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Abstract

Semiuninorm-based ordered weighted averaging (SUOWA) operators
are a specific case of Choquet integrals that allow us to generalize simul-
taneously weighted means and ordered weighting averaging (OWA) opera-
tors. Although SUOWA operators possess some very interesting properties,
their main weakness is that, sometimes, the game used in their construction
is not monotonic and it is necessary to calculate its monotonic cover. In
this paper, we introduce a new family of weighting vectors, called unimodal
weighting vectors, which embrace some of the most outstanding weighting
vectors used in the framework of OWA operators, and we show that when
using these weighting vectors and a specific semiuninorm we directly get
normalized capacities. Moreover, we also show that these operators satisfy
some properties which are very useful in practice.

1. INTRODUCTION

The study of aggregation operators is a hot topic in several scientific fields that
is generating a rich literature.1–3 An interesting issue is the construction of func-
tions that allow us to combine weighted means and ordered weighting averaging
(OWA) operators4 in a single function. Remember that both weighted means
and OWA operators are defined by means of nonnegative vectors that sum to one
(weighting vectors). However, the role of the weighting vectors in both families
of functions is quite different: in the weighted means, the weights allow us to
take into account the importance of the information sources while in the OWA
operators the weights allows us to take into account the relative size of the values.

The usual approach followed in the literature for combining weighted means
and OWA operators is to consider functions parametrized by two weighting vec-
tors, p for the weighted mean and w for the OWA operator, so that we can
recover the weighted mean when w = (1/n, . . . , 1/n) and the OWA operator
when p = (1/n, . . . , 1/n). Among the solutions proposed in the literature,5
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the weighted OWA (WOWA) operators,6 and the semiuninorm-based ordered
weighted averaging (SUOWA) operators7 are very interesting because they can
be expressed through Choquet integrals with respect to normalized capacities
(it is worth noting thatBeliakov 8 has suggested recently a new method of in-
troducing weights into an OWA type aggregation). In this way, both families
of functions are monotonic, compensative, idempotent, continuous, and homo-
geneous of degree 1.

The study of SUOWA operators has been carried out in several papers,7,9–13
where it has been shown that these functions exhibit some interesting proper-
ties. Nevertheless, the main weakness of these functions is that, sometimes, the
construction of the capacities is not straightforward given that it is necessary
to calculate the monotonic cover of certain games, which are obtained by us-
ing semiuninorms14 with neutral element 1/n and the values of the capacities
associated with the weighted means and the OWA operators.

The aim of this paper is to show that the previous weakness can be avoided
on numerous occasions. For that, we introduce a new family of weighting vectors,
called unimodal weighting vectors, that includes some of the most outstanding
weighting vectors used in the literature of OWA operators: nonincreasing, non-
decreasing, centered weighting vectors, etc. Through the use of these weighting
vectors and a specific semiuninorm, Umax

min , we show that the games used in the
construction of SUOWA operators are normalized capacities, which are explicitly
given in the paper. Of particular interest is the case where the OWA operator
has a behavior similar to that of the winsorized means; that is, where it is the
arithmetic mean of the values after replacing the highest and/or lowest values
with the most extreme remaining value(s). In this case, the SUOWA operator
is the weighted mean of the values after applying the same procedure; that is,
after replacing the highest and/or lowest values with the most extreme remaining
value(s).

We also study some properties of these operators. Specifically, we prove
that the weight affecting the component xi is located between the corresponding
weights of the weighted mean and the OWA operator. Likewise, we analyze
these capacities in relation to the balancing, subadditivity and superadditivity
properties and we also show that their dual capacities are obtained by using
the dual of the weighting vectors w. Lastly, we emphasize that these operators
preserve the conjunctive/disjuntive character of the OWA operator associated
with them, so that we get functions located between two order statistics that
take into account the weights of the information sources.

The remainder of the paper is organized as follows. In Section 2 we present a
brief survey of Choquet integral, including weighted means and OWA operators.
Section 3 is devoted to recall the definition and basic properties of semiuninorms
and SUOWA operators. In Section 4 we introduce unimodal weighting vectors
and show that a lot of weighting vectors used in the literature of OWA operators
are unimodal. Sections 5 and 6 collect the main results of the paper: In Sec-
tion 5 we establish the results that allow us to construct the capacities through
unimodal weighting vectors, whereas in Section 6 we analyze some properties of
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these capacities. Finally, some concluding remarks are provided in Section 7.

2. CHOQUET INTEGRAL

The following notation will be used throughout the paper: N = {1, . . . , n}; given
A ⊆ N , Ac and |A| denote, respectively, the complement and the cardinality of
A; vectors are denoted in bold; η denotes the tuple (1/n, . . . , 1/n) ∈ Rn; and
we will write x ≥ y if xi ≥ yi for all i ∈ N . Given x ∈ Rn, [·] and (·) denote
permutations such that x[1] ≥ · · · ≥ x[n] and x(1) ≤ · · · ≤ x(n). Moreover, given
a ∈ R, bac and dae will denote, respectively, the floor and the ceiling of a; i.e.,
the largest integer smaller than or equal to a, and the smallest integer larger
than or equal to a.

Given F : Rn −→ R, some well-known properties of F are the following:

1. Symmetry: F (xσ(1), . . . , xσ(n)) = F (x1, . . . , xn) for all x ∈ Rn and for all
permutation σ of N .

2. Monotonicity: x ≥ y implies F (x) ≥ F (y) for all x,y ∈ Rn.

3. Idempotency: F (x, . . . , x) = x for all x ∈ R.

4. Compensativeness (or internality): min(x) ≤ F (x) ≤ max(x) for all x ∈
Rn.

5. Homogeneity of degree 1 (or ratio scale invariance): F (rx) = rF (x) for all
x ∈ Rn and r > 0.

In the last years, Choquet integral15 has become more and more important
in the field of decision theory, due mainly to its simplicity, versatility and good
properties. Choquet integrals are defined from capacities15 (also known in the
literature as fuzzy measures16). The notion of capacity is similar to that of prob-
ability measure, where the additivity property is changed by monotonicity. And
a game is a generalization of a capacity without the monotonicity assumption.

Definition 1.

1. A game υ on N is a set function, υ : 2N −→ R satisfying υ(∅) = 0.

2. A capacity (or fuzzy measure) µ on N is a monotonic game on N (that is,
µ(A) ≤ µ(B) whenever A ⊆ B). In particular, it follows that µ : 2N −→
[0,∞). A capacity µ is said to be normalized if µ(N) = 1.

Given a game υ, the monotonic cover17,18 of υ is the smallest capacity that
contains it.

Definition 2. Let υ be a game on N . The monotonic cover of υ is the set
function υ̂ given by

υ̂(A) = max
B⊆A

υ(B).
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By construction, υ̂ is a capacity on N and, when υ is a capacity, υ̂ = υ.
Moreover, the monotonic cover of a game satisfies the following property.

Remark 1. Let υ be a game on N . If υ(A) ≤ 1 for all A ⊆ N and υ(N) = 1,
then υ̂ is a normalized capacity.

The dual of a normalized capacity is defined as follows.

Definition 3. Let µ be a normalized capacity on N .

1. The dual capacity of µ, denoted as µ, is the normalized capacity defined by

µ(A) = 1− µ(Ac) (A ⊆ N).

2. µ is self-dual if µ = µ.

Although the Choquet integral is usually defined as a functional,15,19 in the
discrete case it can also be seen as an aggregation function over Rn (see, for
instance, Grabisch et al. 2, p. 181). Moreover, by similarity with the definition of
OWA operators, we represent it by using nonincreasing sequences of values.7,20

Definition 4. Let µ be a capacity on N . The Choquet integral with respect to
µ is the function Cµ : Rn −→ R given by

Cµ(x) =
n∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
, (1)

where A[i] = {[1], . . . , [i]}, and we use the convention x[n+1] = 0.

Choquet integral can also be written by explicitly showing the weights of the
components x[i],

Cµ(x) =
n∑
i=1

(
µ(A[i])− µ(A[i−1])

)
x[i], (2)

where we use the convention A[0] = ∅. Some useful properties of the Choquet
integral are given in the following remarks (see, for instance, Grabisch et al. 2,
pp. 192–196).

Remark 2. If µ is a normalized capacity on N , then Cµ is continuous, monotonic,
idempotent, compensative and homogeneous of degree 1.

Remark 3. Let µ1 and µ2 be two capacities on N . Then µ1 ≤ µ2 if and only if
Cµ1 ≤ Cµ2 .

Two of the most popular specific cases of Choquet integral are the weighted
means and the OWA operators.4 Both are defined by using weight distributions
that add up to 1.

Definition 5. A vector q ∈ [0, 1]n is a weighting vector if
∑n

i=1 qi = 1.

Definition 6. Let p and w be two weighting vectors.
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1. The weighted mean associated with p is the function Mp : R
n −→ R given

by

Mp(x) =
n∑
i=1

pixi.

2. The OWA operator associated with w is the function Ow : Rn −→ R given
by

Ow(x) =
n∑
i=1

wix[i].

The normalized capacities from which we obtain weighted means and OWA
operators are given in the following remark.7,21–23

Remark 4. Let p and w be two weighting vectors.

1. The weighted mean Mp is the Choquet integral with respect to the nor-
malized capacity µp(A) =

∑
i∈A pi.

2. The OWA operator Ow is the Choquet integral with respect to the nor-
malized capacity µ|w|(A) =

∑|A|
i=1wi.

So, according to Remark 2, weighted means and OWA operators are con-
tinuous, monotonic, idempotent, compensative and homogeneous of degree 1.
Moreover, OWA operators are also symmetric given that the values of the vari-
ables are previously ordered in a nonincreasing way.

It is also well known that µp is self-dual; that is, µp = µp, and that µ|w| = µ|w|,
where w is the dual of w; that is, the weighting vector defined by wi = wn+1−i,
i = 1, . . . , n.

3. SUOWA OPERATORS

SUOWA operators7 were introduced for dealing with situations where both the
importance of information sources and the importance of values have to be taken
into account. They are defined through semiuninorms,14 which are monotonic
functions with a neutral element in the interval [0, 1]. Semiuninorms were sug-
gested as a generalization of uninorms,24 which in turn were introduced as a
generalization of t-norms and t-conorms.

Definition 7. A function U : [0, 1]2 −→ [0, 1] is a semiuninorm if it is mono-
tonic and has a neutral element e ∈ [0, 1]

(
U(e, x) = U(x, e) = x for all

x ∈ [0, 1]
)
. A semiuninorm U is a uninorm if it is symmetric and associative(

U(x, U(y, z)) = U(U(x, y), z) for all x, y, z ∈ [0, 1]
)
.

The set of semiuninorms (respectively, idempotent semiuninorms) with neu-
tral element e ∈ [0, 1] will be denoted by U e (respectively, U ei ).

The semiuninorms employed in the definition of SUOWA operators have 1/n
as neutral element and have to belong to the following subset7:

Ũ1/n =
{
U ∈ U1/n | U(1/k, 1/k) ≤ 1/k for all k ∈ N

}
.
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Figure 1: The semiuninorm Umax
min for n = 4.

Obviously U1/n
i ⊆ Ũ1/n. Note also that the smallest and the largest elements

of U1/n
i are, respectively, the following uninorms24:

Umin(x, y) =

{
max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) otherwise,

and

Umax(x, y) =

{
min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

In addition to Umin and Umax, another interesting idempotent semiuninorm,
which is used in this paper, is the following10:

Umax
min (x, y) =


min(x, y) if y < 1/n,

x if y = 1/n,

max(x, y) if y > 1/n.

The plot of this semiuninorm, for the case n = 4, is given in Figure 1.
SUOWA operators a specific case of the Choquet integral where their capac-

ities are the monotonic cover of certain games. These games are constructed
through semiuninorms with neutral element 1/n and the values of the capacities
associated with the weighted means and the OWA operators. Specifically, the
definition of these games is the following.

Definition 8. Let p and w be two weighting vectors and let U ∈ Ũ1/n.
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1. The game associated with p, w and U is the set function υUp,w : 2N −→ R

defined by

υUp,w(A) = |A|U
(
µp(A)

|A|
,
µ|w|(A)

|A|

)
if A 6= ∅, and υUp,w(∅) = 0.

2. υ̂Up,w, the monotonic cover of the game υUp,w, will be called the capacity
associated with p, w and U .

Notice that υUp,w(A) ≤ 1 for all A ⊆ N and υUp,w(N) = 1. Therefore, according
to Remark 1, υ̂Up,w is always a normalized capacity.

Definition 9. Let p and w be two weighting vectors and let U ∈ Ũ1/n. The
SUOWA operator associated with p,w and U is the function SUp,w : Rn −→ R

given by

SUp,w(x) =
n∑
i=1

six[i],

where si = υ̂Up,w(A[i])− υ̂Up,w(A[i−1]) for all i ∈ N , υ̂Up,w is the capacity associated
with p,w and U , and A[i] =

{
[1], . . . , [i]

}
(with the convention that A[0] = ∅).

According to expression (1), the SUOWA operator associated with p,w and
U can also be written as

SUp,w(x) =
n∑
i=1

υ̂Up,w(A[i])
(
x[i] − x[i+1]

)
. (3)

By the construction of υ̂Up,w, we have SUp,η = Mp and SUη,w = Ow for any
U ∈ Ũ1/n. Moreover, by Remark 2 and since υ̂Up,w is a normalized capacity,
SUOWA operators are continuous, monotonic, idempotent, compensative and
homogeneous of degree 1.

4. UNIMODAL WEIGHTING VECTORS

A fundamental issue when using an OWA operator is the choice of the weighting
vector. So, this topic has generated an abundant literature in the last years,25–27
which has motivated the emergence of numerous families of OWA operators.
Two of the most outstanding are the window-OWA operators28 (also known as
trimmed means when they are self-dual) and the centered OWA operators.29

Definition 10. A window-OWA operator is an OWA operator defined by means
of a weighting vector of the form

wi =

{
1/m if i = r, . . . , r +m− 1,

0 otherwise,

where r,m ∈ N , with r +m ≤ n+ 1.
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Note that window-OWA operators allow us to remove extreme values in the
aggregation process and, in this way, to avoid the bias caused by extreme inputs.
Some well-known specific cases of window-OWA operators are the arithmetic
mean, the median, the olympic OWA operators30 (where w1 = wn = 0 and
w2 = · · · = wn−1 = 1/(n− 2)) and the order statistics (also known as Step-OWA
operators28): The kth order statisticOSk(x) = x(k) is obtained when wn−k+1 = 1,
and the remaining weights are equal to zero.

Definition 11. An OWA operator is said to be a centered OWA operator if its
associated weighting vector w satisfies the following conditions:

1. wi = wn+1−i, i = 1, . . . , bn/2c.

2. wi < wj whenever i < j ≤ b(n+ 1)/2c, or i > j ≥ b(n+ 1)/2c.

3. w1 > 0.

Notice that centered OWA operators allow to give more importance to the
central values and less weight to the extreme scores. Specific cases of centered
OWA operators are the following ones:

1. Binomial OWA operators:

wi =

(
n−1
i−1

)
2n−1

, i = 1, . . . , n.

2. Gaussian OWA operators29,31:

wi =
e−(i−µn)

2/(2σ2
n)∑n

j=1 e
−(j−µn)2/(2σ2

n)
, i = 1, . . . , n,

where µn = (n+ 1)/2 and σ2
n = (n2 − 1)/12.

On the basis of unimodal sequences of real numbers (a well-known concept
in the literature of sequences; see, for instance, Brenti 32 and references therein),
we introduce a new family of OWA operators that generalizes the previous ones.

Definition 12.

1. A finite sequence of real numbers a1, a2, . . . , an is unimodal if there exists
an index k such that a1 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an.

2. An OWA operator is said to be unimodal if its associated weighting vector
w is unimodal.

Besides centered and window-OWA operators, the following families of OWA
operators are also unimodal:

1. OWA operators associated with nonincreasing weighting vectors (w1 ≥
w2 ≥ · · · ≥ wn). For instance:
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(a) Orlike-window OWA operators28:

wi =

{
1/m if i = 1, . . . ,m,

0 otherwise.

(b) Orlike S-OWA operators33:

wi =

{
λ+ 1−λ

n
if i = 1,

1−λ
n

otherwise,

where λ ∈ [0, 1].

(c) Optimistic exponential OWA operators34:

wi =

{
α(1− α)i−1 if i = 1, . . . , n− 1,

(1− α)n−1 otherwise,

where α ∈ [0.5, 1].

(d) Binomial OWA operators introduced by Calvo and De Baets 35 :

wi =

(
n−i
j−1

)(
n
j

) , i = 1, . . . , n,

where j ∈ N .

(e) OWA operators proposed by Ahn 36 :

wi =
1

n

n∑
j=i

1

j
, i = 1, . . . , n,

wi =
2(n+ 1− i)
n(n+ 1)

, i = 1, . . . , n.

(f) OWA operators based on exponential distribution37:

wi =
e−i/µn∑n
j=1 e

−j/µn
, i = 1, . . . , n,

where µn = λ(n+ 1) and 1/(n+ 1) ≤ λ ≤ n/(n+ 1).

2. OWA operators associated with nondecreasing weighting vectors (w1 ≤
w2 ≤ · · · ≤ wn). For instance:

(a) Andlike-window OWA operators28:

wi =

{
0 if i = 1, . . . , n−m,
1/m otherwise.
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(b) Andlike S-OWA operators33:

wi =

{
1−λ
n

if i = 1, . . . , n− 1,

λ+ 1−λ
n

otherwise,

where λ ∈ [0, 1].
(c) Pessimistic exponential OWA operators34:

wi =

{
αn−1 if i = 1,

(1− α)αn−i otherwise,

where α ∈ [0, 0.5].
(d) OWA operators proposed by Ahn 36 :

wi =
1

n

i∑
j=1

1

n− j + 1
, i = 1, . . . , n,

wi =
2i

n(n+ 1)
, i = 1, . . . , n.

(e) OWA operators based on the inverse form of exponential distribu-
tion37:

wi =
ei/µn∑n
j=1 e

j/µn
, i = 1, . . . , n,

where µn = λ(n+ 1) and 1/(n+ 1) ≤ λ ≤ n/(n+ 1).

3. The binomial OWA operators introduced by León et al. 38 :

wi =

(
n− 1

i− 1

)
(1− α)i−1αn−i, i = 1, . . . , n,

where α ∈ [0, 1].a

4. OWA operators associated with weighting vectors obtained as a mixture of
binomial and discrete uniform probabilities38:

wi = λ

(
n− 1

i− 1

)
(1− α)i−1αn−i + (1− λ) 1

n
, i = 1, . . . , n,

where α, λ ∈ [0, 1].

5. OWA operators based on normal distribution37:

wi =
e−(i−µn)

2/(2σ2
n)∑n

j=1 e
−(j−µn)2/(2σ2

n)
, i = 1, . . . , n,

where µn = λ(n+1), 1/(n+1) ≤ λ ≤ n/(n+1), and σ2
n = 1

n

∑n
i=1(i−µn)2).

aIt is easy to check that these weights are strongly logarithmically concave and, conse-
quently, unimodal.39
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It is also worth noting that the optimal solutions of some methods proposed
in the literature for choosing the weighting vectorw have arithmetic or geometric
form25,40; therefore they are nonincreasing or nondecreasing weighting vectors.
Moreover, it is easy to check that the dual of a unimodal weighting vector is also
unimodal. On the other hand, notice that when we add zeros at the beginning
or end of a unimodal weighting vector we get another unimodal weighting vector
(this is an easy procedure to obtain OWA operators located between two order
statistics). So, this new family is very extensive and includes some of the most
outstanding weighting vectors used in the literature of OWA operators.

The set of the weighting vectors corresponding to unimodal OWA operators
will be denote by Wu.

5. SUOWA OPERATORS CONSTRUCTED THROUGH
UNIMODAL WEIGHTING VECTORS

As noted in the introduction, the main weakness of SUOWA operators is that,
sometimes, υUp,w (the game associated with the weighting vectors p and w and
the semiuninorm U) is not a capacity, and then it is necessary to calculate the
monotonic cover of this game, υ̂Up,w. So, it is interesting to know the weighting
vectors and semiuninorms that allow us to directly obtain a capacity. In this
sense, some results on this issue have been given for several semiuninorms.10–12

In relation to the semiuninorm Umax
min , the game υU

max
min
p,w is given by

υ
Umax
min
p,w (A) = |A|Umax

min

(
µp(A)

|A|
,
µ|w|(A)

|A|

)

=


min

(∑
i∈A pi,

∑|A|
i=1wi

)
, if

∑|A|
i=1wi < |A|/n,∑

i∈A pi, if
∑|A|

i=1wi = |A|/n,

max
(∑

i∈A pi,
∑|A|

i=1wi

)
, if

∑|A|
i=1wi > |A|/n,

(4)

for any weighting vector p and A ⊆ N , with |A| ≥ 1. In the analysis of the
monotonicity of υU

max
min
p,w , a first step was made by Llamazares,13 who proved that

when w correspond to a window-OWA operator, the game υU
max
min
p,w is a capacity.

Proposition 1. Let w be a weighting vector corresponding to a window-OWA
operator. Then, for any weighting vector p, υU

max
min
p,w is a normalized capacity on

N .

Now we generalize this result to unimodal weighting vectors. For this we will
use the following lemma.

Lemma 1. Let w ∈ Wu and q ∈ {1, . . . , n− 1}.

1. If q < n− 1 and
∑q

i=1wi > q/n, then
∑q+1

i=1 wi > (q + 1)/n.b

bNotice that when q = n− 1,
∑q+1

i=1 wi = 1 = (q + 1)/n.

11



2. If
∑q

i=1wi = q/n, then
∑q+1

i=1 wi ≥ (q + 1)/n.

Proof. We only proof the first statement, since the proof of the second one can
be obtained in a similar way. Given w ∈ Wu, there exists k ∈ N such that
w1 ≤ · · · ≤ wk−1 ≤ wk ≥ wk+1 ≥ · · · ≥ wn. We distinguish two cases:

1. If q + 1 ≤ k, then w1 ≤ · · · ≤ wq ≤ wq+1. Since
∑q

i=1wi > q/n and
these weights are nondecreasing, we have wq > 1/n, and, consequently,
wq+1 > 1/n. Therefore

∑q+1
i=1 wi > (q + 1)/n.

2. If q + 1 > k, then wq+1 ≥ wq+2 ≥ · · · ≥ wn. Suppose, by contradiction,
that

∑q+1
i=1 wi ≤ (q + 1)/n. Then

∑n
i=q+2wi ≥ 1 − (q + 1)/n. Moreover,

since the weights wq+1, . . . , wn are nonincreasing, we have

(n− (q + 1))wq+1 ≥
n∑

i=q+2

wi ≥
n− (q + 1)

n
,

that is, wq+1 ≥ 1/n. Since by hypothesis
∑q

i=1wi > q/n, we get
∑q+1

i=1 wi >
q/n+ 1/n = (q + 1)/n, which contradicts the initial assumption.

Proposition 2. Given w ∈ Wu, if we define

Lw =

{
l ∈ N |

l∑
i=1

wi <
l

n

}
, Lw =

{
l ∈ N |

l∑
i=1

wi >
l

n

}
,

lw =

{
0, if Lw = ∅,
maxLw, otherwise,

lw =

{
n+ 1, if Lw = ∅,
minLw, otherwise,

then lw < lw and, for any weighting vector p, υU
max
min
p,w is a normalized capacity on

N given by

υ
Umax
min
p,w (A) =


min

(∑
i∈A pi,

∑|A|
i=1wi

)
, if |A| ≤ lw,∑

i∈A pi, if lw < |A| < lw,

max
(∑

i∈A pi,
∑|A|

i=1wi

)
, if |A| ≥ lw,

(5)

where A is any nonempty subset of N .

Proof. Let w ∈ Wu. In order to show that lw < lw we can suppose that Lw 6= ∅
(if Lw = ∅, then lw = n + 1 > lw). But, by the first item of Lemma 1,
Lw = {lw, lw + 1, . . . , n− 1} and, since n /∈ Lw, we get lw < lw.

Notice also that if Lw 6= ∅, then, by Lemma 1, Lw = {1, . . . , lw}. So, given
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a weighting vector p and ∅ ( A ⊆ N , by expression (4) we have

υ
Umax
min
p,w (A) =


min

(∑
i∈A pi,

∑|A|
i=1wi

)
, if

∑|A|
i=1wi < |A|/n,∑

i∈A pi, if
∑|A|

i=1wi = |A|/n,

max
(∑

i∈A pi,
∑|A|

i=1wi

)
, if

∑|A|
i=1wi > |A|/n,

=


min

(∑
i∈A pi,

∑|A|
i=1wi

)
, if |A| ≤ lw,∑

i∈A pi, if lw < |A| < lw,

max
(∑

i∈A pi,
∑|A|

i=1wi

)
, if |A| ≥ lw.

Lastly, in order to prove the monotonicity of υU
max
min
p,w it is sufficient to show

that υU
max
min
p,w (A) ≤ υ

Umax
min
p,w (B) for any A ( N and B = A ∪ {j}, with j /∈ A. Since

the case A = ∅ is trivial, we suppose that |A| ≥ 1. We distinguish three cases:

1. If |A| ≤ lw, then

υ
Umax
min
p,w (A) = min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
≤ min

(∑
i∈B

pi,

|B|∑
i=1

wi

)
≤ υ

Umax
min
p,w (B).

2. If lw < |A| < lw, then

υ
Umax
min
p,w (A) =

∑
i∈A

pi ≤
∑
i∈B

pi ≤ υ
Umax
min
p,w (B).

3. If |A| ≥ lw, then

υ
Umax
min
p,w (A) = max

(∑
i∈A

pi,

|A|∑
i=1

wi

)
≤ max

(∑
i∈B

pi,

|B|∑
i=1

wi

)
= υ

Umax
min
p,w (B).

So, given w ∈ Wu, the values lw and lw, together with expression (5), allow
us to know explicitly the capacity υU

max
min
p,w . Next we are going to give the values of

lw and lw for the unimodal weighting vectors showed in Section 4..

1. Nonincreasing weighting vectors where w1 > 1/n (notice that if w1 = 1/n

then w = η, and, therefore, υU
max
min
p,w = µp): It is easy to check that lw = 0

and lw = 1. So, for any weighting vector p and A ⊆ N , with |A| ≥ 1, we
have

υ
Umax
min
p,w (A) = max

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.
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Moreover, notice that if for any j ∈ {1, . . . , n − 1},
∑j

i=1wi ≥
∑j

i=1 p[i]

(where p[1] ≥ p[2] ≥ · · · ≥ p[n]), then υ
Umax
min
p,w = µ|w|, that is, SU

max
min
p,w = Ow.

For instance, consider the Orlike-window OWA operator given by

wi =

{
1/m if i = 1, . . . ,m,

0 otherwise,

withm < n, and let p be a weighting vector such that maxi=1,...,n pi ≤ 1/m.
Then, the SUOWA operator associated with p, w and Umax

min coincides with
the OWA operator associated with w.

2. Nondecreasing weighting vectors where w1 < 1/n (notice that if w1 = 1/n

then w = η, and, therefore, υU
max
min
p,w = µp): It is easy to check that lw = n−1

and lw = n + 1. So, for any weighting vector p and A ⊆ N , |A| ≥ 1, we
have

υ
Umax
min
p,w (A) = min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
.

Moreover, notice that if for any j ∈ {1, . . . , n − 1},
∑j

i=1wi ≤
∑j

i=1 p(i)

(where p(1) ≤ p(2) ≤ · · · ≤ p(n)), then υ
Umax
min
p,w = µ|w|, that is, SU

max
min
p,w = Ow.

For instance, consider the Andlike-window OWA operator given by

wi =

{
0 if i = 1, . . . , n−m,
1/m otherwise,

withm < n, and let p be a weighting vector such that maxi=1,...,n pi ≤ 1/m.
Then, the SUOWA operator associated with p, w and Umax

min coincides with
the OWA operator associated with w.

3. Weighting vectors associated with window-OWA operators such that w is
neither nonincreasing nor nondecreasing; that is,

wi =

{
1/m if i = r, . . . , r +m− 1,

0 otherwise,

where r,m ∈ N , with r ≥ 2 and r +m ≤ n. Notice that, given l ≥ r,
l∑

i=1

wi <
l

n
⇔ 1

m
(l−r+1) <

l

n
⇔ l(n−m) < n(r−1) ⇔ l <

n(r − 1)

n−m
,

and, consequently,

lw =

⌈
n(r − 1)

n−m

⌉
− 1 =

⌈
n(r − 2) +m

n−m

⌉
.

Analogously,
l∑

i=1

wi >
l

n
⇔ l >

n(r − 1)

n−m
,

14



and, then

lw =

⌊
n(r − 1)

n−m

⌋
+ 1 =

⌊
nr −m
n−m

⌋
.

4. Weighting vectors associated with centered OWA operators: It is straight-
forward to check that the values taken by lw and lw are the following:

(a) If n is odd: lw = (n− 1)/2 and lw = (n+ 1)/2.

(b) If n is even: lw = n/2− 1 and lw = n/2 + 1.

Next we are going to show some interesting families of functions obtained
as SUOWA operators associated with unimodal weighting vectors. Consider the
weighting vector w defined by

wi =


0 if i = 1, . . . , r − 1,
r
n

if i = r,
1
n

otherwise,

where r ∈ N . Note that if r = 1 then Ow is the arithmetic mean, and if r = n
then Ow is the minimum. When r ∈ {2, . . . , n−1}, the behavior of Ow is similar
to that of the winsorized means (see, for instance, Beliakov et al. 3, p. 103), but
only replacing the r−1 highest values by x[r]. It is straightforward to check that
lw = r − 1 and lw = n+ 1, and, consequently,

υ
Umax
min
p,w (A) =

0, if |A| < r,∑
i∈A pi, if |A| ≥ r,

for any weighting vector p and A ⊆ N , with |A| ≥ 1. Therefore, the SUOWA
operator associated with p, w and Umax

min is defined by

S
Umax
min
p,w (x) =

n∑
i=1

(
υ
Umax
min
p,w (A[i])− υ

Umax
min
p,w (A[i−1])

)
x[i] =

(
r∑
i=1

p[i]

)
x[r] +

n∑
i=r+1

p[i]x[i],

that is, it is the weighted mean associated with p where the r− 1 highest values
have been previously replaced by x[r]. Notice that these functions seem the natu-
ral extension of Ow when the weighting vector p is introduced in the aggregation
process. Likewise, note that in the extreme cases r = 1 and r = n, the operator
S
Umax
min
p,w coincides with the weighted mean associated with p and the minimum,

respectively.
Analogously, when we consider the weighting vector w defined by

wi =


1
n

if i = 1, . . . , n− r′,
r′

n
if i = n− r′ + 1,

0 otherwise,
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where r′ ∈ N , the OWA operator associated with w is an arithmetic mean where
the r′−1 lowest values have been previously replaced by x[n−r′+1] = x(r′). In this
case, lw = 0 and lw = n− r′ + 1, and

υ
Umax
min
p,w (A) =


∑

i∈A pi, if |A| ≤ n− r′,

1, if |A| > n− r′,

for any weighting vector p and A ⊆ N , with |A| ≥ 1. Hence,

S
Umax
min
p,w (x) =

n∑
i=1

(
υ
Umax
min
p,w (A[i])− υ

Umax
min
p,w (A[i−1])

)
x[i]

=
n−r′∑
i=1

p[i]x[i] +

(
n∑

i=n−r′+1

p[i]

)
x[n−r′+1],

that is, it is the weighted mean associated with p where the r′ − 1 lowest values
have been previously replaced by x[n−r′+1] = x(r′).

Finally, consider the weighting vector w defined by

wi =



0 if i = 1, . . . , r − 1,
r
n

if i = r,
1
n

if i = r + 1, . . . , n− r′,
r′

n
if i = n− r′ + 1,

0 otherwise,

where r, r′ ∈ N , with r+r′ ≤ n. Notice that when r = r′ > 1, the OWA operator
associated with w is a winsorized mean. Likewise, note that in this case w is not
a unimodal weighting vector. However, from expression (4), it is easy to check
that υU

max
min
p,w is a normalized capacity given by

υ
Umax
min
p,w (A) =


0, if |A| < r,∑

i∈A pi, if r ≤ |A| ≤ n− r′,

1, if |A| > n− r′,

for any weighting vector p and A ⊆ N , with |A| ≥ 1. So,

S
Umax
min
p,w (x) =

n∑
i=1

(
υ
Umax
min
p,w (A[i])− υ

Umax
min
p,w (A[i−1])

)
x[i]

=

(
r∑
i=1

p[i]

)
x[r] +

n−r′∑
i=r+1

p[i]x[i] +

(
n∑

i=n−r′+1

p[i]

)
x[n−r′+1],

that is, it is the weighted mean associated with p where the r− 1 highest values
and the r′− 1 lowest values have been previously replaced by x[r] and x[n−r′+1] =
x(r′), respectively.
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6. ANALYSIS OF SOME PROPERTIES

In this section we show some properties that the SUOWA operators constructed
by using Umax

min and unimodal weighting vectors satisfy. Firstly we list some
properties that are already known for idempotent semiuninorms, rewritten for
Umax
min and unimodal weighting vectors.7,10 It is worth noting that, given that

SUOWA operators appears in the literature with the aim of combining weighted
means and OWA operators in a single function, it seems appropriate to establish
a relation between the capacities of SUOWA operators and those of weighted
means and OWA operators. In this regard, it should be noted that, for any
subset A of N , the value υU

max
min
p,w (A) range between the values µp(A) and µ|w|(A).

Proposition 3. Let w ∈ Wu and let p be a weighting vector. Then:

1. Given A ⊆ N , min
(
µp(A), µ|w|(A)

)
≤ υ

Umax
min
p,w (A) ≤ max

(
µp(A), µ|w|(A)

)
.

2. If µp ≤ µ|w|, then Mp ≤ S
Umax
min
p,w ≤ Ow; if µ|w| ≤ µp, then Ow ≤ S

Umax
min
p,w ≤

Mp.

A similar result to that shown in the first item of the previous proposition
can be established for the weight si = υ

Umax
min
p,w (A[i])−υ

Umax
min
p,w (A[i−1]), which affecting

the component x[i] of x: when we consider the semiuninorm Umax
min and unimodal

weighting vectors, the weight si is located between p[i] and wi.

Proposition 4. Let w ∈ Wu and let p be a weighting vector. Then, for any
x ∈ Rn and i ∈ N we have min(p[i], wi) ≤ si ≤ max(p[i], wi).

Proof. By Proposition 2, given x ∈ Rn and i ∈ N , the weight si could take one
of the following values:

1. min
(
µp(A[i]), µ|w|(A[i])

)
−min

(
µp(A[i−1]), µ|w|(A[i−1])

)
.

2. µp(A[i])−min
(
µp(A[i−1]), µ|w|(A[i−1])

)
.

3. max
(
µp(A[i]), µ|w|(A[i])

)
−min

(
µp(A[i−1]), µ|w|(A[i−1])

)
.

4. µp(A[i])− µp(A[i−1]).

5. max
(
µp(A[i]), µ|w|(A[i])

)
− µp(A[i−1]).

6. max
(
µp(A[i]), µ|w|(A[i])

)
−max

(
µp(A[i−1]), µ|w|(A[i−1])

)
.

The study of the previous cases comes down to the analysis of the following four
values that may take si:

1. µp(A[i])− µp(A[i−1]) = p[i],

2. µp(A[i])− µ|w|(A[i−1]),

3. µ|w|(A[i])− µp(A[i−1]),
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4. µ|w|(A[i])− µ|w|(A[i−1]) = wi,

which has been carried out in Llamazares 10, p. 843 for the semiuninorm Umin.
In any of the four cases, min(p[i], wi) ≤ si ≤ max(p[i], wi).

We now consider the properties of balancing, subadditivity and superaddi-
tivity. Balancing property was introduced by Calvo et al. 41 , and it guarantees
the monotonicity with respect the cardinality of the sets. On the other hand,
subadditivity and superadditivity properties are well known in the literature of
games and capacities.

Definition 13. Let µ be a normalized capacity.

1. µ is balanced if |A| < |B| ⇒ µ(A) ≤ µ(B) for all A,B ⊆ N .

2. µ is subadditive if µ(A ∪ B) ≤ µ(A) + µ(B) for all A,B ⊆ N such that
A ∩B = ∅.

3. µ is superadditive if µ(A ∪ B) ≥ µ(A) + µ(B) for all A,B ⊆ N such that
A ∩B = ∅.

It is easy to check that υU
max
min
p,w is balanced. As we show below, the property

of subadditivity (superadditivity) is satisfied when the weighting vector w is
nonincreasing (nondecreasing).

Proposition 5. Let w ∈ Wu and let p be a weighting vector.

1. If w is a nonincreasing weighting vector, then υU
max
min
p,w is subadditive.

2. If w is a nondecreasing weighting vector, then υU
max
min
p,w is superadditive.

Proof. We will only prove the first statement, because the other one can be
obtained in a similar way. Let w be a nonincreasing weighting vector and let p
be a weighting vector. Given A,B ⊆ N such that A ∩ B = ∅, note that, since
w is nonincreasing,

|A|+|B|∑
i=1

wi ≤
|A|∑
i=1

wi +

|B|∑
i=1

wi.

Therefore,

υ
Umax
min
p,w (A ∪B) = max

( ∑
i∈A∪B

pi,

|A|+|B|∑
i=1

wi

)

≤ max

(∑
i∈A

pi,

|A|∑
i=1

wi

)
+max

(∑
i∈B

pi,

|B|∑
i=1

wi

)

= υ
Umax
min
p,w (A) + υ

Umax
min
p,w (B).
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The last property studied refers to the duality: As in OWA operators, the
dual capacity of υU

max
min
p,w can be easily obtained by using the dual of the weighting

vector w.

Proposition 6. Let w ∈ Wu. Then, for any weighting vector p, υU
max
min
p,w = υ

Umax
min
p,w .

Proof. Let w ∈ Wu and let p a weighting vector. Given ∅ ( A ⊆ N (the
case A = ∅ is trivial), notice that |Ac| = n − |A| and

∑|Ac|
i=1 wi +

∑|A|
i=1wi = 1.

Therefore
|Ac|∑
i=1

wi <
|Ac|
n
⇔ 1−

|A|∑
i=1

wi < 1− |A|
n
⇔

|A|∑
i=1

wi >
|A|
n
.

Analogously,
|Ac|∑
i=1

wi =
|Ac|
n
⇔

|A|∑
i=1

wi =
|A|
n
,

|Ac|∑
i=1

wi >
|Ac|
n
⇔

|A|∑
i=1

wi <
|A|
n
.

Now, by Proposition 2, υU
max
min
p,w is a normalized capacity on N given by expres-

sion (4). Since, given A ⊆ N , υU
max
min
p,w (A) = 1 − υU

max
min
p,w (Ac), we distinguish three

cases:

1. If
∑|Ac|

i=1 wi < |Ac|/n, then

υ
Umax
min
p,w (A) = 1−min

(∑
i∈Ac

pi,

|Ac|∑
i=1

wi

)
= max

(∑
i∈A

pi,

|A|∑
i=1

wi

)
= υ

Umax
min
p,w (A).

2. If
∑|Ac|

i=1 wi = |Ac|/n, then

υ
Umax
min
p,w (A) = 1−

∑
i∈Ac

pi =
∑
i∈A

pi = υ
Umax
min
p,w (A).

3. If
∑|Ac|

i=1 wi > |Ac|/n, then

υ
Umax
min
p,w (A) = 1−max

(∑
i∈Ac

pi,

|Ac|∑
i=1

wi

)
= min

(∑
i∈A

pi,

|A|∑
i=1

wi

)
= υ

Umax
min
p,w (A).

We finally emphasize that the SUOWA operators constructed by using the
semiuninorm Umax

min preserve the conjunctive/disjuntive character of the OWA
operator associated with them.13 In this way, it is possible to get operators
located between two order statistics that take into account the weights of the
criteria.

Proposition 7. Let w be a weighting vector. If there exist k, k′ ∈ N such that
OSk ≤ Ow ≤ OSk′, then OSk ≤ S

Umax
min
p,w ≤ OSk′ for any weighting vector p.
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7. CONCLUDING REMARKS

SUOWA operators were introduced in the literature for generalizing simultane-
ously weighted means and OWA operators. In this way it is possible to deal
with problems where both the significance of the information sources and the
importance of the relative size of the values have to be taken into account. Nev-
ertheless, the main weakness of SUOWA operators is that, sometimes, the game
used in their construction is not monotonic and it is necessary to calculate its
monotonic cover.

In this paper we have shown that when using unimodal weighting vectors
and the semiuninorm Umax

min we directly get normalized capacities. Given that
unimodal weighting vectors embrace a great variety of weighting vectors, we can
avoid the calculation of the monotonic cover on numerous occasions. We next
summarize some important features of these capacities which are very appealing
in practice:

1. Their expression is very simple, which greatly facilitates their use.

2. Their dual capacities are obtained by means of the dual of the weighting
vectors w.

3. The SUOWA operators associated with them satisfy that the weights si,
which affect the values x[i], range between the weights p[i] and wi.

4. The SUOWA operators associated with them maintain the conjuctive/dis-
junctive character of the OWA operators. In this way, it is possible to
obtain functions located between two order statistics that take into account
the weights of the information sources (see, for instance, the last part of
Section 5).
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