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New binary and ternary LCD codes
Carlos Galindo, Olav Geil, Fernando Hernando and Diego Ruano

Abstract

LCD codes are linear codes with important cryptographic applications. Recently, a method has been presented
to transform any linear code into an LCD code with the same parameters when it is supported on a finite field with
cardinality larger than 3. Hence, the study of LCD codes is mainly open for binary and ternary fields. Subfield-
subcodes of J-affine variety codes are a generalization of BCH codes which have been successfully used for
constructing good quantum codes. We describe binary and ternary LCD codes constructed as subfield-subcodes of
J-affine variety codes and provide some new and good LCD codes coming from this construction.

Index Terms

LCD codes, complementary dual, subfield-subcodes, J-affine variety codes, toric codes.

INTRODUCTION

IT is well-known that the hull C ∩ C⊥ of a linear code C, with (Euclidean) dual C⊥, does not vanish
in general; but when this holds, the code C is called a linear code with complementary dual (LCD).

LCD codes were introduced by Massey [22] to provide an optimum linear coding solution for the two-
user binary adder channel and prove the existence of asymptotically good LCD codes; previously he
studied LCD cyclic codes (reversible codes) in [21]. The literature contains considerable information about
the characterization and construction of this family of codes, being [28], [30], [27] some of the oldest
references. Apart from applications in data storage, LCD codes are also useful for obtaining lattices [15]
and in network coding [2], [29]. Interesting applications of LCD codes in cryptography have been recently
discovered. They play a role in counter-measures to passive and active side-channel analyses on embedded
cryptosystems. We remark that the implementation of cryptographic algorithms could suffer attacks (SCA
or FIA) for extracting the secret key. SCA (side-channel attacks) consist of passively recording some
leakage to retrieve the key and FIA (fault injection attacks) consist of actively perturbing the computation
to alter the output. One of the main sources of interest in LCD codes comes from the fact that they
provide linear complementary pairs of codes. A linear complementary pair of codes (C1, C2) consists of
two codes in Fnq with dimensions k and n − k such that C1 + C2 = Fnq . These pairs have been used in
[3], [4] for protecting implementations of symmetric cryptosystems against SCA, with level of protection
depending on the minimum distance of C⊥2 , and FIA, with level of protection depending on the minimum
distance of C1.

The above mentioned applications have caused a huge interest in LCD codes and many papers on this
topic appeared very recently. An important contribution is [6], where the authors prove that, for q > 3,
q-ary LCD codes are as good as q-ary linear codes. That is, for every linear code over a field Fq with
more than 3 elements, one can construct an LCD code with the same parameters from that code.
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University, Spain. e-mail: galindo@uji.es.

O. Geil is with the Department of Mathematical Sciences, Aalborg University, Denmark. e-mail: olav@math.aau.dk.
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With respect to binary and ternary LCD codes, the best LCD codes known to exist are reversible and
are derived from BCH codes [16], [17], [23], [18]. As it is well-known, subfield-subcodes from codes
over large fields can give rise to good codes over small fields. BCH codes are subfield-subcodes of Reed-
Solomon codes and families of binary and ternary BCH LCD and cyclic LCD codes have been constructed
in [17] and [18] for few lengths. Some good binary reversible codes of odd length n, for 5 ≤ n ≤ 257,
are given in [23], where the authors determine all the parameters for 5 ≤ n ≤ 99.

In this paper we consider LCD codes coming from subfield-subcodes of the so-called J-affine variety
codes. These codes are images of evaluation maps from vector spaces of polynomials in several variables
generated by suitable monomials. Our LCD codes may be regarded as a generalization of BCH codes,
including extensions to the case of more variables, and allow us to reach a wider variety of lengths. Their
metric structure and duality properties have been studied and successfully used to construct quantum
stabilizer codes in previous works of the authors [10], [11], [12], [9], [8].

For the univariate case, binary subfield-subcodes of J-affine variety codes with odd length provide
reversible codes, which essentially coincide with those in [23]; however, we are able to provide examples
(see Example 1 in Section III) with lengths not covered in the literature and our codes are derived
from generic results (Theorems 17 and 19) which can simplify some computations. Furthermore, with
one variable, we obtain unknown ternary LCD codes having good parameters; several examples are also
shown in Section III.

Considering more than one variable, we get a much broader spectrum of lengths. Theorems 20 and
21, and Remark 22 provide a wide variety of new LCD codes with previously unknown lengths, having
some of them good parameters. As a sample, in Section III we give several families of LCD codes which,
according to [14], contain many optimal or best known linear codes. Moreover, we provide new LCD
codes with a length that can be obtained with a BCH code (our univariate case) but with better parameters.

Decoding procedures may be useful for the cryptographic applications of LCD codes. Decoding algo-
rithms have been described for some families of codes considered in this paper [7], [20]. We believe that
these algorithms may be adapted to all of them.

I. LCD J -AFFINE VARIETY CODES

In this section we consider J-affine variety codes. These linear codes were introduced in [12] and used
for constructing quantum codes. We review some results concerning self-orthogonality that will allow us
to characterize LCD codes in this family. Finally, we give parameters for some families of LCD J-affine
variety codes. The LCD codes provided in this section are not new or they do not have the best known
parameters, as we will remark later, however, they are instrumental for introducing the LCD codes in
Section II which are new and good binary and ternary LCD codes.

Along this paper, q = pr will be a positive power of a prime number p. Let m ≥ 1 be an integer and
fix m integers Nj > 1 such that Nj − 1 divides q − 1 for j = 1, 2, . . . ,m. Let R := Fq[X1, X2, . . . , Xm]
be the ring of polynomials in m variables and with coefficients in the finite field Fq. Consider a subset
J ⊆ {1, 2, . . . ,m} and the ideal IJ in R generated by the binomials XNj

j − Xj when j 6∈ J and by
X
Nj−1
j −1 otherwise. Set ZJ = {P1, P2, . . . , PnJ} the zero-set of IJ over Fq. Note that the jth coordinate,

for j ∈ J , of the points in ZJ is different from zero and nJ =
∏

j /∈J Nj

∏
j∈J(Nj − 1). Furthermore,

denote Tj = Nj − 2 when j ∈ J and Tj = Nj − 1 otherwise; then define

HJ = {0, 1, . . . , T1} × {0, 1, . . . , T2} × · · · × {0, 1, . . . , Tm}

and, for any a = (a1, . . . , am) ∈ HJ , set Xa = Xa1
1 · · ·Xam

m .
Consider the quotient ring RJ := R/IJ and the evaluation map evJ : RJ → FnJq given by

evJ(f) = (f(P1), f(P2), . . . , f(PnJ )) ,

where f denotes both the equivalence class and any polynomial representing it. As is well-known, evJ is
a bijection, and in particular one has that {evJ(Xa) | a ∈ HJ} constitutes a basis for the image.
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Definition 1. Let ∆ be a non-empty subset of HJ . The J-affine variety code given by ∆ is the Fq-vector
subspace EJ

∆ of FnJq generated by evJ(Xa), a ∈ ∆. We denote by CJ
∆ the (Euclidean) dual code of EJ

∆.

Observe that the dimension of EJ
∆ equals the cardinality of ∆, and consequently the dimension of

CJ
∆ is nJ − card(∆). Note that the univariate case contains the family of Reed-Solomon codes and for

J = {1, 2, . . . ,m} and Nj = q for every j, one has a generalized toric code [25]. It is also clear that the
J-affine variety code EJ

∆ is LCD if and only if its dual code CJ
∆ is LCD.

The following result, which can be found in [12, Proposition 1], gives the metric structure of J-affine
variety codes.

Proposition 2. Let J ⊆ {1, 2, . . . ,m}. Consider a, b ∈ HJ and let Xa and Xb be two monomials
representing elements in RJ . Then, the inner product evJ(Xa) · evJ(Xb) is different from 0 if, and only
if, the following two conditions are satisfied.
• For every j ∈ J , it holds that aj + bj ≡ 0 mod (Nj − 1), (i.e., aj = Nj − 1− bj when aj + bj > 0

or aj = bj = 0).
• For every j /∈ J , it holds that

– either aj + bj > 0 and aj + bj ≡ 0 mod (Nj − 1), (i.e., aj = Nj − 1− bj if 0 < aj, bj < Nj − 1
or

(aj, bj) ∈ {(0, Nj − 1), (Nj − 1, 0), (Nj − 1, Nj − 1)}
otherwise),

– or aj = bj = 0 and p 6 | Nj .

The following remark illustrates how to construct LCD J-affine variety codes.

Remark 3. Proposition 2 allows us to obtain sets ∆ which lead to LCD codes. Consider for instance the
case q = 33, m = 2, J = {1, 2}, N = N1 = N2 = 33, and look for a set ∆ ⊂ HJ such that EJ

∆ is an
LCD code. From Proposition 2, we deduce that the points in HJ can be divided into two sets. The first
set consists of what we will call symmetric points, and they are ((N−1)/2, (N−1)/2) = (13, 13), (0, 0),
((N − 1)/2, 0) = (13, 0) and (0, (N − 1)/2) = (0, 13). For a symmetric point a, we have that evJ(Xa)
is orthogonal to evJ(Xb) for all b ∈ HJ \ {a} and evJ(Xa) · evJ(Xa) 6= 0. Thus, suitable sets ∆ can
contain, or not contain, symmetric points. The rest of the points in HJ are called asymmetric. In order
to have an LCD code and when one desires ∆ to contain an asymmetric point (a1, a2), a1, a2 ≤ N − 1,
the point (N − 1− a1, N − 1− a2) (named reciprocal) must also be added to ∆, and vice versa. Notice
that, here, N − 1 should be identified with zero. Indeed, one has that evJ(X(a1,a2)) is not orthogonal to
evJ(X(N−1−a1,N−1−a2)) and they are both orthogonal to evJ(Xb) for every b different from (a1, a2) and
(N − 1− a1, N − 1− a2). So to get suitable sets ∆, we can consider any of the above given symmetric
points and pairs as described, for instance one may have (7, 16), (19, 10) ∈ ∆.

The procedure is a bit different when J = {2} instead of J = {1, 2}. First we notice that in the case
treated above the obtained dual code is also generated by the evaluation of monomials and, therefore, it is
a J-affine variety code. In this second case, assuming that we desire that (0, 10) ∈ ∆, our code be LCD
and the dual code be also J-affine variety code, again by Proposition 2, we must add to ∆ the points
(0, 16), (26, 16) and (26, 10).

The following result generalizes the above two cases and the terminology introduced herein to the
general class of J-affine variety codes whose dual is again a J-affine variety code.

Theorem 4. Let ∆ be a subset of HJ . The J-affine variety code EJ
∆ is LCD with its dual code also being

J-affine variety if and only if ∆ is a union of sets Ra containing a and those elements b ∈ HJ such that:
• For every j 6∈ J , bj = Nj − 1− aj if 0 < aj < Nj − 1, and bj ∈ {0, Nj − 1} otherwise.
• For every j ∈ J , bj = Nj − 1− aj if 0 < aj < Nj − 1, and bj equals 0 otherwise. Moreover bj may

also be equal to aj in the case when either ai = 0 or ai = Ni − 1 for some i /∈ J .
Any two distinct exponents b and b′ in Ra are called reciprocal, and a will be named symmetric

whenever card(Ra) = 1. Points that are not symmetric are called asymmetric.
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Proof. Let a ∈ ∆ and b ∈ Ra and assume 0 < aj < Nj − 1 for j /∈ J , and 0 ≤ aj < Nj − 1 for j ∈ J .
By Proposition 2, evJ(Xa) is not orthogonal to evJ(Xb), and therefore both a, b ∈ ∆ to guarantee that
EJ

∆ is LCD. It is also clear that if ∆ = Ra, the (Euclidean) dual code CJ
∆ is generated by the complement

of ∆ in HJ .
Finally, when aj = Nj − 1 or aj = 0 for j 6∈ J , for constructing an LCD code whose dual is generated

by monomials, one should have in EJ
∆, and not in CJ

∆, those vectors evJ(Xb) which are not orthogonal
to evJ(Xa). This proves the result.

Remark 5. The cardinality of the sets Ra described in Theorem 4 is a power of 2. It is 1 or 2 if no
coordinate of a equals 0 or Nj − 1 for some j 6∈ J .

When J 6= {1, 2, . . . ,m} and p does not divide Nj for j 6∈ J , one can also get LCD J-affine variety
codes by including in ∆ subsets R′a of Ra with cardinality a power of 2 whose elements have the i-th
coordinate equal to either 0 or Ni−1 for some indices i in the set {1, 2, . . . ,m}\J and the corresponding
evaluation vectors are not orthogonal. In this case, reasoning for ∆ = R′a, the dual code is generated by
the evaluation of the monomials in HJ \Ra and polynomials which are linear combinations of monomials
with exponents in Ra and orthogonal to the evaluation of the monomials in R′a. In generic cases, the dual
space, contains a vector space with dimension nJ − card(R′a) which proves that EJ

∆ is an LCD code.
When considering this type of codes, we only consider the elements in R′a as reciprocal.

As an easy example, setting p = 3, q = 33, m = 2, N1 = N2 = 14, J = {2}, a = (0, 1) and
∆ = R′a = {(0, 1), (0, 12)}, it holds that EJ

∆ is a LCD code of dimension 2. Notice that ∆ = Ra =
{(0, 1), (0, 12), (13, 12), (13, 1)} gives another LCD code with dimension 4.

Some of the codes presented in [5, Corollary 3.6] can be recovered by considering the univariate case
of J-affine variety codes, with J = {1}. The following result states parameters for LCD codes coming
from the univariate case of J-affine variety codes. We note that our contribution in this article, for the
univariate case, is not supplying LCD codes coming from Proposition 6, but LCD subfield-subcodes of
J-affine variety codes that will be presented in Theorem 12.

Proposition 6. Let N be a positive integer such that N − 1 divides q − 1 and set another positive
integer δ, such that 1 ≤ δ ≤ (N − 1)/2 if N − 1 is even and δ ≤ N/2 − 1 otherwise. For J = ∅ and
∆ = {0, 1, . . . , δ − 1, N − δ, . . . , N − 2, N − 1}, it holds that the dual code CJ

∆ of the J-affine variety
code EJ

∆ is LCD with parameters [N,N − 2δ, 2δ]q. Furthermore, for J = {1} and ∆ = {0, 1, . . . , δ −
1, N − δ, . . . , N − 2}, the codes EJ

∆ and CJ
∆ are LCD and MDS with parameters

[N − 1, 2δ − 1, N − 2δ + 1]q and [N − 1, N − 2δ, 2δ]q, respectively.

Proof. We prove first the statement for the case when J = {1}. It is clear that CJ
∆ is the J-affine variety

EJ
∆′ code given by ∆′ = {δ, δ + 1, . . . , N − δ − 1}. Now setting ∆′′ = {0, 1, . . . , N − 2δ − 1}, it holds

that
{evJ(Xa)|a ∈ ∆′} = {evJ(Xa) ∗ evJ(Xδ) : a ∈ ∆′′},

where ∗ denotes the component-wise product. Since wt(evJ(Xδ)) = N − 1, both codes have the same
parameters. So the dimension is clear and the distance follows from the fact that a polynomial of degree
N − 1− 2δ has at most N − 1− 2δ zeroes. The parameters of EJ

∆ follow from the fact that CJ
∆ is MDS.

The proof is analogous when J = ∅, again CJ
∆ is the J-affine variety EJ

∆′ code given by ∆′ =
{δ, δ + 1, . . . , N − δ − 1}, and let ∆′′ = {0, 1, . . . , N − 2δ − 1}. We have that {evJ(Xa)|a ∈ ∆′} =
{evJ(Xa) ∗ evJ(Xδ) : a ∈ ∆′′}. Since wt(evJ(Xδ)) = N − 1 (the first coordinate is equal to zero), the
minimum distance of EJ

∆′ is one unit less than the minimum distance of EJ
∆′′ , which is equal to 2δ + 1,

and the result holds.

Now, for the general case and using Theorem 4, we get a new family of LCD codes with a designed
minimum distance. To prove it, we will need the following lemma which was stated in [9, Proposition
4.1].
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Lemma 7. Consider the ring RJ and fix a monomial ordering. Let f(X1, . . . , Xm) be a polynomial of
minimum total degree representing an equivalence class in RJ and let Xa = Xa1

1 · · ·Xam
m be the leading

monomial of f . Then
card {P ∈ ZJ | f(P ) 6= 0} ≥ δa,

where

δa :=
m∏
j=1

(Nj − εj − aj) ,

εj being equal to 1 if j ∈ J and εj = 0 otherwise.

Proposition 8. Keep the notation as at the beginning of this section setting Nj > 1, j = 1, 2, . . . ,m, such
that Nj − 1 divides q − 1. Let J = {1, 2, . . . ,m} and fix αj < Tj/2 if Tj is even and αj ≤ (Tj − 1)/2
otherwise.
Consider the subset of HJ , ∆ = L1 × L2 × · · · × Lm, where Lj = {Tj/2− αj, . . . , Tj/2, . . . , Tj/2 + αj}
if Tj is even and Lj = {(Tj − 1)/2− αj, . . . , (Tj − 1)/2 + αj} otherwise.

Then, writing Aj = 2αj + 1, the code CJ
∆ is an LCD code with parameters[

nJ , nJ −
m∏
j=1

Aj,≥ min
j∈J
{Aj + 1}

]
q

.

Proof. Theorem 4 proves that CJ
∆ is LCD. Moreover, multiplying each generator of EJ

∆ by evJ(1/
∏

j∈J X
βj
j )

for suitable powers βj , one obtains a monomially equivalent code (see [19, Section 4]) EJ
∆′ where the

bottom left corner of the box ∆′ is 0. The codes EJ
∆ and EJ

∆′ have the same dimension and distance and
the same weight enumerators (see again [19]). Proposition 2 shows that the dual code CJ

∆′ has the same
minimum distance as the code EJ

∆′′
, where

∆
′′

= {0, . . . , T1} × {0, . . . , T2} × · · · × {0, . . . , Tm}\

{0, T1, T1 − 1, . . . , T1 − A1 + 1} × · · · ×

{0, Tm, Tm − 1, . . . , Tm − A1 + 1}.

Then, the result follows after applying Lemma 7. Notice that when Nj − 1 = q − 1, EJ
∆′′

is a toric code
and the result holds by [19, Theorem 3] or [24, Example 5.1].

Now, and up to the end of this section, for providing a unified treatment according to the different sets
J , we make a shift for the exponent of the monomials defining our code. Such a set is

HJ = {ε1, ε1 + 1, . . . , ε1 + T1} × {ε2, ε2 + 1, . . . , ε2 + T2} × · · · ×

{εm, εm + 1, . . . , εm + Tm}.

Identifying Tj + εj with 0, for j ∈ J , we obtain a bijection from HJ to HJ . Note that HJ and HJ are
two different sets of exponents satisfying that the equivalence classes of the corresponding monomials in
RJ are the same. Then, we consider the following set of monomials in R

N(J, t) =

{
Xb | εj ≤ bj ≤ Nj − 1, 1 ≤ j ≤ m, and

m∏
j=1

(bj + 1− εj) < t

}
,

where εj = 1 if j ∈ J and it equals zero otherwise. The hyperbolic code Hyp(J, t) [26], [13] can be
defined as the (Euclidean) dual of the code given by the vector subspace of FnJq generated by the evaluation



6

by evJ of the classes in RJ of the monomials in N(J, t). By [9, Proposition 4.3], the minimum distance
of Hyp(J, t) is larger than t− 1. With the help of that code, we state the following result which will be
useful.

Proposition 9. With the notation as in the above paragraph and at the beginning of this section, set
Nj > 1, for j = 1, 2, . . . ,m, such that Nj − 1 divides q − 1. Fix a positive integer such that t ≤ nJ =∏

j /∈J Nj

∏
j∈J(Nj−1), assume that p|Nj for all j 6∈ J and consider the set ∆(J, t) = N(J, t)∪N(J, t)r,

where N(J, t)r is the set of reciprocal elements (defined as in Theorem 4 or in Remark 5) of those in
N(J, t), where we notice that for j ∈ J , Nj−1 must be identified with 0. Then, the (Euclidean) dual CJ

∆(J,t)

of the J-affine variety code EJ
∆(J,t) is a J-affine LCD code with parameters [nJ , nJ−card (∆(J, t)) ,≥ t]q.

Proof. The construction of the code containing elements and reciprocal proves that we obtain an LCD
code. The bound on the distance is also clear because we consider a code contained in the code Hyp(J, t)
whose distance is larger than t− 1.

We are not directly interested in the LCD codes given by the above results because of the recent paper
[6] that shows the existence of LCD codes for q > 3 as good as linear codes. We will use them for
obtaining suitable subfield-subcodes which will give rise to good binary and ternary LCD codes.

II. LCD SUBFIELD-SUBCODES OF J -AFFINE VARIETY CODES

Keep the notation as in Section I. For j ∈ J , let ZTj = Z/〈Nj − 1〉 where we represent its classes
by {0, 1, . . . , Tj}. For j 6∈ J , we represent the classes of Z/〈Nj − 1〉 by {1, 2, . . . , Tj} and define ZTj =
{0} ∪ Z/〈Nj − 1〉, where we represent its classes by {0, 1, . . . , Tj}. A subset I of the Cartesian product
ZT1×ZT2×· · ·×ZTm is called a cyclotomic set with respect to p if p·x ∈ I for any x = (x1, x2, . . . , xm) ∈
I, where p · x = (px1, px2, . . . , pxm). I is said to be minimal (with respect to p) whenever it contains
all the elements that can be expressed as pi · x for some fixed element x ∈ I and some nonnegative
integer i. Within each minimal cyclotomic set I, we pick a representative a = (a1, a2, . . . , am) given by
nonnegative integers such that a1 is the minimum of the first coordinates of the nonnegative representatives
of the elements in I, a2 is the minimum of the second coordinates of those elements in I having a1 as
a first coordinate and the remaining coordinates, a3, . . . , am are defined in the same way. We will denote
by Ia the cyclotomic set I with representative a and by A the set of representatives of the minimal
cyclotomic sets. Thus, the set of minimal cyclotomic sets will be {Ia}a∈A. In addition, we will denote
ia := card(Ia). Note that one can consider the cyclotomic sets with respect to an intermediate power ps,
such that s divides r, however, since we only want to consider the case when p equals 2 and 3, we set
s = 1.

Consider a and let b be a reciprocal of a. Abusing the notation, let Ib be the cyclotomic set that
contains b. Taking into account the ring structure behind the two different sets ZTj , one gets the following
straightforward result.

Lemma 10. Let a ∈ A and let b be a reciprocal element. Then for every element in Ia there is a
unique reciprocal element in Ib and both cyclotomic sets have the same cardinality. In addition, if a is
asymmetric, then Ia ∩ Ib = ∅.

With the above notation, we say that a cyclotomic set Ia is symmetric if Ia = Ib for all reciprocal
element b. Otherwise we will say that it is asymmetric. In addition, we define a partition of A as follows
A = A1 ∪A2 (A1 ∩A2 = ∅), where A1 consists of the representatives of the symmetric cyclotomic sets
and, for the asymmetric sets Ia 6= Ia′ , where a and a′ are reciprocal elements, we consider a in A1 if
a < a′ for the lexicographical ordering.

The subfield-subcode of a J-affine variety code EJ
∆ over Fq = Fpr is defined as EJ,σ

∆ := E∆ ∩ FnJp .
Consider the following maps tr : Fq → Fp, tr(x) = x + xp + · · · + xp

r−1; tr : FnJq → FnJp given
componentwise by tr(x), and T : RJ → RJ defined by T (f) = f + fp + · · ·+ fp

r−1 . We say that a class
f ∈ RJ evaluates to Fp whenever f(a) ∈ Fp for all a ∈ ZJ . In [10, Proposition 5] it is proved that f



7

evaluates to Fp if and only if f = T (g) for some g ∈ RJ . Now, considering for each a ∈ A, the close to
T map, Ta : RJ → RJ , Ta(f) = f + fp + · · ·+ fp

(ia−1) , we get the following result about the dimension
of the code EJ,σ

∆ . The proof is analogous to that in [10, Theorem 4].

Theorem 11. Let ∆ be a subset of HJ and set ξa a primitive element of the field Fpia . Then, a basis of
the vector space EJ,σ

∆ is given by the images under the map evJ of the set of classes in RJ⋃
a∈A|Ia⊆∆

{Ta(ξsaX
a)|0 ≤ s ≤ ia − 1} .

A. Binary and ternary LCD subfield-subcodes coming from the univariate case
We devote this section to provide binary and ternary LCD codes obtained as subfield-subcodes of

univariate J-affine variety codes. The reasoning in Proposition 6 and the above paragraphs in Section II
support the proof. We assume that p equals 2 or 3.

Proposition 12. Let N be a positive integer such that N − 1 divides q − 1. Recall that q = pr for a
positive integer r. With the above notation, write A1 = {a0 = 0 < a1 < a2 < · · · < az} the first set in
the above given partition of A. Let t ∈ {1, 2, . . . , z}, and set ∆ = ∆1 ∪∆2, where

∆1 = Ia0 ∪ Ia1 ∪ · · · ∪ Iat

and ∆2 is the union of the cyclotomic cosets with the reciprocal elements (as in Theorem 4) to those in
∆1. Then the dual code of EJ,σ

∆ over Fp is LCD and has parameters: [N − 1, N − 1− card(∆),≥ 2at+1]p
when J = {1}, and [N,N − card(∆),≥ 2at+1]p otherwise (J = ∅).

Proof. Theorem 4 and Lemma 10 prove that our code is LCD. Theorem 11 determines the dimension
of our code since the set ∆ only contains minimal cyclotomic sets. Finally, the same reasoning as in
Proposition 6 and the fact that we are considering subfields-subcodes of J-affine variety codes given
by the union of consecutive minimal cyclotomic cosets proves the bound for the minimum distance.
Indeed, in this case the minimum distance of the dual of the subfield-subcode coincides with that of the
subfield-subcode of the dual code which is not less than that of the dual code.

Remark 13. Note that when J = ∅ and 3 = p 6 | N , we may consider sets ∆1 as above such that IN1−1

is not in ∆2 (see Remark 5). In this case a reasoning close to the proof of Propositions 6 and 8 shows
that one can obtain ternary codes with parameters [N,N − card(∆),≥ 2at+1 − 1]3, where the dimension
of the obtained code is one unit more than in Proposition 12 because ∆ has one element less.

For the sake of generality, we provide formulae for the dimension under certain assumptions. First, we
need some lemmas regarding cyclotomic sets, that are simply cyclotomic cosets for the one-variable case.
The first one is essentially [1, Lemma 8].

Lemma 14. Let N > 1 be an integer such that N−1 divides q−1 and assume that pbr/2c < N−1 ≤ pr−1.
Then, for all 1 ≤ a ≤ (N − 1)pdr/2e/(pr − 1), the cyclotomic sets Ia have cardinality r.

Next we characterize symmetric cyclotomic sets. Recall that q = pr and we are interested only in the
cases p = 2 and p = 3.

Lemma 15. Let N > 1 be an integer such that N−1 divides q−1, where p ∈ {2, 3}. Then, the cyclotomic
set Ia, with a > 0, is symmetric if and only if

a =
N − 1

pj + 1
,

for some j ∈ {0, 1, . . . , r − 1} such that pj + 1 is a divisor of N − 1.
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Proof. It follows from the fact that Ia is symmetric whenever there exists j ∈ {0, 1, . . . , r− 1} such that
a = N − 1− apj , that is a = (N − 1)/(pj + 1).

The following result gives sufficient conditions for asymmetry of cyclotomic sets when m = 1.

Proposition 16. Keep the above notations, that is N > 1 such that N − 1 divides q − 1 and p ∈ {2, 3}.
Then:
• If r is odd, there are no symmetric cyclotomic set, unless when p = 3 and 2 divides N − 1. In this

case, the unique symmetric cyclotomic set is I(N−1)/2.
• Otherwise (for r even), one has that Ia is asymmetric if a < (N − 1)/(p

r
2 + 1).

Proof. For a start we consider the case when r is odd. First we assume that j = 0, then pj +1 = 2. When
p = 2, q− 1 = 2r− 1 = 2(2r−1− 1) + 1 and so N − 1 is odd, therefore pj + 1 does not divide N − 1 and
there is no symmetric cyclotomic set by Lemma 15. In case p = 3, if N − 1 is even, then pj + 1 divides
N − 1 and we have a cyclotomic symmetric set by Lemma 15.

Suppose now that j > 0, write r = kj + l, 0 ≤ l < j, and consider the Euclidean division between the
polynomials Xr − 1 and Xj + 1:

Xr − 1 =
(
Xr−j −Xr−2j +Xr−3j − · · ·+ (−1)k−1X l

)
·(

Xj + 1
)

+ (−1)kX l − 1.

Specializing X to the value p, we get that if j does not divide r then pj + 1 does not divide q − 1. The
same holds on the contrary, when l = 0, since r odd implies k odd and the remainder is not zero.

Finally assume that r is even. The symmetric cyclotomic set with smallest representative is given by
the largest divisor of the form pj + 1 of N − 1, for j ∈ {0, 1, . . . , r − 1}. The largest possible divisor is
given by j = r/2, hence the representative of a symmetric set is larger than or equal to (N − 1)/(p

r
2 + 1)

and the result holds.

We are now ready to explicitly determine all the parameters of some of the codes described in
Proposition 12. We consider the first cyclotomic set I0, pairs of asymmetric cyclotomic sets and possibly,
a symmetric cyclotomic and IN−1. Actually, our next two results hold for any prime p.

Theorem 17. Keep the above notation where N is a positive integer such that N − 1 divides q − 1.
Assume that

pbr/2c < N − 1 ≤ pr − 1,

and consider the first set of representatives of cyclotomic sets A1 = {a0 = 0 < a1 < a2 < · · · < az} in
the above given partition of A. Let t ∈ {1, 2, . . . , z} be such that

at ≤ (N − 1)pdr/2e/(pr − 1),

and set ∆ = ∆1 ∪∆2, where
∆1 = Ia0 ∪ Ia1 ∪ · · · ∪ Iat

and ∆2 the union of the cyclotomic cosets with reciprocal elements to those in ∆1. Then,
• If r is odd or if r is even and at 6= (N − 1)pr/2/(pr − 1), the dual code of EJ,σ

∆ , over Fp, is LCD
and has parameters: [N − 1, N − 2tr− 2,≥ 2at+1]p when J = {1}, and [N,N − 2tr− 2,≥ 2at+1]p
otherwise (J = ∅).

• If r is even and at = (N−1)pr/2/(pr−1), the dual code of EJ,σ
∆ , over Fp, is LCD and has parameters:

[N − 1, N − (2t− 1)r− 2,≥ 2at+1]p when J = {1}, and [N,N − (2t− 1)r− 2,≥ 2at+1]p otherwise
(J = ∅).

Proof. The bound for the minimum distance follows from Proposition 12. Next we give a proof for the
dimension of the codes.
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If r is odd or if r is even and at 6= (N − 1)pr/2/(pr − 1), then, by Lemma 14, the cardinality of all
cyclotomic sets considered to define ∆ is r, excepting I0 (and occasionally IN−1 if J = ∅); note that both
sets have cardinality 1. Moreover, by Proposition 16, the cyclotomic sets Iaj , j 6= 0, N − 1, considered
to define ∆ are asymmetric, which concludes the proof.

If r is even and at = (N−1)pr/2/(pr−1), then the cardinality of all cyclotomic sets considered to define
∆ (with the exception of I0 and possibly IN−1) is still r by Lemma 14. Furthermore, by Proposition 16,
all the cyclotomic sets considered to define ∆ are asymmetric but I0 and possibly IN−1, and Iat which
is symmetric. Therefore, the equality 2r(t− 1) + r = (2t− 1)r finishes the proof.

To conclude this subsection, we prove that using Lemma 9 in [1] one can avoid to consider representa-
tives of cyclotomic sets, however in some cases, one will obtain codes with a smaller range of minimum
distances. With our notation, Lemma 9 in [1] is the following result.

Lemma 18. With the above notation, let N be a positive integer such that N−1 | pr−1 and suppose that
pbr/2c < N − 1 ≤ pr − 1. If x, y are distinct integers in the range 1 ≤ x, y ≤ min{b(N − 1)pdr/2e/(pr −
1)− 1c, N − 2} which are not zero modulo p, then the cyclotomic cosets defined by x and y are different.

The latter lemma determines an interval of integers where the corresponding cyclotomic sets are all
different and allows us to prove the following result.

Theorem 19. Let q = pr, where r is a positive integer and p ∈ {2, 3}. Let N be a positive integer
such that N − 1 divides q − 1 and pbr/2c < N − 1 ≤ pr − 1. Then, for each integer δ such that
2 ≤ δ ≤ min{b(N − 1)pdr/2e/(pr − 1)c, N − 2}, there exist two LCD codes with length N − 1 and N ,
respectively, designed minimum distance ≥ 2δ and dimension

k = N − 2(rd(δ − 1)(1− 1/p)e)− 2.

Proof. We are considering sets ∆ as above where t is the largest integer such that at < δ ≤ at+1.
Notice that the conditions in our statement also fulfil the conditions in Lemma 14, and therefore all
the cyclotomic sets (with the exception of I0 and possibly IN−1) have cardinality r. Moreover, since
2 ≤ δ ≤ min{b(N − 1)pdr/2e/(pr − 1)c, N − 2}, the representatives of the cyclotomic sets we use satisfy
1 ≤ a ≤ min{b(N − 1)pdr/2e/(pr − 1)− 1c, N − 2}. Under this condition, Proposition 16 states that we
have no symmetric cyclotomic set (excepting I0). Finally, Lemma 18 guarantees that, in order to compute
the dimension of our codes, we only have to count how many integers, in the range of the statement,
are not congruent with zero module p. The result holds since there are exactly rd(δ − 1)(1− 1/p)e such
integers.

By Remark 13, when 3 = p 6 | N and J = ∅, the hypotheses in Theorems 17 and 19 allow us to
construct codes of length N of dimension one more and minimum distance one less than those given in
the mentioned results.

B. Binary and ternary LCD subfield-subcodes coming from the multivariate case
In this section we state two results providing LCD codes which are not reversible codes. They are

obtained as dual codes of subfield-subcodes of J-affine variety codes and reach lengths that are not
achievable with BCH codes. Our first result considers subfield-subcodes of J-affine variety codes given
by the union of cyclotomic sets whose representatives are in the box defined in Proposition 8 and the
second one is similar but taking representatives in the set ∆(J, t) defined in Proposition 9. Using Lemma
10, they can be proved reasoning in a similar way as we did in Propositions 8 and 9. Our first result is
the following.

Theorem 20. Let Nj , 1 ≤ j ≤ m, be positive integers such that Nj − 1 divides q − 1. Assume that
J = {1, 2, . . . ,m} and fix αj < Tj/2 if Tj is even and αj ≤ (Tj − 1)/2 otherwise. Consider the subset
of HJ , ∆ = L1 × L2 × · · · × Lm where Lj = {Tj/2 − αj, . . . , Tj/2, . . . , Tj/2 + αj} if Tj is even and
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Lj = {(Tj − 1)/2 − αj, . . . , (Tj − 1)/2 + αj} otherwise. Consider the cyclotomic sets {Ia}a∈A and let
A∆ be the set of representatives in A such that Ia ∩∆ 6= ∅. Set ∆σ := ∪a∈A∆

Ia.
Then, setting Aj = 2αj + 1, the (Euclidean) dual code of the subfield-subcode EJ,σ

∆σ is an LCD code
with parameters [

nJ , nJ − card(∆σ),≥ min
j∈J
{Aj + 1}

]
p

.

Finally we state the second result.

Theorem 21. Let Nj , j = 1, 2, . . . ,m, be a positive integer such that Nj − 1 divides q − 1. Fix another
positive integer t such that t ≤ nJ =

∏
j /∈J Nj

∏
j∈J(Nj−1), assume that p|Nj for all j 6∈ J and consider

the set N(J, t) defined before Proposition 9.
Consider the cyclotomic sets {Ia}a∈A and let AN(J,t) be the set of representatives in A such that

Ia ∩ N(J, t) 6= ∅. Set N(J, t)σ :=
⋃

a∈AN(J,t)
(Ia ∪ Ira), where Ira means the family of reciprocal to Ia

cyclotomic sets.
Then, the (Euclidean) dual of the subfield-subcode EJ,σ

N(J,t)σ is an LCD code with parameters

[nJ , nJ − card(N(J, t)σ),≥ t]p.

Remark 22. The construction in Theorem 21 can be improved from the point of view of subfield-subcodes
when J 6= ∅ by noticing that the code Hyp(J, t)⊥ is monomially equivalent to EJ

N0(J,t) (see [19] for the
definition and properties of monomially equivalent codes), where N0(J, t) is given by the monomials
Xb/Xε, for b in N(J, t), where Xε is equal to

∏m
j=1 X

εj
j and εj as defined in Lemma 7. Then, with

the same notation as in Theorem 21, but replacing N(J, t) with N0(J, t), we obtain LCD codes with
parameters [nJ , nJ − card(N0(J, t)σ),≥ t]p. Cyclotomic sets where some coordinates are zero have lower
cardinality which improves the dimension of the dual codes. This approach will be used in some of our
examples in the next section.

III. EXAMPLES

The main references giving parameters of binary and ternary LCD codes are [17], [18], [23]. All of
them use BCH codes, the two first papers obtain LCD codes for concrete lengths and distances on arbitrary
finite fields and the latter, from suitable representatives of cyclotomic cosets, computes parameters for
some binary LCD codes which, according to [14], are optimal or BKLC (best known linear codes). We
will use this terminology along this section. In the following two subsections, we will give examples of
good binary and ternary LCD codes obtained with our results.

As regards binary LCD codes obtained from the univariate case, by using Theorems 17 and 19 we
are able to improve some codes in [17] which are also given in [23]; in this particular case, the main
advantage of our procedure is that we can avoid computing cyclotomic sets (cosets in this case) and we
obtain new codes not provided in [23]. Also for the univariate case, we provide new examples of ternary
LCD codes which are optimal or BKLC.

With respect to the multivariate case, Theorem 21 and especially its version in Remark 22 give rise to
generic families of binary and ternary LCD codes. Some of them are shown below and for some concrete
values they provide new LCD codes which are optimal or BKLC.

To the best of our knowledge, unless otherwise is stated, the parameters of the codes provided in this
section are new. The references above mentioned only consider LCD binary cyclic codes of length lower
than 258 [23] or LCD binary and ternary codes of length pl+1, pl−1 and (pl−1)/(p−1), for p = 2, 3 and
l > 0, [17], [18]. However our codes are mostly of different lengths from the previous ones. Moreover,
we provide some codes with lengths covered by [17], [18] but that have better parameters. Finally, we
show that these codes, besides being new, according to [14], have good parameters.
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A. Binary LCD codes
We devote this subsection to provide some examples of new binary LCD codes.

Example 1. Theorem 19 allows us to get new binary LCD codes with large length and minimum distance.
For example, if we consider p = 2, r = 14 and N = 5462 (note that 3 ·5461 = 214−1), we get LCD codes
with parameters [5461, 4984, 70]2, [5461, 4956, 74]2, [5461, 4928, 78]2, [5461, 4900, 82]2, [5461, 4872, 86]2
and [5461, 4844, 90]2. These codes are new since the there is no binary LCD code in the literature with
this length. Moreover, all of them exceed the Gilbert-Varshamov bound.

Example 2. Now, we give an example of an optimal LCD code which can be obtained applying Remark
22. With the notation as in Theorem 21, p = 2, r = 4, J = {1, 2, 3}, N1 = 16 and N2 = N3 = 4. Thus
nJ = 135 and for t = 4, it holds that

N0(J, t)σ = {(0, 0, 0), (0, 0, 2), (0, 0, 1), (0, 2, 0), (0, 1, 0),

(2, 0, 0), (4, 0, 0), (8, 0, 0), (1, 0, 0),

(14, 0, 0), (13, 0, 0), (11, 0, 0), (7, 0, 0)},

and we obtain a code with parameters [135, 122, 4]2 which is optimal. These parameters do not appear in
[23] because it is not cyclic and it has a length not considered in [17], [18]. Thus, the code is new.

Example 3. With the previous notation, consider p = 2, r = 4, J = {1, 2, . . . ,m}, N1 = N2 = · · · =
Nm = 4 and t = 4. Again by Remark 22, it holds that

N0(J, t) =
{

(0, 0, . . . , 0), (1, 0, . . . , 0), (2, 0, . . . , 0), . . . ,

(0, 0, . . . , 1), (0, 0, . . . , 2)
}
.

Then, we get LCD codes with parameters [3m, 3m − 2m − 1,≥ 4]2. According to [14], these codes are
optimal for 2 ≤ m ≤ 5 and most of their lengths are not considered in [23], [17], [18].

Another example with the same values Ni, 1 ≤ i ≤ m, but larger minimum distance is obtained by
setting m = 3 and t = 12. Then N0(J, t)σ consists of the exponents of the monomials Xa/Xε as defined
in Remark 22, a in HJ , excepting

{(2, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 2), (2, 2, 1), (1, 1, 2)}.

Therefore, we get an LCD code with parameters [27, 6, 12]2 which according to [14] is optimal. As in
Example 2, the length of this code is not covered by [23], [17], [18].

Example 4. The same technique in Example 3, with p = 2 and r = 4, but decomposing m = m1 + m2

and considering N1 = N2 = · · · = Nm1 = 4 and Nm1+1 = Nm1+2 = · · · = Nm = 6 gives LCD codes
with parameters

[3m15m2 , 3m15m2 − 2m1 − 4m2 − 1,≥ 4]2.

Some optimal LCD codes in this family have parameters [45, 36, 4]2, [75, 64, 4]2, [81, 72, 4]2, [125, 112, 4]2
and [200, 187, 4]2.

Analogously, one can consider r = 6 and N1 = N2 = · · · = Nm1 = 4 and Nm1+1 = Nm1+2 = · · · =
Nm = 8, obtaining LCD codes with parameters

[3m17m2 , 3m17m2 − 2m1 − 6m2 − 1,≥ 4]2.

Within this family, there are optimal LCD codes with parameters [63, 52, 4]2 and [189, 176, 4]2.
We give two other families of binary LCD codes. Consider N1 = 2k/2 + 2, k even, and N2 = N3 =
· · · = Nm = 4. For suitable values of r, we get LCD codes with parameters [3m−1(2k/2 + 1), 3m−1(2k/2 +
1) − 2(m − 1) − k − 1,≥ 4]2 and [3m−1(2k/2 + 1), 3m−1(2k/2 + 1) − 2(m − 1) − 2k − 1,≥ 6]2. Some
good LCD codes in these families have the following parameters: [153, 140, 4]2, [45, 32, 6]2, [135, 118, 6]2,



12

[51, 40,≥ 4]2 and [153, 132,≥ 6]2. All of them are optimal with the exception of the last two which are
BKLC. The lengths of the codes provided in this example –except 63– are not considered in [23], [17],
[18]. Theorem 33 in [18] provides an LCD code with parameters [63, 30, 4]2 which has worse parameters
than our code.

B. Ternary LCD codes
In this section we show some examples of good ternary LCD codes derived from our results.

Example 5. In this example we use Proposition 12 for giving new and good ternary LCD codes. Set p = 3
and let r = 5 and N = 243, we obtain LCD codes which are BKLC with parameters [242, 201 ≥ 14]3,
[242, 181 ≥ 20]3. Note that these codes have better parameters than the LCD codes with parameters
[242, 191 ≥ 14]3, [242, 171 ≥ 20]3 given by [18, Theorem 33].

For r = 8, after computing the corresponding cyclotomic sets, one can check that all of them (with the
exception of I0 in case J = ∅) are symmetric. Then A1 = {0, 1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 41}. Thus, we
obtain codes with parameters:

[82, 81, 2]3, [82, 73, 4]3, [82, 65, 8]3, [82, 57, 10]3,

[82, 49, 14]3, [82, 41, 16]3, [82, 33, 22]3, [82, 25, 26]3,

[82, 17, 28]3, [82, 9, 32]3, [82, 1, 82]3.

Moreover the codes with parameters

[82, 81, 2]3, [82, 65, 8]3, [82, 57, 10]3, [82, 49, 14]3, [82, 1, 82]3,

are BKLC. Notice that in this last case we provide the true minimum distance; the parameters of the
codes with minimum distance 4, 8 and 10 are not new, they were obtained in [17, Example 22].

Example 6. With the same notation as in the above example, let p = 3 and r = 8. Setting N = 42, it
holds that A1 = {0, 1, 2, 4, 7, 8} and we obtain ternary LCD codes with length 41 and 42 and the same
dimension and minimum distance. The parameters in the first case are:

[41, 40, 2]3, [41, 32, 5]3, [41, 24, 8]3, [41, 16, 14]3, [41, 8, 22]3,

where those with minimum distance 2, 5 and 22 are BKLC; as before, we are providing the true minimum
distance. Articles [17], [18] do not provide LCD codes with length 41. Examples 33 and 40 in [17], provide
LCD codes with parameters [40, 31, 4]3, [40, 23, 8]3, and [40, 5, 20]3.

Example 7. Here we apply the same procedure we used for constructing the first family of LCD codes
in Example 4. Set p = 3, r = 8, m = m1 + m2 + m3, N1 = N2 = · · · = Nm1 = 3, Nm1+1 = Nm1=+2 =
· · · = Nm2 = 5 and Nm1+m2+1 = Nm1+m2+2 = · · · = Nm = 6. Then we get LCD codes with parameters

[2m14m25m3 , 2m14m25m3 −m1 − 3m2 − 4m3 − 1,≥ 4]3.

Some optimal codes in this family have the following parameters: [16, 11, 4]3, [32, 26, 4]3, [128, 120, 4]3
and [64, 57, 4]3. A BKLC with parameters [160, 150,≥ 4]3 belongs also to the previous family.

An analogous reasoning as was given for the last family of codes in Example 4 gives rise to a new
family of LCD codes with parameters

[2m−1(3k/2 + 1), 2m−1(3k/2 + 1)− (m− 1)− k − 1,≥ 3]3.

Some codes in this family have true minimum distance equal to 4 with parameters [20, 14, 4]3, [40, 33, 4]3,
[56, 48, 4]3 and [164, 154, 4]3. The first two codes are optimal and the last two are BKLC.

Finally, again for p = 3, any r, N1 = N2 = · · · = Nm = 3 and J = {2, 3, . . . ,m} we have that Remark
22, for t = 4, gives a set N0(J, 4) containing the elements of the axes and their reciprocal. When the non-
vanishing coordinate is not the first coordinate, there is only one new reciprocal element and therefore we
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consider two elements in N0(J, 4)σ; otherwise we must consider three elements instead, since one of them
is symmetric. This procedure gives rise to LCD codes with parameters [3 · 2m−1, 3 · 2m−1− 2m− 1,≥ 4]3.
For instance, for m = 7, the parameters are [192, 177,≥ 4]3; codes with the same parameters and distance
one unit more are optimal. To the best of our knowledge there are no known LCD codes with the same
length as the codes in this example, with the exception of [40, 33, 4]3. However, Example 33 in [17] gives
an LCD code with parameters [40, 31, 4]3, which has again worse parameters than the code provided in
this example.
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