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Abstract

In this paper, we consider a two-factor interest rate model with stochastic volatility and we propose that the interest rate
follows a jump-diffusion process. The estimation of the market price of risk is an open question in two-factor jump-diffusion
term structure models when a closed-form solution is not known. We prove some results that relate the slope of the yield
curves, interest rates and volatility with the functions of the processes under the risk-neutral measure. These relations
allow us to estimate all the functions with the bond prices observed in the markets. Moreover, the market prices of risk,
which are unobservable, can be easily obtained. Then, we can solve the pricing problem. An application to US Treasury
Bill data is illustrated and a comparison with a one-factor model is showed. Finally, the effect of the change of measure on
the jump intensity and jump distribution is analyzed. JEL classification: G13, G17.
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1. Introduction

Understanding the dynamic of the interest rates and obtaining the term structure of interest rates is important for
both practical and theoretical reasons. On the one hand, it is necessary to price and hedge fixed-income derivatives and,
on the other hand, it reflects market participant expectations about interest rates changes and their assessment of the
monetary policy conditions. Therefore, modeling the term structure of interest rates has been the object of many studies
by economists and financial institutions.

Traditionally, the financial literature assumes that interest rates move continuously and they are modelled as diffusion
processes, as in [9], [32] and so on. However, more recent studies have showed that interest rates contained unexpected
discontinuous changes, see for example [10] and [25]. Jumps in interest rates are, probably, due to different market
phenomena such as surprises or shocks in foreign exchange markets. Moreover, when pricing and hedging financial derivatives
jump diffusion models are very important, since ignoring jumps can produce hedging and pricing risk, see [26].

It is widely known that one-factor interest rate models are very attractive for practitioners because its simplicity and
computational convenience. However, these models have also unrealistic properties. First, they cannot generate all the
yield curve shapes and changes that we can find in the markets. Second, the changes over infinitesimal periods of any
two interest-rate dependent prices will be perfectly correlated. Finally, as Hong and Li [22] show, none of their analyzed
one-factor models adequately captures the interest rate dynamics. Therefore, we consider that at least two factors are
necessary to model the term structure of interest rates. In fact, the number of factors must be a compromise between
numerical efficient implementation and the capability of the model to fit data.

In the financial literature, for pricing financial derivatives the state variables must be considered under the risk-neutral
measure because of the no-arbitrage arguments. That is, in order to obtain the derivative prices, the market is assumed to
be risk-neutral and a change from the physical measure to a risk-neutral measure is necessary. However, the observations
in the market are under the physical measure instead of under the risk-neutral measure, therefore the estimation can not
be done directly from data in the markets. The relation between the processes under the risk-neutral and the physical
measure is based on the market prices of risk. If the market prices of risk would be known, then we could easily estimate
the functions of the processes under the risk-neutral measure. However, the market prices of risk are not observable either.
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In the diffusion literature, this problem is solved by considering portfolios without risk by means of no-arbitrage argu-
ments, see [23] and [31] among others, but their estimation is still complex and provides small accuracy, see [15]. However,
in jump-diffusion models this is not possible because the market is not complete.

Recently, in the literature, a novel approach has been considered for estimating the risk-neutral processes in one-factor
models directly from data in the market, see [15] and [16] in diffusion models and [17] and [18] for jump-diffusion models.
Gómez-Valle and Mart́ınez-Rodŕıguez [18] proposed a new approach to estimate the risk-neutral interest rates in a short-
rate model but, as usual in the literature, they assumed that jump size distribution did not change under the risk-neutral
measure. That is, the market price of risk was assumed to be artificially absorbed by the change of measure of the jump
intensity, see also [27]. Later [17] proposed a new result to estimate also the parameters of the jump size distribution
directly form data in the market.

The main goal of this paper is twofold. First, we propose a new approach to estimate the whole risk-neutral functions
of a two-factor model directly from data in the market. Then, we show the supremacy of this approach over a short rate
model as well as the importance of assuming different functions and parameters under the risk-neutral measure to price
interest rate derivatives.

The rest of the paper is organized as follows. Section 2 develops a two-factor jump-diffusion model with stochastic
volatility to price interest rate derivatives. Section 3 proposes some results to estimate the whole functions of a pricing
model with jumps, directly from market data, even when a closed-form solution is not known. Section 4 shows how to
implement the approach in Section 3 with a nonparametric technique. Section 5 shows an empirical application to price
zero-coupon bonds and bond options with data form US. Finally, Section 6 concludes. All the implementation has been
done using MATLAB software.

2. The jump-diffusion model

In this section, we introduce the two-factor jump-diffusion model that we use to price interest rate derivatives. This
research assumes that the state variables are the dynamics of the instantaneous interest rate, r, and the volatility, V .

Define (Ω,F , {Ft}t≥0,P) as a complete filtered probability space which satisfies the usual conditions where {Ft}t≥0 is
a filtration, see [1], [7] and [29].

In order to take into account the abrupt changes of the interest rates in the markets, we consider that the instantatenous
interest rate follows a jump-diffusion stochastic process and the volatility, a diffusion process. Therefore, we consider that
the factors of the model follow this joint stochastic process1:

r(t) = r(0) +

∫ t

0

µr(r(z), V (z))dz +

∫ t

0

V (z)dWr(z) +

∫ t

0

c(r(z−), V (z))dJ(z), (1)

V (t) = V (0) +

∫ t

0

µV (r(z), V (z))dz +

∫ t

0

σV (r(z), V (z))dWV (z), (2)

where µr and µV are the drifts and σV the volatility of the implied volatility process. Moreover, Wr and WV are Wiener

processes and the impact of the jump is given by the function c and the compound Poisson process, J(t) =
∑N(t)
i=1 Yi, with

jump times (τi)i≥1, where N(t) represents a Poisson process with intensity λ(r, V ) and Y1, Y2, . . . is a sequence of identically
distributed random variables with a Normal probability distribution Π, N (0, σY ). We assume that Wr, WV and the jump
size distribution are independent of N , but the standard Brownian motions are correlated with

[Wr,WV ](t) = ρt.

We also assume that the jump magnitude and jump arrival times are uncorrelated with the diffusion parts of the processes.
Lastly, we suppose that the functions µr, µV , σV , λ and Π satisfy suitable regularity conditions provided in the Appendix.

We assume that the market is arbitrage-free. Then, there exists an equivalent martingale measure, Q-measure, which is
known as the risk-neutral measure, see extended Girsanov-type measure transformation in [5] and [30]. The state variables
of the model (1)-(2) under the risk-neutral measure, are as follows:

r(t) = r(0) +

∫ t

0

µQr (r(z), V (z)) dz +

∫ t

0

V (z)dWQr (z) +

∫ t

0

c(r(z−), V (z))dJ̃Q(z), (3)

V (t) = V (0) +

∫ t

0

µQV (r(z), V (z)) dz +

∫ t

0

σV (r(z), V (z))dWQV (z), (4)

1r is right-continuous (cadlag, see [7]) and we denote the left limit r(t−) = limz↑tr(z). However, for notational clarity the pre-jump values
r(t−) will be added only when necessary to avoid confusion and otherwise, they will be assumed implied.
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where µQr = µr−V θWr , µQV = µV −σV θWV , WQr and WQV are the Wiener processes under Q-measure and [WQr ,W
Q
V ](t) = ρt.

The market prices of risk associated to Wr and WV Wiener processes are θWr (r, V ) and θWV (r, V ), respectively. Finally,

J̃Q(t) =
∑NQ(t)
i=1 Yi − λQtEQY [Y1] is the compensated compound Poisson process under Q-measure and the intensity of the

Poisson process NQ(t) is λQ(r, V ). Moreover, we will consider the function c(r, V ) = 1 in (1) and (3).
A zero-coupon bond price at time t with maturity time T , t ≤ T , under the above assumptions, can be expressed as

P (t, r, V ;T ) = EQ[e −
∫ T
t
r(u) du|r(t) = r, V (t) = V ], (5)

and at maturity it verifies that P (T, r, V ;T ) = 1. Moreover, the yield curve can be obtained as

R(t, r, V ;T ) =
− ln(P (t, r, V ;T ))

T − t
. (6)

Let C(t, r, V, T2;T1) be the price of an European call option that matures on T1 on a bond that expires at T2, T1 ≤ T2,
and K is the strike price. Then, analogously to (5), an European bond option is priced as the expected discounted payoff
under the Q−measure, see [30],

C(t, r, V, T2;T1) = EQ
[
e −

∫ T1
t r(u) du max (P (T1, r(T1), V (T1);T2)−K, 0) | r(t) = r, V (t) = V

]
. (7)

Moreover, τ1 = T1 − t and τ2 = T2 − T1 are the maturity of the option contract and zero-coupon bond, respectively.

3. Theoretical results

Most of the jump-diffusion models proposed for pricing interest rate derivatives are affine or linear-quadratic, see [2],
[8], [9], [12], [24] and [32]. In fact, one of the main reasons is that a closed-form solution for the zero-coupon bond prices is
known. However, some authors such as Duffee [11] show that affine models cannot predict accurately the expected rate of
bond return.

Bandi and Nguyen [3] and Johannes [25] show how to estimate nonparametrically the functions of a jump-diffusion
process by means of their moment equations for interest rate models. Though, this approach does not show how to estimate
the market prices of risk. In [17] and [18] the authors propose some results to estimate the functions of the risk-neutral
process in a nonparametric one-factor jump-diffusion model.

In the following result we prove several equalities which relate the slope of the yield curve and bond price with the
risk-neutral drift, the volatility and the covariance of the stochastic variables.

Theorem 1. Let P (t, r, V ;T ) be the price of a zero-coupon bond and r and V follow the joint stochastic process given by
(3)-(4), then:

∂R

∂T
|T=t =

1

2

(
µQr + λQEQY [Y1]

)
(t), (8)

∂(r2P )

∂T
|T=t =

(
−r3 + 4r

∂R

∂T
|T=t + V 2 + λQEQY [Y 2

1 ]

)
(t), (9)

∂(r3P )

∂T
|T=t =

(
−r4 + 2r2 ∂R

∂T
|T=t + 3r(V 2 + λQEQY [Y 2

1 ]) + λQEQY [Y 3
1 ]

)
(t), (10)

∂(r4P )

∂T
|T=t =

(
−r5 + 8r3 ∂R

∂T
|T=t + 6r2(V 2 + λQEQY [Y 2

1 ]) + 4rλQEQY [Y 3
1 ] + λQEQY [Y 4

1 ]

)
(t), (11)

∂(V P )

∂T
|T=t =

(
µQV − rV

)
(t), (12)

The derivatives above should be assumed as right derivatives when t ∈ (τi)i≥1, that is, when t is a jump time.

We prove these results by means of (5) and (6). The detailed proof of this theorem can be found in the Appendix.
Analogous results, but for diffusion and jump-diffusion processes in one-factor models, are also shown in [15], [17] and [18].
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4. Implementation and estimation

In this section, we illustrate how practitioners can implement the results in Section 3 to estimate the functions of the
risk-neutral processes in a two-factor interest rate model. Then, we propose using a nonparametric estimation technique in
order to avoid imposing arbitrary restrictions on the model functions.

The term structure model we propose in Section 2 has two factors: the instantaneous interest rates and the volatility.
As it is well known in the literature, the instantaneous interest rate can be proxied by different short rates in the economy,
however, the volatility is not directly observable in the markets. Then, in this paper, we follow the same approach than
[4] and [13], but for a jump-diffusion process. Boudoukh et al. [4] assume that the function S(r, V ), where S is the spread
between the long and short rate, is invertible. Then, implied series for the volatility V can be estimated from the following
joint stochastic process,

r(t) = r(0) +

∫ t

0

αr(r(z), S(z))dz +

∫ t

0

βr(r(z), S(z))dWr(z) +

∫ t

0

dH(z), (13)

S(t) = S(0) +

∫ t

0

αS(r(z), S(z))dz +

∫ t

0

βS(r(z), S(z))dWS(z), (14)

where αr and αS are the drifts and βr and βs the volatilities. Moreover, Wr and WS are Wiener processes and the impact

of the jump is given by the compound Poisson process, H(t) =
∑P (t)
i=1 Xi with jump times (τ ′i)i≥1, where P (t) represents

a Poisson process with intensity γ(r, S) and X1, X2, . . . is a sequence of identically distributed random variables with a
probability distribution N (0, σ2

X). We assume that Wr, WS and the jump size distribution are independent of P however
dWr and dWS could be correlated.

The estimation of the implied volatility of the instantaneous interest rates can be done by means of the well-known
moments of a jump-diffusion process (see for example [19] and [20])

lim
∆t↓0

1

∆t
E[(r(t+ ∆t)− r(t))2|r(t) = r, S(t) = S] = β2

r (r, S) + γ(r, S)EX [X2
1 ], (15)

lim
∆t↓0

1

∆t
E[(r(t+ ∆t)− r(t))k|r(t) = r, S(t) = S] = γ(r, S)EX [Xk

1 ], k ≥ 3. (16)

As we assume that the jump size follows a Normal distribution, X1  N(0, σ2
X), then, µX = EX [X1] = 0 and

σ2
Y = EX [X2

1 ]. Furthermore, under this assumption of normality it is well known that

EX [X2k
1 ] = σ2k

X

k∏
n=1

(2k − 1),

EX [X2k−1
1 ] = 0, k = 1, 2, 3, . . .

In order to obtain the estimation of the instantaneous implied volatility series, we use (16) with k = 4 and k = 6.
Finally, we obtain V (t) = βr(r(t), S(t)) using (15).

All the estimations in this paper are done using the following nonparametric approach so as to avoid imposing arbitrary
restrictions in the model. Following [19] and [20], suppose a data set consists ofN observations: (x1, y1, z1), · · · , (xN , yN , zN ),
where (xi, yi) are the explanatory variables and zi is the response variable. We assume a model of the kind zi = g(xi, yi)+εi,
where g(x, y) is an unknown function and εi is an error term, representing random errors in the observations or variability
from sources not included in the (xi, yi) observations. The errors εi are assumed to be independent and identically distributed
with mean zero and finite variance. The estimate has the closed-form

ĝ(x, y) =

N∑
i=1

Wi(x, y)zi,

where Wi(x, y) is the Nadaraya-Watson product weight function:

Wi(x, y) =
Khx(x− xi)Khy (y − yi)∑N
j=1Khx

(x− xj)Khy
(y − yj)

, (17)

K is the Gaussian Kernel and hx and hy the bandwidths or smoothing parameters and N the number of observations, see
[21]. Theoretical results for kernel regression estimators show that the optimal bandwidths will be proportional to N−1/6.
Then, we consider that the bandwidths are as follows hx = Φxσ̂1N

−1/6 and hy = Φyσ̂2N
−1/6, where σ̂1 and σ̂2 are the
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standard deviation estimates of x and y, respectively. Moreover, Φx and Φy are the scaling factors, see [4] and [13], for
further details.

Once we have obtained the implied volatility series V (t) by means of nonparametric techniques, we have to estimate
the different functions of the risk-neutral instantaneous interest rate and volatility stochastic processes, that is, we have to
estimate the different terms in (3) and (4), but the risk-neutral variables are not observable. For this reason, the risk-neutral
functions of the instantaneous interest rates and the implied volatility are estimated by means of Theorem 1 and some of
the following moment equations2 of the stochastic processes (1)-(2)

Mr(r, V ) = lim
∆t↓0

1

∆t
E[r(t+ ∆t)− r(t)|r(t) = r, V (t) = V ] = µr(r, V ) + λ(r, V )EY [Y1], (18)

M2
r (r, V ) = lim

∆t↓0

1

∆t
E[(r(t+ ∆t)− r(t))2|r(t) = r, V (t) = V ] = V 2 + λ(r, V )EY [(Y1)2], (19)

Mk
r (r, V ) = lim

∆t↓0

1

∆t
E[(r(t+ ∆t)− r(t))k|r(t) = r, V (t) = V ] = λ(r, V )EY [(Y1)k], k ≥ 3, (20)

MV (r, V ) = lim
∆t↓0

1

∆t
E[(V (t+ ∆t)− V (t))|r(t) = r, V (t) = V ] = µV (r, V ), (21)

M2
V (r, V ) = lim

∆t↓0

1

∆t
E[(V (t+ ∆t)− V (t))2|r(t) = r, V (t) = V ] = σ2

V (r, V ). (22)

Each of the derivatives from (8) to (12) are approximated using numerical differentiation. More precisely, we apply a
second order forward difference formula to obtain greater accuracy, see [6].

Firstly, we estimate the risk-neutral interest rate drift by means of (8). We approximate the partial derivative ∂R
∂T |T=t

as follows

∂R(t, T )

∂T
|T=t=

−3R(t, t) + 4R(t, t+ ∆)−R(t, t+ 2∆)

2∆
+O(∆2), (23)

with a step size ∆ > 0. Then, we apply the Nadaraya-Watson estimator (17) to obtain its nonparametric estimation.

Secondly, we approximate ∂(r2P )
∂T |T=t and ∂(r4P )

∂T |T=t with a similar second order approximation to (23), interest rate
and price data and we replace them in (9) and (11). Then, as EQ[Y 2] = σ2

Y and EQ[Y 2] = 3σ4
Y , we estimate σ2

Y by
means of the relation between (9) and (11) and the Nadaraya-Watson estimator. Next, we replace this estimation in (9) to
estimate nonparametrically the jump intensity under Q-measure, λQ.

Thirdly, we estimate the risk-neutral drift of the volatility. We approximate numerically ∂(V P )
∂T |T=t with a similar

second-order approximation to (23), we replace it in (12) and we estimate µQV by means of the Nadaraya-Watson estimator.
As far as the σV is concerned, this function do not change under Q-measure. Therefore, for its estimation we use the
second-order moment of a diffusion process (22) and the Nadaraya-Watson estimator in (17), see [4] among others.

Finally, for pricing zero-coupon bonds or any other interest rate derivative, we need the covariance of the two state
variables of the model. From the moment equation,

Mr,V (r, V ) = lim
∆t↓0

1

∆t
E[(r(t+ ∆t)− r(t))(V (t+ ∆t)− V (t))|r(t) = r, V (t) = V ] = ρ(r, V )V σV (r, V ),

and the Nadaraya-Watson estimator, we estimate this covariance, see [4], [19] and [20].
In the literature, the estimation of all the functions under the risk-neutral measure is usually quite complex and time-

consuming. Therefore, for simplicity some assumptions are made. Sometimes the market prices of risk are assumed to
be zero for the diffusion part or one for the jump part of the processes. This means that the functions of the stochastic
processes and the jump size distribution parameters are equal under the physical and the risk-neutral measure. In order to
analyse the effect of the change of measure on the yield curves, we consider the following assumptions:

(i) Assumption A1 (P-Total). We assume that the instantaneous interest rates and the implied volatility processes
are equal under the P and the Q-measure. This means that λQ(r, V ) = λ(r, V ), θWr = 0, θWV = 0 and that the
jump distribution do not change. In this case, all the estimations are done with the moment equations (18)-(22) and the
Nadaraya-Watson estimator. Theorem 1 is not taken into account.

(ii) Assumption A2 (R-NJI). We assume that the jump size distribution under Q-measure of the jump-diffusion process
is equal to the distribution under P-measure. This means that all risk premia related to the jump distribution are artificially

2These moment equations will be used later to estimate the functions of the stochastic processes under P-measure.
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absorbed by the change in the intensity of the jump from λ under the physical measure to λQ under the risk-neutral measure,
see [27]. Then,

EQY [Y1] = EY [Y1] = 0,

EQY [Y 2
1 ] = EY [Y 2

1 ] = σ2
Y .

So as to estimate this model, we use the results of Theorem 1 and the moment equations as follows. We estimate the
volatility of the implied volatility and the parameters of the jump size distribution with the moment conditions (19), (20)
and (22) and the Nadaraya-Watson estimator. Then, the rest of the risk-neutral functions are estimated using (8), (9) and
(12) in Theorem 1, numerical approximation (23) and Nadaraya Watson estimator.

(iii) Assumption A3 (R-NJS). We assume that the jump intensity under Q-measure is equal to the jump intensity under
P-measure. This is equivalent to assume that λQ(r, V ) = λ(r, V ) and it means that all risk premia related to the jump
intensity are artificially absorbed by the change in the parameters of the jump size distribution. In this case, we estimate
the intensity of the jump process and the volatility of the implied volatility with the moment conditions (19), (20) and (22)
and the Nadaraya-Watson estimator. Then, the rest of the risk-neutral functions are estimated using (8), (9) and (12) in
Theorem 1, numerical approximation (23) and Nadaraya-Watson estimator. Notice that (11) in Theorem 1 is not used to
estimate the functions of the model under the assumptions A2 and A3.

(iv) Assumption A4 (R-NTotal). We assume that all the functions are different under P-measure and Q-measure.
Therefore, all functions are estimated using Theorem 1 apart from σV (r, V ), which is estimated using the moment equation
(22), as previously described in detail.

5. Empirical analysis

In this section, we apply the results in Section 2 to recent U.S. Federal Reserve interest rate data (Federal Reserve h.15
database) to obtain the yield curves. Then, we show that considering two state variables in an interest rate model, more
precisely considering the volatility as well as the instantaneous interest rates as state variables, improve considerably the
yield curves. Finally, we analyze the role of the different market prices of risk implicitly considered for obtaining the yield
curves and pricing bond options.

The instantaneous interest rates are not observable in the markets. Then, as usual in the literature (see [15], [18], [25],
etc.), we use the daily 3-month T-Bill rates as proxy of this rate. Figure 1 depicts the time series of the daily 3-month
T-Bill rates and their daily changes from January 1997 to February 2017. This figure shows the behaviour of the in-sample
data (January 1997-December 2016) and the out-of-sample data (January-February 2017).

Table 1, reports the main descriptive statistics of the data. Both skewness and kurtosis statistics indicate that interest
rates are not Normally distributed, which is further confirmed by results of the Jarque-Bera test (JB) for normality in the
last column (p-values on brackets). In fact, this series exhibits significant excess kurtosis meaning that as compared to a
Normal distribution, it has higher and sharper central peak and longer fatter tails. Hence, a jump-diffusion process is more
suitable for modelling the interest rates.

Variable N Mean Std. dev. Max Min Skewness Kurtosis JB
rt 5030 6.29× 10−2 2.11× 10−2 6.29× 10−2 −2.00× 10−4 4.80× 10−1 1.58 6.14× 102

(0.001)
rt+1 − rt 5029 7.41× 10−3 4.99× 10−4 7.41× 10−3 −8.11× 10−3 −9.65× 10−1 5.77× 10−1 6.28× 105

(0.001)

Table 1: Summary of the statistics on the 3-month T-Bill rates and the first differences, January 1997-February 2017.

As far as the implied volatility is concerned, we use the approach in Section 4 for its estimation. As the implied volatility
is not observable, we use the difference between the yields on US Treasury Securities at constant 10-year maturity and the
3-month T-Bill rates as a proxy for S(t), following [4] and [13]. Then, we obtained the implied volatility series by means of
nonparametric techniques as in Section 4.

Firstly, with these data (January 1997-December 2016) and following the implementation and estimation approach
in Section 4, we estimate all the risk-neutral functions. Then, we price zero-coupon bonds by means of the conditional
expectation in (5). As we have considered a nonparametric approach to estimate the whole functions of the risk-neutral
stochastic processes3, a closed-form solution for this model cannot be obtained. Hence, a numerical method is necessary

3All the scaling factors in the bandwidths (hr, hV ) take values Φr ∈ [0.5, 12] and ΦV ∈ [0.5, 13].
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Figure 1: 3-month Treasury Bill rates and their first differences, January 1997-February 2017.

to price zero-coupon bonds. More precisely, we use the Monte Carlo simulation approach with 5000 simulations and a
daily time step (1/250). This method is widely used in the literature and by practitioners in the markets, especially for
multi-factor models, because of its simplicity and efficiency, see [14]. Next, we obtain the yield curves with (6).

In order to show the supremacy of this two-factor model over a one-factor model, we also obtain the yield curves with
a short-rate model with a risk-neutral jump-diffusion instantaneous interest rate process as follows:

r(t) = r(0) +

∫ t

0

µQr (r(z)) dz +

∫ t

0

σr(r(z))dW
Q
r (z) +

∫ t

0

dJ̃Q(z), (24)

where µQr = µr − σrθWr and WQr is the Wiener process under Q-measure and θWr is the market price of risk associated

to the Wiener processes. Finally, J̃Q(t) =
∑NQ(t)
i=1 Yi − λQtEY [Y1] is the compensated compound Poisson process under

Q-measure, λQ(r) is the intensity of the Poisson process NQ(t) and Y1, Y2, . . . is a sequence of identically distributed random
variables with Normal distribution.

Recently, [18] proposed a novel approach to estimate this one-factor interest rate model directly from market data and
they also use nonparametric methods and Monte Carlo simulation approach to obtain the yield curves. Then, we will use
this approach to obtain the yield curves in the out-of-sample.

In this section, so as to make comparisons, we use the root mean square error (RMSE) and the percentage root mean
square error (PRMSE) for the out-of-sample (January-February 2017):

RMSE =

√√√√ 1

n

n∑
t=1

(
Rt − R̂t

)2

,

PRMSE =

√√√√ 1

n

n∑
t=1

(
Rt − R̂t
Rt

)2

,

where n is the number of observations, Rt is the market yield and R̂t is the predicted yield with the different models.
In order to show the supremacy of considering the volatility, as an additional stochastic factor in a term structure

model, we compare the 6-month, 1-, 2-, 3- and 5-year yields to maturity for the considered out-of-sample. As we can see
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in Table 2, when we consider the previous one-factor jump diffusion model (1Var) the RMSE is considerably higher than
when we consider our two-factor model in Section 2 when all the risk-neutral functions are estimated directly from data in
the market using Theorem 1. The difference between the percentage errors are also very important, they are nearly 20%.

1Var PMTotal R-NJS R-NJI R-NTotal
RMSE 3.3675× 10−3 1.0742× 10−3 8.2942× 10−4 7.5629× 10−4 7.5064× 10−4

PRMSE 23.8% 8.8% 6.2% 5.5% 5.5%

Table 2: RMSE and PRMSE for the out-of-sample, January-February 2017.

For a more in-depth analysis of the behaviour of the 1Var and R-NTotal models, we plot in Figure 2 the yields to
maturity for a short maturity (6 months) and a long maturity (5 years) along the whole out-of-sample. As we can see, in
general, the 6 month yields to maturity with both models undervalue the yields to maturity. However, the R-NTotal yields
are always slightly closer to the observed yields than the 1Var yields. In the bottom part of Figure 2, we plot the yields
to maturity for a high maturity (5 years) with both models. We see that the yields obtained with the R-NTotal model are
much closer to the observed yields to maturity. Furthermore, meanwhile the R-NTotal yields overvalues the real yields to
maturity, the 1Var yields undervalues then considerably.

In Figure 3, we plot the observed yield curve and those estimated with 1Var and R-NTotal models on January, 2
2017. We see that both models predict a positively sloped yield curve and that the R-NTotal model fits the observed term
structure relatively well unless for maturities till two years. However the 1Var model underestimates considerably the yield
curve for all maturities. We have also analyse the yield curves on other different days of the out-of-sample period, but
the supremacy of the R-NTotal model over the 1Var model does not change. These facts are very interesting because the
term structure of interest rates is an important instrument for analyzing the economy. Therefore, a good prediction of this
instrument can help investors and politicians.

It is very well-known that interest-rate derivative prices are obtained as conditional expectations under the risk-neutral
measure (see for example (5) and (7)) because of non-arbitrage arguments. This fact gives as a result that some new
functions are added to the models: the market prices of risk. These functions are unobservable and, therefore, very difficult
to estimate. In consequence, in order to simplify, some assumptions are usually considered in the literature, as we have
previously stated in Section 4. In this section, we also analyse the effect of these assumptions over the yield curves.

In Table 2, we show the RMSE and PRMSE of the different assumptions about the market prices of risk. When we
consider that all the functions are equal under the physical and the risk-neutral measure (P-Total) we have the highest
RMSE in the two-factor models, apart from the 1Var model. Then, assuming that the risk-neutral intensity of the jump is
equal to the intensity of the jump under the physical measure (R-NJS) provides lower RMSE. Moreover, if the risk-neutral
jump size distribution is equal under both measures (R-NJI), then the RMSE decreases. Finally, if we assume that all
the functions are different under the physical measure and the risk-neutral measure (R-NTotal) we get the lowest RMSE.
As far as the PRMSE is concerned, we get the same conclusions although the R-NJI and the R-NTotal provide the same
PRMSE. Therefore, it is worthwhile to estimate correctly all the risk-neutral functions although sometimes it is a complex
and difficult task. Nevertheless, assuming that the jump size distribution under Q-measure is equal than the jump size
distribution provides nearly similar errors than the R-NTotal model.

So as to compare the yield curves provided by the previous assumptions, we plot then in Figure 4. All the estimated
yield curves are positively slope curves as the observed yield curve but there are differences between them. Assuming that
all the functions under the Q-measure are equal to those under the physical measure (P-Total), the estimated yield curve
overvalues considerably the real yield curve. However, when we assume that some or all the functions of the stochastic
processes are different under the physical and Q-measure and Theorem 1 is used for its estimation the results improve
considerably, especially for maturities till 2 years. However, in this plot we can not discern the advantages or disadvantages
of considering the R-NTotal, R-NJS or R-NJI models. The yield curves on this figure are on 2 January 2017. We have also
considered the yield curves on other different days and the conclusions are quite similar and the differences too small to
distinguish among the previous models.

Therefore, in order to gain some insight into the behaviour of the yields to maturities when the different assumptions
about the market prices of risk are made, we plot in Figure 5 the behaviour of the real and estimated yields along the
out-of-sample for a short and a long maturity. In the top of Figure 5, we show the behaviour of the 6-month yields to
maturity along the out-of-sample with the different assumptions of the two-factor model in Section 4. We see that the
P-Total model overestimates the yields to maturity considerably but the rest of models, in general, underestimate the yields.
The closest models to the real yields to maturity are the R-Ntotal and R-NJI and the differences between then are nearly
negligible. Moreover, the R-NJS yields are always lower than the R-Ntotal and R-NJI yields. In the bottom of Figure 5
we plot the yields to maturity with the same assumptions but for a long maturity: 5 years. In this case, all the models
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Figure 2: The yields to maturity for the out-of-sample (January-February 2017) for maturities: 6 months and 5 years. The blue solid line is the
1Var yield curve, the black dashed line is the R-NTotal yield curve and the red dash-dot line is the observed yield curve.
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Figure 3: Yield curves on 2 January 2017. The blue solid line is the 1Var yield curve, the black line is the R-NTotal yield curve and the red
dash-dotted line is the observed yield curve.
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overestimate the yields to maturities and the R-NTotal and R-NJI are the closest to the observed yield curves. Although
the differences between these two models are not very important, the R-NTotal is the closest to the observe yields in most
of the cases. This fact is consistent with the values of the RMSE and PRMSE showed in Table 2.

Therefore, we can conclude that a two-factor models is more accurate to obtain the yield curves than a one-factor model.
Moreover, once we consider a two-factor model, it is very important to take into account an accurate estimation of the whole
risk-neutral functions. Although assuming that the jump size distribution under Q-measure is equal to the distribution
under P-measure can provide quite accurate results. This fact is consistent with the results in [17] for one-factor models.

The errors in estimating the yield curves are usually magnified when pricing other interest rate derivatives. Then, in this
section, we also analyze the differences between the option prices with the R-NTotal model and those assumptions which
provide better yield curves: R-NJI and R-NJS. In order to make comparisons, we price options with different maturities
(τ1 = 3, 6 and 12 months), and different underlying zero-coupon bond maturities (τ2 = 3, 6 and 12 months) on 2 January
2017. These option prices are obtained by means of (7) and the Monte Carlo simulation approach. We use the same
in-sample data that for the yield curves and run 5000 simulations with a daily time step (1/250).

Strike 0.991 0.976 0.956
τ1 \ τ2 3 m 6 m 12m 3 m 6 m 12 m 3 m 6 m 12 m

3 m 1.0004 0.9991 1.0009 1.0001 0.9997 1.0003 1.0001 0.9999 1.0001
6 m 0.9997 0.9959 1.0041 0.9999 0.9992 1.0003 1.0000 0.9996 1.0001

12 m 0.9830 0.9670 0.9862 0.9991 0.9970 1.0001 0.9996 0.9989 1.0000

Table 3: Ratios between the R-NTotal and R-NJI option prices (R-NTotal price/R-NJI price).

Strike 0.991 0.976 0.956
τ1 \ τ2 3 m 6 m 12m 3 m 6 m 12 m 3 m 6 m 12 m

3 m 1.0001 0.9930 0.9705 1.0000 0.9980 0.9922 1.0001 0.9989 0.99581
6 m 0.9898 0.9962 0.8879 0.9977 0.9932 0.9769 1.0000 0.9966 0.9890

12 m 0.7451 0.6597 0.5784 0.9807 0.9619 0.8849 0.9996 0.9619 0.9608

Table 4: Ratios between the R-NTotal and R-NJS option prices (R-NTotal price/R-NJS price).

Table 3 shows the ratios between the R-NTotal option prices and the R-NJI option prices. As we can see, the differences
between these ratios are very small. Therefore, they could be considered nearly negligible, although the differences are
slightly higher than when the yield curves are obtained.

The ratios between the R-NTotal option prices and the R-NJS option prices are showed in Table 4. In this case, nearly all
the zero-coupon bond option prices with our approach are lower than with the assumption R-NJS. However, the differences
are higher for some maturities and exercise prices than those in Table 3.

Therefore, it is very interesting to consider a correct risk-neutral estimation of all the functions of a model, but assuming
that the all risk premia related to the jump distribution are artificially absorbed by the change of the jump intensity could
be quite acceptable for not very high maturities, because the differences are not very important.

6. Conclusions

In order to avoid arbitrage opportunities in a term structure model, a change of measure from the physical measure to
the risk-neutral measure is necessary. This fact introduces some new functions in the model which are called market prices
of risk. These functions are unobservable and very difficult and complex to estimate. In fact, in two-factor jump-diffusion
models, this issue is still an open-question.

In this paper, we assume a two-factor jump diffusion model where the state variables are the instantaneous interest rate
and the volatility. This model takes into account the possible abrupt changes of the interest rates in the markets. Then, we
prove several equalities which relate the slope of the yield curves with the functions of the risk-neutral stochastic processes
and the state variables. The main point of this result is that it allows estimating the whole risk-neutral functions directly
from data in the markets, even when a close form-solution for the pricing model is not known.

So as to analyze the empirical performance of this approach, we apply it to obtain the yield curves and price zero-coupon
bonds with US interest rate data. For showing a more realistic behaviour of the model, we use a nonparametric approach
instead of imposing arbitrary restrictions to the functions. Although a closed-form solution for this model is not known, all
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Figure 4: Yield curves on 2 January 2017. The blue dotted line is the R-NJI yield curve, the magenta solid line is the R-NJS, the black dashed
line is the R-NTotal yield curve, the green solid line is the P-Total and the red dash-dot line is the observed yield curve.
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Figure 5: The yields to maturity for the out-of-sample (January-February 2017) for maturities of 6 months and 5 years. The blue dotted line is
the R-NJI yield curve, the magenta solid line is the R-NJS, the black dashed line is the R-NTotal yield curve, the green solid line is the P-Total
and the red dash-dot line is the observed yield curve.
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the functions are estimated directly from market data and numerical methods are applied to obtain accurate approximated
solutions.

In order to show the supremacy of this two-factor model and the approach we propose, we make two comparisons. First,
we compare this two-factor model with a one-factor model where the risk-neutral functions are estimated nonparametrically
and directly from market data as in [18], where the effect of the change of measure in the jump size distribution is not
taken into account. In this case we obtain that the two-factor model provides much more accurate yield curves than the
one-factor model.

Finally, so as to analyze the importance of estimating the whole risk-neutral functions accurately, we make some different
assumptions. If we assume that the jump distribution under the risk-neutral measure is equal to the distribution under the
physical measure, we obtain quite accurate results: the RMSE is slightly higher than when all the functions are assumed
under the risk-neutral measure. However, if we assumed that the jump intensity is equal under the physical and the
risk-neutral measure the errors increase.

Therefore, considering a term structure model with two factors (the instantaneous interest rate and the volatility)
provides more accurate yield curves than a one-factor model. Moreover, a precise estimation of all the risk-neutral functions
is also very important, although assuming that the jump size distribution is equal under both measures, as usual in the
literature, provides low differences which in some cases could be even nearly negligible. These conclusions are also valid for
other interest rate derivatives such as zero-coupon bond options.
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Appendix

This appendix states the regularity conditions that guarantee the existence and uniqueness of the stochastic differential
equations considered in this paper. These conditions are necessary to prove Theorem 1.

In the following assumptions, we consider the notation form of the functions in (1)-(2): µ = (µr, µV ) and σ = (V, σV ).

• Assumption 1 The functions µ, σ and λ are twice continuously differentiable and we consider that c(r, V ) = 1 in
(2) along this paper. Moreover, they satisfy local Lipschitz and growth conditions. That is, for every compact subset
D ⊂ R2, there exists a constant CD1 such that, for all x, z ∈ D,

|µ(x)− µ(z)|+ |σ(x)− σ(z)| ≤ CD1 |x− z|.

• Assumption 2 There exists a constant C2 such that for any x ∈ R2,

|µ(x)|+ |σ(x)|+ λ(x)

∫
R
|y|Π(dy) ≤ C2(1 + |x|).

• Assumption 3 For any α > 2, there exist a constant C3 such that for any x ∈ R2

λ(x)

∫
R
|y|αΠ(dy) ≤ C3(1 + |x|α).

• Assumption 4 λ(x) ≥ 0 and σ2(x) > 0 on R2.

The above conditions on the model guarantee the existence and uniqueness of a cadlag strong solution to (1)-(2), see [28],
[3]. Similar conditions must be verified by the functions of the stochastic processes (13)-(14) and (24).

Then, we prove the Theorem 1 in Section 3.

Proof of Theorem 1.

Let D(t) = e−
∫ t
0
r(s)ds denote the discount process and then

dD = −rDdt. (25)
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Therefore, we obtain:

D(T + h)−D(T ) =

∫ T+h

T

−r(z)D(z)dz.

We calculate the conditional expectation under Q-measure in the above equality and taking into account (5), we get

P (t, r, V ;T + h)− P (t, r, V ;T ) = EQ

[∫ T+h

T

−rDdz | r(t) = r, V (t) = V

]
.

Now dividing by h and taking limits, when h tends to 04, we have

∂P

∂T
(t, r, V ;T ) = −r(t)P (t, r, V ;T ). (26)

Using Itô’s product rule, see [30] and [7], and the equalities (25) and the differential form of interest rate stochastic
process (3), we have

d(rD) = D(−r2 + µQr + λQEQ[Y1])dt+DV dWQr +

d
NQ(t)∑

i=1

D(τi−)Yi

−D(t−)λQEQ[Y1]dt

 . (27)

We consider the integral form of (27)

r(T + h)D(T + h)− r(T )D(T ) =

∫ T+h

T

D(z)(−r2 + µQr + λQEQ[Y1])(z)dz +

∫ T+h

T

DV dWQr (z)

+

 NQ(T+h)∑
i=NQ(T )+1

D(τi−)Yi

− ∫ T+h

T

D(z−)λQEQ[Y1]dz

 ,
and we calculate the conditional expectation under Q-measure. Taking into account (5) and the fact that the Itô integral
and compensated process are martingales, the conditional expectation under Q-measure of the last terms is zero. Then, we
obtain

r(T + h)P (t, r, V ;T + h)− r(T )P (t, r, V ;T ) =

∫ T+h

T

P (t, r, V ; z)
(
−r2 + µQr + λQEQ[Y1]

)
(z)dz,

and dividing by h and taking limits, when h tends to 0, h ↓ 0, then

∂(rP )

∂T
(t, r, V ;T ) = P (t, r, V ;T )

(
−r2 + µQr + λQEQ[Y1]

)
(T ). (28)

Due to (26), we have ∂(rP )
∂T (t, r, V ;T ) = −∂

2P
∂T 2 (t, r, V ;T ), and using (6) and (28), we obtain (8). Using Itô’s product

rule and (27) we have

d(r2D) = D(−r3 + 2rµQr + V 2 + 2rλQEQ[Y1] + λQEQ[Y 2
1 ])dt

+ 2rDV dWQr +

d
NQ(t)∑

i=1

D(τi−)(2r(τi−)Yi + Y 2
i )

−D(t−)λQ(2r(t−)EQ[Y1] + EQ[Y 2
1 ])dt

 . (29)

With the integral form of (29) and using the same steps as above, we get (9)
Now, as earlier, using Itô’s product rule and (29) and (3) we have

d(r3D) =D
(
−r4 + 3r2(µQr + λQEQ[Y1]) + 3rV 2 + 3rλQEQ[Y 2

1 ] + λQEQ[Y 3
1 ]
)
dt+ 3r2DV dWQr

+

d
NQ(t)∑

i=1

D(τi−)(3r2(τi−)Yi + 3r(τi−)Y 2
i + Y 3

i )

−D(t−)(3r2(t−)EQ[Y1] + 3r(t−)EQ[Y 2
1 ] + EQ[Y 3

1 ])dt

.(30)

4We assume the right limit, h ↓ 0, when T ∈ (τi)i≥0.
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Using the similar reasoning above, we obtain (10).
Using Itô’s product rule and (30) and (3) we have

d(r4D) = D
(
−r5 + 4r3(µQr + λQEQ[Y1]) + 6r2(V 2 + λQEQ[Y 2

1 ]) + 4rλQEQ[Y 3
1 ] + λQEQ[Y 4

1 ]
)
dt

+ r2D(3 + V )dWQr + d

NQ(t)∑
i=1

D(τi−)(3r3(τi−)Yi + 6r2(τi−)Y 2
i + 4r(τi)Y

3
i + Y 4

i )


− D(t−)λQ(3r3(t−)EQ[Y1] + 6r2(t−)EQ[Y 2

1 ] + 4r(t−)EQ[Y 3
1 ] + EQ[Y 4

1 ])dt.

In the same way, using similar reasoning above, we obtain (11).
Using the Itô’s product rule, (25) an the integral form of (4), we have

d(V D) = D(−rV + σQV )dt+DσV dW
Q
V . (31)

We consider the integral form of (31)

V (T + h)D(T + h)− V (T )D(T ) =

∫ T+h

T

D(z)(−rV + σQV )(z)dz +

∫ T+h

T

DσV dW
Q
V (z)

and we calculate the conditional expectation under Q-measure. We divide by h and take limits, when h tends to 0, then,

∂(V P )

∂T
(t, r, V ;T ) = P (t, r, V ;T )(−rV + µQV )(T ),

and we get (12).
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