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Numerical Dispersion Relation for the 2D
LOD­FDTD Method in Lossy Media

José A. Pereda and Ana Grande

Abstract—A closed­form expression is derived for the numer­
ical dispersion relation of the 2D locally one­dimensional finite­
difference time­domain (LOD­FDTD) method in lossy media. In
contrast to the lossless formulation, we found that transverse­
electric (TE ) and transverse­magnetic (TM ) waves in lossy
media exhibit different numerical dispersion relations. Moreover,
when the material relaxation­time constant is not well resolved
by the integration time­step the TM case shows much worse
accuracy than the TE case. To remove this limitation, a split­
field LOD­FDTD formulation for TM waves is then considered
which exhibits the same dispersion relation as the LOD­FDTD
method for TE waves. The validity of the theoretical results is
illustrated through numerical simulations.

Index Terms—Locally­one­dimensional finite­difference time­
domain (LOD­FDTD) method, lossy media, numerical dispersion.

I. INTRODUCTION

Over the past 15 years there has been a growing interest
in developing efficient unconditionally­stable finite­difference
time­domain (FDTD) techniques such as the alternating­
direction implicit (ADI)­ and the locally one­dimensional
(LOD)­FDTD methods (see [1] and references within).
Both ADI­ and LOD­FDTD techniques were early extended

to include lossy and dispersive materials [2]­[5]. As a result of
the FD approximations, these methods suffer from numerical
dispersion (phase errors) and numerical dissipation (amplitude
errors). Both factors can be quantified by solving the numerical
dispersion relation associated to the governing FD equations.
This is a requisite for a mature understanding of the operation
and accuracy limits of every FDTD algorithm.
The numerical properties of the ADI­FDTD method in lossy

media have been extensively studied [6]­[11]. However, to the
best of our knowledge, the study of LOD­FDTD formulations
in lossy media has not been addressed yet.
In this letter a closed­form expression is derived for the

numerical dispersion relation of the 2D LOD­FDTD method
in lossy media. Transverse­electric (TE ) and transverse­
magnetic (TM ) waves are both considered. For the sake of
generality, weighted averages in time are used for discretizing
the conduction terms. In contrast to what occurs in the lossless
formulation, we show that TE and TM waves in lossy media
exhibit different numerical dispersion relations.
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For TE waves, we show that by properly selecting the
values of the weighted­average parameters the accuracy of the
formulation becomes independent of how well the material
relaxation­time constant is resolved by the integration time­
step . On the contrary, the same is not feasible for TM
waves. To remove this restriction a split­field LOD­FDTD
formulation is proposed. The theoretical results are validated
by actual simulations.

II. THE LOD­FDTD METHOD FOR TE WAVES

Maxwell‘s curl equations for TE waves in isotropic and
source­free media with permittivity , permeability and
conductivity can be expressed as

(1a)

(1b)

(1c)

Following the LOD technique [12], the Crank­Nicolson
scheme is first applied to (1). The resulting set of FDTD
equations is then perturbed and factorized. Finally, after a
further splitting into two time sub­steps, we obtain

Sub­step 1

(2a)

(2b)

(2c)

Sub­step 2

(3a)

(3b)

(3c)

where and are central­difference operators defined as
in [8], and . Weighted averages have been
taken for approximating the conduction terms in (2b) and (3a).
We consider the weighted­average parameters subjected to the
constraints and
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Note that the above LOD formulation involves parameters
per electric field component, while parameters per

electric field component are needed in the ADI case [8]. The
reason for this is that and are not actually split in
the LOD case. Here, for comparison purposes the parameters

and used in the ADI formulation, are
implicitly assumed to be zero.
Following the same approach as in [8], we find that the

numerical dispersion relation in the ­domain for (2) and (3)
is

(4)

with

(5a)

(5b)

and

(6)

where is the numerical wavenumber in the ­direction. Note
that (4) has the same form as in the ADI case [8, eq. (12)],
but with different expressions for and
By doing in (4), we obtain the numerical

dispersion relation in the frequency domain, which reads

(7)

where is the numerical complex permittivity.
A number of FD schemes with different numerical proper­

ties can be obtained depending on the specific values of the
parameters . A convenient choice is
and which leads to

(8)

As a consequence, the same dispersion relation as in the ADI
case (synchronized scheme) is obtained. Moreover, with this
choice, the accuracy does not depend on whether resolves
adequately , as in the Crank­Nicolson method [8].

III. THE LOD­FDTD METHOD FOR TM WAVES

Maxwell‘s curl equations for TM waves can be expressed
as

(9a)

(9b)

(9c)

According to the LOD­FDTD method, (9) is discretized as
follows

Sub­step 1

(10a)

(10b)

(10c)

Sub­step 2

(11a)

(11b)

(11c)

with . Note that now the electric field is split in
time but the magnetic field is not.
Following the same approach as in the TE case, the

dispersion relation in the ­domain for (10) and (11) reads

(12)
where

(13)

and

(14a)

(14b)

By doing in (12), we obtain the following
frequency­domain dispersion relation

(15)
It is worth noting that (15) is exactly the same as the dispersion
relation previously obtained for the ADI­FDTD method in the
case of TM waves [9, eq. (4)]. Therefore, all the discussion
carried out in [9] applies to the present case and will not
be repeated here. A common choice for the weighted­average
parameters is However, we recall that,
independently of the weighted­average parameter choice, to
achieve good accuracy must be well resolved by . To
overcome this limitation a split­field formulation is proposed
in the next section.
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Fig. 1. Relative phase and attenuation errors against the propagation angle.
Results calculated by the LOD­FDTD method for TE waves with = 1 8
S/m, = 40 and = 20

IV. A SPLIT­FIELD LOD­FDTD METHOD FOR TM WAVES

Consider the following split­field version of (9) as governing
equations:

(16a)

(16b)

(16c)

(16d)

with Note that the above equations coincide
with the Berenger split­field approach when in the latter the
magnetic conductivities are set equal to zero [4], [13].

Applying the LOD­FDTD method to (16), the following set
of difference equations is obtained:

Sub­step 1

(17a)

(17b)

(17c)

(17d)
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Fig. 2. Relative phase and attenuation errors against the propagation angle.
Results calculated by the LOD­FDTD method for TE waves with = 18
S/m, = 40 and = 20

Sub­step 2

(18a)

(18b)

(18c)

(18d)

It is worth noting that in practice (17) and (18) reduce to a one
step formulation. The numerical dispersion relation and the
numerical permittivity for this formulation are found to be the
same as the ones given in (7) and (8), respectively. Therefore,
as was discussed in section II, the condition is not
required to achieve high accuracy.

V. NUMERICAL RESULTS

With the aim of illustrating the validity of the above theo­
retical results, the numerical phase and attenuation constants
in a homogeneous lossy material have been calculated. The
procedure followed has been the same as the one described in
[14] and previously used in [8] and [9]. All the results have
been calculated at the frequency GHz. The permittivity
and permeability of the lossy material are the same as in the
free space. Square cells with have been
used for discretizing the computational domain. The spatial
resolution was defined as , being the exact
wavelength in the lossy material (at 10 GHz). In the same
way, the temporal resolution was defined as , being

the period of the wave.
Figs. 1 and 2 display the relative errors for phase and

attenuation against the propagation angle for TE waves with
parameters and resolutions
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Fig. 3. Relative phase and attenuation errors against the propagation angle.
Results calculated by the LOD­FDTD method for TM waves with = 18
S/m, = 40 and = 20.

and . The conductivity in Fig. 1 was
S/m, consequently and , where is
the maximum stable time step allowed by the conventional
FDTD method. In Fig. 2 the conductivity was S/m,
so in this case and . It can be seen
that all the errors remain under even though is 10
times greater than in Fig. 2. The theoretical results obtained
by directly solving (7) have been plotted by lines and those
computed by actual field simulations have been denoted by
markers. Excellent agreement is observed between theory and
simulation. In fact, the difference between both sets of results
is typically within 10
Fig. 3 depicts the same case as in Fig. 2 but for TM waves

with Now very high phase and attenuation
errors can be seen for angles outside the diagonal ( ).
Finally, in Fig. 4 the same example as in Fig. 2 is considered

again. The difference is that in Fig. 4 the results have been
obtained by using the proposed split­field LOD­FDTD method
for TM waves. It can be seen that these results replicate those
obtained in Fig. 2 for the TE case.

VI. CONCLUSION

The numerical dispersion relation for the 2D LOD­FDTD
method in lossy media has been derived in a closed­form. For
TE waves the numerical dispersion relation is, in general,
different from that of the ADI case. However, if central
averages are used to approximate the conduction terms the
dispersion relation becomes the same as in the synchronized­
scheme­ADI case [8]. A salient feature of this choice is
that the condition is not required in order to
achieve high accuracy. For TM waves, both LOD and ADI
formulations exhibit an identical numerical dispersion relation.
Unfortunately, for any choice of the average parameters, the
condition is necessary to achieve high accuracy.
To overcome this limitation we have proposed a split­field
TM formulation that exhibits the same numerical dispersion
relation as for TE waves.
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Fig. 4. Relative phase and attenuation errors against the propagation angle.
Results calculated by the split­field LOD­FDTD method for TM waves with
= 18 S/m, = 40 and = 20
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