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Abstract

This paper presents a two-regime differential game, with a first period in which two

countries cooperate in a joint investment project to construct a specific infrastructure. This

period ends when the infrastructure is finished, which serves to increase each player’s welfare

in a subsequent non-cooperative game played by the two countries thereafter. We define an

imputation distribution procedure (IDP) to share the investment costs during cooperation

according to each player’ future benefits. We prove that the IDP is time consistent if at any

time within the cooperative period each country’s share on the surplus to go is equal to or

converges towards the country’s relative gains from the existence of the infrastructure (real-

ized in the subsequent non-cooperative period). Furthermore, we obtain the instantaneous

side-payment scheme which makes the IDP feasible. The mechanism is studied for a joint

investment project to build a water canal to transfer water between a surplus and a deficit

river basin.

JEL Classification: F18, C73.

Keywords: Cooperative differential game, non-cooperative differential game, imputation

distribution procedure, instantaneous side-payment, time-consistent solution.

1 Introduction

This paper proposes a time consistent distribution procedure to insure cooperation in a joint

investment project between to countries or regions when the benefits will come when the

infrastructure is finished. To situate the problem we refer to a a particular application, the

construction of a canal for water transfer. In this context our paper analyzes the dynamic

cooperation between two countries or regions in order to build a canal which connects a

donor river basin, with higher precipitation rates, and a recipient river basin, with greater

water productivity. This joint investment program presents two main characteristics. First,

cooperation does not lead to an immediate reward, but only after an initial period in which

the two parts have to pay the costs of building the canal. Secondly, the delayed benefits

of the cooperation are known by the cooperating agents and they are typically asymmetric.

The efficiency gains linked to the flow of water from a surplus basin to a deficit basin with

greater water productivity, can be realized thanks to the water market created by the water

canal.
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Some examples of already operative schemes or ongoing projects of water transfer can

be found, usually within a specific country:1 The Tagus-Segura Transfer Project in Spain,

the Snowy River Scheme in Australia, the São Francisco Interlinking Project in Brazil, the

Olmos Transfer Project in Peru or the South-North Water Transfer Project in China. Some

of these are ongoing projects, whose full implementation may take some decades, or even

end-up as fail projects. These projects have been promoted by a central government. Much

less frequent are the examples of water transfers between different countries, like the transfer

from the Kosi river in Nepal to the Ganges in India and Bangladesh, or the Lesotho Highlands

Water Project (drawn out by corruption) between Lesotho and South Africa (geographically

condemned to get along with each other). This reflects the difficulties tied to the obliged

cooperation between two governments who have to determine how to share the costs of the

joint project, and how to distribute these costs along the often lengthy construction period.

Maybe better examples of these difficulties are the failed projects, like the Rhone-Barcelona

aqueduct proposed to supply the city of Barcelona in Spain with water from the Rhone river

in France (see, Lopes (2008)). We will focus on the economic aspects that help maintain

the agreement to build the canal although, as pointed out by Lopes (2008), the obstacles to

the transfer between countries are also political and institutional.

The bulk of the literature on river water management involving two regions/countries

and non-cooperative game theory is on water-sharing under an upstream/downstream con-

figuration (see, for example, Ambec and Ehlers (2008), Bhaduri and Barbier (2008), Am-

bec and Sprumont (2002), or Kilgour and Dinar (1995, 2001)). However, the problem

of a water transfer between two river basins has some specificities not present in the up-

stream/downstream literature. The donor river basin must be characterized by a surplus of

water inflows, and the recipient basin by a deficit. Given this asymmetry, water productivity

is higher in the recipient. Two additional features are also present in most of the exam-

ples highlighted above. The recipient may have access to alternative sources of water, by

investing in infrastructures which can help to increase the available water for the economy

(examples could be desalination plants, projects to save water, to reduce pipeline leaking, or

investment in recycling). The transfer brings environmental consequences mainly, but not

exclusively, for the donor. If the relative cost of the alternative water supplies is low, and/or

the magnitude of the environmental damages linked to the water transfer is high, then the

inter-basin transfer would not be profitable.

For the particular example of the Tagus-Segura transfer, Ballestero (2004) presents a

static demand-supply model, later extended to a dynamic setting in Cabo et al. (2014). The

latter studies the interaction between a donor and a recipient region as a non-cooperative

differential game, which defines the water market as a bilateral monopoly. It also includes

the environmental damage in the donor region caused by the transfer, and the alternative

water supplies available for the recipient. It is assumed nonetheless, that the infrastructure

required to transfer the water between the two river basins is already operative.2 Under

1In some of these projects water is transferred from one river basin to another river, others transfer the

water to dams in the mountains (for irrigation and to generate hydroelectricity), or towards a specific region for

municipal water supply, industry and irrigation.
2For this case study, 230 km network of canals, aqueducts and tunnels were built by the Spanish central

government to transfer water from the Tagus basin in the center of Spain to the Segura basin in south-eastern

Spain.
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this assumption the water market equilibrium is dynamically analyzed. By contrast, with

a broader perspective, and particularly when the transfer involves governments from two

different countries, we consider it important to address the previous coordination problem

associated with the joint investment required to build the canal.

The central question in static cooperative game theory of how to distribute the gains

from cooperation between the cooperating players, is extended by dynamic cooperative game

theory to study the distribution of these gains not only among players but also over time. 3

In particular, how to distribute the surplus from cooperation over time to guarantee that no

player has an incentive to deviate from cooperation, at any point in time (the cooperative

payoffs to go surpass the non-cooperative payoffs to go at any time within cooperation). This

concept is usually referred to as time consistency.4 One widespread mechanism to guarantee

the time consistency of the cooperative solution is to select a solution concept specifying each

player’s share of the total cooperative payoff, and define a payoff distribution procedure, as

stated in Petrosjan (1997), to decompose the individual total payoff over time, in such a

way that time consistency is preserved (see Zaccour (2008) for a review). This mechanism

constitutes the basis for implementing a time-consistent solution in this paper, although the

literature provides other mechanisms.5

In our setting cooperation does not lead to immediate gains in payoffs. On the contrary,

cooperation to invest in the construction of the canal, represents a costs for both players,

maintained throughout the period of cooperation. In fact, the gains from the cooperation

only start once the water starts to flow through the canal, and with it come the efficiency

gains. But this is precisely the exact moment at which the joint investment cooperation

halts. Therefore, the first question that must be addressed is how to share the “costs” of

cooperation when its benefits will only materialize when the cooperation ceases to exist, and

the two parts engage in a non-cooperative trade relationship in the water market. Thus,

assuming that the aggregated (discounted) gains from the existence of the water canal

surpasses the global economic and environmental costs of the joint investment project, our

main research question is: how should the investment costs be shared between the two

parts and distributed over time to guarantee the time consistency of the cooperate solution?

That is, to guarantee that no player deviates from the cooperation and the canal is actually

finished. We would like to stress that our model shares some similarities with the holdup

problem analyzed in the literature (see, for example the dynamic formulation of this problem

in Che and Sákovics 2004). Both problems seek to maintain a joint investment project over

time in order to enjoy a future surplus. Nonetheless the two approaches attack this problem

from a different perspective. From a non-cooperative perspective, the holdup problem seeks

a bargaining solution which divides the future surplus between the two players in order to

guarantee current investment. By contrast, in a cooperative framework, we define a sharing

mechanism to distribute current investment costs (taking into account future benefits) which

3For an upstream/downstream pollution problem, Jørgenssen and Zaccour (2001) propose an instantaneous

side-payment scheme to share the current surplus from an agreement to reduce downstream pollution.
4As stated in Zaccour (2008), it has been also called sustainability of cooperation, dynamic individual ratio-

nality, dynamic stability, durability of an agreement, or agreeable solution.
5Other mechanisms can be found in the literature, like the incentive strategies proposed by Ehtamo and

Hämaläinen (1986, 1989, 1993), or the design of the cooperative agreement to satisfying the property of being at

equilibrium (see, for example Rincón-Zapatero et al. (2000)).
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satisfies the property of time consistency.

To analyze this question we define a differential game with two different regimes. The

two countries jointly invest to build the canal within a first period, whose length will be

determined by the intensity of the investment paths.6 The cooperative objective function

includes current investment costs as well as future benefits; the latter in the form of a scrap

function defined as the sum of the value functions of the two players in the subsequent

game. Within this subsequent period of infinite length the canal is operating and the two

countries play a non-cooperative differential game, as in Cabo et al. (2014). By comparing

the latter with a baseline scenario of no transfer, we observe asymmetric surpluses for the

two players from the existence of the canal. Therefore, we can compute each player’s share in

the total gains stemming from the existence of the canal. This share helps us to link current

investment costs during cooperation and future benefits. The cooperative solution concept

proposed in this paper is based on the central idea that at each time within cooperation,

each player’s payoffs to go must be equal to his payoffs to go in case of defection (and

hence no transfer), plus a share of the total surplus to go. Equivalently, at each time within

cooperation, the excess gains of a player if cooperation is maintained in relative terms (to

the total surplus to go) must be positive and must converge towards this player’s share

in total gains from the existence of the canal (computed at the moment when the canal

starts to be operative). In consequence, the proposed method assigns each cooperating

player a contribution (to the joint investment required to build the canal) dependent on

his share in total gains (obtained in the second period when the canal is operative). With

this principle we are able to define an Imputation Distribution Procedure (IDP) specifying

what each player should be contributing at each moment through the cooperative period

in order to guarantee time consistency. Furthermore, this time-consistent IDP is feasible.

At any time within cooperation, the instantaneous payoff assigned by the IDP to the two

countries adds up to the instantaneous joint cooperative payoff. Therefore, we can compute

the instantaneous transfer scheme throughout the cooperative period that makes this IDP

possible.

The paper is organized as follows. Section 2 describes the problem and presents the

model. Section 3 presents the main contribution of the paper: the definition of an imputation

distribution procedure that guarantees the time consistency of the cooperative solution and

which can be attained through an instantaneous side-payment scheme. Section 4 shows our

results for a linear quadratic example. Section 5 concludes.

2 The model

This section describes a two-regime differential game between a (donor) country/region

which river basin is characterized by relatively high precipitation rates and relatively low

productivity of water and a (recipient) country/region with lower precipitations and highly

productive uses. If the two countries cooperate in a first period and build a canal, this would

make an inter-basin water transfer possible thereafter. In this water market the donor will

transfer surplus water for a price, and it will experience environmental damage due to the

6Differential games have been used to analyze cooperation in R&D, which increases the size of an R&D project

and reduces the time to completion (see, for example, Kort and Navas (2007) and references therein.
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deterioration of its water quality. The recipient will pay the price for the water transfer

which can be used to enhance production, and will also allow reductions in the investments

on subsidiary water production, water savings or water recycling. We assume henceforth

that the savings from lower investments on subsidiary water supplies plus the increments in

production in the recipient surpass the environmental losses in the donor plus the total cost

of building the canal, leading to a rise in the Kaldor-Hicks efficiency. This is a necessary

condition for the regions to cooperate and build the canal.

We first present the main hypotheses to describe the economic and environmental aspects

of the relationship connecting these two regions. Then we present the non-cooperative game

played within a second period when the canal is already operative, and analyze the dynamic

determination of quantity and price in the water market. Finally, we present the cooperative

period when countries jointly invest to build the canal.

2.1 The donor and the recipient

This section follows the main assumptions in Cabo et al. (2014). Assuming no uncertainty, a

constant surplus of water still remains in the donor region after covering demands. Without

the canal this surplus flows through the donor’s river basin. However, if an aqueduct is built,

an amount τ(t) of the surplus could be transferred to the recipient. Before the transfer, the

inhabitants in the donor region would enjoy the environmental amenities or environmental

services of what we denote a pristine river. By contrast, the decrease in the water level

provoked by the water transfer would decrease these amenities at an increasing rate. Thus,

the environmental amenities can be represented by E(τ(t)), with E(0) > 0, E′(τ(t)) < 0

and E′′(τ(t)) < 0. As compensation the donor receives a monetary payment, p(t), from

the recipient for each unit of water transferred. The instantaneous welfare function for the

donor is then expressed as7

F d(p(t), τ(t)) = E(τ(t)) + p(t)τ(t). (1)

Due to a relatively higher water productivity, the recipient will be willing to pay for the

water transferred from the donor. Nevertheless, apart from the transfer, the recipient has an

alternative and often subsidiary way to increase its volume of available water. It can invest

in the equipment required either for water saving (reducing water use or water leakage from

the distribution network), water recycling (use of gray water), or water production (like

desalination plants). The usable water capacity, x(t), is defined as the capacity to produce,

recycle or save water using current equipment (measured in cubic meters). Capacity evolves

according to:

ẋ(t) = σ(t) − δx(t), x(0) = x0 ≥ 0,

with δ > 0 being the depreciation rate and σ(t) the investment to replenish and further

increase current capacity.

Recipient’s welfare comes from the amount of available water: either the water trans-

ferred, τ(t), or the usable water capacity, x(t). Welfare increases with the amount of

available water at a decreasing rate. Investments in new capacity are increasingly costly,

which can reflect increasing transaction costs and/or incremental costs of successive projects

to produce, save or recycle water. Q(τ, x) and C(σ) denote respectively the gross benefit

7Here and henceforth, superscript d/r refers to donor/recipient respectively.
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and the cost of investment. Finally, instantaneous welfare decreases with transfer payments

to the donor. Hence, the welfare function of the recipient is expressed by:

F r(p(t), τ(t), x(t), σ(t)) = Q(τ(t), x(t)) − p(t)τ(t) −C(σ(t)) (2)

with Q(τ, x) concave in τ and x, C ′(σ) > 0 and C ′′(σ) > 0. For simplicity we assume that

the water inflow in the recipient river basin is null. We believe that none of the results

would be affected if instead, a constant inflow of water were assumed also in the recipient

river basin.

The problem must be solved backwards. First, we present the non-cooperative differential

game of infinite duration, starting at moment T , when the canal starts to be operative.

The value functions of donor and recipient in the water market game, played within period

[T,∞), must be taken into account to compute the cooperative solution of a joint investment

program to build the canal within a first period [0, T ).

2.2 The non-cooperative water market game within [T,∞)

This subsection describes the water market enabled by the existence of the canal. It presents

the dynamic interaction between the donor and the recipient regions starting at time T when

the canal starts to be operative. The time paths for the amount and the price of the water

transfer are determined from the supply and demand decisions taken by donor and recipient

as described in Cabo et al. (2014). The donor determines the supply of water, τd, in order

to maximize the stream of welfare discounted at a constant rate, ρ, within an infinite time

horizon:8

max
τ
∫

∞

T
[E(τ) + pτ] e−ρ(t−T )dt. (3)

Correspondingly, the recipient must decide on the demand for water, τ r, and on the invest-

ment, σ, in usable water capacity, to maximize discounted welfare:

max
τ,σ
∫

∞

T
[Q(τ, x) − pτ −C(σ)] e−ρ(t−T )dt, (4)

s.t.: ẋ(t) = σ(t) − δx(t), x(T ) = xT ≥ 0. (5)

The recipient is a farsighted player whose maximization problem is subject to the evolution

of usable water capacity in (5). In contrast, the donor behaves as a static or myopic player.9

Price is determined by the optimal supply and demand decisions and by the Market clearing

condition:

τd(p) = τ r(p).

Assuming that a feedback Nash equilibrium for this problem exists,10 we denote with V i(xT )

the value function of player i ∈ {d, r}, with an initial stock of usable water capacity given by

x(T ) = xT . To gain an insight of each player’s incentive to invest in the construction of the

canal, these values must be confronted with each player’s accumulated gains in the absence

of an aqueduct to transfer the water, and under the assumption of an identical initial stock

of usable water capacity, xT .

8Here and henceforth, the time argument is omitted when no confusion arises.
9Problem (3) could be written as max

τ
[E(τ) + pτ] .

10The game is analytically solved in Cabo et al. (2014) under a linear quadratic specification for functions

E(τ), Q(τ, x), and C(s).
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With no water transfer, the donor would not face any optimization problem and his

profit would read:11

V dNT =
F d(0,0)

ρ
.

The recipient would choose the investment in usable water capacity to solve the optimal

control problem:

V rNT (xT ) = max
σ
∫

∞

T
F (0,0, x, σ)e−ρ(t−T )dt = max

s
∫

∞

T
[Q(0, x) −C(σ)] e−ρ(t−T )dt, (6)

subject to (5).

Condition 1 We first assume12 that there exists a set A ⊆ R+ such that

V i(xT ) > V
i
NT (xT ), ∀xT ∈ A, i ∈ {d, r} .

Condition 1 states that both players are better off if the canal exists. This gives them both

an incentive to cooperate in a joint investment project to build the canal.

2.3 The joint investment project to build the canal within [0, T )

Within a first period [0, T ), the two regions cooperate in a joint investment project to

build the canal. At any time t ∈ [0, T ), each country i invests an amount Ii(t) at a cost

Ci(Ii(t)). The joint investment contributes to increase the length of the aqueduct already

built, measured by the stock variable K(t). The canal is finished once it reaches its full

length, when the accumulated stock K(t) reaches the value K. Thus, the duration of this

cooperative period, T , is determined by the intensity of investments, and by the magnitude

of the canal represented by constant K. Within this period, the cooperating agents must also

decide the investment in alternative water supply, σ(t). Taking into account the expectations

of a future water transfer of infinite duration, the incentive to invest in the stock of usable

water capacity is reduced. The cooperative maximization problem can be written as:

max
Id,Ir,σ,T

∫

T

0
[F d(0,0) + F r(0,0, x, σ) −Cd(Id) −Cr(Ir)]e−ρtdt + SC(x(T )), (7)

s.t.: ẋ = σ − δx, x(0) = x0 ≥ 0, (8)

s.t.: K̇ = Id + Ir, K(0) =K0, K(T ) =K, (9)

where the scrap value, SC(x(T )), is given by the present value of the addition of the value

functions of donor and recipient in the non-cooperative differential game played a la Nash

from T on. Considering feedback strategies, as presented in Subsection 2.2, the scrap value

reads

SC(x(T )) = [V d(x(T )) + V r(x(T ))]e−ρT .

Assuming that this problem has a solution,13 the value function of the cooperative game is

denoted as

VC(x0) = ∫
T

0
[F d(0,0) + F r(0,0, xC, σC) −C

d
(IdC) −C

r
(IrC)]e

−ρtdt + SC(xC(T )), (10)

11Subscript NT refers to “no-transfer” scenario.
12For the linear quadratic game proposed in Cabo et al. (2014), Condition 1 is satisfied for A = [1/α,+∞).
13For the lineal quadratic case, the solution is computed in the Appendix.
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where sC(t), I
d
C(t) and IrC(t) are the optimal investment paths of the cooperative game (7)-

(9), and xC(t) is the cooperative stock of usable water capacity which solves equation (8) for

the optimal investment path σC(t). The level xC(T ), reached by this stock when the players

cooperate from 0 till the moment T at which the canal is finished, also defines the starting

stock of usable water capacity for the subsequent non-cooperative water market game. Note

that this value function collects the accumulated payoff of the two countries within the

first cooperative period, plus what they get within the subsequent non-cooperative game,

included in the scrap value SC(x(T )).

A necessary condition for the two players to agree to cooperate in the joint investment

program (7)-(9) is:

Condition 2 Overall global rationality or Kaldor-Hicks efficiency:

VC(x0) > V
d
NT(x0) + V

r
NT(x0). (11)

The accumulated payoffs globally considered for the two players when they coordinate their

efforts to build a canal within a first period and utilize it henceforth, VC(x0), must be

greater than the addition of the accumulated payoffs for the two regions if the canal is never

initiated and no transfer ever takes place, V dNT(x0) + V
r
NT(x0).

Overall global rationality is a requirement for the agreement to arise. However, it cannot

guarantee that an agreement for the joint investment project is reached and maintained

until its finalization. The next section presents a mechanism which guarantees the time

consistency of the cooperative solution. This property ensures the formation of a coalition

to build the canal, and guarantees that no region has an incentive to deviate from the

cooperative solution at any time before the completion of the canal.

3 Time consistency of the cooperative solution

Before we start with the analysis it is worth to define precisely what is meant and what is

not meant by time consistency. In non-cooperative differential games, a solution is said to be

time-consistent if players do not modify their strategies when they are allowed to recompute

them at any time (along the optimal trajectory for the state variable). Or equivalently,

players have no rational reason, at any further state of the game, to deviate from the policies

adopted at the beginning of the game (see, Başar and Olsder (1999)). However, the definition

of time consistency is different when dealing with cooperative differential games. Within

this literature, time consistency addresses the problem of whether a cooperative agreement

made at the start of the game, can be sustained over time. A cooperative solution is said

to be time consistent if no player has an incentive to deviate from cooperation, at any point

in time (the cooperative payoffs to go surpass the non-cooperative payoffs to go at any time

within cooperation). That is, the property of individual rationality is satisfied at any time

along the optimal cooperative trajectory for the state variable. This definition can be found,

for example, in Zaccour (2008) (and references therein), and dates back to Petrosjan (1977).

After some notation and definitions of rationality, this section first proposes a sharing

rule and an associated side-payment to guarantee that, overall each region is better off if the

canal is built. This global side-payment, which gives rise to overall individual rationality,

must be distributed along the cooperating period to guarantee that no country has an
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incentive to deviate from the cooperation at any time. Thus, an imputation distribution

procedure is defined in order to guaranty time consistency. This IDP is made feasible based

on an instantaneous side-payment scheme.

Next we define the instantaneous welfare for the two regions under the assumption that

they behave optimally. First we consider the no-transfer scenario (subscript NT ), in which

no water transfer ever takes place. Then, if players agree to jointly invest to build the canal,

there is a first period [0, T ), of cooperation (subscript C), in which both regions invest

to build the canal, followed by a second period from T on (no subscript), when the water

transfer is available and a water market is established.

wdNT=F
d(0,0), wrNT(t)=F

r(0,0, xNT(t), σNT(t)), ∀t ≥ 0,

wdC(t)=F
d(0,0) −Cd(IdC(t)), wrC(t)=F

r(0,0, xC(t), σC(t)) −C
r(IrC(t)), ∀t ∈ [0, T ],

wd(t)=F d(p(t), τ(t)), wr(t)=F r(p(t), τ(t), x(t), σ(t)), ∀t > T,

All control and state variables are at their corresponding optimal values. Furthermore,

the price and quantity of the water market are also at their equilibrium values.

In the no-transfer scenario, the donor enjoys the constant environment amenities linked

with a pristine river. Correspondingly, the recipient, with no possibility of getting water

from the donor, has a strong incentive to invest in its stock of water capacity.

In contrast, if the regions agree to build the canal, within the first period of joint in-

vestment, the donor while still enjoying the full environmental amenities, has to pay the

investment costs of the infrastructure. The recipient also bears the investment cost associ-

ated with the construction of the canal, while its incentive to invest in the stock of water

capacity is reduced due to the expectation of future transfers. Finally, from the moment the

canal is finished, the donor transfers water to the recipient at a price fixed by their dynamic

interaction in the water market.

At any time t within the cooperative period [0, T ], we define the payoffs to go when

cooperating players decide to continue with cooperation, or alternatively, to suspend the

agreement indefinitely. If countries maintain cooperation and finish the canal at T , allowing

the transfer of water from this time on, under bilateral trade, the payoffs to go from this

time t ∈ [0, T ] on, and for each region region i ∈ {d, r} would read

W i
(t) = ∫

T

t
wiC(u)e

−ρ(u−t)du + ∫
∞

T
wi(u)e−ρ(u−T )du,

or equivalently

W i
(t) = ∫

T

t
wiC(u)e

−ρ(u−t)du + V i(xC(T ))e−ρ(T−t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (12)

Alternatively, regions might cease cooperation at this time t before the canal is finished,

and stick to their no-transfer strategies thereafter (no water trading ever takes place). The

payoffs to go starting at this time t would read

W i
NT(t) = ∫

∞

t
wiNT(u; t)e−ρ(u−t)du, ∀t ∈ [0, T ], ∀i ∈ {d, r}.

Or equivalently,

W i
NT(t) = ∫

T

t
wiNT(u; t)e−ρ(u−t)du + V iNT(xNT(T ; t))e−ρ(T−t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (13)

with wdNT(u; t) = wdNT constant, and wrNT(u; t) = F r(0,0, xNT(u; t), sNT(u; t)).
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Assuming that the two regions have agreed to cooperate from the beginning until time t

prior to the completion of the canal, they will have been investing IdC and IrC in the canal and

sC in the stock of usable water capacity. Hence, this stock reached the level xC(t). If they

maintain cooperation, the optimal investment in usable water capacity would still be given

by sC and the stock would evolve to reach xC(T ) when the canal is finished. Conversely,

if they halt cooperation, the optimal investment in this stock would now be driven by sNT

and the stock would evolve differently. The initial value for this stock in the second period

is given by xC(t), and for that reason the optimal path followed by this stock in this second

scenario will depend on the time t, when cooperation ended as well as on the current time

after defection xNT(u; t), u ≥ t. Obviously, at time T , the values xNT(T ; t) and xC(T ) are not

necessarily the same. One might expect that the expectation of a future water transfer would

discourage investments in the stock of usable water capacity and hence, xNT(T ; t) > xC(T ).

Taking into account these definitions, at any time t ∈ [0, T ] we can define the surplus to

go from cooperation from this time on for player i as

Si(t) =W i
(t) −W i

NT(t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (14)

And the total surplus to go from cooperation from this time on as:

S(t) =W d
(t) +W r

(t) −W d
NT(t) −W

r
NT(t) ∀t ∈ [0, T ]. (15)

3.1 Overall rationality

With the notation above, Condition 1 can be written as W i(T ) >W i
NT(T ) or Si(T ) > 0 for i ∈

{d, r}; and xC(T ) in a nonempty set; and Condition 2 as W d(0)+W r(0) >W d
NT(0)+W

r
NT(0)

or S(0) > 0. Overall global rationality requires that the total investment costs of building the

channel plus the environmental costs associated with the water transfer must be lower than

the aggregate gains from the water transfer, which is equivalent to having a positive total

surplus from cooperation. However, overall global rationality is not sufficient for cooperation,

overall individual rationality must also be satisfied:

W i
(0) >W i

NT(0) ⇔ Si(0) > 0, ∀i ∈ {r, d}. (16)

We start by assuming that overall individual rationality is not fulfilled. From now on we

make the assumption that player i is worse off, while player −i is better off:

Si(0) ≡W i
(0) −W i

NT(0) < 0, S−i(0) ≡W −i
(0) −W −i

NT(0) > 0. (17)

Because we are assuming Condition 2 of overall global rationality, according to the Kaldor-

Hicks compensation criterion, in the cooperative scenario it is always possible to define a

compensation payment or a side-payment from region −i to region i, that leaves everyone

as well off and at least one better off than in the scenario in which the project is not

implemented. Thus, the project leads to a Pareto improvement. The more straightforward

and widely used side-payment is to follow the egalitarian principle.14 Under this rule, each

player attains an equal share of the global surplus from cooperation.

In our proposal, the global surplus from cooperation is shared by the two players but not

necessarily in equal shares. To define each player’s share, notice that as equation (12) shows,

14In this case the side-payment is defined as a payment from −i to i equal to half the surplus gained by −i plus

half the losses suffered by i when the canal is jointly built.

10



the game analyzed here is particular in the sense that cooperation leads to immediate losses

(investment costs to build the canal), and it is followed by a second non-cooperative period

which will determine each player’s gains from the existence of the canal. Once the canal is

operative, we can define the i-th share in the total gains which stem from the existence of

the canal as

θi =
V i(xC(T )) − V iNT(xC(T ))

V i(xC(T )) + V −i(xC(T )) − V iNT(xC(T )) − V −i
NT(xC(T ))

=
Si(T )

S(T )
, i ∈ {d, r} (18)

From Condition 1 it immediately follows that θi ∈ (0,1). From this definition, it is imme-

diately obvious that W i(T ) =W i
NT(T ) + θiS(T ). This share θi is defined as the surplus for

player i divided by the total surplus associated with the existence of the canal. It represents

player’s i-th share of total gains, obtained in the second period and therefore it does not

take into consideration the costs incurred within the cooperating period. Our proposal is

that this must be his share of the total surplus from cooperation. In consequence a global

side-payment from player −i to player i must be defined to guarantee that each player’s

payoffs to go under cooperation, including the side-payment, vi(0), equate his payoffs to go

in the case of no cooperation plus the share θi of the total surplus to go at time 0:

vi(0) =W i
(0) + SD =W i

NT(0) + θ
iS(0), (19)

v−i(0) =W −i
(0) − SD =W −i

NT(0) + θ
−iS(0). (20)

While S(T ) represents the surplus associated with the existence of the canal, S(0) takes

into account the gains from the existence of the canal, but also the investment costs within

the first cooperative period. By construction, at time T each player receives what he would

have gained without the canal, plus a different share of the global surplus from the existence

of the canal. According to expressions (19)-(20) this statement must be equally valid at the

beginning of the cooperative agreement. Thus taking into account all investment costs to

build the canal, it must still be true that each agent gets what he would have gotten without

the canal plus a share from the global surplus to go, identical to the share when the canal

is finished. In consequence, this proposal links players contributions to the joint investment

project with the future benefits stemming from the canal.

From (19)-(20) the global side-payment from player −i to player15 i immediately follows:

SDi
= θi[W −i

(0) −W −i
NT(0)] + θ

−i
[W i

NT(0) −W
i
(0)], i ∈ {r, d}. (21)

This side-payment can be defined as the addition of the i-th share of the total gains of region

−i plus the −i-th share of the losses of region i. 16

Corollary 1 By labeling the donor as i and the recipient as −i, the global side-payment

from recipient to donor would read

SDd
= θd[W r

(0) −W r
NT(0)] + θ

r
[W d

NT(0) −W
d
(0)] = θdSr(0) − θrSd(0). (22)

15We have assumed Si(0) < 0 and S−i(0) > 0, and hence the global side-payment goes from player −i (who is

better off with the cooperative agreement) to player i (who is worse off). The same analysis is valid if instead

Si(0) > 0 and S−i(0) < 0.
16Alternatively, the global side-payment can be interpreted as the i-th share of the global surplus from coop-

eration minus the −i-th gains:

SDi
= θiS−i(0) − θ−iSi(0) = θiS(0) − S−i(0), i ∈ {r, d}.
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If the recipient had losses and the donor gains, then SD would be negative, and would

represent a side-payment from donor to recipient.

This subsection has proposed a rule to share the global surplus from cooperation and the

associated side-payment guaranteeing overall individual rationality. However, in a dynamic

context, overall individual rationality is not sufficient for cooperation. Furthermore, one

must prove that the cooperative solution is time consistent. The following subsection extends

the sharing rule, θi, to decompose the total cooperative payoff between regions and over the

time interval [0, T ] in such a way as to guarantee time consistency. We also present an

instantaneous side-payment scheme which makes this distribution possible.

3.2 Time consistency

The cooperative solution is time consistent if individual rationality is satisfied in every

subgame starting at any time during the cooperative solution.

Definition 1 The cooperative solution without side-payments would be time consistent if

and only if

Si(t) ≡W i
(t) −W i

NT(t) ≥ 0, ∀t ∈ [0, T ], ∀i ∈ {d, r}.

This is clearly not the case, since in (17) we are assuming that one of the players is initially

worse off under the cooperation. However, even if individual overall rationality was satisfied

by both players, time consistency would not be guaranteed. More conditions are needed.

The Kaldor-Hicks efficiency assumption in Condition 2 implies S(0) > 0. Time consis-

tency requires a more demanding necessary condition: A non-negative surplus to go at any

time t ∈ [0, T ), which will be assumed henceforth:

Condition 3

S(t) =W d
(t) +W r

(t) −W d
NT(t) −W

r
NT(t) ≥ 0 ∀t ∈ [0, T ].

Given the specification of the problem, investment costs are distributed along the initial

cooperative period. In contrast, the benefits from the existence of the canal arise when

the cooperation ends. As times runs within the interval [0, T ] costs are being paid while

the bulk17 of the benefits are yet to come. It is then very likely18 that the surplus to go

increases with time and hence S(0) > 0 should imply S(t) > 0 for any t ∈ [0, T ]. If it is

initially beneficial to build the canal, S(0) > 0, it seems plausible that it will be beneficial at

any intermediate time to continue with the construction of the canal. Therefore, Condition

3 can be regarded as either irrelevant or not much more demanding than Condition 2.

The literature on Differential Games defines an imputation distribution procedure, πi(t),

∀t ∈ [0, T ], ∀i ∈ {d, r}, as the decomposition of the joint accumulated payoffs between agents

and over time. For a given IDP, each player’s aggregate payoffs at the starting date, vi(0),

is composed of the stream of payoffs from 0 to T as described by the IDP, plus the value

function of each region at time T when the canal is finished:

vi(0) = ∫
T

0
πi(u)e−ρudu + V i(xC(T ))e−ρT , ∀i ∈ {d, r}. (23)

17Savings from lower investments in usable water capacity associated with the expectations of future water

transfers are already realized within the cooperative period.
18It has not been analytically proved, although it is shown in the numerical example.
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Next, we define a time-consistent IDP.

Definition 2 For a given IDP, πi(u), the payoffs to go for player i ∈ {d, r} at any time

t ∈ [0, T ] read:19

vi(t) = ∫
T

t
πi(u)e−ρ(u−t)du + V i(xC(T ))e−ρ(T−t), (24)

assuming that cooperation has lasted till t, and xC(T ) is the stock of water capacity at the

time when the canal becomes operative, T . This IDP is time consistent under condition:

vi(t) =W i
NT(t) + φ

i
(t)S(t) ∀t ∈ [0, T ], ∀i ∈ {d, r}, (25)

with φi(t) a differentiable function satisfying φi(t) ∈ [0,1] for all t ∈ [0,1].

While the payoffs to go are defined in (24), time consistency requires that they satisfy (25).

This condition states that by continuing cooperation, player i’s payoffs to go equate his

payoffs to go in case of defection plus a share φi(t) of the total surplus to go. Hence as long

as the surplus to go remains non-negative at any time t ∈ [0, T ], as stated in Condition 3 no

player would do better by deviating from cooperation and the IDP would be time consistent.

An alternative way to write condition (25) is

vi(t) −W i
NT(t)

S(t)
= φi(t), ∀t ∈ [0, T ], ∀i ∈ {d, r}. (26)

From this expression, φi(t) can be interpreted as a measure of the excess gain for player i

from any time t ∈ [0, T ] on, if cooperation is maintained with the IDP πi(t), in relative terms

to the total surplus to go. Thus, it represents player’s i willingness to continue cooperation

at time t ∈ [0, T ], under this IDP, πi(t).

Given this definition of a time-consistent IDP, the following questions are worth an-

alyzing. First we show that such a time-consistent IDP exists and analyze its unique-

ness/multiplicity. Finally, we prove that it is feasible and provides a side-payment scheme

under which each player gets its share, as stated by the IDP.

The proof that there exists an imputation distribution procedure which satisfies definition

(24) and condition (25) is split in two parts. First, we prove that vi(t) given in the definition

(24) satisfies condition (25) at the final time T under an additional condition on function

φi(t). And second we obtain the IDP for which the time derivatives of the expressions (24)

and (25) are identical for any t ∈ [0, T ).

Lemma 1 If function φi(t) satisfies φi(T ) = θi, (given by (18)), then expressions (24) and

(25) evaluated at T , both lead to vi(T ) = V i(xC(T )).

Proof. See Appendix

Proposition 1 The expression of v̇i(t) for player i ∈ {d, r} at any time t ∈ [0, T ), obtained

as the time derivative of the definition (24) or of the expression in condition (25) are identical

under the IDP:

πi(t) = wiNT(t) + φ
i
(t)s(t) − (φi)′(t)S(t) + φi(t)Θ−i

(t) − φ−i(t)Θi
(t), (27)

with s(t) = wiC(t) +w
−i
C (t) −wiNT(t) −w

−i
NT(t), the instantaneous surplus from cooperation at

time t (typically negative), and Θi
(t) = ∫

T

t
ẇiNT(u; t)e−ρ(u−t)du+(V iNT)

′

xNT
ẋNT(T ; t)e−ρ(T−t).

19See, for example, Zaccour (2008).
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Proof. See Appendix

Remark 1 In consequence, for any differentiable function φi(t) taking values between 0

and 1, and satisfying φi(T ) = θi, where θi is given by equation (18), a time-consistent IDP

exists.

In what follows, for the sake of clarity we focus on the particular case of a constant φi(t).

Under this assumption the following corollary is obvious.

Corollary 2 Under the assumption of a constant φi(t), the time-consistent IDP is unique

and it is obtained if and only if20 φi(t) = φi = θi for all t ∈ [0,1]:

πi(t) = wiNT(t) + θ
is(t) + θiΘ−i

(t) − θ−iΘi
(t), ∀t ∈ [0, T ), i ∈ {r, d}.

Note that for this case of φi(t) = θi, condition (26) states that at any point in time within

cooperation, what player i has to win by maintaining cooperation (in relative terms to the

total surplus from cooperation) remains constant. And this constant must be identical to the

relative value that this player assigns to the existence of the canal, as defined in (18). Note

that alternatively, any non-constant function φi(t) taking values within the interval [0,1]

verifying that the time derivatives of (24) and (25) are the same would give rise to a time-

consistent IDP, as long as this function satisfies lim
t→T

φi(t) = θi. This could be interpreted

as player’s i willingness to cooperate converging to the value, θi, that he assigns to the

existence of the canal at time T .

Corollary 3 By labeling the donor as i and the recipient as −i, the IDP can be written as

πd(t) = wdNT(t) + θ
ds(t) + θdΘr

(t), ∀t ∈ [0, T ), (28)

πr(t) = wrNT(t) + θ
rs(t) − θdΘr

(t), ∀t ∈ [0, T ). (29)

For the recipient Θr(t) represents the effect of a marginal delay in defection (or a longer

cooperation), on the path of investment in usable water capacity and, in consequence, on the

evolution of the stock of usable water capacity and hence, on the flow of instantaneous welfare

of the recipient from this time t (of defection) on. Hence, it measures how the payoffs to go

for a deviating recipient (net of discount) are affected if cooperation is maintained a little

longer. 21 From the point of view of the recipient, a longer cooperation has an unclear effect

on his future after-defection payoffs. On the one hand, the costs of the investment in usable

water capacity are shared with the donor for a little longer, reducing future investments

costs. However, at the same time, since the reaction in the form of higher investments

in usable water capacity is delayed, this stock adjusts less rapidly, so negatively affecting

after-defection payoffs.

As for the donor, since he has no decision to make after the moment t when cooperation

stops, and since his after-defection payoffs are not dependent on the usable water capacity,

logically, there will be no marginal effects associated with delays in the time of defection,

Θd(t) = 0,∀t ∈ [0, T ).

20Proof is straightforward since any other constant value for φi(t) would not satisfy Lemma 1.
21The complete effect of a marginal delay in defection on the payoffs to go for region i has two other components

as shown in (33). The payoffs to go are reduced in the instantaneous payoff corresponding to time t, −wiNT(t),

(in fact they are increased because the instantaneous payoff is typically negative). Secondly, the initial time t

moves forward, payoffs to go are valued later and then the value increases by ρW i
NT(t).
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We have proved the existence of a time-consistent IDP. We have also shown that the

IDP is unique if a constant φi(t) is sought. In contrast, infinitely more other IDPs would

also be time-consistent as long as φi(t) converges to θi as t approaches T . As a final step

we will elaborate on the feasibility of these IDPs. First, we prove that the IDP computed in

(27) is feasible. And second, we define the instantaneous side-payment that makes the IDP

possible.

Lemma 2 At any time t ∈ [0, T ], the instantaneous payoffs provided by the IDP for the two

players matches the instantaneous joint cooperative payoff: πi(t) + π−i(t) = wiC(t) +w
−i
C (t).

Proof is straightforward from the definition of the IDP in (27).

An immediate consequence from this Lemma is that an instantaneous or continuous side-

payment from country −i to country i, sd(t), can be defined from 0 to T in such a way as

to guarantee that each country gets the instantaneous payoff defined by the IDP in (27).

Proposition 2 The instantaneous side-payment from player −i to player i is given by

sd(t) = θi[w−i
C (t) −w−i

NT(t)] + θ
−i
[wiNT(t) −w

i
C(t)] + θ

iΘ−i
(t) − θ−iΘi

(t), (30)

satisfies that πi(t) = wiC(t) + sd(t) and π−i(t) = w−i
C (t) − sd(t) for all t ∈ [0, T ).

Corollary 4 Labeling the donor with i and the recipient with −i, the instantaneous side-

payment from recipient to donor can be written as

sd(t) = θd[wrC(t) −w
r
NT(t)] + θ

r
[wdNT(t) −w

d
C(t)] + θ

dΘr
(t), ∀t ∈ [0, T ). (31)

A negative value of sd(t) would represent a side-payment from donor to recipient.

We can distinguish two parts in the instantaneous side-payment in (31). The first part is

the addition of the donor’s share,22 θd, of the recipient’s instantaneous gains from coopera-

tion (typically negative due to the costs of building the canal) and the recipient’s share, θr,

of the donor’s instantaneous saving if they do not cooperate in building the canal (typically

positive). This part corresponds to the instantaneous version of the global side-payment,

SD, in (22), the only difference being that, in overall terms, the construction of the canal

and its ulterior utilization are assumed to be beneficial for the recipient and detrimental

for the donor; however, in instantaneous terms, both countries incur costs throughout the

cooperative period when the canal is being built. Therefore, the instantaneous payoffs under

cooperation are typically lower than under no transfer.

The second part of this instantaneous side-payment is given by the donor’s share of the

marginal effect of a delay in defection on the payoffs to go for the recipient (if cooperation

ends before the construction of the canal), φdΘr(t).

Remark 2 An alternative expression for the instantaneous side-payment in (31) would be

sd(t) = θd [Ẇ r
NT(t)−ρW

r
NT(t)−(Ẇ

r
(t)−ρW r

(t))]+θr[Ẇ d
(t)−ρW d

(t)−(Ẇ d
NT(t)−ρW

d
NT(t))] .

(32)

22Constant θd (resp. θr) represents the donor’s share (resp. the recipient’s share) of the total gains from the

existence of the canal. We will refer to player’s share for brevity.
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Note that Ẇ i
NT(t) − ρW

i
NT(t) and Ẇ i(t) − ρW i(t) represent the temporal evolution of the

payoffs to go (net of discount) under either the no-transfer solution or the cooperative

scenario, at time t ∈ [0, T ). Thus, the first term in brackets in (32) represents the gap in the

temporal evolution of the recipient’s payoffs to go under no transfer and cooperation. That

is how much faster the recipient’s payoffs to go increase under the no-transfer case than

under cooperation. In fact, one might expect that the payoffs to go would decrease under

the no-transfer solution and increase under cooperation. Hence, this term would likely be

negative. Correspondingly, the second term in brackets shows how much faster the donor’s

payoffs to go are increased in the cooperative scenario than in the no-transfer solution (a

likely positive term).

Remark 3 We have described the water market as a bilateral monopoly, following Cabo

et al. (2014). This is one particular specification, although one might also think of a wa-

ter market with one region having monopolistic power. Thus defining a game played a la

Stackelberg with either the donor or the recipient taking the role of the leader. Alternatively,

more complex specifications involving interactions between the donor’s decision on the water

transfer and the dynamics of the usable water capacity could also be considered. Regardless

of the water market specification, the time consistent IDP derived in this Section 3 would be

equally valid as long as Condition 1 is satisfied.

4 Application: specific functional forms

This section computes the IDP described in the previous section for the water transfer

example. Specific functional forms are assumed in order to attain analytical solutions. The

dynamic of the usable water capacity in (8) is linear. Therefore, to have an analytically

tractable problem we consider here quadratic instantaneous profit functions, as in Cabo et

al. (2014). For the donor:

F d(p, τ) = Ed(τ) + pτ = c(R −
τ2

2R
) + pτ, c > 0,

withR > 0 being the constant water surplus in the donor’s river basin. In the absence of water

transfer, environmental amenities increase linearly with the water surplus: cR. Furthermore,

we consider that the marginal reduction in environmental amenities is inversely proportional

to this surplus, while proportional to the water transferred: cτ(t)/R.

For the recipient, output increases at a decreasing rate with the total quantity of water

(either the usable water capacity or the transfer). This is represented by a linear-quadratic

function in τ + x. We also consider quadratic costs of investment in usable water capacity.

F r(p, τ, x, σ) = d(τ + x − α
(τ + x)2

2
) − pτ − β

σ2

2
d,α, β > 0.

For illustration purposes, we consider the parameters’ values23 which guarantee conditions 1,

2 and 3: both players are better off if a canal exists, the project to build the canal improves

overall global welfare and, moreover, the surplus to go from cooperation is positive at any

time within cooperation. The equilibrium for the non-cooperative game can be found in

23c = 4.7084, d = 2.1275, ρ = 0.001, δ = 0.1, R = 593.67, α = 0.0135, as in Cabo et al. (2014). And

x(0) = 0, zd = zr = 10, K0 = 0, K̄ = 100.
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Cabo et al. (2014), and the cooperative solution is presented in the Appendix. For the

chosen parameters we obtain:

T ∗ = 30.76, xTC = 47.97, θd = 0.344, θr = 0.656, S(0) = VC(x0)−(V
d
NT(x0) + V

r
NT(x0)) = 1972.79.

However, although we assume overall global rationality, we also consider that cooperation

increases the recipient’s accumulated welfare, Sr(0) = V rC (x0) − V
r
NT(x0) = 2048.06, but de-

creases the donor’s accumulated welfare Sd(0) = V dC (x0)−V
d
NT(x0) = −75.26. In consequence,

without side-payment, the latter would not agree to cooperate to build the canal.

The surplus to go under cooperation is initially positive, S(0) = 1972.79, and increases

with time from 0 to T . Therefore, Condition 2 and Condition 3 are satisfied.

W r(t)

W r
NT(t)

W d(t)

W d
NT(t)

Figure 1: Payoff to go at t, under cooperation vs. no transfer.

Figure 1 displays the payoffs to go if the countries accept cooperation, W i, and under

the no-transfer scenario (when no canal is ever built) W i
NT . According to this figure, at

the beginning of the cooperative period, the donor’s payoffs to go would be higher if he

does not cooperate and sticks to his strategy in the no-transfer scenario. It would not be

rational for the donor to maintain cooperation. Thus, the cooperative solution is not time

consistent, and would never be implemented unless an adequate mechanism gives the donor

an incentive to cooperate.

W r(t)

vr(t)

W r
NT(t) W d(t)

vd(t)

W d
NT(t)

Figure 2: Payoff to go after side-payment at t, under cooperation vs. no transfer.

Figure 2 shows how the payoffs to go are modified if the instantaneous side-payment

in (30) is implemented. The payoffs to go after the side-payment, vi(t), correspond to
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the IDP defined in (27). These are greater than their respective payoffs to go under the

alternative no-transfer scenario in case of defection. Therefore, both cooperating players are

individually rational at any time and this IDP is time consistent. Countries will stick to

their cooperative investment strategies and the canal will be finished.

5 Conclusions

This paper studies the dynamic interaction between two countries with differences in precip-

itation rates and water productivity. Water inflows in the river basin located in the country

labeled as the donor are relatively higher than in the recipient country. After satisfying the

local demand the donor still enjoys a flow of water surplus. Although this surplus is not

used in the productive process, it is valuable because it helps to preserve the environmental

amenities provided by the river. In the recipient economy water is highly productive (one

can think of different uses like irrigation, industry, municipal water supply, etc.), but the

river basin in this country suffers from a chronic shortage of water. In a subsidiary way, this

country has the possibility to invest in alternative water supplies, like desalination plants,

water savings or water recycling. All in all, if the donor’s river basin could transfer part

of its water surplus to the recipient’s, overall productivity would be increased. Thus, the

existence of a canal allowing this water transfer would create a water market, so increasing

overall productivity. The recipient would be willing to pay a price for the water its econ-

omy demands. Correspondingly, the donor would be willing to accept a price for the excess

water transferred, as long as this price offsets the environmental losses associated with the

transfer. Therefore, if the productivity of water in the recipient’s economy is sufficiently

high with respect to the losses in the environmental amenities provided by the river in the

donor’s country, then the existence of the canal, and the water market it makes possible,

may signify a gain for both regions. Nonetheless, there is no reason for these gains to be

necessarily the same for both players.

The previous situation is an example of an infrastructure which improves the welfare of

two players in a non-cooperative differential game, although not necessarily in the same way.

The question addressed in this paper has been: under which conditions would they agree to

a first period of cooperation in a joint investment project to build this infrastructure? To

analyze this question, we define a two-regime differential game between the two countries.

In a second period, when the canal exists, a non-cooperative differential game of infinite

duration describes the water market they are engaged in. However, for the canal to exist,

they must agree to cooperate in a first period to jointly build the canal.

This is an example of a cooperative game in which cooperation does not imply an im-

mediate reward but a burden: the investment costs of building the canal. The asymmetric

benefits from the cooperation only come at the end of the game, when the cooperation stops,

and they are determined in a subsequent non-cooperative differential game describing the

water market made possible by the canal. Therefore, the standard question in cooperative

game theory on how to share the gains from cooperation is changed to a new question: how

to share the burden from cooperation taking into account future uneven gains? This sharing

rule must guarantee that the canal is actually finished. That is, it must be defined in such

a way that the cooperative solution satisfies the property of time consistency.

We assume first that the joint investment project is profitable. This means a positive
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joint aggregate surplus from cooperation. Further, we assume a positive surplus to go

initially and at any time within the cooperative period. Lastly, if the canal is built, both

players are better off with the existence of the canal. In overall terms for the whole time

period we propose a sharing rule. At the initial time (when they start building the canal)

this rule is based on the principle that each player’s share of the total gains stemming from

the existence of the canal (which do not include the costs of building the infrastructure)

must also define this player’s share of the total surplus from cooperation. This sharing rule

assigns each country its overall gains in the case of no transfer, plus his share of the global

surplus from cooperation. A global side-payment is defined to guarantee that this share is

attained.

This basic principle is extended from overall to instantaneous terms, rendering the co-

operative agreement time consistent. The joint aggregate payoffs under cooperation is dis-

tributed between players and over time by an imputation distribution procedure. The IDP

is defined to satisfy a dynamic version of the basic principle previously stated for aggre-

gate payoffs. At every time within cooperation, each player’s share of the surplus to go

(including pending costs and future benefits) must be equal or must converge to his share

in the total benefits associated with the existence of the canal. Then, at any time within

cooperation each country’s payoffs to go equate what it would get with no transfer plus the

previously-proposed share of the global surplus to go. In consequence, the IDP is time con-

sistent and no country has an incentive to deviate from cooperation. For this sharing rule

we are able to characterize the instantaneous payoffs which define the IDP for each country.

More importantly, the time-consistent IDP is feasible. At any time within cooperation an

instantaneous side-payment guarantees that each player gets what is specified by the IDP.

This side-payment scheme is analytically established in the paper.

The central idea that each player’s share of the surplus to go at any time within coopera-

tion has to be equal or converge towards this player’s share of the future benefits associated

with the canal, guarantees the basic principle of contributing according with future benefits.

Although we have presented this idea for the water transfer example, it can be extended

to economic situations in which two players cooperate in a joint research project which leaves

the two agents in a better position from the moment when the research objective is achieved

on. An example could be a joint research project implemented by to firms looking for a new

product or technology which improves their revenues from the moment when the product is

placed on the market or the technology is put into practice. Similar characteristics are also

present in transboundary or global environmental problems. Cooperating countries bear

current costs (of progressive emissions reductions) and obtain future (uncertain and often

uneven) benefits from a cleaner environment. We consider this an interesting line for future

research, with additional difficulties, like non-existence of markets to capture the benefits

from cooperation or free riding problems.
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Appendix

Proof of Lemma 1

From (24) it is immediately obvious. From (25) and the assumption φi(T ) = θi:

vi(T ) =W i
NT(T )+φi(T )S(T ) = V iNT(xC(T ))+

V i(xC(T )) − V iNT(xC(T ))

S(T )
S(T ) = V i(xC(T )),

for all i ∈ {d, r}.

Proof of Proposition 1

Computing the time derivatives in expressions (12) and (13) we get:

Ẇ i
(t) = −wiC(t) + ρW

i
(t),

Ẇ i
NT(t) = −w

i
NT(t)+ρW

i
NT(t)+∫

T

t
ẇiNT(u; t)e−ρ(u−t)du+(V iNT)

′

xNT
ẋNT(T ; t)e−ρ(T−t). (33)

And hence,

Ṡ(t) = −s(t) + ρS(t) − [(V iNT)
′

xNT
+ (V −i

NT)
′

xNT
] ẋNT(T ; t)e−ρ(T−t)

−∫

T

t
(ẇiNT(u; t) + ẇ−i

NT(u; t)) e−ρ(u−t)du.

Taking this into account, and since φi(t) is differentiable, the time derivatives of expressions

(24) and (25) read

v̇i(t) = −πi(t) + ρvi(t), (34)

v̇i(t) = −wiNT(t) + ρv
i
(t) − φi(t)s(t) +[φ−i(t) (V iNT)

′

xNT
−φi(t) (V −i

NT)
′

xNT
] ẋNT(T ; t)e−ρ(T−t)

−φi(t)∫
T

t
ẇ−i

NT(u; t)e−ρ(u−t)du + φ−i(t)∫
T

t
ẇiNT(u; t)e−ρ(u−t)du + (φi)′(t)S(t). (35)

And these two expressions equate for the IDP in (27)

Solving a LQ game when cooperation is maintained

To find a solution to the problem described in (7), (8) and (9) we define the Hamiltonian:

H(x,K,σ, Ir, Id, λ, µ) = F d(0,0) + F r(0,0, x, σ) −Cd(Id) −Cr(Ir) + λ(s − δx) + µ(Id + Ir).

Assuming quadratic costs, z
i

2
(Ii)2, i ∈ {d, r}, first order conditions give24

λ = βσ, µ = zdId = zrIr,

K̇ = zd+zr

zdzr
µ,

µ̇ = ρµ,

ẋ = λ
β
− δx,

λ̇ = (ρ + δ)λ − d(1 − αx),

H(x(T ),K(T ), σ(T ), (Ir)(T ), (Id)(T ), λ(T ), µ(T )) − ρ[V d(x(T )) + V r(x(T ))] = 0. (36)

24Similarly, one might consider lineal quadratic investment costs.
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The system of differential equations in x, λ

⎛

⎝

ẋ

λ̇

⎞

⎠
=
⎛

⎝

−δ 1/β

αd ρ + δ

⎞

⎠

⎛

⎝

x

λ

⎞

⎠
+
⎛

⎝

0

−d

⎞

⎠
, (37)

can be solved separately, obtaining

⎛

⎝

xC(t)

λC(t)

⎞

⎠
= C1

⎛

⎝

ξ1x

ξ1λ

⎞

⎠
er1t +C2

⎛

⎝

ξ2x

ξ2λ

⎞

⎠
er2t +

⎛

⎝

xp

λp

⎞

⎠
,

where

xp =
d

αd + βδ(ρ + δ)
, λp =

dβδ

αd + βδ(ρ + δ)

and ξ̄1 = (ξ1x, ξ
1
λ) and ξ̄2 = (ξ2x, ξ

2
λ) are the eigenvectors associated to eigenvalues:

r1 =
βρ −

√
β(ρ + δ)2 + 4αdβ

2
< 0, r2 =

βρ +
√
β(ρ + δ)2 + 4αdβ

2
> 0.

Together with equation (36) conditions for this problem are: x(0) = x0, λ(T ) = ∂SC
∂x

(x(T )).

Taking into account a lineal-quadratic differential game defining the water market after

the finalization of the canal, as described in Cabo et al. (2014), the value functions for

donor and recipient will be second order polynomials: V i(x) = aix2/2 + bix + ci, ∀i ∈ {d, r}.

Therefore, (∂SC/∂x)(x(T )) = ∂[V d(x(T )) + V r(x(T ))]/∂x can be written as ax(T ) + b,

where a = ad + ar and b = bd + bd, then these two conditions can be written as

C1ξ
1
x +C2ξ

2
x = x0 − xp,

C1(ξ
1
λ − aξ

1
x)e

r1T +C2(ξ
2
λ − aξ

2
x)e

r2T = axp − λp + b,

and the constants can be computed as functions of T : C1C(T ) and C2C(T ). For any t ∈ [0, T ],

the optimal paths for x and λ would be

xC(t) = C1C(T )ξ1xe
r1t +C2C(T )ξ2xe

r2t + xp, (38)

λC(t) = C1C(T )ξ1λe
r1t +C2C(T )ξ2λe

r2t + λp. (39)

Similarly, we can compute the optimal capital stock and its costate:

KC(t) =
K̄ − k0
eρT − 1

eρt +
k0e

ρT − K̄

eρT − 1
, µC(t) =

zdzr

zd + zr
(K̄ − k0)ρ

eρT − 1
eρt.

And the optimal time T at which the canal must be finished given by equation (36)

Solving a LQ game with defection at time t

We analyze the no water transfer scenario starting at time t ∈ [0, T ) and assuming

cooperation up until this point. This is the standard problem but starting at (t, xC(t)).

The donor faces no optimization problem, while the recipient solves the problem:

max
σ
∫

∞

t
(d(x −

α

2
x2) −

β

2
σ2

) e−ρudu, ẋ = σ − δx, x(t) = xC(t).

The dynamics of the state and co-state variables are identical to those in the cooperative

problem, stated in (37), whose solution reads

⎛

⎝

x(u)

λ(u)

⎞

⎠
= C1

⎛

⎝

ξ1x

ξ1λ

⎞

⎠
er1(u−t) +C2

⎛

⎝

ξ2x

ξ2λ

⎞

⎠
er2(u−t) +

⎛

⎝

xp

λp

⎞

⎠
, u > t.
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where xp, λp, r1, r2, ξ̄
1 and ξ̄2, are identical to those already obtained in the cooperative

case. The transversality condition limu→∞ λ(u)x(u)e−ρ(u−t) = 0, requires C2 = 0. This

together with condition x(t) = xC(t) gives C1 = (xC(t) − xp)/ξ
1
x and the solutions of x and

λ for any time u after t when cooperation halts:

xNT(u; t) = (xC(t) − xp)e
r1(u−t) + xp, (40)

λNT(u; t) = (xC(t) − xp)
ξ1λ
ξ1x
er1(u−t) + λp. (41)

We can now compute the derivative of xNT(T ; t) with respect to the time t when coop-

eration ceases, used in the definition of Θi(t) in Proposition 1.

d

dt
(xNT(T ; t)) = ẋC(t)e

r1(T−t) − r1[(xC(t) − xp]e
r1(T−t)

= [σC(t) − (r1 + δ)xC(t) + r1xp]e
r1(T−t) = [λC(t)/β − (r1 + δ)xC(t) + r1xp]e

r1(T−t),

where xC and λC are given in (38) and (39), while T is obtained from (36).
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