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Abstract This paper revisits the problem of how to select an equilibrium in a
differential game in the case of multiplicity of Nash equilibria. Most of the pre-
vious applied dynamic games literature has considered pre-play negotiations
between players, implicitly or explicitly, with the aim of reaching an agreement
on the selection of the pair of strategies. The main objective of this paper is to
determine what would be the equilibrium to be played without pre-play com-
munications. We study the linear and nonlinear Markov perfect Nash equilibria
for a class of well-known models in the literature if pre-play communications
are eliminated. We analyze both symmetric and nonsymmetric strategies. We
show that the nonlinear strategies are not always the optimal strategies im-
plemented when pre-play communications are removed. We conclude that in
the presence of multiple equilibria and without pre-play communications the
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equilibria actually implemented are symmetric piecewise linear Markov perfect
Nash equilibria at least for a range of initial values of the state variable.

Keywords Multiple equilibria · differential games · Markovian strategies ·
nonlinear strategies · international pollution control

1 Introduction

This paper revisits the problem of how to select an equilibrium in a differential
game when there is an infinite number of equilibria. Most of the previous
applied dynamic games literature has considered pre-play negotiations between
players, implicitly or explicitly, with the aim of reaching an agreement on the
selection of the pair of strategies. The seminal paper by Dockner and Long
(1993) is a leading example in this literature.1 The main objective of this paper
is to determine what would be the equilibrium actually implemented without
pre-play communications.

A considerably important issue in the area of dynamic games is the sus-
tainability of cooperative strategies. In the dynamic games literature, it is
well-known that the Pareto optimum is difficult to achieve because coopera-
tion can be frustrated by a prisoner’s dilemma type of situation. If one player
stands to receive a lower payoff in the coordinated solution than what he
would get in a noncooperative solution, he will find optimal to deviate from
the coordinated solution; he may have an incentive to cheat on the agreement.
That is, he may choose a different course of action from that prescribed by
the agreement.2

Different mechanisms have been proposed in the literature to ensure that
the cooperative outcome is sustained by a pair of equilibrium strategies (see, for
example, Dockner et al. (1996) and Dockner et al. (2000), Ch. 6 for the use of
trigger strategies and De Frutos and Mart́ın-Herrán (2015) and the references
therein for the use of incentive equilibrium strategies).3 One option often used
in the applied dynamic games literature to implement cooperative solutions
by means of noncooperative play is exploiting the fact that in some models an
infinite number of Markov-perfect Nash equilibria (MPNE) exists. In the case
of linear-quadratic games, these equilibria correspond to nonlinear strategies
(or “nonsingular”, using Rowat’s (2007) terminology). The idea is to sustain
the cooperative outcome over time, or to approach the cooperative outcome
as much as possible by looking for the “nearest” Markov-perfect equilibrium

1 Other examples of papers that explicitly consider pre-play negotiations between players
are the following (the list is not exhaustive): Piga (2000), Itori and Itaya (2001), Wirl and
Feichtinger (2002), Benchekroun and Long (2008), and Kossioris et al. (2008).

2 The problem of the sustainability of the coordinated outcomes over time is already
solved when the efficient solution is in itself an equilibrium, as in Chiarella et al. (1984),
Rincón-Zapatero et al. (2000), and Mart́ın-Herrán and Rincón-Zapatero (2005).

3 Dockner and Sorger (1996) follow a different approach and construct an infinite number
of Nash equilibria in a dynamic game of joint exploitation of a productive asset. They show
that the efficient stationary stock can approximately be supported as Nash equilibria in
stationary Markovian strategies when the discount rate approaches zero.
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among the infinite set of possibilities. Nonlinear strategies have received a great
attention in the applied dynamic games literature after the publication of the
seminal paper by Tsutsui and Mino (1990). Our paper tries to contribute to
this literature.

Tsutsui and Mino (1990) provided a method (different from the guessing
method) to construct stationary Markov feedback equilibria for differential
games with one state variable and an infinite time horizon. They discussed
nonlinear strategies in a linear-quadratic game of duopolistic competition with
sticky prices. One of the main purposes of the paper was to examine whether
it was possible to construct a more efficient feedback equilibrium (more effi-
cient with respect to the linear feedback equilibrium derived using the guessing
method) (see footnote 2 of Tsutsui and Mino’s paper). This same purpose has
been behind the use of nonlinear strategies in the analysis of a large number
of economic and managerial problems. One important question related to the
use of nonlinear strategies is that there are many equilibria, in fact an infi-
nite number, depending on which pair of nonlinear strategies is chosen. The
lack of a boundary condition in the problem implies that multiple feedback
Nash equilibria exist. The multiplicity of equilibria requires some criterion for
selecting equilibria. Equilibrium selection is the topic of this paper.

As far as we know, most of the literature on multiple equilibria and nonlin-
ear strategies in linear-quadratic differential games has avoided the problem of
selecting equilibria by assuming that the agents will be able to coordinate on
the best feedback equilibrium. The choice of the most efficient strategy play
is the result of pre-play negotiations or communications. In this paper, as in
Dockner and Long (1993) and all subsequent research related to this topic, we
consider that pre-play communications and cheap talk are equivalent devices.
The selection of a specific equilibrium is determined in a pre-play phase where
agents have cheap talks and agree on a specific equilibrium.4 The negotiations
that lead to an implicit and partial cooperation are not included in the original
model and as pointed out by Haurie et al. (2012) (page 274), presumably, if
they were included, all the strategies would be different from those obtained
for the original criterion. Our main objective in this paper is to analyze which
equilibrium would be played if pre-play communications are removed.

If there are not pre-play communications then the multiplicity of equilibria
leads to the problem of equilibrium selection. Different criteria for selecting
equilibria have been proposed in the literature of dynamic games, see, for ex-
ample, Başar (1977), Driskill (1997), and Cartigny and Michel (2003). The cri-
terion proposed in these papers removes the multiplicity of equilibria through
the definition of some desirable properties. Driskill (1997) avoids the problem

4 One exception is Zagonari (1998) where no agreement on the selection of the pair of
strategies is required because unilateral initiatives are considered. The paper analyzes a
model where two group of countries differ in their preferences for consumption goods as well
as in their attention to environmental issues. Another exception is Tasneem et al. (2017)
where the empirical relevance of the nonlinear equilibria in a two-player common property
resource game is examined. Their results show that nonlinear equilibria cannot be ruled out
as irrelevant on behavioral grounds.
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of nonuniqueness by considering the equilibrium strategies that result from the
game with finite horizon T and letting T tend to infinity. Similarly, for a one-
dimensional linear-quadratic infinite horizon game Cartigny and Michel (2003)
prove that the unique Nash equilibrium of each finite-horizon game converges
to a unique Nash equilibrium of the given infinite-horizon game. Furthermore,
they prove that the finite-horizon games admit equilibrium strategies that
converge to a steady state for all fixed data and this steady state corresponds
precisely to the linear strategies of one equilibrium in infinite horizon. For
linear-quadratic differential games, Başar (1977) proposes an optimal unique
selection of an element of the Nash equilibrium set which exhibits robust
behavior by being insensitive to additive random perturbation in the state
dynamics, i.e. the unique noncooperative solution of a particular stochastic
differential game.

Unlike the papers cited above, in this paper we do not impose any addi-
tional property to the equilibrium in order to remove the multiplicity of equi-
libria. We study the linear and nonlinear Markov perfect Nash equilibria for
a class of well-known models in the literature if pre-play communications are
eliminated. In Dockner and Long (1993), one of the first works to apply Tsutsui
and Mino’s method to compute the nonlinear Markov perfect strategies of an
international pollution control differential game, the authors highlighted dif-
ferent situations (asymmetric players or incomplete information, for example)
which would complicate the process of choosing among Nash equilibria.

The literature that focuses on the comparison of the performance of linear
and nonlinear strategies with respect to the Pareto solution could be divided
in two major groups.5 The papers that establish that nonlinear solutions are
Pareto-superior to linear strategies belong to the first group, while those pa-
pers showing the opposite result belong to the second group. This technique
has been applied to a variety of settings, including industrial organization,
environmental economics and public economics. All these papers have consid-
ered pre-play negotiations between the players, implicitly or explicitly, with
the aim of reaching an agreement on the selection of the pair of strategies.
The following is a non-exhaustive list of works which can be classified in the
first stream of the literature: Dockner and Long (1993), Feichtinger and Wirl
(1993), Wirl (1996), Piga (2000), Ihori and Itaya (2001), Rubio and Casino
(2002), Wirl and Feichtinger (2002), Benchekroun and Long (2008), Fujiwara
(2008, 2009, 2010), Fujiwara and Matsueda (2009). A list of papers belonging
to the second stream of the literature includes: Wirl (1994), Wirl and Dockner
(1995), Shibata (2002), Rubio and Casino (2003), Wirl (2007).

In this paper, we analyze a well-known linear-quadratic differential game,
for clarity and simplicity in the exposition, although our arguments extend to
other more general models, even for games outside the class of linear-quadratic
games. In the case of more general models, Markov perfect strategies would

5 Most of the works in this literature study different problems formulated as linear-
quadratic differential games. However, there are some exceptions like Kossioris et al. (2008)
that analyze the shallow lake pollution control differential game presenting nonlinear dy-
namics.
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not be computed explicitly, but numerically. In this paper, we study the differ-
ential game proposed in Dockner and Long (1993) to analyze a transboundary
pollution problem in a symmetric two-player setting.

Following Rowat (2007), we focus on the case where the strategies are
required to be defined over the whole state space6 and there are an infinite
number of equilibria. Therefore, in this paper we exclusively consider globally
defined strategies. The optimality conditions established in Rowat (2007) do
not imply the existence of a unique Nash equilibria. On the contrary, an infi-
nite number of globally defined Nash equilibria exists. Therefore, our research
question of how to choose an equilibrium is still relevant.

Our equilibrium selection mechanism proceeds in two stages. In the first
stage, we characterize the stationary Markov perfect Nash equilibria of the dif-
ferential game using the method proposed in Rincón-Zapatero et al. (1998) (see
also Mart́ın-Herrán and Rincón-Zapatero (2002) and Rincón-Zapatero (2004)).
This method directly characterizes the stationary strategies candidate to con-
stitute a MPNE of the infinite horizon differential game by means of a quasi-
linear system of ordinary differential equations (ODEs), instead of the more
complicated, fully nonlinear system of Hamilton-Jacobi-Bellman equations.7

In the second stage we show that the selection of a MPNE of the differential
game is equivalent to the selection of a pair of initial values of the control vari-
ables satisfying the system of ODEs. In absence of pre-play communications
this leads to a symmetric game in normal form in which each player inde-
pendently chooses the initial value of his/her own control variable. We call
this auxiliary game “the reduced game.” The outcome of the reduced game
determines the MPNE of the differential game actually played.

The answer to our main research question can be summarized as follows:
the nonlinear strategies are not always the optimal strategies to be imple-
mented when pre-play communications are removed. This result is valid even
in the case of identical symmetric players. We analyze both symmetric and non-
symmetric strategies. When symmetric strategies are considered, the results
are obtained analytically. In the case of nonsymmetric strategies, the results
are characterized numerically. If the initial state (the pollution stock) is below
a threshold, the nonlinear strategies are not played regardless of the existence
of pre-play communications, except if there exists a binding agreement that
forces the players to maintain the prior agreement. The equilibrium effectively
played is a piecewise linear symmetric MPNE. This equilibrium gives the low-
est payoff for both players with symmetric MPNE. If the initial pollution stock
is above a threshold, the equilibrium played is a symmetric nonlinear MPNE
that gives the closest asymptotic steady-state to the cooperative steady-state.

The paper is organized as follows. In Section 2, we briefly recall the model
in Dockner and Long (1993) and present some preliminary results on the char-
acterization of the symmetric and nonsymmetric nonlinear feedback strategies.

6 Dockner and Wagener (2014) consider strategies with a local support.
7 See Dockner and Wagener (2014) for a (in this case) mathematically equivalent alter-

native approach using a shadow price auxiliary system of ordinary differential equations.
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Section 3 analyzes what we call the reduced game and collects our main results.
Section 4 concludes the paper.

2 The model and preliminary results

We consider an infinite time horizon noncooperative two-player differential
game. Player i’s objective is to maximize

Wi(u1, u2, x0) :=

∫ ∞
0

fi(x, u1, u2)e−ρt dt, (1)

s.t.: ẋ = g(x, u1, u2), x(0) = x0. (2)

For simplicity in the exposition and with the objective of comparing our
results with those obtained in previous literature, we focus on a particular
linear-quadratic model that has been extensively studied in the environmen-
tal economics literature. The formulation is borrowed from Dockner and Long
(1993). The control variables, denoted by ui, i = 1, 2, are the emissions of
the two players (countries). A natural assumption is that ui ≥ 0. The state
variable, denoted by x, represents the stock of pollution, and is assumed to be
positive. Its dynamics is defined by the linear ordinary differential equation:

ẋ = g(x, u1, u2) := u1 + u2 − αx, x(0) = x0, (3)

where parameter α > 0 denotes the natural absorption rate. The objective of
player i is defined by functional (1) with

fi(x, ui, uj) := ui
(
A− 1

2
ui
)
− 1

2
ϕx2, (4)

where A and ϕ are positive parameters.
We are interested in Markovian strategies and, given that the problem is

autonomous and the game is played over an infinite time horizon, we restrict
ourselves to consider stationary (time-independent) strategies defined over the
whole state space.8 More precisely we have the following definition,

Definition 1 Let R+ denote the set of nonnegative real numbers. The pair
(φ1, φ2) of functions φi : R+ → R+, i = 1, 2, is a pair of admissible stationary
strategies if for all x0 ∈ R+ the state equation (3) with ui(t) = φi(x(t)),
i = 1, 2, has a unique absolutely continuous solution x(t) defined for all t ≥ 0.

We further restrict the set of strategies by observing that given the strat-
egy of player i, player j will always choose a strategy φj such that uj(t) =
φj(x(t)) ≤ A for almost all t ≥ 0. The constant choice ui = A corresponds
to a myopic player that maximizes its instantaneous utility without taking

8 We focus on globally defined strategies to avoid the discussion about whether or not our
results depend on the local or global character of the strategies.
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into account the evolution of the pollution stock over time (Rubio and Casino
(2002), see also Proposition 3 in Dockner and Long (1993)).9

Proposition 1 Let (φ1, φ2) be a pair of Lipschitz continuous functions defined
in R+ with 0 ≤ φi(x) ≤ A, i = 1, 2, for all x ∈ R+. Then (φ1, φ2) is a pair
of admissible stationary strategies. Furthermore, let x(·) be the solution of (3)
with ui = φi(x), i = 1, 2, then

e−αtx0 ≤ x(t) ≤ e−αt
(
x0 −

2A

α

)
+

2A

α
, ∀t ≥ 0, (5)

and

− ϕ

2ρ
max{x20, 4A2/α2} ≤Wi(u1, u2, x0) ≤ A2

2ρ
, i = 1, 2. (6)

Proof From the comparison theorem for ordinary differential equations (ODE’s)
one has that (5) is satisfied for all t in the maximal interval of existence of the
unique solution of (3) with ui = φi(x), i = 1, 2. Now, using the prolongation
theorem for ODE’s we conclude that x(t) is defined for all t and (φ1, φ2) is
a pair of admissible stationary strategies. The lower and upper bounds in (6)
are straightforward from the definition of Wi(u1, u2, x0) in (1), with fi given
by (4), observing that from (5) one has 0 ≤ x(t) ≤ max{x0, 2A/α}.

From now on in this paper, we consider admissible stationary strategies
satisfying the conditions in Proposition 1 and we call them simply “admissi-
ble stationary strategies.” We will use the notation Wi(φ1, φ2, x0) to denote
Wi(u1, u2, x0) when ui = φi(x).

It is well-known that for an infinite horizon dynamic optimization problem
there are several non equivalent concepts of optimality (Dockner et al. (2000),
Definition 3.2, Haurie et al. (2012), Definition 7.3). However, Proposition 1
shows that, in our case, the infinite integral in (1) with the specification (3)-
(4) is convergent for all admissible stationary strategies, and therefore, all the
definitions of optimality are in fact equivalent in our problem (see Dockner et
al. (2000), Haurie et al. (2012)). The following definitions specify the concept
of equilibrium relevant for the rest of the paper.

Definition 2 A pair (φ1, φ2) of admissible stationary strategies is a Markov
Nash equilibrium (MNE) if for every x ∈ R+

W1(φ1, φ2, x) ≥W1(ψ1, φ2, x), W2(φ1, φ2, x) ≥W2(φ1, ψ2, x),

for all ψ1 and ψ2 such that (φ1, ψ2) and (ψ1, φ2) are admissible strategies.

9 Rowat (2007) anlyzes the general case without the hypothesis of boundedness of the
strategies. The results in that paper show that “a fortiori” the optimal strategies satisfy
uj(t) = φj(x(t)) ≤ A for all t ≥ 0.
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Let us consider the problem in which the objective of player i is to maximize

Wi,t(u1, u2, y) :=

∫ ∞
t

fi(x, u1, u2)e−ρ(s−t) ds, (7)

s.t.: ẋ = g(x, u1, u2), x(t) = y. (8)

We observe that, as problem (1)-(2) is autonomous, every (stationary)
MNE for (1)-(2) is also a MNE for (7)-(8) for all y ∈ R+ and all t ≥ 0. That
is, for all x ∈ R+ and t ≥ 0,

W1,t(φ1, φ2, x) ≥W1,t(ψ1, φ2, x), W2,t(φ1, φ2, x) ≥W2,t(φ1, ψ2, x).

An equilibrium with the previous property is called a Markov Perfect Nash
Equilibrium (MPNE) (see, for example, Dockner et al. (2000), Definition 4.4).
Every stationary MNE is MPNE.

The differential game (7)-(8) is denoted by Γ (t, y) using the notation in
Dockner et al. (2000) (page 99), being Γ (0, x0) the original differential game
(1)-(2).

Definition 3 Let (φ1, φ2) be a stationary MPNE. The value function for
player i, i = 1, 2 corresponding to (φ1, φ2) is Vi(x) = Wi(φ1, φ2, x), i = 1, 2.

The following theorem gives a sufficient condition for a pair of admissible
stationary strategies to be a MNE (Dockner et al. (2000), Theorem 4.1) and
in consequence a MPNE.

Theorem 1 Let (φ1, φ2) be a set of admissible stationary strategies. Assume
that there exist continuously differentiable functions (V1, V2) defined in R+

satisfying the following system of Hamilton Jacobi-Bellman equations (HJB)

ρVi(x) = max
u∈R+

{
u
(
A− 1

2
u
)
− ϕ

2
x2 +

d

dx
Vi(x)

(
u+ φj − αx

)}
, i 6= j. (9)

Assume that the transversality conditions

lim sup
t→∞

e−ρtVi(x(t)) ≤ 0, i = 1, 2, (10)

where x(·) is the solution of (3) with ui = φi(x), i = 1, 2, are satisfied for all
x0 ∈ R+.

Then if φi(x) is a maximizer of the right hand side of (9) for all x ∈ R+,
the pair (φ1, φ2) is a Markov Nash equilibrium.

Proof The proof of the theorem is identical to that of Theorem 4.1 in Dockner
et al. (2000) taking into account that, although Vi is not bounded below, we
can apply Lemma 3.1 in Dockner et al. (2000) because Vi is a continuous
function and the feasible trajectories are bounded (as previously seen in (5)).
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Remark 1 If Vi, i = 1, 2 is continuous and continuously differentiable except at
a finite number of points, Theorem 1 is still valid (see Theorem 3.5 in Dockner
et al. (2000)).

Note also that (9) is a system of nonlinear ordinary differential equations
and that the transversality conditions (10) are not enough to determine a
unique solution of the boundary value problem defined by (9) and (10). In
particular (10) is satisfied by all stabilising solutions, if they exist. This lack
of uniqueness of solutions of (9) and (10) has, as a consequence, the possible
existence of an infinite number of MPNE.

For each solution (V1, V2) of (9), the first-order condition

A− u+
d

dx
Vi(x) = 0, i = 1, 2, (11)

jointly with the nonnegativity condition u ≥ 0 defines a unique pair of strate-
gies

φi(x) = max
(
0, A+

d

dx
Vi(x)

)
, x ∈ R+, i = 1, 2,

that are candidates to constitute a MPNE.
In Rincón-Zapatero et al. (1998) (Section 3) and Mart́ın-Herrán and Rincón-

Zapatero (2002) (Theorem 1), it has been proven that, as long as the strategies
remain interior, that is φi(x) = A+ d

dxVi(x) > 0, i = 1, 2, the strategies can be
computed by means of a system of ordinary differential equations. More pre-
cisely, if φi(x) > 0 writing hi(x) = φi(x), the pair of functions (h1(x), h2(x))
satisfies

M(h1, h2, x)

[
h′1
h′2

]
=

[
ρ+ α 0

0 ρ+ α

] [
h1 −A
h2 −A

]
+

[
ϕx
ϕx

]
, (12)

where,

M(h1, h2, x) =

[
h1 + h2 − αx h1 −A

h2 −A h1 + h2 − αx

]
. (13)

Let us remark that given an initial state x0, there exists a solution of (12)
for each choice of initial values

[h1(x0), h2(x0)]T = [η1, η2]T ∈ H(x0),

where, for each x0 ≥ 0, H(x0) is the set of regular points defined by

H(x0) =
{

[η1, η2]T ∈ R2|detM(η1, η2, x0) 6= 0
}
.

Dockner and Long (1993) and Rowat (2007) (see also Rubio and Casino
(2002)), have proved that if condition

α2 + 3αρ+ 2ρ2 < ϕ (14)

is satisfied, then an infinite number of symmetric globally defined MPNE ex-
ists. In this paper, we consider that the model parameters satisfy condition
(14).
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Imposing symmetry, h1(x) = h2(x) = h(x), system (12) reduces to the
single ordinary differential equation

(3h−A− αx)h′ = (ρ+ α)(h−A) + ϕx. (15)

It is worth noting that, although written in a slightly different form, equa-
tion (15) coincides with the ordinary differential equation used in Dockner and
Long (1993) to derive nonlinear MPNE of the linear quadratic game consid-
ered in this paper. If hDL(x) = h(x)− (A+ αx)/3, with h a solution of (15),
then hDL satisfies the differential equation (C3) in Dockner and Long (1993).
On the other hand, our differential game can be transformed in the differential
game analyzed in Rowat (2007) changing the objective functional of player i
by 2Wi(u1, u2, x0) − A2/ρ. Therefore, the conclusions in both papers readily
translate to this paper. In what follows we summarize these conclusions.

Equation (15) possesses (Dockner and Long (1993)) two linear solutions
defined by

ha(x) = Ba + Cax, hb(x) = Bb + Cbx,

where

Bj =
A

3
− Fj

E

D
, Cj = Fj +

α

3
, j = a, b.

Coefficients Fj , D and E are given by

D =
ρα+ α2 + 3ϕ

3
, E =

2A(ρ+ α)

3
,

Fa =
ρ+

√
ρ2 + 12D

6
, Fb =

ρ−
√
ρ2 + 12D

6
.

Each one of the linear solutions defines two symmetric piecewise linear (affine)
MPNE, φ1 = φ2 = φb and φ1 = φ2 = φab with

φb(x) = max(hb(x), 0), (16)

φab(x) = max(min(ha(x), hb(x)), 0). (17)

Note that functions ha and hb intersect at point x∗ = E/D, and therefore,
φab(x) = φb(x) for x ≥ x∗. The piecewise linear strategy φab has been identified
in Rowat (2007) where it is proven that the pairs (φb, φb) and (φab, φab) are
actually globally defined MPNE.

Let us denote by hc(x) the solution of (15) satisfying hc(0) = 0 and let
us define φc(x) = max(hc(x), 0). The strategies φ1 = φ2 = φc define a lower
bound for the set of symmetric nonlinear global MPNE (see below).

For each x0 ∈ R+ let us define the set

H(x0) = {η ∈ R+ | φc(x0) ≤ η ≤ φab(x0)}. (18)

Given an initial state x0 ∈ R+, for each choice of η ∈ H(x0) there exists
a (globally defined) symmetric MPNE φ1 = φ2 = max(h(x), 0) with h the
solution of (15) with h(x0) = η. These MPNE correspond to the global MPNE

labelled φ̂3 in Theorem 1 of Rowat (2007).
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Fig. 1 The set H(x0) defined in (18) (continuous line in the shaded region). The MPNE
φb, φab and φc for the values of the parameters A = 0.5, φ = 1, ρ = 0.1 and α = 0.5.

The nonlinear strategies defined by condition h(x0) = η can be explicitly
computed (see Dockner and Long (1993), Rubio and Casino (2002), and Rowat
(2007)). Outside of region H(x0) the symmetric nonlinear strategies are locally
defined and/or singular. As previously noted, we rule out these strategies and
focus exclusively on globally defined MPNE. The set H(x0) defined in (18)
is represented in Figure 1 by the continuous line in the shaded region. In
this figure we also represent the piecewise linear MPNE φb and φab, and the
nonlinear MPNE φc.

We remark that there clearly exist nonsymmetric solutions of (12). It is not
the purpose of this paper to carry out an exhaustive analysis of all possible
nonsymmetric equilibria of the differential game. Given the main objective
of the paper it is enough to restrict the analysis to nonsymmetric equilibria
passing through a point in H(x0). More precisely, for given data η1 ∈ H(x0),
η2 ∈ H(x0) with x0 ∈ R+, let (h1(x), h2(x)) be the solution of (12) with
h1(x0) = η1 and h2(x0) = η2. We assume, without loss of generality, that
η1 ≤ η2. Denoting by x∗1 > 0 the point satisfying h1(x∗1) = 0, assumption
η1 ≤ η2 implies that h2(x∗1) ≥ 0. Let h̃2(x) be the solution of the differential
equation

(h̃2 − αx)h̃′2 = (ρ+ α)(h̃2 −A) + ϕx, (19)

with h̃2(x∗1) = h2(x∗1). Let us denote by x∗2 (x∗2 ≥ x∗1) the point with h̃2(x∗2) = 0.
We define

(φ1(x), φ2(x)) =


(h1(x), h2(x)), 0 ≤ x ≤ x∗1,
(0, h̃2(x)), x∗1 ≤ x ≤ x∗2,
(0, 0), x ≥ x∗2.

(20)

It is possible to show numerically that if ηi ∈ H(x0), i = 1, 2, equation (3) with
ui = φi(x), defined by (20) has an asymptotically stable positive steady-state,
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so that the transversality condition (10) is satisfied and the pair (φ1(x), φ2(x))
constitutes a nonsymmetric MPNE defined for all x ∈ R+.
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Fig. 2 Nonsymmetric MPNE labelled (φr1, φ
r
2), r = 1, 2. The plane of possible steady-states

labelled Πss and part of the locus of singular points labelled Σ.

In Figure 2 we represent two different nonsymmetric MPNE, (φ11, φ
1
2) and

(φ21, φ
2
2), corresponding to the initial values (φ11(0.1), φ12(0.1)) = (0.06, 0.1) and

(φ21(0.5), φ22(0.5)) = (0.04, 0.06), respectively. For reference we also represent
the symmetric MPNE φb, φab, and φc. This figure includes the plane Πss of
possible stationary steady-states for the dynamics (3) defined by the equation
u1 + u2 − αx = 0, as well as part of the cone of singular points (labelled Σ)
defined by detM(u1, u2, x) = 0 where M is the matrix defined in (13). The
possible (symmetric or nonsymmetric) MPNE remain in the interior of Σ.

For illustration purposes, the left-hand chart in Figure 3 shows the optimal
time trajectories of the controls and the right-hand chart shows the optimal
time trajectory of the state when players use the strategies ui = φ1i (x), i =
1, 2, where (φ11, φ

1
2) is the MPNE represented in Figure 2 and x0 = 0.1. We

recall that (φ11, φ
1
2) is univocally determined by conditions (φ11(0.1), φ12(0.1)) =

(0.06, 0.1). More precisely, the right-hand chart in Figure 3 represents x(t),
t ≥ 0, the solution of (3) with ui = φ1i (x), i = 1, 2 and x(0) = 0.1. The left-
hand chart in Figure 3 presents u1(t) = φ11(x(t)) the lower (continuous line)
curve and u2(t) = φ12(x(t)) the upper (dashed line) curve.

The differential equation (19) can be obtained taking into account that if
φ1(x) = 0, then the HJB equation (9) for player 2 becomes

ρV2(x) = max
u2∈R+

{
u2
(
A− 1

2
u2
)
− ϕ

2
x2 +

d

dx
V2(x)

(
u2 − αx

)}
.
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Fig. 3 Optimal time trajectories of the controls (left) and of the state (right) corresponding
to the MPNE (φ11, φ

2
1) in Figure 2. In the left figure, with continuous line u1(t) = φ11(x(t))

and with dashed line u2(t) = φ12(x(t)).

Now using the first-order condition (11) and differentiating the previous equa-
tion we get (19) (see Rowat, 2007).

We also remark that, as long as φi > 0, i = 1, 2, any MPNE should be of
the form φi = hi(x), i = 1, 2, with (h1(x), h2(x)) a solution of (12). Although
there is no explicit solution of system (12) available, it can be numerically
solved without difficulty.

3 The reduced game

In view of the analysis of the preceding section it is apparent that, for a
given initial state x0 > 0, the players should choose initial conditions for their
control variables ηi ∈ H(x0), i = 1, 2 in order to determine which MPNE
(φ1, φ2) defined by (20) will be played. We restrict our attention to the region
defined by ηi ∈ H(x0), x0 > 0, because it is in this region where we can
guarantee the existence of globally defined (not necessarily symmetric) MPNE
with φi(x0) = ηi.

We observe that once a choice of initial data ηi ∈ H(x0), i = 1, 2, is made,
there is a unique MPNE (φ1, φ2) such that φi(x0) = ηi, i = 1, 2. Being a
MPNE, the players have no incentive to deviate unilaterally from the feedback
strategy ui = φi(x). Therefore, the equilibrium (φ1(x), φ2(x)) actually played
in the differential game is completely determined by the choice of ηi, i = 1, 2.

This fact raises the main research question of this paper; that is, which ηi
will player i possibly choose in absence of pre-play communication?

In order to be more precise, from now on the MPNE given by (20) when
the initial choice of controls is φi(x0) = ηi ∈ H(x0), i = 1, 2 is denoted by
(φ1(x, η1, η2), φ2(x, η1, η2)) .

We can reformulate the problem of choosing (η1, η2), given x0 > 0, as a
symmetric game in normal form (which we call the reduced game). The set of
strategies of the two players is H(x0), and the payoff functions are defined as
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Vi(x0, ·, ·) : H(x0)×H(x0)→ R with Vi(x0, η1, η2) the value function of player
i, i = 1, 2 when the players follow the strategy ui = φi(x, η1, η2), i = 1, 2, and
the initial state is x(0) = x0. The reduced game is played in pure strategies.

From now on, we assume that the selection of the equilibrium to be played
is the result of the reduced game.

We have the following results

Proposition 2 Let x0 > 0. If η1 ≤ η2, ηi ∈ H(x0), i = 1, 2, then

Vi(x0, η1, η1) ≥ Vi(x0, η2, η2), i = 1, 2. (21)

Proof The symmetry of the game implies V1(x0, η, η) = V2(x0, η, η) for all
η ∈ H(x0). Therefore, it is enough to prove the proposition for player 1. Let
(φ(x, η, η), φ(x, η, η)) be the (symmetric) solution of (12) with φ(x0, η, η) = η.

For η ∈ H(x0), the strategies u1 = u2 = φ(x, η, η) are positive along the
solution of (3) with u1 = u2 = φ(x, η, η). Then, using the first-order condition
(11) in the HJB equations (9), one has

Vi(x0, ηi, ηi) =
1

ρ

(
ηi
(
A− ηi

2

)
− ϕ

2
x20 + (ηi −A)(2ηi − αx0)

)
, i = 1, 2.

Then,

V1(x0, η1, η1)− V1(x0, η2, η2) =
1

ρ
(η1 − η2)

(
3

2
(η1 + η2)− (A+ αx0)

)
.

Taking into account that for η1, η2 ∈ H(x0) the inequality

3

2
(η1 + η2)− (A+ αx0) ≤ 0

is satisfied, we conclude that V1(x0, η1, η1)− V1(x0, η2, η2) ≥ 0.

Remark 2 Proposition 2 shows that if the players restrict themselves to play
symmetric strategies, then the MPNE leading to the greatest payoff requires
choosing the lowest initial value of the control variable, that is, strategy φc.
This result is consistent with the findings in Dockner and Long (1993),10 as
well as in their follow-up papers (see, for example, Rubio and Casino (2002)),
where the players agree to implement the “best” nonlinear MPNE. Note that
this requires previous communication (cheap talk) between the two players in
order to agree on the initial data to be chosen. This is the most common point
of view in the literature when cheap talk is used to implement the best or most
efficient MPNE, which in this case is the equilibrium which gives a steady-state
pollution stock as close as possible to the cooperative steady-state pollution
stock. However, as next propositions show, if cheap talk is not allowed and
depending on the initial value of the state, the outcome could be different.

The following proposition compares the payoffs for nonsymmetric MPNE.

10 Dockner and Long (1993) consider locally defined nonlinear strategies, whereas in this
paper we only consider globally defined nonlinear strategies.
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Proposition 3 Let x0 > 0. If η1 ≤ η2, ηi ∈ H(x0) and (η1 + η2)/2 ≥ −A +
αx0, then

V1(x0, η1, η2) ≤ V2(x0, η1, η2). (22)

Proof For ηi ∈ H(x0), i = 1, 2, the strategies ui = φi(x, η1, η2) are positive
along the solution of (3) with ui = φi(x, η1, η2). Then, using the first-order
condition (11) in the HJB equations (9) one has

Vi(x0, η1, η2) =
1

ρ

(
ηi
(
A− ηi

2

)
− ϕ

2
x20 + (ηi −A)(η1 + η2 − αx0)

)
, i = 1, 2.

The expressions for the value functions can be easily manipulated to arrive to

V2(x0, η1, η2)− V1(x0, η1, η2) =
1

ρ

(η1 + η2
2

+A− αx0
)

(η2 − η1).

Therefore, if (η1 + η2)/2 ≥ −A+ αx0 and η1 ≤ η2, inequality (22) is proven.

Remark 3 Condition (η1 +η2)/2 ≥ −A+αx0 is satisfied for all η1, η2 ∈ H(x0)
if the model parameters satisfy the following two conditions:

−3 + α2 + αρ < 0, −3 + α4 + (6− ρ2)α2 + 4αρ < 0.

The first condition is satisfied if α < 1 and ρ < 1. The second condition
is satisfied if α is moderately small (more precisely if α < 0.47). These two
conditions guarantee that the point xb where φb(xb) = φab(xb) = 0 satisfies
xb = −Bb/Cb ≤ A/α. Therefore, if x0 ≤ xb, then η ≥ −A + αx0 for all
η ∈ H(x0), and as a consequence the condition on the mean of η1 and η2 in
the statement of the proposition is fulfilled. If x0 > xb the only choice leading
to a MPNE is η1 = η2 = 0.

Remark 4 Proposition 3 shows that the player who gets the highest payoff is
the player who initially chooses the highest control variable (η). From Propo-
sition 3 we infer that, in absence of pre-play communication, player i, i = 1, 2
has an incentive to choose the MPNE defined with highest possible value of ηi,
regardless of the choice of his/her opponent. Note that, due to the symmetry
of the game, if η1 ≤ η2, then V1(x0, η1, η2) ≤ V2(x0, η1, η2) = V1(x0, η2, η1) and
similarly for player 2. That is, each player is better off if he or she chooses an
initial η ∈ H(x0) bigger than the choice of his/her opponent.

Note that the pairs of initial emission rates (η1, η2) and (η2, η1) lead to the
same trajectory of the pollution stock. Then, if the environmental problem is
not initially extremely important, specifically if x0 ≤ xb, each country would
prefer initially to emit at a rate greater than that of its neighbor. This behavior
corresponds to a free-riding problem in the sense that the greater the emission
rate, the greater the payoff given the fixed trajectory of the pollution stock.
Proposition 2 also shows that one country cannot unilaterally reduce the stock
of pollution. If the country would reduce its emissions, the pollution stock
would decline. The neighbor country benefits from this decline in pollution and
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could raise its emission in order to increase its welfare without increasing the
pollution stock, and therefore, without worsening the environmental problem.
However, if the environmental problem is initially extremely serious (x0 > xb),
then both countries would choose initially null emissions.

The following proposition compares the payoffs for nonsymmetric MPNE
in more detail.

Proposition 4 Let x0 > 0 and η1 ∈ H(x0). If η2,1 ≤ η2,2 with η2,1, η2,2 ∈
H(x0), then

V2(x0, η1, η2,1) ≤ V2(x0, η1, η2,2) (23)

if and only if
(η2,1 + η2,2)/2 + η1 − αx0 ≥ 0. (24)

Proof Reasoning as in Proposition 3 we arrive to

V2(x0, η1, η2,1)−V2(x0, η1, η2,2) =
1

ρ
(η2,1− η2,2)

(
1

2
(η2,1 + η2,2) + η1 − αx0

)
.

Therefore, if η2,1 ≤ η2,2, then V2(x0, η1, η2,1)− V2(x0, η1, η2,2) ≤ 0 if and only
if (η2,1 + η2,2)/2 + η1 − αx0 ≥ 0.

Remark 5 Condition (24) is satisfied if both players choose initial data η1, η2,1,
η2,2 above the plane Πss of possible steady states for the dynamics (3). Plane
Πss is defined by the equation u1 +u2−αx = 0. If (φ1(x), φ2(x)) is the MPNE
played, then the steady state xss is characterized by φ1(xss)+φ2(xss)−αxss =
0.

Note that when condition (24) applies and all the initial choices of the
emission rates are above plane Πss, then the initial pollution stock is lower
than its long-run value, and hence, the pollution stock is increasing from x0
to xss as time goes by.

Remark 6 If condition (24) is satisfied, Proposition 4 establishes that, regard-
less of the choice of the opponent, each player gets a greater payoff the greater
his/her choice of the initial control variable. It is clear that if the equilibrium
to be played is chosen as a result of the reduced game, the outcome of the game
is both players choosing η1 = η2 = φab(x0). That is, the equilibrium played in
the original differential game is the symmetric piecewise MPNE φab. In fact if
condition (24) is satisfied, then η1 = η2 = φab(x0) is the Nash equilibrium of
the reduced game as Proposition 5 shows.

Note that the fulfillment of condition (24) describes whether the countries
evaluate the environmental problem as initially serious or not. Proposition 4
shows that if the environmental problem is moderate, each country would pre-
fer to emit at the highest possible rate in order to increase its payoff irrespec-
tive of the initial emission rate of its neighbor. However, if the environmental
problem is serious, each country would prefer to emit at the lowest possible
rate regardless of the initial emission rate selected by its neighbor.
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Proposition 5 Let x̃0 and x̃1 such that φc(x̃0) = (α/2)x̃0 and φab(x̃1) =
(α/2)x̃1. Then,

1. If x0 ≤ x̃0, then η1 = η2 = φab(x0) is the only Nash equilibrium of the
reduced game.

2. If x0 > x̃1, then η1 = η2 = φc(x0) is the only Nash equilibrium of the
reduced game.

Proof If x0 ≤ x̃0, then condition (24) is satisfied for all η1, η2,1, η2,2 ∈ H(x0).
Proposition 4 can be rephrased by saying that η2,2 (η2,2 > η2,1) is a dominant
strategy for player 2 regardless of the strategy η1 chosen by player 1. Using
the symmetry of the game, if η1,1, η1,2, η2 ∈ H(x0) with η1,1 ≤ η1,2, then

V1(η1,1, η2) ≤ V1(η1,2, η2), ∀η2 ∈ H(x0).

Therefore, η1,2 (η1,2 > η1,1) is also a dominant strategy for player 1 for all
possible choices η2 of player 2. Given that φab(x0) = maxH(x0), η1 = η2 =
φab(x0) constitutes the only Nash equilibrium of the reduced game.

If x0 > x̃1, then (η2,1 + η2,2)/2 + η1 − αx0 ≤ 0 and consequently from
Proposition 4, V2(x0, η1, η2,1)−V2(x0, η1, η2,2) ≥ 0. Now the dominant strategy
for player 2 is η2,1 (η2,1 < η2,2) regardless of the choice η1 of player 1. The
conclusion is reached using the same reasoning as before.

Remark 7 The consequence of Proposition 5 is striking. Even if there is pre-
play communication and an agreement to implement η1 = η2 = φc(x0) has
been reached (which gives the highest payoff for both players with symmet-
ric MPNE), if x0 ≤ x̃0 the players have an incentive to deviate from the
initial agreement in a sort of prisoner’s dilemma. Both players have an in-
centive to choose a higher initial value of the control variable, and in conse-
quence, the implemented equilibrium is the symmetric piecewise linear MPNE
(φab(x), φab(x)) (which gives the lowest payoff for both players with symmetric
MPNE).

If the objective of pre-play communications is to implement the MPNE
which gives an asymptotic steady-state as close as possible to the cooperative
steady-state (the best MPNE), from Proposition 5 we infer that the objective
can only be reached for x0 ≥ x̃1. In other words, the objective is attainable
exclusively if the environmental problem is initially important. Note that this
result is consistent with the findings in Rubio and Casino (2002). If this is the
case, one can remove pre-play communications and still have the desired out-
come. However, if x0 ≤ x̃0, the objective is unattainable, except if there exists
a binding agreement that forces the players to maintain the prior agreement.

Remark 8 It is worth noting that our equilibrium selection mechanism (the
outcome of the reduced game) depends on the initial state x0. This selection
mechanism determines which one of the two MPNE, (φab, φab) or (φc, φc), is
effectively implemented by the players. The dependency of the implemented
equilibrium on the initial condition is common to other equilibrium selection
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mechanisms, as for example, pre-play communications (see Rubio and Casino
(2002)) and is caused by the existence of an infinite number of equilibria.

We would like to emphasize that the selection of the MPNE to be played
depends on the initial state x0, but the equilibrium does not. Let us denote by
φ either φab or φc. The pair (φ, φ) is a MPNE of the differential game (1)-(2).
At any time t > 0 the players only have access to the current value of the
state. Given that the system is autonomous the players “forget” at t > 0 any
reference to the initial state of the system. That is, if at any time t > 0 the
game starting at time t with an arbitrary initial state y, Γ (t, y) in (7)-(8), is
considered, then the pair (φ, φ) is a MPNE of the differential game Γ (t, y).
Therefore, none of the players will be interested in unilaterally implementing
a strategy different from φ.

Remark 9 It is worth noting that, interestingly enough, in all cases the players
implement a symmetric MPNE without imposing artificially symmetric play.

4 Concluding remarks

Multiple equilibria in dynamic games are a fundamental feature of infinite hori-
zon models. This paper analyzes the problem of how to select an equilibrium
in a differential game when there is an infinite number of equilibria. Other
authors have suggested various selection criteria for choosing one among the
many equilibria. In the applied dynamic games literature, the problem of the
selection of equilibria has been avoided by considering pre-play negotiations or
communications between the players. In this paper, as in Dockner and Long
(1993), we consider that pre-play communications and cheap talk are equiva-
lent devices. The selection of a specific equilibrium is determined in a pre-play
phase where agents have cheap talks and agree on the selection of the pair of
strategies. The main objective of this paper was to analyze which would be
the equilibrium played without pre-play communications in a well-known class
of differential games.

In particular, we analyzed the linear-quadratic differential game proposed
by Dockner and Long (1993) to study a transboundary pollution problem. Ex-
isting studies have shown that there exists a continuum of nonlinear symmetric
equilibria. In this paper, we show that when symmetry is not imposed there
is also a continuum of nonlinear nonsymmetric equilibria. Furthermore, if the
initial state (the initial pollution stock) is small enough the nonlinear strate-
gies are not used as optimal strategies regardless of the existence of pre-play
communications. We concluded that if the environmental problem is initially
moderate in the presence of multiple equilibria and without cheap talk, then
the equilibria are symmetric piecewise linear Markov perfect Nash equilibria.
If the environmental problem is not initially serious then both countries have
an incentive to choose an initial emission rate as great as possible. As a conse-
quence, the implemented symmetric piecewise linear MPNE gives the lowest
payoff for both countries with symmetric MPNE. For large values of the ini-
tial pollution stock, when the environmental problem is initially important, the
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strategy is the symmetric nonlinear MPNE that gives the closest asymptotic
steady-state to the cooperative steady-state. This result is consistent with the
findings in Dockner and Long (1993) and Rubio and Casino (2002).

It is worth mentioning that the techniques and results presented here are
applicable not only to other linear-quadratic differential games, but to more
general differential games.

Finally, we want to emphasize two points of our analysis. The first point
concerns the possibility for players to play asymmetric strategies. The conclu-
sion would be different if players were restricted to using symmetric strategies.
The second point refers to the fact that although symmetric play has not been
imposed, the equilibria actually implemented are symmetric.
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