
List Decoding Algorithm based on Voting in
Gröbner Bases for General One-Point AG Codes∗

Ryutaroh Matsumoto†, Diego Ruano‡, and Olav Geil†

Abstract

We generalize the unique decoding algorithm for one-point AG codes
over the Miura-Kamiya Cab curves proposed by Lee, Bras-Amorós and O’Sullivan
(2012) to general one-point AG codes, without any assumption. We also ex-
tend their unique decoding algorithm to list decoding, modify it so that it
can be used with the Feng-Rao improved code construction, prove equality
between its error correcting capability and half the minimum distance lower
bound by Andersen and Geil (2008) that has not been done in the origi-
nal proposal except for one-point Hermitian codes, remove the unnecessary
computational steps so that it can run faster, and analyze its computational
complexity in terms of multiplications and divisions in the finite field. As
a unique decoding algorithm, the proposed one is empirically and theoret-
ically as fast as the BMS algorithm for one-point Hermitian codes. As a
list decoding algorithm, extensive experiments suggest that it can be much
faster for many moderate size/usual inputs than the algorithm by Beelen and
Brander (2010). It should be noted that as a list decoding algorithm the pro-
posed method seems to have exponential worst-case computational complex-
ity while the previous proposals (Beelen and Brander, 2010; Guruswami and
Sudan, 1999) have polynomial ones, and that the proposed method is ex-
pected to be slower than the previous proposals for very large/special inputs.
Keywords: algebraic geometry code, Gröbner basis, list decoding
MSC 2010: Primary: 94B35; Secondary: 13P10, 94B27, 14G50

∗Published in Journal of Symbolic Computation. Volume 79, Part 2, pages 384-410 (2017). The
proposed algorithm in this paper was published without any proof of its correctness in Proc. 2012
IEEE International Symposium on Information Theory, Cambridge, MA, USA, July 2012, pp. 86–90
(Geil et al., 2012).

†Department of Communications and Computer Enginnering, Tokyo Instiutte of Technology,
152-8550 Japan.

‡Department of Mathematical Sciences, Aalborg University, Denmark.

1

1 Introduction

We consider the list decoding of one-point algebraic geometry (AG) codes. Gu-
ruswami and Sudan (1999) proposed the well-known list decoding algorithm for
one-point AG codes, which consists of the interpolation step and the factoriza-
tion step. The interpolation step has large computational complexity and many re-
searchers have proposed faster interpolation steps, see Beelen and Brander (2010,
Figure 1).

By modifying the unique decoding algorithm (Lee et al., 2012) for primal one-
point AG codes, we propose another list decoding algorithm based on voting in
Gröbner bases whose error correcting capability is higher than Guruswami and
Sudan (1999) and whose computational complexity is empirically smaller than
Beelen and Brander (2010); Guruswami and Sudan (1999) in many cases that
are examined and reported in our computational experiments. It should be noted
that as a list decoding algorithm the proposed method seems to have exponential
worst-case computational complexity while the previous proposals (Beelen and
Brander, 2010; Guruswami and Sudan, 1999) have polynomial ones, and that the
proposed method is expected to be slower than the previous proposals for very
large/special inputs. A decoding algorithm for primal one-point AG codes was
proposed in Matsumoto and Miura (2000c), which was a straightforward adapta-
tion of the original Feng-Rao majority voting for the dual AG codes (Feng and Rao,
1993) to the primal ones. The Feng-Rao majority voting in Matsumoto and Miura
(2000c) for one-point primal codes was generalized to multi-point primal codes in
Beelen and Høholdt (2008, Section 2.5). The one-point primal codes can also be
decoded as multi-point dual codes with majority voting (Beelen, 2007; Duursma
et al., 2011; Duursma and Park, 2010), whose faster version was proposed in Sakata
and Fujisawa (2011) for the multi-point Hermitian codes. Lee, Bras-Amorós and
O’Sullivan (2012) proposed another unique decoding (not list decoding) algorithm
for primal codes based on the majority voting inside Gröbner bases. The module
used by them (Lee et al., 2012) is a curve theoretic generalization of one used for
Reed-Solomon codes in Ali and Kuijper (2011) that is a special case of the module
used in Lee and O’Sullivan (2008). An interesting feature in Lee et al. (2012) is
that it did not use differentials and residues on curves for its majority voting, while
they were used in Beelen and Høholdt (2008); Matsumoto and Miura (2000c). The
above studies (Beelen and Høholdt, 2008; Lee et al., 2012; Matsumoto and Miura,
2000c) dealt with the primal codes. We recently proved in Geil et al. (2013) that the
error-correcting capabilities of Lee et al. (2012); Matsumoto and Miura (2000c) are
the same. The earlier papers (Duursma, 1994; Pellikaan, 1993) suggest that cen-
tral observations in Andersen and Geil (2008); Geil et al. (2013); Matsumoto and
Miura (2000c) were known to the Dutch group, which is actually the case (Du-

2

ursma, 2012). Chen (1999), Elbrønd Jensen et al. (1999) and Bras-Amorós and
O’Sullivan (2006) studied the error-correcting capability of the Feng-Rao (Feng
and Rao, 1993) or the BMS algorithm (Sakata et al., 1995a,b) with majority voting
beyond half the designed distance that are applicable to the dual one-point codes.

There was room for improvements in the original result (Lee et al., 2012),
namely, (a) they have not clarified the relation between its error-correcting capa-
bility and existing minimum distance lower bounds except for the one-point Her-
mitian codes, (b) they have not analyzed the computational complexity, (c) they
assumed that the maximum pole order used for code construction is less than the
code length, and (d) they have not shown how to use the method with the Feng-
Rao improved code construction (Feng and Rao, 1995). We shall (1) prove that the
error-correcting capability of the original proposal is always equal to half of the
bound in Andersen and Geil (2008) for the minimum distance of one-point primal
codes (Proposition 7), (2) generalize their algorithm to work with any one-point
AG codes, (3) modify their algorithm to a list decoding algorithm, (4) remove the
assumptions (c) and (d) above, (5) remove unnecessary computational steps from
the original proposal, (6) analyze the computational complexity in terms of the
number of multiplications and divisions in the finite field. We remark that a gen-
eralization of Lee et al. (2012) to arbitrary primal AG code is also reported in Lee
et al. (2014) using a similar idea in this paper reported earlier as a conference paper
(Geil et al., 2012).

The proposed algorithm is implemented on the Singular computer algebra sys-
tem (Decker et al., 2011), and we verified that the proposed algorithm can correct
more errors than Beelen and Brander (2010); Guruswami and Sudan (1999) with
manageable computational complexity in many cases that are examined and re-
ported in our computational experiments.

This paper is organized as follows: Section 2 introduces notations and relevant
facts. Section 3 improves Lee et al. (2012) in various ways, and the differences
to the original (Lee et al., 2012) are summarized in Section 3.8. Section 4 shows
that the proposed modification to Lee et al. (2012) works as claimed. Section 5
compares its computational complexity with the conventional methods. Section 6
concludes the paper. Part of this paper was presented at 2012 IEEE International
Symposium on Information Theory, Cambridge, MA, USA, July 2012 (Geil et al.,
2012).

2 Notation, Preliminaries and the Statement of Problem

Our study heavily relies on the standard form of algebraic curves introduced inde-
pendently by Geil and Pellikaan (2002) and Miura (1998), which is an enhance-

3

ment of earlier results (Miura, 1993; Saints and Heegard, 1995). Let F/Fq be an
algebraic function field of one variable over a finite field Fq with q elements. Let g
be the genus of F. Fix n + 1 distinct places Q, P1, . . . , Pn of degree one in F and
a nonnegative integer u. We consider the following one-point algebraic geometry
(AG) code

Cu = {ev(f) | f ∈ L(uQ)} (1)

where ev(f) = (f (P1), . . . , f (Pn)).
The problem considered in this paper is as follows: We use a linear code Cu

(or its improved version CΓ defined in Eq. (4)). A codeword in Cu (or CΓ) is
transmitted, and the receiver receives ~r ∈ Fn

q. A list-decoding algorithm with a
decoding radius τ finds all the codewords in Cu (or CΓ) whose Hamming distances
from ~r are within τ. Our aim is to propose another list-decoding algorithm based
on Gröbner bases and demonstrate its computational complexity in a wide range of
examples.

Suppose that the Weierstrass semigroup H(Q) at Q is generated by a1, . . . , at,
and choose t elements x1, . . . , xt in F whose pole divisors are (xi)∞ = aiQ for i = 1,
. . . , t. We do not assume that a1 is the smallest among a1, . . . , at. Without loss of
generality we may assume the availability of such x1, . . . , xt, because otherwise we
cannot find a basis of Cu for every u. Then we have that L(∞Q) = ∪∞i=1L(iQ) is
equal to Fq[x1, . . . , xt] (Saints and Heegard, 1995). We expressL(∞Q) as a residue
class ring Fq[X1, . . . , Xt]/I of the polynomial ring Fq[X1, . . . , Xt], where X1, . . . ,
Xt are transcendental over Fq, and I is the kernel of the canonical homomorphism
sending Xi to xi. Geil and Pellikaan (2002); Miura (1998) identified the following
convenient representation of L(∞Q) by using Gröbner basis theory (Buchberger,
1965) (See, for example, a textbook (Adams and Loustaunau, 1994)). The follow-
ing review is borrowed from Matsumoto and Miura (2000b). Hereafter, we assume
that the reader is familiar with the Gröbner basis theory in Adams and Loustaunau
(1994).

Let N0 be the set of nonnegative integers. For (m1, . . . , mt), (n1, . . . , nt) ∈ Nt
0,

we define the weighted reverse lexicographic monomial order � such that (m1, . . . ,
mt) � (n1, . . . , nt) if a1m1+· · ·+atmt > a1n1+· · ·+atnt, or a1m1+· · ·+atmt = a1n1+

· · ·+atnt, and m1 = n1, m2 = n2, . . . , mi−1 = ni−1, mi < ni, for some 1 ≤ i ≤ t. Note
that a Gröbner basis of I with respect to � can be computed by Saints and Heegard
(1995, Theorem 15), Schicho (1998), Tang (1998, Theorem 4.1) or Vasconcelos
(1998, Proposition 2.17), starting from any affine defining equations of F/Fq.

Example 1 The Klein quartic over F8 is given by the equation

u3v + v3 + u = 0.

4

There exists a unique F8-rational place Q, namely (0 : 1 : 0), that is a unique
pole of v. The numbers 3, 5 and 7 is the minimal generating set of the Weierstrass
semigroup at Q. Define three functions x1 = v, x2 = uv, x3 = u2v. We have
(x1)∞ = 3Q, (x2)∞ = 5Q, (x3)∞ = 7Q as shown in Høholdt and Pellikaan (1995,
Example 3.7). By Tang (1998, Theorem 4.1) we can see that the standard form of
the Klein quartic is given by

X2
2 + X3X1, X3X2 + X4

1 + X2, X2
3 + X2X3

1 + X3,

which is the reduced Gröbner basis with respect to the monomial order �. We can
see that a1 = 3, a2 = 5, and a3 = 7.

Example 2 Consider the function field F9(u1, v2, v3) with relations

v3
2 + v2 = u4

1, v3
3 + v3 = (v2/u1)4. (2)

This is the third function field in the asymptotically good tower introduced by Gar-
cia and Stichtenoth (1995). Substituting v2 with u1u2 and v3 with u2u3 in Eq. (2)
we have affine defining equations

u2
1u3

2 + u2 − u3
1 = 0, u2

2u3
3 + u3 − u3

2 = 0.

in F9(u1, u2, u3) = F9(u1, v2, v3). The minimal generating set of the Weiestrass
semigroup H(Q) at Q is 9, 12, 22, 28, 32 and 35 (Voss and Høholdt, 1997, Example
4.11). It has genus 22 and 77 F9-rational points different from Q (Garcia and
Stichtenoth, 1995).

Define six functions x1 = u1, x2 = u1u2, x3 = u2
1u2u3, x4 = u3

1u2
2u2

3, x5 =

((u1u2)2 + 1)u2u3 and x6 = ((u1u2)2 + 1)u2
2u2

3. We have (x1)∞ = 9Q, (x2)∞ = 12Q,
(x3)∞ = 22Q, (x4)∞ = 35Q, (x5)∞ = 28Q and (x6)∞ = 32Q (Umehara and
Uyematsu, 1998). From this information and Tang (1998, Theorem 4.1) we can
compute the 15 polynomials in the reduced Gröbner basis of the ideal I ⊂ F9[X1,
. . . , X6] defining L(∞Q) as {X3

2 − X4
1 + X2, X5X2 − X3X2

1 , X6X2 − X4X1, X2
3 − X4X1,

X3X2
2 − X5X2

1 + X3, X5X3 − X6X2
1 , X6X3 − X6

1 + X5X2
1 + X2X2

1 , X2
5 − X4X2X1 − X6,

X4X3 − X2X5
1 + X3X3

1 + X2
2 X1, X4X2

2 − X6X3
1 + X4, X6X5 − X2

2 X4
1 + X3X2X2

1 + X5,
X5X4−X7

1 + X5X3
1 + X2X3

1 , X2
6 −X5X4

1 + X4X2X1 + X3X2
1 + X6, X6X4−X3X5

1 + X6X3
1 +

X3X2X1, X2
4 − X3X2X4

1 + X4X3
1 + X5X2

1 − X3}. Note that polynomials in the above
Gröbner basis are in the ascending order with respect to the monomial order ≺
while terms in each polynomial are in the descending order with respect to ≺.

For i = 0, . . . , a1 − 1, we define bi = min{m ∈ H(Q) | m ≡ i (mod a1)},
and Li to be the minimum element (m1, . . . , mt) ∈ Nt

0 with respect to ≺ such that
a1m1 + · · · + atmt = bi. Note that bi’s are the well-known Apéry set (Rosales and

5

García-Sánchez, 2009, Lemmas 2.4 and 2.6) of the numerical semigroup H(Q).
Then we have `1 = 0 if we write Li as (`1, . . . , `t). For each Li = (0, `i2, . . . , `it),
define yi = x`i2

2 · · · x
`it
t ∈ L(∞Q).

The footprint of I, denoted by ∆(I), is {(m1, . . . , mt) ∈ Nt
0 | Xm1

1 · · · X
mt
t is

not the leading monomial of any nonzero polynomial in I with respect to ≺}, and
define Ω0 = {xm1

1 · · · x
mt
t | (m1, . . . , mt) ∈ ∆(I)}. Then Ω0 is a basis of L(∞Q) as an

Fq-linear space (Adams and Loustaunau, 1994), two distinct elements in Ω0 have
different pole orders at Q, and

Ω0 = {xm
1 x`2

2 · · · , x
`t
t | m ∈ N0, (0, `2, . . . , `t) ∈ {L0, . . . , La1−1}}

= {xm
1 yi | m ∈ N0, i = 0, . . . , a1 − 1}. (3)

Equation (3) shows thatL(∞Q) is a free Fq[x1]-module with a basis {y0, . . . , ya1−1}.
Note that the above structured shape of Ω0 reflects the well-known property of
every weighted reverse lexicographic monomial order, see the paragraph preceding
to Eisenbud (1995, Proposition 15.12).

Remark 3 For a description of the proposed algorithm, only a1, b1, . . . , ba1−1, y1,
. . . , ya1−1 are absolutely necessary, and we can remove ϕs, x2, . . . , xt, a2, . . . , at,
X1, . . . , Xt, Y1, . . . , Yt from our presentation.

However, we retain those notations for the following two reasons: Firstly, be-
cause s will be used as the iteration variable and our proposed algorithm will
focus on the monomial in Ω0 whose pole order at Q is s, the notation ϕs clarifies
the relation between s and the monomial in Ω0 focused in the s-th iteration.

Secondly, the proposed algorithm needs to find the normal form of a function in
L(∞Q) that is an Fq-linear combination of monomials in Ω0. Functions inL(∞Q)
are represented by multivariate polynomials over Fq. The specific definition of X1,
. . . , Xt and the specific choice of the monomial order in Fq[X1, . . . , Xt] enable
us to compute the normal form just by the standard Gröbner basis division, and
make implementation of our proposal easier in practice. Thirdly, Y1, . . . , Yt will be
used to explain how we count the computational cost. They are necessary to allow
readers to reproduce our experimental results presented later in this paper.

Example 4 For the curve in Example 1, we have y0 = 1, y1 = x3, y2 = x2.

Let vQ be the unique valuation in F associated with the place Q. The semigroup
H(Q) is equal to {ia1 − vQ(y j) | 0 ≤ i, 0 ≤ j < a1} (Rosales and García-Sánchez,
2009, Lemma 2.6). By Matsumoto and Miura (2000b, Proposition 3.18), for each
nongap s ∈ H(Q) there is a unique monomial xi

1y j ∈ Ω0 with 0 ≤ j < a1 such that
−vQ(xi

1y j) = s, and let us denote this monomial by ϕs. Let Γ ⊂ H(Q), and we may

6

consider the one-point codes

CΓ = 〈{ev(ϕs) | s ∈ Γ}〉, (4)

where 〈·〉 denotes the Fq-linear space spanned by ·. Since considering linearly
dependent rows in a generator matrix has no merit, we assume

Γ ⊆ Ĥ(Q), (5)

where Ĥ(Q) = {u ∈ H(Q) | Cu , Cu−1}. One motivation for considering these
codes is that it was shown in Andersen and Geil (2008) how to increase the di-
mension of the one-point codes without decreasing the lower bound dAG for the
minimum distance. The bound dAG(CΓ) is defined for CΓ as follows (Andersen and
Geil, 2008): For s ∈ Γ, let

λ(s) =]{ j ∈ H(Q) | j + s ∈ Ĥ(Q)}. (6)

Then dAG(CΓ) = min{λ(s) | s ∈ Γ}. It is proved in Geil et al. (2011) that dAG gives
the same estimate for the minimum distance as the Feng-Rao bound (Feng and
Rao, 1993) for one-point dual AG codes when both dAG and the Feng-Rao bound
can be applied, that is, when the dual of a one-point code is isometric to a one-
point code. Furthermore, it is also proved in Geil et al. (2011) that dAG(CΓ) can
be obtained from the bounds in Beelen (2007); Duursma et al. (2011); Duursma
and Park (2010), hence dAG can be understood as a particular case of these bounds
(Beelen, 2007; Duursma et al., 2011; Duursma and Park, 2010).

3 Procedure of New List Decoding based on Voting in Gröb-
ner Bases

3.1 Overall Structure

Suppose that we have a received word~r ∈ Fn
q. We shall modify the unique decoding

algorithm proposed by Lee et al. (2012) so that we can find all the codewords in
CΓ in Eq. (4) within the Hamming distance τ from ~r. τ is a parameter independent
of ~r, and τ is chosen before reception of ~r. The overall structure of the modified
algorithm is as follows:

1. Precomputation before getting a received word ~r,

2. Initialization after getting a received word ~r,

3. Termination criteria of the iteration, and

7

4. Main part of the iteration.

Steps 2 and 4 are based on Lee et al. (2012). Steps 1 and 3 are not given in Lee
et al. (2012). Each step is described in the following subsections in Section 3. We
shall analyze time complexity except the precomputation part of the algorithm.

3.2 Modified Definitions for the Proposed Modification

We retain notations from Section 2. In this subsection, we modify notations and
definitions in Lee et al. (2012) to describe the proposed modification to their algo-
rithm. We also introduce several new notations. Define a set Ω1 = {xi

1y jzk | 0 ≤ i,
0 ≤ j < a1, k = 0, 1}. Our Ω1 is Ω in Lee et al. (2012). Recall also that
Ω0 = {ϕs | s ∈ H(Q)}.

Since the Fq[x1]-module L(∞Q)z ⊕ L(∞Q) has a free basis {y jz, y j | 0 ≤
j < a1}, we can regard Ω1 as the set of monomials in the Gröbner basis theory
for modules. We introduce a monomial order on Ω1 as follows. For given two
monomials xi1

1 y jzit+1 and x
i′1
1 y j′zi′t+1 , first rewrite y j and y j′ by x2, . . . , xt defined in

Section 2 and get xi1
1 y jzit+1 = xi1

1 xi2
2 · · · x

it
t zit+1 and x

i′1
1 y j′zi′t+1 = x

i′1
1 x

i′2
2 · · · x

i′t
t zi′t+1 . For a

nongap s ∈ H(Q), we define the monomial order xi1
1 xi2

2 · · · x
it
t zit+1 <s x

i′1
1 x

i′2
2 · · · x

i′t
t zi′t+1

parametrized by s if it+1s − vQ(xi1
1 xi2

2 · · · x
it
t) < i′t+1s − vQ(x

i′1
1 x

i′2
2 · · · x

i′t
t) or it+1s −

vQ(xi1
1 xi2

2 · · · x
it
t) = i′t+1s − vQ(x

i′1
1 x

i′2
2 · · · x

i′t
t) and i1 = i′1, i2 = i′2, . . . , i`−1 = i′`−1

and i` > i′` for some 1 ≤ ` ≤ t + 1. Observe that the restriction of <s to Ω0 is
equal to ≺ defined in Section 2. In what follows, every Gröbner basis, leading
term, and leading coefficient is obtained by considering the Gröbner basis theory
for modules, not for ideals.

For f ∈ L(∞Q)z ⊕ L(∞Q), γ(f) denotes the number of nonzero terms in f
when f is expressed as an Fq-linear combination of monomials in Ω1. γ,1(f)
denotes the number of nonzero terms whose coefficients are not 1 ∈ Fq.

For the code CΓ in Eq. (4), define the divisor D = P1 + · · ·+ Pn. DefineL(−G +

∞Q) =
⋃∞

i=1L(−G + iQ) for a positive divisor G of F/Fq. Then L(−D + ∞Q)
is an ideal of L(∞Q) (Matsumoto and Miura, 2000a). Let ηi be any element in
L(−D + ∞Q) such that lm(ηi) = x j

1yi with j being the minimal given i. Then by
Lee et al. (2012, Proposition 1), {η0, . . . , ηa1−1} is a Gröbner basis for L(−D +∞Q)
with respect to <s as an Fq[x1]-module. For a nonnegative integer s, define Γ(≤s) =

{s′ ∈ Γ | s′ ≤ s}, Γ(>s) = {s′ ∈ Γ | s′ > s}, and prec(s) = max{s′ ∈ H(Q) | s′ < s}.
We define prec(0) = −1.

8

3.3 Precompuation before Getting a Received Word

Before getting ~r, we need to compute the Pellikaan-Miura standard form of the
algebraic curve, y0(= 1), y1, . . . , ya1−1, and ϕs for s ∈ H(Q) as defined in Section 2.
Also compute η0, . . . , ηa1−1, which can be done by Matsumoto and Miura (2000a).

For each (i, j), express yiy j as an Fq-linear combination of monomials in Ω0.
Such expressions will be used for computing products and quotients in L(∞Q)
as explained in Section 3.4.1. From the above data, we can easily know lc(yiy j),
which will be used in Eqs. (14) and (22).

Find elements ϕs ∈ Ω0 with s ∈ Ĥ(Q). There are n such elements, which we
denote by ψ1, . . .ψn such that −vQ(ψi) < −vQ(ψi+1). Compute the n × n matrix

M =


ψ1(P1) · · · ψ1(Pn)

...
...

...

ψn(P1) · · · ψn(Pn)


−1

. (7)

3.4 Multiplication and Division in an Affine Coordinate Ring

In both of the original unique decoding algorithm (Lee et al., 2012) and our mod-
ified version, we need to quickly compute the product gh of two elements g, h in
the affine coordinate ring L(∞Q). In our modified version, we also need to com-
pute the quotient g/h depending on the choice of iteration termination criterion
described in Section 3.6. Since the authors could not find quick computational
procedures for those tasks in L(∞Q), we shall present such ones here.

3.4.1 Multiplication in an Affine Coordinate Ring

The normal form of g, for g ∈ L(∞Q), is the expression of g written as an Fq-linear
combination of monomials ϕs ∈ Ω0. g, h are assumed to be in the normal form. We
propose the following procedure to compute the normal form of gh. Let the normal
form of yiy j be

a1−1∑
k=0

yk fi, j,k(x1).

with fi, j,k(x1) ∈ Fq[x1], which is computed in Section 3.3.
We denote by X1, Y1, . . . , Ya1−1 algebraically independent variables over Fq.

1. Assume that g and h are in their normal forms. Change yi to Yi and x1 to X1
in g, h for i = 1, . . . , a1 − 1. Recall that y0 = 1. Denote the results by G,H.

9

2. Compute GH. This step needs

γ(g) × γ(h) (8)

multiplications in Fq.

3. Let GH =
∑

0≤i, j<a1 YiY jFG,H,i, j(X1). Then we have

gh =
∑

0≤i, j<a1

FG,H,i, j(x1)
a1−1∑
k=0

yk fi, j,k(x1). (9)

Computation of FG,H,i, j(X1)
∑a1−1

k=0 yk fi, j,k(x1) needs at most γ,1(
∑a1−1

k=0 yk fi, j,k(x1))
γ(FG,H,i, j(x1)) multiplications in Fq. Therefore, the total number of multipli-
cations in Fq in this step is at most

∑
0≤i, j<a1

γ(FG,H,i, j(x1))γ,1(
a1−1∑
k=0

yk fi, j,k(x1)). (10)

Therefore, the total number of multiplications in Fq is at most

γ(g) × γ(h) +
∑

0≤i, j<a1

γ(FG,H,i, j(x1))γ,1(
a1−1∑
k=0

yk fi, j,k(x1)). (11)

Define Eq. (11) as multi(g, h).
We emphasize that when the characteristic of Fq is 2 and all the coefficients of

defining equations belong to F2, which is almost always the case for those cases of
interest for applications in coding theory, then γ,1(

∑a1−1
k=0 yk fi, j,k(x1)) in Eq. (11) is

zero. This means that L(∞Q) has little additional overhead over Fq[X] for com-
puting products of their elements in terms of the number of Fq-multiplications and
divisions.

Remark 5 Define (i, j) to be equivalent to (i′, j′) if yiy j = yi′y j′ ∈ L(∞Q). Denote
by [i, j] the equivalence class represented by (i, j). For (i, j), (i′, j′) ∈ [i, j] we have
fi, j,k(x1) = fi′, j′,k(x1), which is denoted by f[i, j],k(x1). The right hand side of Eq. (9)
can be written as

∑
[i, j]

 ∑
(i′, j′)∈[i, j]

FG,H,i′, j′(x1)

 a1−1∑
k=0

yk f[i, j],k(x1). (12)

10

By using Eq. (12) instead of Eq. (9), we have another upper bound on the number
of multiplications as

γ(g) × γ(h) +
∑
[i, j]

γ

 ∑
(i′, j′)∈[i, j]

FG,H,i′, j′(x1)

 γ,1(
a1−1∑
k=0

yk f[i, j],k(x1)). (13)

Since

γ

 ∑
(i′, j′)∈[i, j]

FG,H,i′, j′(x1)

 ≤ ∑
(i′, j′)∈[i, j]

γ(FG,H,i′, j′(x1)),

we have Eq. (13) ≤ Eq. (11). However, Eq. (13) is almost always the same as Eq.
(11) over the curve in Example 2, and Eq. (13) will not be used in our computer
experiments in Section 5.

3.4.2 Computation of the Quotient

Assume h , 0. The following procedure computes the quotient g/h ∈ L(∞Q) or
declares that g does not belong to the principal ideal of L(∞Q) generated by h.

1. Initialize σ = 0. Also initialize ζ = 0.

2. Check if −vQ(g) ∈ −vQ(h) + H(Q). If not, declare that g does not belong to
the principal ideal of L(∞Q) generated by h, and finish the procedure.

3. Let ϕs ∈ Ω0 such that −vQ(g) = −vQ(ϕsh). Observe that lc(ϕslm(h)) =

lc(ys mod a1y−vQ(h) mod a1) and that lc(ys mod a1y−vQ(h) mod a1) is precomputed as
Section 3.3. Let

Fq 3 t = lc(g)/(lc(h) × lc(ϕslm(h))︸ ︷︷ ︸
Precomputed in Section 3.3

). (14)

Computation of tϕs needs one multiplication and one division in Fq. Observe
that −vQ(g − tϕsh) < −vQ(g).

4. Compute the normal form of tϕsh, which requires at most multi(tϕs, h) mul-
tiplications in Fq. Increment ζ by 2 + multi(tϕs, h).

5. Update σ← σ + tϕs and g← g − tϕsh. If the updated g is zero, then output
the updated σ as the quotient and finish the procedure. Otherwise go to Step
2. This step has no multiplication nor division.

11

Define quot(g, h) as ζ after finishing the above procedure. quot(g, h) is an upper
bound on the number of multiplications and divisions in Fq in the above procedure.
The program variable ζ is just to define quot(g, h), and the decoding algorithm does
not need to update ζ. Observe also that the above procedure is a straightforward
generalization of the standard long division of two univariate polynomials (McK-
eague, 2012).

3.5 Initialization after Getting a Received Word ~r

Let (i1, . . . , in)T = M~r, where M is defined in Eq. (7). Define h~r =
∑n

j=1 i jψ j. Then
we have ev(h~r) = ~r. The computation of h~r from ~r needs at most n2 multiplications
in Fq.

Let N = −vQ(h~r). For i = 0, . . . , a1 − 1, compute g(N)
i = ηi ∈ L(∞Q) and

f (N)
i = yi(z − h~r) ∈ L(∞Q)z ⊕ L(∞Q). The computation of f (N)

i needs at most
multi(yi, h~r) multiplications in Fq. Therefore, the total number of multiplications
in the initialization is at most

n2 +

a1−1∑
i=0

multi(yi, h~r). (15)

Let s = N and execute the following steps.

3.6 Three Termination Criteria of the Iteration

After finishing the initialization step in Section 3.5, we iteratively compute f (s)
i and

g(s)
i with N ≥ s ∈ H(Q) ∪ {−1} and ws with N ≥ s ∈ H(Q) from larger s to smaller

s. The single iteration consists of two parts: The first part is to check if an iteration
termination criterion is satisfied. The second part is computation of f (s)

i and g(s)
i

for N ≥ s ∈ H(Q) ∪ {−1}. We describe the first part in Section 3.6.
Let fmin = α0 + zα1 having the smallest −vQ(α1) among f (s)

0 , . . . , f (s)
a1−1. In

the following subsections, we shall propose three different procedures to judge
whether or not iterations in the proposed algorithm can be terminated. In an actual
implementation of the proposed algorithm, one criterion is chosen and the chosen
one is consistently used throughout the iterations. The first one and the second one
are different generalizations of Ali and Kuijper (2011, Theorem 12) from the case
g = 0 to g > 0. Ali and Kuijper (2011, Theorem 12) proved that if the number δ of
errors satisfies 2δ < dRS(Cs), where dRS(Cs) is the minimum distance n − s of the
[n, s+1] Reed-Solomon code Cs, then the transmitted information word is obtained
by Ali-Kuijper’s algorithm as −α0/α1. To one-point primal AG codes, dRS(Cs) can
be generalized as either dAG(Cs) or n − s − g. The former generalization dAG(Cs)

12

corresponds to the first criterion in Section 3.6.1 and the latter n− s−g corresponds
to the second in Section 3.6.2.

The third one is almost the same as the original procedure in Lee et al. (2012).
The first one was proposed in Geil et al. (2012) while the second and the third
ones are new in this paper. We shall compare the three criteria in Section 5.2.
Throughout this paper, wt(~x) denotes the Hamming weight of a vector ~x ∈ Fn

q.
The proposed decoding algorithm can perform both unique decoding and list

decoding depending on whether or not dAG(CΓ(≤s)) > 2τ. To provide a unified pre-
sentation of both variants of our proposal, we will include the condition dAG(CΓ(≤s)) >
2τ in the following. Observe that the condition dAG(CΓ(≤s)) > 2τ can be checked
when one implements our proposal by an electronic circuit or a computer software,
before executing the proposed algorithm.

3.6.1 First Criterion for Judging Termination

If

• s ∈ Γ,

• dAG(CΓ(≤s)) > 2τ, and

• −vQ(α1) ≤ τ + g

then do the following:

1. Compute α0/α1 ∈ F. This needs at most

quot(α0, α1) (16)

multiplications and divisions in Fq.

2. If α0/α1 ∈ L(∞Q) and α0/α1 can be written as a linear combination of
monomials in {ϕs′ ∈ s′ ∈ Γ(≤s)}, then do the following:

(a) If dAG(CΓ) > 2τ or −vQ(α1) ≤ τ then include the coefficients of
−α0/α1 +

∑
s′∈Γ(>s) ws′ϕs′ into the list of transmitted information vec-

tors, and avoid proceeding with the rest of the decoding procedure.
When Γ(>s) = ∅, the summation over Γ(>s) is regarded as zero.

(b) Otherwise compute ev(−α0/α1 +
∑

s′∈Γ(>s) ws′ϕs′). This needs at most

nγ(−α0/α1 +
∑

s′∈Γ(>s)

ws′ϕs′) (17)

multiplications and divisions in Fq.

13

(c) If

wt

ev(−α0/α1 +
∑

s′∈Γ(>s)

ws′ϕs′) − ~r

 ≤ τ,
then include the coefficients of −α0/α1 +

∑
s′∈Γ(>s) ws′ϕs′ into the list of

transmitted information vectors, and avoid proceeding with s. Other-
wise, continue the iterations unless s < n − g − 2τ.

3.6.2 Second Criterion for Judging Termination

If s = max{s′ ∈ Γ | s′ < n − 2τ − g}, then do the following:

1. If −vQ(α1) > τ + g then stop proceeding with iteration.

2. Otherwise compute α0/α1 ∈ F. This needs at most

quot(α0, α1) (18)

multiplications and divisions in Fq.

3. If 2τ < dAG(CΓ), α0/α1 ∈ L(∞Q), and α0/α1 can be written as a linear
combination of monomials in {ϕs′ ∈ s′ ∈ Γ(≤s)} then declare the coefficients
of −α0/α1 +

∑
s′∈Γ(>s) ws′ϕs′ as the only transmitted information and finish.

When Γ(>s) = ∅, the summation over Γ(>s) is regarded as zero. Otherwise
declare “decoding failure” and finish.

4. If 2τ ≥ dAG(CΓ), α0/α1 ∈ L(∞Q) and α0/α1 can be written as a linear
combination of monomials in {ϕs′ ∈ s′ ∈ Γ(≤s)}, then do the following:

(a) If −vQ(α1) ≤ τ then include the coefficients of −α0/α1 +
∑

s′∈Γ(>s) ws′ϕs′

into the list of transmitted information vectors, and avoid proceeding
with s.

(b) Otherwise compute ev(−α0/α1 +
∑

s′∈Γ(>s) ws′ϕs′). This needs at most

nγ(−α0/α1 +
∑

s′∈Γ(>s)

ws′ϕs′) (19)

multiplications and divisions in Fq.
(c) If

wt

ev(−α0/α1 +
∑

s′∈Γ(>s)

ws′ϕs′) − ~r

 ≤ τ,
then include the coefficients of −α0/α1 +

∑
s′∈Γ(>s) ws′ϕs′ into the list of

transmitted information vectors.

5. Finish the iteration no matter what happened in the above steps.

14

3.6.3 Third Criterion for Judging Termination

The third criterion terminates the algorithm when it finds f (s)
i at s = −1 for i = 0,

. . . , a1 − 1 in the main iteration presented in Section 3.7. If 2τ < dAG(CΓ) then
declare the vector (ws : s ∈ Γ) as the only transmitted information and finish.

If 2τ ≥ dAG(CΓ) then do the following:

1. If α0 = 0 and −vQ(α1) ≤ τ then include the vector (ws : s ∈ Γ) into the list
of transmitted information vectors. Finish the iteration.

2. If −vQ(α1) > τ + g then finish the iteration.

3. Otherwise compute ev(
∑

s∈Γ wsϕs). This needs at most

nγ(
∑
s∈Γ

wsϕs) (20)

multiplications and divisions in Fq.

4. If

wt

ev(
∑
s∈Γ

wsϕs) − ~r

 ≤ τ,
then include the vector (ws : s ∈ Γ) into the list of transmitted information
vectors. Finish the iteration.

3.7 Iteration of Pairing, Voting, and Rebasing

The iteration of the original algorithm (Lee et al., 2012) consists of three steps,
called pairing, voting, and rebasing. We will make a small change to the original.
Our modified version is described below.

3.7.1 Pairing

Let
g(s)

i =
∑

0≤ j<a1

ci, jy jz +
∑

0≤ j<a1

di, jy j, with ci, j, di, j ∈ Fq[x1],

f (s)
i =

∑
0≤ j<a1

ai, jy jz +
∑

0≤ j<a1

bi, jy j, with ai, j, bi, j ∈ Fq[x1],

and let ν(s)
i = lc(di,i). We assume that lt(f (s)

i) = ai,iyiz and lt(g(s)
i) = di,iyi. For

0 ≤ i < a1, as in Lee et al. (2012) there are unique integers 0 ≤ i′ < a1 and ki

satisfying
−vQ(ai,iyi) + s = a1ki − vQ(yi′).

15

Note that by the definition above

i′ = i + s mod a1, (21)

and the integer −vQ(ai,iyi) + s is a nongap if and only if ki ≥ 0. Now let ci =

degx1
(di′,i′) − ki. Note that the map i 7→ i′ is a permutation of {0, 1, . . . , a − 1} and

that the integer ci is defined such that a1ci = −vQ(di′,i′yi′) + vQ(ai,iyi) − s.

3.7.2 Voting

For each i ∈ {0, . . . a1 − 1}, we set

µi = lc(ai,iyiϕs), ws,i = −
bi,i′[xki

1]
µi

, c̄i = max{ci, 0}, (22)

where bi,i′[xki
1] denotes the coefficient of xki

1 of the univariate polynomial bi,i′ ∈

Fq[x1]. We remark that the leading coefficient µi must be considered after express-
ing ai,iyiϕs by monomials in Ω0.

Observe that lc(yiϕs) = lc(yiys mod a1) and that lc(yiys mod a1) is already pre-
computed as Section 3.3. By using that precomputed table, computation of µi

needs one multiplication. The total number of multiplications and divisions in Eq.
(22) is

2a1 (23)

excluding negation from the number of multiplication.
Let

ν(s) =
1
a1

∑
0≤i<a1

max{−vQ(ηi′) + vQ(yi) − s, 0}. (24)

We consider two different candidates depending on whether s ∈ Γ or not:

• If s ∈ H(Q) \ Γ, set
w = 0. (25)

• If s ∈ Γ, let w be one of the element(s) in Fq with∑
w=ws,i

c̄i ≥
∑

w,ws,i

c̄i − 2τ + ν(s). (26)

Let ws = w. If several w’s satisfy the condition above, repeat the rest of the algo-
rithm for each of them.

16

3.7.3 Rebasing

In all of the following cases, we need to compute the normal form of the product
wϕs ×

∑a1−1
j=0 ai, jy j, and the product wϕs ×

∑a1−1
j=0 ci, jy j. For each i, the number of

multiplications is

≤ multi(wϕs,

a1−1∑
j=0

ai, jy j) + multi(wϕs,

a1−1∑
j=0

ci, jy j), (27)

where multi(·, ·) is defined in Section 3.4.1.

• If ws,i = w, then let

g(prec(s))
i′ = g(s)

i′ (z + wϕs),

f (prec(s))
i = f (s)

i (z + wϕs)

where the parentheses denote substitution of the variable z and let ν(prec(s))
i′ =

ν(s)
i′ . The number of multiplications in this case is bounded by Eq. (27).

• If ws,i , w and ci > 0, then let

g(prec(s))
i′ = f (s)

i (z + wϕs),

f (prec(s))
i = xci

1 f (s)
i (z + wϕs) −

µi(w − ws,i)

ν(s)
i′

g(s)
i′ (z + wϕs)

and let ν(prec(s))
i′ = µi(w − ws,i).

Computation of µi(w−ws,i)
ν(s)

i′
needs one multiplication and one division. The

product of µi(w−ws,i)
ν(s)

i′
and g(s)

i′ (z + wϕs) needs γ(g(s)
i′ (z + wϕs)) multiplications,

where γ is defined in Section 3.4.1. Thus, the number of multiplications and
divisions is

≤ 2 + γ(g(s)
i′ (z + wϕs)) + Eq. (27). (28)

• If ws,i , w and ci ≤ 0, then let

g(prec(s))
i′ = g(s)

i′ (z + wϕs),

f (prec(s))
i = f (s)

i (z + wϕs) −
µi(w − ws,i)

ν(s)
i′

x−ci
1 g(s)

i′ (z + wϕs)

and let ν(prec(s))
i′ = ν(s)

i′ .

17

Computation of µi(w−ws,i)
ν(s)

i′
needs one multiplication and one division. The

product of µi(w−ws,i)
ν(s)

i′
and g(s)

i′ (z + wϕs) needs γ(g(s)
i′ (z + wϕs)) multiplications,

where γ is defined in Section 3.4.1. Thus, the number of multiplications and
divisions is ≤ Eq. (28).

After computing f (prec(s))
i and g(prec(s))

i as above, update the program variable s to
prec(s) and return to the beginning of Section 3.6, that is, return to the step of the
chosen termination criterion.

3.8 Difference to the Original Method

In this subsection, we review advantages of our modified algorithm over the origi-
nal (Lee et al., 2012).

• Our version can handle any one-point primal AG codes, while the original
can handle codes only coming from the Cab curves (Miura, 1993). This
generalization is enabled only by replacing y j in Lee et al. (2012) by y j

defined in Section 2.

• Our version can find all the codewords within Hamming distance τ from the
received word ~r, while the original is a unique decoding algorithm.

• Our version does not compute f (s)
i , g(s)

i for a Weiestrass gap s < H(Q), while
the original computes them for N ≥ s < H(Q).

• The original algorithm assumed u < n, where u is as defined in Eq. (1).
This assumption is replaced by another less restrictive assumption (5) in our
version.

• Our version supports the Feng-Rao improved code construction (Feng and
Rao, 1995), while the original does not. This extension is made possible by
the change at Eq. (25).

• The first and the second termination criteria come from Ali and Kuijper
(2011, Theorem 12) and do not exist in the original (Lee et al., 2012).

• The third termination criterion is essentially the same as the original (Lee
et al., 2012), but examination of the Hamming distance between the decoded
codeword and ~r is added when 2τ ≥ dAG(CΓ).

• The original (Lee et al., 2012) is suitable for parallel implementation on elec-
tric circuit similar to the Kötter architecture (Kötter, 1998). Our modified
version retains this advantage.

18

3.9 Small Example of Algorithm Execution

We show a short example execution of the proposed list decoding. Consider the
well-known Hermitian function field F4(u, v)/F4 with the relation v2 + v − u3 = 0,
which implies a1 = 2. We choose the common pole of u and v as Q, and P1 = (0, 0),
P2 = (0, 1), P3 = (1, β), P4 = (1, β2), P5 = (β, β), P6 = (β, β2), P7 = (β2, β),
P8 = (β2, β2), where β is a primitive element in F4. Then we have Ĥ(Q) = {0, 2, 3,
4, 5, 6, 7, 9}. The above choice gives η0 = u4 + u and η1 = u4v + uv.

We use Cu with u = 4 for decoding. Then Γ = {0, 2, 3, 4} and dAG(CΓ) = 4. We
shall try to correct τ = 2 errors. Suppose that ~0 was transmitted and ~r = (0, 0, 1, 1,
0, 0, 0, 0) was received. This received word ~r has four codewords within Hamming
distance 2, and all of them are found by the proposed decoding algorithm. We shall
show how one of the four codeword is found.

According to Section 3.5, we have h~r = u3 + u2 + u, which implies N =

−vQ(h~r) = 6. We start the iteration from s = 6(= N), and again according to
Section 3.5 we have

f (6)
0 = z + u3 + u2 + u,

f (6)
1 = vz + u3v + u2v + uv,

g(6)
0 = u4 + u,

g(6)
1 = u4v + uv.

At the iteration for s = 6 none of the temination criteria is satisfied. Since
6 < Γ, we do not need voting and set w6 = 0, and we compute new polynomials as

f (5)
0 = uz + u3 + u2 + u,

f (5)
1 = uvz + u3v + u2v + uv,

g(5)
0 = z + u3 + u2 + u,

g(5)
1 = vz + u3v + u2v + uv.

At the iteration for s = 5 none of the temination criteria is satisfied. Since
5 < Γ, we do not need voting and set w5 = 0, and we compute new polynomials as

f (4)
0 = f (5)

0 ,

f (4)
1 = f (5)

1 ,

g(4)
0 = g(5)

0 ,

g(4)
1 = g(5)

1 .

19

At the iteration for s = 4 none of the temination criteria is satisfied. We need
voting at s = 4, and all the candidates 0, 1, β, β2 in F4 get zero vote. Therefore,
the execution of the proposed algorithm splits to four branches at s = 4. Firstly we
consider the choice w4 = 1, which will result in an incorrect decoding.

The choice w4 = 1 gives

f (3)
0 = uz + u2 + u,

f (3)
1 = uvz + u2v + uv,

g(3)
0 = z + u3 + u,

g(3)
1 = vz + u3v + uv.

At the iteration for s = 3 only the first temination criterion is satisfied. We
have α0 = u2 + u and α1 = u, and the decoded codeword by the first criterion is (1,
1, 1, 1, 0, 0, 0, 0) which is at the Hamming distance 2 from ~r but not equal to the
transmitted codeword.

The second or the third termination criterion is not satisfied. In the voting for
s = 3, w3 = 0 is chosen with two votes while other candidates get zero vote. The
choice w3 = 0 gives

f (2)
0 = f (3)

0 ,

f (2)
1 = f (3)

1 ,

g(2)
0 = g(3)

0 ,

g(2)
1 = g(3)

1 .

At the iteration for s = 2 the second temination criterion is satisfied. The
computation process and the decoded codeword by the second criterion at s = 2
are the same as those by first criterion at s = 3.

In the voting for s = 2, w2 = 0 is chosen with two votes while other candidates
get zero vote. The choice w2 = 0 gives

f (1)
0 = f (2)

0 ,

f (1)
1 = f (2)

1 ,

g(1)
0 = g(2)

0 ,

g(1)
1 = g(2)

1 .

In the voting for s = 1, w1 = 1 is chosen with two votes while other candidates
get zero vote. The choice w1 = 0 gives

f (0)
0 = uz + u,

20

f (0)
1 = uvz + uv,

g(0)
0 = z + u3,

g(0)
1 = vz + u3v.

In the voting for s = 0, w0 = 1 is chosen with four votes while other candidates
get zero vote. The choice w0 = 1 gives

f (−1)
0 = uz,

f (−1)
1 = uvz,

g(−1)
0 = z + u3 + 1,

g(−1)
1 = vz + u3v + v.

At s = −1, we find α0 = 0, α1 = u and 2 = −vQ(α1) ≤ τ = 2. Thus the al-
gorithm outputs (ws)s∈Γ as decoded information by the third termination criterion.
The decoded codeword is again (1, 1, 1, 1, 0, 0, 0, 0). The three termination crite-
rion give the same decoded codeword, but their numbers of iterations are different.

Recall that all of candidates w4 = 0, 1, β, β2 are chosen by voting at s = 4
because all the candidates have the same number of votes. Only w4 = 0 gives the
correct codeword, while w4 = β and w4 = β2 give two other different incorrect
codewords whose Hamming distances are both 2 from ~r. In this example, multiple
candidates are chosen only at s = 4.

4 Theoretical Analysis of the Proposed Modification

In this section we prove that our modified algorithm can find all the codewords
within Hamming distance τ from the received word ~r. We also give upper bounds
on the number of iterations in Section 4.6.

4.1 Supporting Lemmas

In Section 4.1 we shall introduce several lemmas necessary in Sections 4.2–4.5.
Recall that the execution of our modified algorithm can branch when there are
multiple candidates satisfying the condition (26). For a fixed sequence of deter-
mined ws, define ~r(N) = ~r and recursively define ~r(prec(s)) = ~r(s) − ev(wsϕs). By
definition ~r(−1) = ~r − ev(

∑
s∈Γ wsϕs).

The following lemma explains why the authors include “Gröbner bases” in the
paper title. The module I~r(N) was used in Beelen and Brander (2010); Fujisawa et al.
(2006); Lax (2012); Lee and O’Sullivan (2009); Matsumoto et al. (2013); Sakata
(2001, 2003) but the use of I~r(s) with s < N was new in Lee et al. (2012).

21

Lemma 6 Fix s ∈ H(Q) ∪ {−1}. Let ~r(s) correspond to ws (s ∈ Γ) chosen by the
decoding algorithm. Define the Fq[x1]-submodule I~r(s) of L(∞Q)z ⊕ L(∞Q) by

I~r(s) = {α0 + α1z | α0, α1 ∈ L(∞Q), vPi(α0 + r(s)
i α1) ≥ 1, 1 ≤ i ≤ n}, (29)

where ~r(s) = (r(s)
1 , . . . , r(s)

n). Then { f (s)
i , g(s)

i | i = 0, . . . , a1 − 1} is a Gröbner basis
of I~r(s) with respect to <s as an Fq[x1]-module.

Proof. This lemma is a generalization of Lee et al. (2012, Proposition 11). We
can prove this lemma in exactly the same way as the proof of Lee et al. (2012,
Proposition 11) with replacing y j in Lee et al. (2012) with y j and s− 1 in Lee et al.
(2012) by prec(s).

The following proposition shows that the original decoding algorithm Lee et al.
(2012) can correct errors up to half the bound dAG(CΓ), which was not claimed in
Lee et al. (2012).

Proposition 7 Fix s ∈ Γ. Let λ(s) as defined in Eq. (6) and ν(s) as defined in Eq.
(24). Then ν(s) = λ(s).

Proof. Let Ti = { j ∈ H(Q) | j ≡ i (mod a1), j + s ∈ Ĥ(Q)}, then we have
λ(s) =]T0 + · · · +]Ta1−1. Moreover, observe that

H(Q) \ Ĥ(Q) = {−vQ(ηixk
1) | i = 0, . . . , a1 − 1, k = 0, 1, . . .}.

Therefore, for s ∈ Γ we have

Ti = { j ∈ H(Q) | j ≡ i (mod a1), j + s ∈ Ĥ(Q)}

= { j ∈ H(Q) | j ≡ i (mod a1), j + s < H(Q) \ Ĥ(Q)}

= { j ∈ H(Q) | j ≡ i (mod a1), j + s < {−vQ(ηi′ xk
1) | k ≥ 0}}

= {−vQ(yixm
1) | s − vQ(yixm

1) < {−vQ(ηi′ xk
1) | k ≥ 0}},

where the third equality holds by Eq. (21). By the equalities above, we see

]Ti = max
{

0,
−vQ(ηi′) + vQ(yi) − s

−vQ(x1)

}
,

which proves the equality ν(s) = λ(s).
Lee et al. (2012) showed that their original decoding algorithm can correct up

to b(dLBAO(Cu) − 1)/2c errors, where dLBAO(Cu) = min{ν(s) | s ∈ H(Q), s ≤ u}.
Proposition 7 implies that dLBAO(Cu) is equivalent to dAG(Cu) for every one-point
primal code Cu, and therefore Andersen and Geil (2008, Theorem 8) implies Lee
et al. (2012, Proposition 12). In another recent paper Geil et al. (2013) we proved
that dAG and dLBAO are equal to the Feng-Rao bound as defined in Beelen and
Høholdt (2008); Matsumoto and Miura (2000c) for Cu.

22

4.2 Lower Bound for the Number of Votes

In Section 4.2 we discuss the number of votes (26) which a candidate ws,i receives.
Since we study list decoding, we cannot assume the original transmitted codeword
nor the error vector as in Lee et al. (2012). Nevertheless, the original theorems in
Lee et al. (2012) allow natural generalizations to the list decoding context.

Lemma 8 Fix s ∈ Γ. For s′ ∈ Γ(>s), fix a sequence of ws′ chosen by the decoding
algorithm, and define ~r(s) corresponding to the chosen sequence of ws′ . Fix ωs ∈

Fq. Let ~e = (e1, . . . , en)T be a nonzero vector with the minimum Hamming weight
in the coset ~r(s) − ev(ωsϕs) + Cs−1, where Cs−1 is as defined in Eq. (1). Define

J~e =
⋂
ei,0

L(−Pi +∞Q)

= L

∞Q −
∑
ei,0

Pi

 (by Matsumoto and Miura (2000a)).

Let {ε0, . . . , εa1−1} be a Gröbner basis for J~e as an Fq[x1]-module with respect to
<s (for any integer s), such that lm(ε j) = xk j

1 y j.
Under the above notations, we have

−vQ(εi) + vQ(ai,iyi) ≥ a1c̄i,

min{−vQ(εi) + s,−vQ(ηi′)} ≥ −vQ(di′,i′yi′),

for i with ws,i , ωs, and

min{−vQ(εi) + s,−vQ(ηi′)} ≥ −vQ(di′,i′yi′) − a1c̄i,

for i with ws,i = ωs.

Proof. The proof is the same as those of Lee et al. (2012, Propositions 7 and 8),
with replacing y j in Lee et al. (2012) by y j, δ(·) in Lee et al. (2012) by −vQ(·).

The following lemma is a modification to Lee et al. (2012, Proposition 9) for
the list decoding.

Lemma 9 We retain notations from Lemma 8. We have

a1

∑
ws,i=ωs

c̄i ≥ a1

∑
ws,i,ωs

c̄i − 2a1wt(~e)

+
∑

0≤i<a1

max{−vQ(ηi′) + vQ(yi) − s,−vQ(εi) + vQ(yi)}.

23

Proof. Lemma 8 implies∑
ws,i=ωs

a1c̄i ≥
∑

ws,i=ωs

−vQ(di′,i′yi′) −min{−vQ(εi) + s,−vQ(ηi′)}

≥
∑

0≤i<a1

−vQ(di′,i′yi′) −min{−vQ(εi) + s,−vQ(ηi′)}

and ∑
ws,i,ωs

a1c̄i ≤
∑

ws,i,ωs

−vQ(εi) + vQ(ai,iyi)

≤
∑

0≤i<a1

−vQ(εi) + vQ(ai,iyi).

Now we have a chain of inequalities∑
ws,i=ωs

a1c̄i −
∑

ws,i,ωs

a1c̄i

≥
∑

0≤i<a1

−vQ(di′,i′yi′) −min{−vQ(εi) + s,−vQ(ηi′)}

−
∑

0≤i<a1

−vQ(εi) + vQ(ai,iyi)

=
∑

0≤i<a1

−vQ(di′,i′yi′) − vQ(ai,iyi)

−min{−vQ(εi) + s,−vQ(ηi′)} + vQ(εi)

=
∑

0≤i<a1

−vQ(ηi′) − vQ(yi) (30)

+ max{+vQ(εi) − s,+vQ(ηi′)} + vQ(εi)

=
∑

0≤i<a1

max{−vQ(ηi′) + vQ(yi) − s,−vQ(εi) + vQ(yi)}

−
∑

0≤i<a1

2(−vQ(εi) + vQ(yi))

where at Eq. (30) we used the equality∑
0≤i<a1

−vQ(di′,i′yi′) +
∑

0≤i<a1

−vQ(ai,iyi)

=
∑

0≤i<a1

−vQ(di,iyi) +
∑

0≤i<a1

−vQ(ai,iyi)

=
∑

0≤i<a1

(−vQ(di,i) − vQ(ai,i)) +
∑

0≤i<a1

−2vQ(yi)

24

= a1n +
∑

0≤i<a1

−2vQ(yi)

=
∑

0≤i<a1

(−vQ(ηi) + vQ(yi)) +
∑

0≤i<a1

−2vQ(yi)

=
∑

0≤i<a1

−vQ(ηi′) +
∑

0≤i<a1

−vQ(yi)

shown in Lee et al. (2012, Lemma 2 and Eq. (1)). Finally note that∑
0≤i<a1

2(−vQ(εi) + vQ(yi))

=
∑

0≤i<a1

2a1 degx1
(εi) = 2a1wt(~e)

by Lee et al. (2012, Eq. (3)).
The following lemma is a modification to Lee et al. (2012, Proposition 10) for

list decoding, and provides a lower bound for the number of votes (26) received by
any candidate ωs ∈ Fq, as indicated in the section title.

Proposition 10 We retain notations from Lemma 8. Let ν(s) be as defined in Eq.
(24). We have ∑

ws,i=ωs

c̄i ≥
∑

ws,i,ωs

c̄i − 2wt(~e) + ν(s).

Proof. We have ∑
0≤i<a1

max{−vQ(ηi′) + vQ(yi) − s,−vQ(εi) + vQ(yi)}

≥
∑

0≤i<a1

max{−vQ(ηi′) + vQ(yi) − s, 0}

as −vQ(εi) + vQ(yi) ≥ 0 for 0 ≤ i < a1.

4.3 Correctness of the Modified List Decoding Algorithm with the
Third Iteration Termination Criterion

In this subsection and the following sections, we shall prove that the proposed
list decoding algorithm will find all the codewords within the Hamming distance
τ from the received word ~r. Since the third iteration termination criterion is the
easiest to analyze, we start with the third one.

Fix a sequence ws for s ∈ Γ. If wt(~r − ev(
∑

s∈Γ wsϕs)) ≤ τ then the sequence
ws is found by the algorithm because of Proposition 10. When 2τ < dAG(CΓ), by

25

Proposition 7 the decoding is not list decoding, and the algorithm just declares the
sequence ws as the transmitted information.

On the other hand, if 2τ ≥ dAG(CΓ), then the found sequence could correspond
to a codeword more distant than Hamming distance τ, and the algorithm examines
the Hamming distance between the found codeword and the received word ~r.

Since computing ev(f) for f ∈ L(∞Q) needs many multiplications in Fq, the
algorithm checks some sufficient conditions to decide the Hamming distance be-
tween the found codeword and the received word ~r. Let ~r(−1) = (r(−1)

1 , . . . , r(−1)
n).

When α0 = 0 in Section 3.6.3, by Lemma 6, we have

wt(~r − ev(
∑
s∈Γ

wsϕs)) = wt(~r(−1))

≤
∑

r(−1)
i ,0

vPi(α1)

≤ −vQ(α1),

because Eq. (29) and α0 = 0 implies that vPi(α1) ≥ 1 for r(−1)
i , 0. By the

above equation, −vQ(α1) ≤ τ implies that the found codeword is within Hamming
distance τ from ~r. This explains why the algorithm can avoid computation of the
evaluation map ev in Step 1 in Section 3.6.3.

In order to explain Step 2 in Section 3.6.3, we shall show that the condition
of Step 2 in Section 3.6.3 implies that wt(~r − ev(

∑
s∈Γ wsϕs)) > τ. Suppose that

wt(~r − ev(
∑

s∈Γ wsϕs)) ≤ τ. Then there exists β1 ∈ L(∞Q) such that vPi(β) ≥ 1 for
r(−1)

i , 0, −vQ(β) ≤ τ + g, and β1z ∈ I~r(−1) . Because the leading term of β1z must
be divisible by lt(f (−1)

i) for some i by the property of Gröbner bases, we must have
−vQ(α1) ≤ −vQ(β1). This explains why the algorithm can avoid computation of the
evaluation map ev in Step 2 in Section 3.6.3.

Otherwise, the algorithm computes the Hamming distance between the found
codeword and ~r in Steps 3 and 4 in Section 3.6.3.

4.4 Correctness of the Modified List Decoding Algorithm with the
Second Iteration Termination Criterion

We shall explain why the second criterion in Section 3.6.2 correctly finds the re-
quired codewords. For explanation, we present slightly rephrased version of facts
in Beelen and Høholdt (2008).

Lemma 11 (Beelen and Høholdt, 2008, Lemma 2.3) Let β1z + β0 ∈ I~r(s) with
lt(β1z + β0) = lt(β1z) with respect to <s and −vQ(β1) < n − τ − s. If there ex-
ists f ∈ L(sQ) such that wt(ev(f) − ~r(s)) ≤ τ, then we have f = −β0/β1.

26

Proof. Observe that lt(β1z + β0) = lt(β1z) implies that −vQ(β0) ≤ −vQ(β1) + s <
n − τ. The claim of Lemma 11 is equivalent to Beelen and Høholdt (2008, Lemma
2.3) with A = (n − τ − 1)Q and G = sQ. Note that the assumption deg A >

(n + deg G)/2 + g − 1 was not used in Beelen and Høholdt (2008, Lemma 2.3) but
only in Beelen and Høholdt (2008, Lemma 2.4). Note
that the following proposition was essentially proved in Beelen and Høholdt (2008,
Proposition 2.10), Justesen and Høholdt (2004, Section 14.2), and Shokrollahi and
Wasserman (1999, Theorem 2.1) with b = 1.

Proposition 12 Let α0 and α1 be as in Section 3.6.2. If s < n − g − 2τ and there
exists f ∈ L(sQ) such that wt(ev(f) − ~r(s)) ≤ τ, then we have f = −α0/α1.

Proof. Let g ∈ L(∞Q) such that g(Pi) = 0 if f (Pi) , r(s)
i , and assume that g has the

minimum pole order at Q among such elements in L(∞Q). Then −vQ(g) ≤ τ + g.
One has that gz − f g ∈ I~r(s) and lt(gz − f g) = lt(gz) with respect to <s. By the
property of Gröbner bases, lt(gz) is divisible by lt(f (s)

i) for some i, which implies
−vQ(α1) ≤ −vQ(g) ≤ τ + g. By Lemma 11 we have f = −α0/α1.

We explain how the procedure in Section 3.6.2 works as desired. When the
condition in Step 1 in Section 3.6.2 is true, then there cannot be a codeword within
Hamming distance τ from ~r(s) by the same reason as Section 4.3. So the algorithm
stops processing with ~r(s).

When 2τ < dAG(CΓ), then the algorithm declares −α0/α1 +
∑

s′∈Γ(>s) ws′ϕs′ as
the unique codeword.

When 2τ ≥ dAG(CΓ), then the algorithm examines the found codeword close
enough to ~r in Steps 4a and 4b in Section 3.6.2. When −vQ(α1) ≤ τ we can avoid
computation of the evaluation map ev by the same reason as Section 4.3, which
is checked at Step 4a. Otherwise we compute the codeword vector at Step 4b and
examine its Hamming distance to ~r(s).

By Proposition 12, the codeword must be found at s = max{s′ ∈ Γ | s′ < n−2τ+
g}. Therefore, we do not execute the iteration at s < max{s′ ∈ Γ | s′ < n − 2τ + g}.

4.5 Correctness of the Modified List Decoding Algorithm with the
First Iteration Termination Criterion

We shall explain why the first criterion in Section 3.6.1 correctly finds the required
codewords. The idea behind the first criterion is that there cannot be another code-
word within Hamming distance τ from ~r(s) when the algorithm already found one.
So the algorithm can stop iteration with smaller s once a codeword is found as
ev(−α0/α1 +

∑
s′∈Γ(>s) ws′ϕs′).

The algorithm does not examine conditions when −vQ(α1) > τ+ g by the same
reason as Sections 4.3 and 4.4. When 2τ < dAG(CΓ), then the algorithm declares

27

−α0/α1 +
∑

s′∈Γ(>s) ws′ϕs′ as the unique codeword.
When 2τ ≥ dAG(CΓ), then the algorithm examines the found codeword close

enough to ~r in Steps 2a–2c in Section 3.6.1. When −vQ(α1) ≤ τ we can avoid
computation of the evaluation map ev by the same reason as Section 4.3, which is
checked at Step 2a.

By Proposition 12, the codeword must be found at some s ≥ max{s′ ∈ Γ | s′ <
n − 2τ + g}. Therefore, we do not execute the iteration at s < max{s′ ∈ Γ | s′ <
n − 2τ + g}.

4.6 Upper Bound on the Number of Iterations and the Worst Case
Complexity

Observe that for s > max Γ we set always ws to 0. For each s ∈ Γ satisfying
ν(s) ≤ 2τ, the number of accepted candidates satisfying Eq. (26) can be at most q.
On the other hand, for s with ν(s) > 2τ, the number of candidates is either zero or
one, because at most one w ∈ Fq can satisfy Eq. (26). Therefore, we have upper
bounds for the number of iterations, counting executions of Rebasing in Section
3.7.3, as

]{s ∈ H(Q) | max Γ ≤ s < N} + expq(]{s ∈ Γ | ν(s) ≤ 2τ})

×]{s ∈ H(Q) ∪ {−1} | s < max Γ} (31)

for the third criterion for judging termination, where expq(x) = qx, and

]{s ∈ H(Q) | max Γ ≤ s < N)} + expq(]{s ∈ Γ | ν(s) ≤ 2τ})

×]{s ∈ H(Q) | max{s′ ∈ Γ | s′ < n − 2τ − g} ≤ s < max Γ} (32)

for the first and the second criteria for judging termination. We will use max Ĥ(Q)
in place of N in Eqs. (31) and (32) for computation in Tables 1–4, because N
depents on ~r and N ≤ max Ĥ(Q).

The proposed algorithm processes 2a1 polynomials (elements in L(∞Q)) in
each iteration and each polynomial has O(n) terms. For a precise closed-form
evaluation of Eqs. (31) and (32), we need a closed-form upper bound of]{s ∈
Γ | ν(s) ≤ 2τ} in terms of τ, but the authors could not find such one. Clearly
n is an upper bound on]{s ∈ Γ | ν(s) ≤ 2τ}, and the number of iterations is
O(expq(n)). Therefore the worst-case complexity is O(a1n expq(n)). Nonetheless,
we will see that the actual computational cost can be lower than the existing list
decoding algorithms in some cases in Section 5. We remark that when τ < dAG(CΓ)
the number of iterations is ≤ n and the worst case complexity is O(a1n2) because
the number of chosen candidate is at most one by voting at each iteration, and that
the complexity O(a1n2) is the same as the BMS algorithm (Sakata et al., 1995a,b).

28

Observe that the list decoding can be implemented as expq(]{s ∈ Γ | ν(s) ≤
2τ}) parallel execution of the unique decoding. Therefore, when one can afford
expq(]{s ∈ Γ | ν(s) ≤ 2τ}) parallel implementation, which increases the circuit
size, the decoding time of list decoding is the same as that of the unique decoding.

5 Comparison to Conventional Methods

5.1 Simulation Condition and Results

We have provided an upper bound on the number of multiplications and divisions
at each step of the proposed algorithm. We simulated 1, 000 transmissions of code-
words with the one-point primal codes on Klein quartic over F8 with n = 23 by
using Examples 1 and 4, the one-point Hermitian codes over F16 with n = 64, and
the one-point primal codes on the curve in Example 2 over F9 with n = 77.

The program is implemented on the Singular computer algebra system (Decker
et al., 2011). The program used for this simulation is available from http://
arxiv.org/src/1203.6127v5/anc.

In the execution, we counted the number of iterations, (executions of Rebasing
in Section 3.7.3), the sum of upper bounds on the number of multiplications and
divisions given in Eqs. (15), (16), (17), (18), (19), (20), (23), (27) and (28), and the
number of codewords found. Note also that Eq. (11) instead of Eq. (13) is used.

The parameter τ is set to the same as the number of generated errors in each
simulation condition. N or R in the number of errors in Tables 2 and 3 indicates that
the error vector is generated toward another codeword nearest from the transmitted
codeword or completely randomly, respectively. The distribution of codewords is
uniform on CΓ. That of error vectors is uniform on the vectors of Hamming weight
τ.

In the code construction, we always try to use the Feng-Rao improved con-
struction. Specifically, for a given designed distance δ, we choose Γ = {s ∈ Ĥ(Q) |
λ(s) = ν(s) ≥ δ}, and construct CΓ of Eq. (4). In the following, the designed dis-
tance is denoted by dAG(CΓ). It can be seen from Tables 1–4 and the following
subsections that the computational complexity of the proposed algorithm tends to
explode when the number of errors exceeds the error-correcting capability of the
Guruswami-Sudan algorithm (Guruswami and Sudan, 1999).

5.2 Comparison among the Three Proposed Termination Criteria

In Section 3.6 we proposed three criteria for terminating iteration of the proposed
algorithm. From Tables 1–4, one can see the following. The first criterion has the
smallest number of iterations, and the second is the second smallest. On the other

29

Table 1: Decoding results of codes on the Klein quartic (Fq = F8, g = 3 and
n = 23)

]Γ
d

A
G (C

Γ)
#

E
rrors

Term
ination

#
Iterations

#
M

ultiplications
#

C
odew

ords
=
τ

C
riterion

&
D

ivisions
in

F
q

Found
in

Sec.3.6
E

q.(31),(32)
A

vg.
M

ax.
A

vg.
M

ax.
A

vg.
M

ax.
18

4
1

1st
11

8.00
8

1,170.09
1,254

1.00
1

2nd
11

11.00
11

844.98
879

3rd
26

26.00
26

976.32
1,018

2
1st

328
196.63

260
26,203.96

77,209
1.34

3
2nd

328
200.64

269
8,349.67

15,457
3rd

1,160
219.07

313
7,813.76

10,083
3

1st
28,680

11,996.34
13,353

1,626,658.69
2,490,386

19.75
28

2nd
28,680

12,055.56
13,419

608,535.03
711,315

3rd
73,736

12,436.00
13,853

580,504.03
642,419

11
10

4
1st

17
14.64

15
1,324.76

1,484
1.00

1
2nd

17
16.64

17
1,161.52

1,293
3rd

26
25.64

26
1,329.07

1,468
5

1st
47

35.20
44

3,673.78
5,549

1.00
1

2nd
47

38.20
47

2,915.04
3,622

3rd
103

45.41
72

3,072.08
3,769

6
1st

3,087
1,507.95

1,692
164,274.07

188,797
1.11

3
2nd

3,087
1,511.28

1,695
113,592.10

130,810
3rd

5,647
1,535.23

1,725
113,472.30

130,697

30

Table 2: Decoding results of the one-point Hermitian codes (Fq = F16, g = 6,
n = 64 and]Γ = 55). The meanings of N and R in the third column is explained in
Section 5.1.

]Γ
d

A
G (C

Γ)
#

E
rrors

Term
ination

#
Iterations

#
M

ultiplications
#

C
odew

ords
=
τ

C
riterion

&
D

ivisions
in

F
q

Found
in

Sec.3.6
E

q.(31),(32)
A

vg.
M

ax.
A

vg.
M

ax.
A

vg.
M

ax.
55

6
2R

1st
22

16.38
17

9,049.77
9,495

1.00
1

2nd
22

21.79
22

5,483.91
5,614

3rd
70

69.79
70

6,331.16
6,530

2N
1st

22
16.22

17
9,005.92

9,477
1.00

1
2nd

22
21.22

22
5,414.32

5,607
3rd

70
69.22

70
6,291.44

6,527
3R

1st
2,829

796.17
1,139

289,992.45
2,154,489

1.00
2

2nd
2,829

800.66
1,143

116,784.32
164,299

3rd
14,605

846.78
1,191

117,848.30
130,366

3N
1st

2,829
750.73

817
334,588.68

360,413
2.28

5
2nd

2,829
761.79

825
120,575.80

131,791
3rd

14,605
872.97

917
119,940.46

134,297
4R

1st
851,981

21,376.57
33,187

8,012,813.23
14,988,534

1.48
4

2nd
851,981

21,384.19
33,198

2,431,318.50
3,763,057

3rd
3,735,565

21,458.60
33,327

2,432,782.60
3,761,206

4N
1st

851,981
21,744.53

32,943
10,952,709.73

16,938,498
4.29

5
2nd

851,981
21,769.88

32,962
2,457,072.25

3,801,066
3rd

3,735,565
21,985.53

33,174
2,439,145.90

3,805,702

31

Table 3: Decoding results of the one-point Hermitian codes (Fq = F16, g = 6,
n = 64 and]Γ = 39). The meanings of N and R in the third column is explained in
Section 5.1.

]Γ
d

A
G (C

Γ)
#

E
rrors

Term
ination

#
Iterations

#
M

ultiplications
#

C
odew

ords
=
τ

C
riterion

&
D

ivisions
in

F
q

Found
in

Sec.3.6
E

q.(31),(32)
A

vg.
M

ax.
A

vg.
M

ax.
A

vg.
M

ax.
39

20
9R

1st
36

30.77
31

10,726.51
11,175

1.00
1

2nd
36

35.77
36

8,851.66
9,249

3rd
70

69.77
70

10,781.91
11,504

9N
1st

36
30.73

32
9,747.36

12,008
1.00

1
2nd

36
35.73

36
7,807.55

8,378
3rd

70
69.73

70
9,607.34

10,645
10R

1st
143

74.99
93

37,643.43
47,179

1.00
1

2nd
143

80.99
99

22,792.85
25,972

3rd
655

112.99
131

25,023.33
28,398

10N
1st

143
77.64

126
46,759.83

177,947
2.00

2
2nd

143
89.61

138
23,971.51

43,332
3rd

655
153.73

244
28,063.19

36,453
11R

1st
36,895

12,112.08
12,859

7,480,228.09
7,911,646

1.00
1

2nd
36,895

12,118.08
12,865

3,186,977.77
3,352,388

3rd
159,775

12,148.10
12,895

3,189,262.07
3,354,588

11N
1st

36,895
10,417.34

12,285
6,123,703.49

7,582,687
2.01

6
2nd

36,895
10,429.34

12,297
2,638,130.92

3,226,308
3rd

159,775
10,491.11

12,357
2,641,014.19

3,230,078

32

Table 4: Decoding results of codes on the curve in Example 2 (Fq = F9, g = 22
and n = 77). We note that Eq. (31) give the same value for τ = 10 and τ = 11.

]Γ
d

A
G (C

Γ)
#

E
rrors

Term
ination

#
Iterations

#
M

ultiplications
#

C
odew

ords
=
τ

C
riterion

&
D

ivisions
in

F
q

Found
in

Sec.3.6
E

q.(31),(32)
A

vg.
M

ax.
A

vg.
M

ax.
A

vg.
M

ax.
58

6
2

1st
60

38.85
42

39,473.98
62,479

1.00
1

2nd
60

59.30
60

12,255.73
13,348

3rd
89

88.30
89

13,710.71
14,886

3
1st

2,862
62.50

120
36,350.41

72,463
1.00

1
2nd

2,862
79.62

134
21,754.75

30,030
3rd

5,049
106.62

161
23,556.44

31,555
52

10
4

1st
64

46.94
51

37,228.61
78,090

1.00
1

2nd
64

63.25
64

15,212.23
16,708

3rd
89

88.25
89

17,082.34
18,879

5
1st

196,866
48.96

163
24,776.23

88,893
1.00

1
2nd

196,866
66.17

178
20,660.52

69,176
3rd

347,769
89.17

201
22,591.78

71,264
37

20
9

1st
73

57.28
60

24,998.86
48,611

1.00
1

2nd
73

72.34
73

23,168.98
24,784

3rd
89

88.34
89

25,655.70
27,675

10
1st

1,915
58.67

61
25,492.43

43,294
1.00

1
2nd

1,915
74.39

75
27,355.54

29,452
3rd

3,049
88.39

89
29,678.00

31,836
11

1st
2,077

225.59
253

167,152.76
191,250

1.00
1

2nd
2,077

242.36
268

124,664.66
139,519

3rd
3,049

254.36
280

126,693.96
141,989

33

hand, the first criterion has the largest number of multiplications and divisions.
The second and the third have the similar numbers. Only the first criterion was
proposed in Geil et al. (2012) and we see that the new criteria are better than the
old one.

The reason is as follows: The computation of quotient α0/α1 at Step 1 in Sec-
tion 3.6.1 is costlier than updating f (s)

i and g(s)
i in Section 3.7.3 and the first criterion

computes α0/α1 many times, which cancels the effect of decrease in the number of
iterations. On the other hand, the second criterion computes α0/α1 only once, so it
has the smaller number of multiplications and divisions than the first.

The second criterion is faster when 2τ < dAG(CΓ), while the third tends to
be faster when 2τ ≥ dAG(CΓ). In addition to this, the ratio of the number of it-
erations in the second criterion to that of the third is smaller with 2τ < dAG(CΓ)
than with 2τ ≥ dAG(CΓ). We speculate the reason behind them as follows: When
2τ ≥ dAG(CΓ) and a wrong candidate is chosen at Eq. (26), after several iterations
of Sections 3.6 and 3.7, we often observe in our simulation that no candidate satis-
fies Eq. (26) and the iteration stops automatically. Under such situation, the second
criterion does not help much to decrease the number of iterations nor the computa-
tional complexity when a wrong candidate is chosen at Eq. (26), and there are many
occasions at which a wrong candidate is chosen at Eq. (26) when 2τ ≥ dAG(CΓ).
On the other hand, when 2τ < dAG(CΓ), the second criterion helps to determine the
transmitted information earlier than the third.

5.3 Tightness of Upper Bounds (31) and (32)

In Table 4, we observe that the upper bounds (31) and (32) are much larger than
the actual number of iterations for τ = 5. The disappearance of candidates satis-
fying Eq. (26) in the last paragraph may also explain the reason behind the large
differences for τ = 5.

On the other hand, we observe that the upper bound (32) is quite tight for τ = 5
in Table 1 and τ = 10N in Table 3. This suggests that improvement of Eq. (32)
may need some additional assumption.

5.4 Klein Quartic, (dAG(CΓ), τ) = (4, 1) or (10, 4)

We can use Beelen (2007); Beelen and Høholdt (2008); Duursma et al. (2011);
Duursma and Park (2010); Matsumoto and Miura (2000c) to decode this set of
parameters. It is essentially the forward elimination in the Gaussian elimination,
and it takes roughly n3/3 multiplications. In this case n3/3 = 4, 055. The proposed
algorithm has lower complexity than Beelen (2007); Beelen and Høholdt (2008);
Duursma et al. (2011); Duursma and Park (2010); Matsumoto and Miura (2000c).

34

5.5 Klein Quartic, (dAG(CΓ), τ) = (4, 2) or (4, 3)

The code is Cu with u = 20, dim Cu = 18. There is no previously known algorithm
that can handle this case.

5.6 Klein Quartic, (dAG(CΓ), τ) = (10, 5)

The code is Cu with u = 13, dim Cu = 11. According to Beelen and Brander
(2010, Figure 1), we can use the original Guruswami-Sudan (Guruswami and Su-
dan, 1999) but it seems that its faster variants cannot be used. We need multiplicity
7 to correct 5 errors. We have to solve a system of 23(7 + 1)7/2 = 644 linear
equations. It takes 6443/3 = 89, 029, 994 multiplications in F8. The proposed
algorithm is much faster.

5.7 Klein Quartic, (dAG(CΓ), τ) = (10, 6)

The code is Cu with u = 13, dim Cu = 11. There is no previously known algorithm
that can handle this case.

5.8 Hermitian, (dAG(CΓ), τ) = (6, 2) or (20, 9)

We can use the BMS algorithm (Sakata et al., 1995a,b) for this case. The com-
plexity of Sakata et al. (1995a,b) is estimated as O(a1n2) and a1n2 = 24, 576. The
complexity of the proposed algorithm seems comparable to Sakata et al. (1995a,b).
However, we are not sure which one is faster.

5.9 Hermitian, (dAG(CΓ), τ) = (6, 3) or (6, 4)

The code becomes the Feng-Rao improved code with designed distance 6. Its
dimension is 55. In order to have the same dimension by Cu we have to set u = 60,
whose AG bound (Andersen and Geil, 2008) is 4 and the Guruwsami-Sudan can
correct up to 2 errors. The proposed algorithm finds all codewords in the improved
code with 3 and 4 errors.

5.10 Hermitian, (dAG(CΓ), τ) = (20, 10)

The code is Cu with u = 44. The required multiplicity is 11, and the required de-
signed list size is 14. The fastest algorithm for the interpolation step seems Beelen
and Brander (2010). Beelen and Brander (2010, Example 4) estimates the com-
plexity of their algorithm as O(λ5n2(log λn)2 log(log λn)), where λ is the designed

35

list size. Ignoring the log factor and assuming the scaling factor one in the big-
O notation, the number of multiplications and divisions is λ5n2 = 2, 202, 927, 104.
The proposed algorithm needs much fewer number of multiplications and divisions
in F16.

5.11 Hermitian, (dAG(CΓ), τ) = (20, 11)

The Guruwsami-Sudan algorithm (Guruswami and Sudan, 1999) can correct up to
10 errors and there seems no previously known algorithm that can handle this case.

5.12 Garcia-Stichtenoth (Example 2), (dAG(CΓ), τ) = (6, 2), (10, 4), or
(20, 9)

We can use Beelen (2007); Beelen and Høholdt (2008); Duursma et al. (2011);
Duursma and Park (2010); Matsumoto and Miura (2000c) to decode this set of
parameters. It is essentially the forward elimination in the Gaussian elimination,
and it takes roughly n3/3 multiplications. In this case n3/3 = 152, 177. The pro-
posed algorithm has the lower complexity than Beelen (2007); Beelen and Høholdt
(2008); Duursma et al. (2011); Duursma and Park (2010); Matsumoto and Miura
(2000c).

5.13 Garcia-Stichtenoth (Example 2), (dAG(CΓ), τ) = (6, 3)

This is a Feng-Rao improved code with dimension 58. In order to realize a code
with the same dimension, we have to set u = 79 in Cu. The Guruswami-Sudan
algorithm (Guruswami and Sudan, 1999) can correct no error in this set of param-
eters. There seems no previously known algorithm that can handle this case.

5.14 Garcia-Stichtenoth (Example 2), (dAG(CΓ), τ) = (10, 5)

This is a Feng-Rao improved code with dimension 52. In order to realize a code
with the same dimension, we have to set u = 73 in Cu. The Guruswami-Sudan
algorithm (Guruswami and Sudan, 1999) can correct 2 errors in this set of param-
eters. There seems no previously known algorithm that can handle this case.

5.15 Garcia-Stichtenoth (Example 2), (dAG(CΓ), τ) = (20, 10)

This is an ordinary one-point AG code Cu with u = 58 and dimension 37. The
Guruswami-Sudan algorithm (Guruswami and Sudan, 1999) can correct 10 errors
with the multiplicity 154 and the designed list size 178. We have to solve a sys-
tem of 77 × (154 + 1)154/2 = 918, 995 linear equations. It takes 918, 9953/3 =

36

258, 712, 963, 551, 308, 291 multiplications in F9. The proposed algorithm is much
faster.

5.16 Garcia-Stichtenoth (Example 2), (dAG(CΓ), τ) = (20, 11)

The Guruswami-Sudan algorithm (Guruswami and Sudan, 1999) can correct up to
10 errors and there seems no previously known algorithm that can handle this case.

6 Conclusion

In this paper, we modified the unique decoding algorithm for plane AG codes in
Lee et al. (2012) so that it can support one-point AG codes on any curve, and
so that it can do the list decoding. The error correction capability of the original
(Lee et al., 2012) and our modified algorithms are also expressed in terms of the
minimum distance lower bound in Andersen and Geil (2008).

We also proposed procedures to compute products and quotients in coordinate
ring of affine algebraic curves, and by using those procedures we demonstrated that
the modified decoding algorithm can be executed quickly. Specifically, its compu-
tational complexity is theoretically the same as the BMS algorithm (Sakata et al.,
1995a,b) for one-point Hermitian codes. It is also much faster than the standard list
decoding algorithms (Beelen and Brander, 2010; Guruswami and Sudan, 1999) for
many cases that are examined and reported in our computational experiments in
which examined error-correcting codes have midium sizes. It should be noted that
as a list decoding algorithm the proposed method seems to have exponential worst-
case computational complexity while the previous proposals (Beelen and Brander,
2010; Guruswami and Sudan, 1999) have polynomial ones, and that the proposed
method is expected to be slower than the previous proposal for very large/special
inputs.

The original decoding algorithm (Lee et al., 2012) allows parallel implementa-
tion on circuits like the Kötter architecture (Kötter, 1998). Our modified algorithm
retains this advantage. Moreover, if one can afford large circuit size, the proposed
list decoding algorithm can be executed as quickly as the unique decoding algo-
rithm by parallel implementation on a circuit.

Acknowledgment

The authors deeply thank the editor and anonymous reviewers for their careful
reading that improved the presentation. This research was partially supported by
the MEXT Grant-in-Aid for Scientific Research (A) Nos. 23246071 and 26289116,

37

the Villum Foundation through their VELUX Visiting Professor Programme 2011–
2012 and 2014, the Danish National Research Foundation and the National Science
Foundation of China (Grant No. 11061130539) for the Danish-Chinese Center for
Applications of Algebraic Geometry in Coding Theory and Cryptography, the Dan-
ish Council for Independent Research, grant DFF-4002-00367, and the Spanish
MINECO grant No. MTM2012-36917-C03-03. The computer experiments in this
research was conducted on Singular 3.1.3 (Decker et al., 2011).

References

Adams, W.W., Loustaunau, P., 1994. An Introduction to Gröbner Bases. volume 3
of Graduate Studies in Mathematics. American Mathematical Society, Provi-
dence, RI.

Ali, M., Kuijper, M., 2011. A parametric approach to list decoding of Reed-
Solomon codes using interpolation. IEEE Trans. Inform. Theory 57, 6718–6728.
doi:10.1109/TIT.2011.2165803.

Andersen, H.E., Geil, O., 2008. Evaluation codes from order domain theory. Finite
Fields Appl. 14, 92–123. doi:10.1016/j.ffa.2006.12.004.

Beelen, P., 2007. The order bound for general algebraic geometric codes. Finite
Fields Appl. 13, 665–680. doi:10.1016/j.ffa.2006.09.006.

Beelen, P., Brander, K., 2010. Efficient list decoding of a class of algebraic-
geometry codes. Adv. Math. Commun. 4, 485–518. doi:10.3934/amc.2010.
4.485.

Beelen, P., Høholdt, T., 2008. The decoding of algebraic geometry codes, in:
Martínez-Moro, E., Munuera, C., Ruano, D. (Eds.), Advances in Algebraic Ge-
ometry Codes. World Scientific. volume 5 of Coding Theory and Cryptology,
pp. 49–98. doi:10.1142/9789812794017_0002.

Bras-Amorós, M., O’Sullivan, M.E., 2006. The correction capability of the
Berlekamp-Massey-Sakata algorithm with majority voting. Applicable Algebra
in Engineering, Communication and Computing 17, 315–335. doi:10.1007/
s00200-006-0015-8.

Buchberger, B., 1965. An Algorithm for Finding the Basis Elements of the Residue
Class Ring of a Zero Dimensional Polynomial Ideal. Ph.D. thesis. University of
Innsbruck. (English translation by M. P. Abramson available as J. Symbolic
Comput. 41 (2006) 475–511, DOI: 10.1016/j.jsc.2005.09.007).

38

Chen, H., 1999. On the number of correctable errors of the Feng-Rao decoding
algorithm for AG codes. IEEE Trans. Inform. Theory 45, 1709–1712. doi:10.
1109/18.771252.

Decker, W., Greuel, G.M., Pfister, G., Schönemann, H., 2011. Singular 3-1-3 —
A computer algebra system for polynomial computations. URL: http://www.
singular.uni-kl.de.

Duursma, I.M., 1994. On erasure decoding of AG-codes, in: Proc. 1994 IEEE
Information Theory Workshop, Moscow, Russia. URL: http://www.math.
uiuc.edu/~duursma/pub/Erasure94.pdf.

Duursma, I.M., 2012. Coset bound / shift bound. Private communication.

Duursma, I.M., Kirov, R., Park, S., 2011. Distance bounds for algebraic geometric
codes. J. Pure Appl. Algebra 215, 1863–1878. doi:10.1016/j.jpaa.2010.
10.018.

Duursma, I.M., Park, S., 2010. Coset bounds for algebraic geometric codes. Finite
Fields Appl. 16, 36–55. doi:10.1016/j.ffa.2009.11.006.

Eisenbud, D., 1995. Commutative Algebra with a View Toward Algebraic Geom-
etry. volume 150 of Graduate Texts in Mathematics. Springer-Verlag, Berlin.

Feng, G.L., Rao, T.R.N., 1993. Decoding algebraic geometric codes up to the
designed minimum distance. IEEE Trans. Inform. Theory 39, 36–47. doi:10.
1109/18.179340.

Feng, G.L., Rao, T.R.N., 1995. Improved geometric Goppa codes part I, basic
theory. IEEE Trans. Inform. Theory 41, 1678–1693. doi:10.1109/18.476241.

Fujisawa, M., Matsui, H., Kurihara, M., Sakata, S., 2006. With a higher probability
one can correct errors up to half the designed distance for primal codes from
curves, in: Proc. SITA2006, Hakodate, Hokkaido, Japan. pp. 101–104.

Garcia, A., Stichtenoth, H., 1995. A tower of Artin-Schreier extensions of func-
tion fields, attaining the Drinfeld-Vladut bound. Invent. Math. 121, 211–222.
doi:10.1007/BF01884295.

Geil, O., Matsumoto, R., Ruano, D., 2012. List decoding algorithms based on
Gröbner bases for general one-point AG codes, in: Proc. ISIT 2012, Cambridge,
MA, USA. pp. 86–90. doi:10.1109/ISIT.2012.6284685.

Geil, O., Matsumoto, R., Ruano, D., 2013. Feng-Rao decoding of primary codes.
Finite Fields Appl. 23, 35–52. doi:10.1016/j.ffa.2013.03.005.

39

Geil, O., Munuera, C., Ruano, D., Torres, F., 2011. On the order bounds for one-
point AG codes. Adv. Math. Commun. 5, 489–504. doi:10.3934/amc.2011.
5.489.

Geil, O., Pellikaan, R., 2002. On the structure of order domains. Finite Fields
Appl. 8, 369–396. doi:10.1006/ffta.2001.0347.

Guruswami, V., Sudan, M., 1999. Improved decoding of Reed-Solomon and
algebraic-geometry codes. IEEE Trans. Inform. Theory 45, 1757–1767. doi:10.
1109/18.782097.

Høholdt, T., Pellikaan, R., 1995. On the decoding of algebraic-geometric codes.
IEEE Trans. Inform. Theory 41, 1589–1614. doi:10.1109/18.476214.

Elbrønd Jensen, H., Nielsen, R.R., Høholdt, T., 1999. Performance analysis of a
decoding algorithm for algebraic-geometry codes. IEEE Trans. Inform. Theory
45, 1712–1717. doi:10.1109/18.771253.

Justesen, J., Høholdt, T., 2004. A Course in Error-Correcting Codes. EMS
Textbooks in Mathematics, European Mathematical Society Publishing House,
Zürich, Switzerland.

Kötter, R., 1998. A fast parallel implementation of a Berlekamp-Massey algorithm
for algebraic-goemetric codes. IEEE Trans. Inform. Theory 44, 1353–1368.
doi:10.1109/18.681314.

Lax, R.F., 2012. Generic interpolation polynomial for list decoding. Finite Fields
Appl. 18, 167–178. doi:10.1016/j.ffa.2011.07.007.

Lee, K., Bras-Amorós, M., O’Sullivan, M.E., 2012. Unique decoding of plane AG
codes via interpolation. IEEE Trans. Inform. Theory 58, 3941–3950. doi:10.
1109/TIT.2012.2182757.

Lee, K., Bras-Amorós, M., O’Sullivan, M.E., 2014. Unique decoding of general
AG codes. IEEE Trans. Inform. Theory 60, 2038–2053. doi:10.1109/TIT.
2014.2306816.

Lee, K., O’Sullivan, M.E., 2008. List decoding of Reed-Solomon codes from a
Gröbner basis perspective. J. Symbolic Comput. 43, 645–658. doi:10.1016/j.
jsc.2008.01.002.

Lee, K., O’Sullivan, M.E., 2009. List decoding of Hermitian codes using Gröbner
bases. J. Symbolic Comput. 44, 1662–1675. doi:10.1016/j.jsc.2007.12.
004.

40

Matsumoto, R., Miura, S., 2000a. Finding a basis of a linear system with pairwise
distinct discrete valuations on an algebraic curve. J. Symbolic Comput. 30, 309–
323. doi:10.1006/jsco.2000.0372.

Matsumoto, R., Miura, S., 2000b. On construction and generalization of algebraic
geometry codes, in: Katsura, T., et al. (Eds.), Proc. Algebraic Geometry, Number
Theory, Coding Theory, and Cryptography, Univ. Tokyo, Japan. pp. 3–15. URL:
http://www.rmatsumoto.org/repository/weight-construct.pdf.

Matsumoto, R., Miura, S., 2000c. On the Feng-Rao bound for the L-construction
of algebraic geometry codes. IEICE Trans. Fundamentals E83-A, 926–930.
URL: http://www.rmatsumoto.org/repository/e83-a_5_923.pdf.

Matsumoto, R., Ruano, D., Geil, O., 2013. Generalization of the Lee-O’Sullivan
list decoding for one-point AG code. J. Symbolic Comput. 55, 1–9. doi:10.
1016/j.jsc.2013.03.001.

McKeague, C.P., 2012. Elementary Algebra. 9th ed., Brooks Cole, Florence, KY
41022-6904, USA.

Miura, S., 1993. Algebraic geometric codes on certain plane curves. Electronics
and Communications in Japan (Part III: Fundamental Electronic Science) 76, 1–
13. doi:10.1002/ecjc.4430761201. (original Japanese version published as
Trans. IEICE, vol. J75-A, no. 11, pp. 1735–1745, Nov. 1992).

Miura, S., 1998. Linear codes on affine algebraic curves. Trans. IEICE J81-A,
1398–1421.

Pellikaan, R., 1993. On the efficient decoding of algebraic-geometric codes, in:
Camion, P., Charpin, P., Harari, S. (Eds.), Eurocode ’92 International Sympo-
sium on Coding Theory and Applications, CISM International Centre for Me-
chanical Sciences. Springer. pp. 231–253. URL: http://www.win.tue.nl/
~ruudp/paper/17.pdf.

Rosales, J.C., García-Sánchez, P.A., 2009. Numerical Semigroups. volume 20 of
Developments in Mathematics. Springer, New York.

Saints, K., Heegard, C., 1995. Algebraic-geometric codes and multidimensional
cyclic codes: A unified theory and algorithms for decoding using Gröbner bases.
IEEE Trans. Inform. Theory 41, 1733–1751. doi:10.1109/18.476246.

Sakata, S., 2001. On fast interpolation method for Guruswami-Sudan list decoding
of one-point algebraic-geometry codes, in: Boztaş, S., Shparlinski, I.E. (Eds.),

41

Proc. AAECC-14, Springer-Verlag, Melbourne, Australia. pp. 172–181. doi:10.
1007/3-540-45624-4_18.

Sakata, S., 2003. Multivariate interpolation and list decoding, in: Kobayashi, K.,
Morita, H. (Eds.), Proc. 3rd Asian-European Workshop on Information Theory,
Society of Information Theory and its Applications, Kamogawa, Chiba, Japan.
pp. 28–31.

Sakata, S., Fujisawa, M., 2011. Fast decoding of multipoint codes from algebraic
curves up to the order bound, in: Proc. SITA2011, Iwate, Japan. pp. 417–422.

Sakata, S., Elbrønd Jensen, H., Høholdt, T., 1995a. Generalized Berlekamp-
Massey decoding of algebraic-geometric codes up to half the Feng-Rao bound.
IEEE Trans. Inform. Theory 41, 1762–11768. doi:10.1109/18.476248.

Sakata, S., Justesen, J., Madelung, Y., Elbrønd Jensen, H., Høholdt, T., 1995b. Fast
decoding of algebraic geometric codes up to the designed minimum distance.
IEEE Trans. Inform. Theory 41, 1672–1677. doi:10.1109/18.476240.

Schicho, J., 1998. Inversion of birational maps with Gröbner bases, in: Buchberger,
B., Winkler, F. (Eds.), Gröbner Bases and Applications. Cambridge University
Press. volume 251 of London Mathematical Society Lecture Note Series, pp.
495–503. doi:10.1017/CBO9780511565847.031.

Shokrollahi, M.A., Wasserman, H., 1999. List decoding of algebraic-geometric
codes. IEEE Trans. Inform. Theory 45, 432–437. doi:10.1109/18.748993.

Tang, L.Z., 1998. A Gröbner basis criterion for birational equivalence of affine
varieties. J. Pure Appl. Algebra 123, 275–283. doi:10.1016/S0022-4049(97)
00139-4.

Umehara, D., Uyematsu, T., 1998. One-point algebraic geometric codes from
Artin-Schreier extensions of Hermitian function fields. IEICE Trans. Funda-
mentals E81-A, 2025–2031.

Vasconcelos, W.V., 1998. Computational Methods in Commutative Algebra and
Algebraic Geometry. volume 2 of Algorithms and Computation in Mathematics.
Springer-Verlag, Berlin.

Voss, C., Høholdt, T., 1997. An explicit construction of a sequence of codes attain-
ing the Tsfasman-Vlăduţ-Zink bound. IEEE Trans. Inform. Theory 43, 128–135.
doi:10.1109/18.567659.

42

