied to determine the
window in which the MSCOH measurements became stable,
defined as the shortest window length that does not show
significant differences with longer window sizes [7].

3.5 Detection of Dynamic Functional
Connectivity

It is important to take into account the fact that the mere
presence of fluctuations in connectivity measures is not

sufficient proof of the existence of dFC. Due to the noisy
nature of the recordings, the fact that the observed connec-
tivity values are estimates of the true FC values cannot be
ignored [6]. Therefore, in order to determine whether the
observed fluctuations reflect real FC changes, an adequate
statistical test must be carried out [6]. We followed the
statistical test described by Prichard and Theiler [8], which
has been previously used by Hindriks et al. [6]. In our case,
1000 surrogate versions of each EEG segment were con-
structed from the original signals.

4 Results and Discussion

First, we determined the window size in which the MSCOH
measurements became stable. It was found that for both
groups this size was 3 s. All further tests were thus per-
formed on values obtained with a 3 s sliding window. We
then assessed whether the jMSCOH values were statistically
significant [6]. For each, inter-regional and intra-regional
pair we performed an FDR correction on the p-values
associated with the z-scores of all the connections within
each pair. After this, we determined that a regional pair had
dFC if at least one of the connections within it had a sta-
tistically significant jMSCOH value after the FDR correction.

Figure 1a shows the number of subjects that showed
statistically significant µMSCOH in each regional pair. The
beta-1 band showed the highest number of regional pairs

Fig. 1 MSCOH dFC analysis for a 3-s sliding window. a Percentage
of subjects that showed statistically significant µMSCOH in each regional
pair for each group. b Statistically significant p-values for the jMSCOH

comparisons between groups. Red values indicate greater jMSCOH for C
than AD patients, while blue values indicate greater jMSCOH for AD

patients than C. c Correlation between RP values and jMSCOH for each
group. Only the bands with significant between-group differences are
shown. Correspondence with regions F: frontal, C: central, LT:
left-temporal, RT: right-temporal, PO: parieto-occipital (Color figure
online)
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with dFC, especially for controls, nearing 50% of subjects in
some cases. The statistical differences in µMSCOH between
groups are also shown in Fig. 1b. The most statistically
significant differences were located in the beta-1 band,
especially in the connections between the right-temporal
region and the remaining ones. These results are consistent
with previous findings that support the role of the right
hemisphere in brain disconnection related to AD [9]. Less
statistically significant differences were also found in the
delta band. Controls showed more variation in connectivity
than AD patients, which is in agreement with other studies
that found a loss of irregularity and variability in AD neural
activity [9].

The correlation analysis between RP and the average
jMSCOH values of each EEG channel in each band, displayed
in Fig. 1c, showed statistically significant positive correla-
tion in the delta, theta and alpha band for most regions in
controls. AD patients, on the other hand, showed weaker
positive correlation in the beta-1 band as well, suggesting
that spectral power is a pre-requisite for dFC.

This study has some limitations. Firstly, more controls
should be included in the database in order to balance the
number of AD patients and controls. Furthermore, a third
group of mild cognitive impairment (MCI) patients should
be included in future studies, given its importance as a
prodromal form of AD [9].

5 Conclusion

The results suggest that MSCOH variability could be due to
dFC. Moreover, AD patients show lesser variation in neural
connectivity than controls, which suggests a loss of vari-
ability in AD. Finally, the correlation between relative power
and jMSCOH hints that a peak in power spectrum in a fre-
quency band could be a pre-requisite for dFC.
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