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ABSTRACT 

In assessment of global carbon cycle, evaluation of 

gross primary production, GPP, of an ecosystem is the 

main endeavour. The most adequate way to address 

this study is to apply a Light Use Efficiency, LUE, 

model in combination with an Eddy Covariance, EC, 

system. 

In this paper, evaporative fraction, EF, from two 

different databases (ground-based measurements and 

calculated by the Surface Energy Balance System, 

SEBS, algorithm developed at ITC) are applied to a 

LUE model in order to calculate a final ߝ value which 

is the maximum PAR conversion efficiency of the 

cropland. 

The LUE model was found to fit properly using both 

EF databases, with squared correlation coefficients of 

0.89 and 0.81 for ground measurements and SEBS 

results, respectively. Final values for maximum 

efficiency were of 2.82േ0.19 gC MJ-1 (measured EF) 

and 2.59േ0.23 gC MJ-1 (SEBS). All these results were 

obtained with FPAR provided by MERIS. 

 

 

1. INTRODUCTION  

Longer temporal series of atmospheric CO2 

concentration have been measured and recorded at 

Mauna Loa observatory (http://www.cmdl.noaa.gov) 

showing a continuous increasing trend. At present there 

is general consensus regarding the influence of GHG 

(greenhouse gases) on climate change. Increases in 

surface temperature and sea level are clear indicators of 

this change [1]. Changes in temperature together with 

changes in the precipitation pattern can lead to a 

stomatal closure, which influence the amount of CO2 

sequestered by the ecosystem [2]. This fact can turn an 

ecosystem from sink to source of carbon.   Therefore, 

knowledge of the behaviour of the different ecosystems 

is an actual issue widely studied. 

Regarding to climate change, assessment of the total 

amount of CO2 assimilated by crops, GPP, and Net 

Ecosystem Exchange, NEE, is a main challenge. 

Measurements of these variables are usually made 

using micrometeorological techniques such as EC. 

Different biomes have been evaluated by installing EC 

towers, and several networks have been established 

around the world such as CARBOEUROFLUX, 

ASIAFLUX or FLUXNET [3]. These networks 

provide information of these studies, quantifying GPP 

and NEE for different ecosystems and showing their 

behaviour as sink or source of carbon. The results 

obtained evidence the unequal ability to uptake CO2 in 

different ecosystems [4].     

An alternative for estimating GPP is based on the 

application of LUE models [5, 6]. In these models EF 

is used as an important parameter reducing final ߝ 

value since low EF values are usually associated to 

water stress.  

In this study, in order to quantify the crop ability as a 

CO2 sink, continuous measurements of NEE, latent and 

sensible heat, LE and H, were made using an EC 

station. Moreover, a LUE model has been calibrated 

for a rapeseed crop using MERIS products, EF and 

meteorological data. EF has been calculated using two 

separately procedures. Firstly, ground measurements of 
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LE and H were used. Secondly, EF results from SEBS 

algorithm were employed.  

This paper presents the results of the GPP 8–d 

estimated values using a LUE model over a rapeseed 

crop for the agricultural year using FPAR from 

MERIS, and calculates the ߝ value characterizing the 

studied rapeseed cropland.   

 

 

 

Figure 1. Location of the measuring plot 

 

2. SITE DESCRIPTION 

Measurements have been conducted continuously since 

2008 in a farmland located about 30 km far from 

Valladolid in the upper Spanish plateau (Fig. 1). Relief 

elements are not present and horizontal homogeneity is 

ensured. This is a required feature when 

micrometeorological techniques are used to measure 

ecosystem exchanges.   The dominant land use is non–

irrigated crops with a rotating scheme including 

rapeseed, wheat/barley, green peas, rye and sunflower. 

During the studied period, rapeseed was grown. 

Rapeseed was sown in September, 2007 and harvested 

in July, 2008. Measurements started in March–April, 

2008. First stages of the crop development were thus 

missed. However, the period for which the crop 

presented its full development (April–June), as well as 

the senescence stages, was covered.  

 

3. METHODOLOGY 

3.1 MERIS data 

MERIS images were downloaded from the MERCI 

interface and processed with BEAM VISAT software 

(version 4.8). The algorithm employed to retrieve 

biophysical parameters was TOC (Top of Canopy) 

Vegetation Processor. Detailed information concerning 

the algorithm can be found in the literature [7, 8]. 

Values retrieved for LAI and FPAR corresponded to 

the pixel centred on the measuring plot. Isolated gaps 

were refilled by linear interpolation between the 

previous and subsequent data or with the average value 

calculated for pixels surrounding this central pixel.  

MERIS images have a temporal resolution of 

approximately 3 days and they have been used in 

Reduced Resolution, RR, covering 1040 m x 1160 m. 

Biophysical parameters retrieved from the sensor were 

aggregated into 8–d composites for later calculations. 

 

3.2 Field data 

NEE, LE and H were measured using 

micrometeorological instrumentation by applying the 

EC technique. This instrumentation consists of an 

IRGA (InfraRed Gas Analyzer, Li–7500) and a sonic 

anemometer (USA–1) sampling at a frequency of 

10Hz. Instantaneous data were processed each 30min. 

TK2 software [9] was used to process these 30min 

averages to ensure the quality of the turbulent fluxes 

and ecosystem exchanges (water and carbon). The LUE 

model applied needs of other ancillary data, 

particularly meteorological measurements. The 

meteorological instrumentation is placed in a tower 

located a few meters from the tower housing the 

micrometeorological instrumentation. This is equipped, 

among others, with a quantum sensor to measure 



Photosynthetically Active Radiation, PAR, and sensors 

measuring soil and air temperature and moisture. All 

ground data were aggregated into 8–d composites in 

the same way than MERIS biophysical parameters. 

 

EF was calculated from LE and H measurements as 

follows: 

 

ܨܧ ൌ
ா

ாାு
   (1) 

    

GPP, a fundamental parameter to calibrate the LUE 

model, is indirectly derived by EC measurements as the 

difference between ecosystem respiration, RE, and 

NEE as follows: 

 

ܲܩ ܲ௦ ൌ ܧܴ െ  (2)   ܧܧܰ

 

CO2 total exchange plays a crucial role in the carbon 

balance, particularly to define the ecosystem behaviour 

as sink or source of carbon. Therefore, NEE and GPP 

datasets must be gap-filled in order to quantify the 

amount of carbon exchanged between the ecosystem 

and the atmosphere. 

 

RE can be measured experimentally using soil 

chambers [10] or parameterized from meteorological 

data. In this study, RE has been parameterized using 

the soil moisture, SM, and the air temperature, T. 

Since photosynthesis only takes place during daytime, 

GPP takes thus value 0 during nighttime. Hence, RE 

was determined using the NEE nocturnal data by 

means of a parameterization using a modified Van’t 

Hoff equation as follows: 

 

௧ܧܧܰ ൌ ௧ܧܴ ൌ ܽ · ܯܵ · exp ሺܾ · ܶሻ      (3) 

 

where the parameters a and b were obtained by a non–

linear fit using the Marquardt algorithm. Diurnal RE 

was then computed using the fitted Eq. 3 together with 

daytime values of SM and T. 

In this paper, NEE gaps during daytime have been 

filled by fitting a Michaelis–Menten equation relating 

NEE and PAR [11],  

 

ܧܧܰ ൌ
ఈ·ோ·ೌೣ

ఈ·ோାೌೣ
 ܴ       (4) 

 

where ߙ is the apparent quantum yield, ܲ௫ is the 

maximum photosynthetic assimilation, and ܴ is the 

ecosystem respiration. This equation was fitted for 

each 15–days period in order to obtain the best results 

regarding to changes in the crop development.  

 

3.3 SEBS methodology 

The single–source SEBS model [12] uses remote 

sensing products to calculate all energy balance 

components and EF.  

Net radiation, RN, is calculated as the sum of short and 

long–wave net radiation by applying the equations: 

 

ܴே ൌ ܴேሺܹܵሻ  ܴேሺܹܮሻ                  (5) 

 

ܴேሺܹܵሻ ൌ ሺ1 െ ሻߙ · ܴௌௐௗ                         (6) 

ܴேሺܹܮሻ ൌ ݏ݅݉݁ · ܴௐௗ െ ݏ݅݉݁ · ௌߪ ·  ସ      (7)ܶܵܮ

 

where ߙ and emis are the albedo and emissivity, 

respectively, LST is the land surface temperature, ߪௌ 

is the Stefan–Boltzmann constant, and ܴௌௐௗ and ܴௐௗ 

are downward short and long–wave radiation, 

respectively. Soil heat flux, G, is calculated from RN 

using a non–linear equation [13]: 

 

ܩ ൌ ܴே · ܥ · exp ሺെߚ ·  ሻ       (8)ܫܣܮ

 

where C and ߚ are fitted parameters. 

H is calculated iteratively until the lowest error is 

obtained, taking into account that the values should be 



constrained between H values in dry and wet limits, 

 .ௐܪ   andܪ

Finally, EF is calculated using relative evaporation, 

relevap, and H in the wet limit as follows: 

 

ܨܧ ൌ ௩݈݁ݎ ·
ሺோಿିீିுೈಽሻ

ሺோಿିீሻ
       (9) 

 

In this paper, the SEBS algorithm has been modified in 

order to obtain better results for H and EF. 

Modification has been applied to the calculation of the 

roughness for heat transfer, zoh, used in H calculation 

given by 

 

ݖ ൌ
௭బ

ୣ୶୮ ሺషభሻ
            (10) 

 

where ݖ is the roughness height for momentum 

transfer and kB-1 is a parameter depending on 

biophysical parameters related to vegetation 

development retrieved from remote sensing. A scale 

factor depending on SM has been applied to the 

calculation of kB-1 as described in the literature [14]. A 

rescaled kB-1 parameter is obtained by applying this 

scale factor, improving results for H and EF. 

SM used in the scale factor is retrieved from the 

AMSR–E sensor onboard Aqua satellite.  

Further information concerning the SEBS algorithm 

[12] and its modification [14] can be found in the 

literature. 

 
4. LUE MODEL 

The LUE model proposed by Monteith is based on the 

linear relationship between GPP and APAR, where 

APAR is the product of direct ground PAR 

measurements and FPAR provided by MERIS. 

Different LUE models have been formulated taking 

into account different vegetation indices [15]. In these 

models the value for the efficiency has been usually 

considered constant regardless of the ecosystem 

studied [6, 15]. However, due to the wide influence of 

the vegetation features in the efficiency, ߝ varies 

greatly as a function of vegetation types, as well as 

climate conditions. 

 

Previous researches have evaluated how the lack of 

water and changes in temperature limit the 

photosynthetic activity of the vegetation [15, 16]. The 

decrease in the photosynthetic activity and, therefore, 

changes in the efficiency of the vegetation/ecosystem 

due to water and temperature stress, are taking into 

account using a scalar factor varying between 0 and 1. 

In the model applied in this study temperature stress is 

dependent on T and water stress is assumed to be equal 

to EF [16, 17]. Therefore,  

 

ܲܲܩ ൌ ߝ · ܨܧ · ݂ሺܶሻ · ܴܣܲ ·  (11)  ܴܣܲܨ

 

where ߝ is the maximum PAR conversion efficiency.  

Eq. 11 can be reformulated as 

 

ܲܩ ܲ௦ ൌ ߝ · ܲܩ ெܲாோூௌ/ௌாௌ   (12) 

 

where the subscript MERIS or SEBS indicates if EF 

from ground or SEBS has been used, respectively, in 

Eq. 11. 

 

5. RESULTS 

Relationship between NEE and PAR is shown in Fig. 2 

and also the fit line obtained by applying Eq. 4. As an 

example, months from April to June are displayed, 

although in this study all available data for the whole 

agricultural year are considered. For these months the 

crop is fully developed and NEE presents its maximum 

negative values. From this result can be inferred the 

marked seasonal evolution of NEE and the crop 

behavior as a CO2 sink (negative values of NEE), 

removing carbon from the atmosphere.  



 

 

Figure 2. Seasonal evolution of NEE (lower) and crop development (upper) 

 

Maximum peak for CO2 uptake is found out in May 

coinciding with the total development of the rapeseed 

(see picture for May in Fig. 2). In June the crop starts 

its senescence period and NEE reaches less negative 

values than in previous months but still behaves as a 

sink. GPP applied to the LUE model is calculated from 

these direct measurements of NEE and respiration by 

Eq. 2, once NEE and RE datasets have been gap-filled 

using Eq. 3-4.   

 

Since SM retrieved from AMSR–E is used by SEBS, a 

comparative analysis between those values and 

ground–measurements is made. Fig. 3 shows the 

seasonal course followed for both datasets. As derived 

from this graph, a similar pattern and good agreement 

(slope = 0.55; R2 = 0.49) are found. This result probes 

that SM retrieved from AMSR–E might be 

representative for the studied plot in spite of the high 

spatial resolution of AMSR–E (25km).  

 

As  stated  before, the  LUE  model uses EF  as a factor 

to  take  into  account  water stress  into the  vegetation.  
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Figure 3. Comparison of the SM retrieved from 

AMSRE and measured in the studied plot 

 

In this paper, this parameter has been calculated using 

two different approaches. So, two different EF datasets 

have been obtained. Firstly, EF has been calculated 

from ground measurements using Eq. 1. Separately, EF 

has been determined by applying the SEBS model to 

the studied plot. The comparison of both datasets, 

depicted in Fig. 4, shows the similarities in the seasonal 

variation. Despite this general trend, it should be noted 



that EF retrieved from SEBS tended to overestimating 

the ground values during the whole year and 

particularly after July (after the harvest). In summer, 

EF values was expected to be lower due to the lack of 

precipitation and vegetation cover. However, EF 

retrieved from SEBS yielded unrealistic high values, 

above 0.4 during this period and even higher in 

autumn. 
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Figure 4. Comparative of the EF calculated from 

ground measurements and SEBS–retrieved 

 

Finally, ߝ is inferred through the slope of the linear 

regression fit given by Eq. 12. GPP observed (GPPobs) 

is plotted against the GPP modelled (GPPMERIS/SEBS) as 

shown in Figs. 5-6, and the goodness of the fit can be 

derived. Estimated ߝ for the rapeseed, given by the 

slope value, is 2.82 gC MJ-1 when EF used in the LUE 

model is that obtained from ground measurements, and 

2.59 gC MJ-1 when EF retrieved from SEBS is used. 

The LUE model fitted properly the GPP estimates 

using the EF from ground–measurements and that 

calculated with SEBS with squared correlation 

coefficient, ܴଶ, of 0.89 and 0.81, respectively. 

  values, independently the source of which EF isߝ

retrieved, are slightly higher than other results reported 

in the literature for crops [11]. The lower ߝ value 

obtained when EF from SEBS is used might be 

attributed to the high EF values during summer, which 

does not seem to reflect the real lack of water for that 

period.  
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Figure 5. LUE model applying the EF calculated with 

SEBS model and MERIS data 
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Figure 6. LUE model applying EF calculated from 

ground measurements and MERIS data 

 

6. CONCLUSIONS 

A LUE model based on FPAR measurements retrieved 

from MERIS and EF has been calibrated over a 

rapeseed cropland in order to calculate the maximum 

PAR conversion efficiency of this crop. 

Water stress is taken into account in the LUE model 

through EF values calculated by two methods whilst 



the rest of the parameters in Eq. 11 have been not 

modified. Firstly, EF was calculated from ground 

measurements of LE and H. Secondly, an energy 

balance model (SEBS) was applied over the studied 

plot to obtain a new EF dataset. A good agreement has 

been found between both datasets; however, SEBS 

tends to overestimate EF values. This overestimation is 

more marked after the crop is harvested. 

The SEBS model applied to calculate EF has been 

modified by applying a scale factor dependent on SM. 

An assessment of the SM used by the algorithm has 

been made and a comparison between these values and 

those measured is shown in this paper. Similar seasonal 

pattern is found for the two SM datasets. These results 

lead to consider SM values retrieved from AMSR–E 

representative for the studied plot. 

Finally, ߝ is calculated through the calibration of a 

LUE model over a rapeseed crop. This parameter 

presents lower differences whether the ground–based 

or SEBS–based EF is used in the LUE model. Final ߝ 

value obtained is slightly higher than the typical values 

reported in the literature for crops. Besides, it should be 

mentioned that the rapeseed has not been widely 

studied and values for the efficiency of this crop are 

rarely found in the literature. The high efficiency 

values found in this study evidence the ability of the 

rapeseed to behave as a CO2 sink.  
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