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Abstract 

Apple pomace (AP) is a by-product of the juice industry, rich in dietary fiber (45.06%), 

which is generated in large quantities. The objectives of the present work were to evaluate the 

effect of the particle size and the level of replacement with AP on the quality of sugar-snap 

cookies. Dehydrated AP was ground to three different particle sizes (d (4,3) = 362, 482, 840 

μm) to substitute 15% and 30% of wheat flour in cookie formulations.  The quality of dough 

and cookies was evaluated in terms of rheological properties, color, texture and global 

acceptability of the final product. When the AP particle size decreased, the water absorption 

properties (WHC, WBC) were higher (33 and 10 % respectively for the lowest and the 

highest particle size). For both replacement levels the smallest particle size (362 μm) led to 

the highest dynamic moduli of dough. The spread ratio (SR) of the cookies diminished when 

the particle size decreased (from 6.4 to 4.8 corresponding to AP840 and AP362 respectively).  

The lowest SRs were obtained for the 30% replacement level except for AP362. When 

employing AP with the largest particle size (840 μm) the cookies were less hard (48.7N). The 

addition of AP to sugar-snap cookies led to higher global acceptability scores than for control 

cookies. The sensory attribute that most differentiated the cookies with AP was their pleasant 

taste being the taste score always higher than the control one. 
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Introduction 

The industry of fruit juice and other derivatives such as nectars and soft drinks generates a 

large amount of by-products that can harm the environment, because they are generally prone 

to microbial deterioration. Therefore the efficient utilization of these by-products, with 

low cost and environmentally friendly processes, is increasingly important (Schieber et al. 

2001). They can be recovered and used as  a value-added ingredient in different products 

since they provide dietary fiber, as well as bioactive compounds such as polyphenols and 

essential oils (Elleuch et al. 2011).  

Among the main by-products of fruits/fruit processing generated worldwide, those from  

citrus (15 million tons / yr), grape (7 million tons / yr), and apple (4 million  tons / yr) stand 

out (Lin et al. 2013). In the world production of apple, 25%-30% is destined for processing, 

the concentrated apple juice being the main product (65%) (Bhushan et al. 2008). The apple 

juice industry generates large quantities of apple pomace (AP), which is the product obtained 

after juice extraction (25%-30% of the total weight of the fresh apple), consisting mainly of 

pulp / peel (95%), seeds (2%-4%), and stem (1%), according to the juice extraction process 

(O’shea et al. 2012). This by-product is characterized by its high content in carbohydrates and 

dietary fiber, and significant amounts of phenolic compounds (Leyva-Corral et al. 2016; 

Dhillon et al. 2012). Apple fiber is mainly composed of cellulose (43.6%), hemicellulose 

(24.4%), lignin (20.4%) and pectins (11.7%) (Nawirska and Kwaśniewska 2005).  

Dietary fiber intake for adults should be 25 g/day for a diet2000 Kcal/day (ADA Report, 

2002; WHO Technical Report, 2003). For children older than 2 years,  it is recommended an 

amount of fiber equal to their age plus 5 g/day (ADA Report, 2002).  In coincidence, 

FAO/WHO recommends 25g/day in order to help preventing diet-related chronic diseases 

(WHO Technical Report, 2003). Since there is an increasing concern respect to reach 

adequate levels of fiber intake, the developing of fiber-enriched products and the assessment 

of new sources of fiber have gained growing interest. 

Apple pomace has been used  in baked goods such as bread, cakes, and cookies (Quiles et al. 

2016; Sudha et al. 2016; Jung et al. 2015; Rocha Parra et al. 2015a). The baked products that 

are more suitable for the use of these by-products are cookies and cakes because they usually 

include appreciable amounts of sugar and fat in their composition, thus masking a little the 

undesirable flavors. Besides, in the particular case of cookies is not necessary to develop a 



  

 

gluten network, and the negative effects of reducing the gluten level by substituting wheat 

flour by another ingredient are not so important (Gómez and Martinez 2017).  

Different works on cookies with the addition of AP have been  reported (Jung et al. 2015; 

Kohajdová et al. 2014; Singh et al. 2012). In these works, wheat flour has been replaced with 

apple pomace in quantities ranging from 5% to 25%, and AP with particle sizes between 200 

and 500 μm have been assayed. In general, these authors found that the replacement of wheat 

flour by AP in cookies produces two effects, the first one is the reduction of the spread ratio 

and the second one, the reduction of the hardness with respect to the control (without apple 

pomace). However, they worked with a single particle size. The particle size, as well as other 

physical properties such as porosity, and the specific surface can be altered according to the 

process that is used to prepare the by-product. Among  the different procedures, grinding can 

modify the physical properties of the fiber and therefore change the hydration properties 

thereof  (Guillon and Champ 2000). It is important to take this point into account, because 

different particle sizes will alter the hydration properties of the system in a different way and 

therefore influence the quality parameters of the processed product. Several authors have 

reported the effect of the particle size on the hydration properties of AP (Liu et al. 2011; 

Grover et al. 2003). In cookies, it has been found that a smaller particle size in the flour used 

increases the hardness, in comparison with flours of greater particle size (Dayakar Rao et al. 

2016; Zucco et al. 2011; Mancebo et al. 2015).  

The objective of this work was to evaluate the effect of apple pomace of three particle sizes 

(d (4.3) = 362, 482, 840 μm) at two replacement levels (15 and 30%) on the quality of sugar- 

snap cookies, in terms of dough rheology, quality characteristics and sensory evaluation of 

the final product. 

Materials and methods 

Materials 

Crude apple pomace provided by Jugos SA (Villa Regina, Rio Negro, Argentina), wheat flour 

(WF)  (11.42 g/100 g moisture; 10.43 g/100 g protein) supplied by Harinera Castellana S.L. 

(Medina del Campo, Valladolid, Spain), white sugar (AB Azucarera Iberia, Valladolid, 

Spain), 100% vegetable margarine (Argenta crema, Puratos, Barcelona, Spain), sodium 

bicarbonate (Manuel Riesgo S.A., Madrid, Spain) and local tap water were used.  Vegetable 



  

 

margarine contained refined palm oil, sunflower palm oil, water, emulsifiers (mono and 

diglycerides of vegetable fatty acids), sorbic acid, color and flavoring agents. 

Methods 

Apple Pomace treatment and characteristics 

For drying apple pomace, a forced convection oven (ESTIGIA, La Plata, Argentina) at 50 °C 

was employed for 24 h. Dried apple pomace was ground with a sieve size of 0.75 mm (Cross 

Beater Mill, PULVERISETTE 16, Idar-Oberstein, Germany).  Composition was determined 

according to AOAC methods (1990): moisture, method 964.22; protein, method 979.09; ash, 

method 923.03; total dietary fiber, method 991.4; fat, method 920.39. Carbohydrates were 

calculated by difference. Assays were performed in duplicate.   

The powder obtained was sterilized at 121 °C for 20 min in a steam autoclave (VZ, 

Ciudadela, Argentina) to eliminate yeasts and molds (natural flora). Afterwards the AP was 

re-ground using two different ring sieves (0.5 mm and 0.2 mm) (Ultra-Centrifugal Mill, 

Retsch, ZM 200, Hann, Germany). The particle size of ground AP was determined as the 

volume fraction-length mean diameter (d(4,3)) using a laser diffraction technique with a 

Malvern Mastersizer 3000 E (Malvern Instruments Ltd., Malvern, Worcestershire, UK). The 

refractive index used was 1.54. The sample was automatically suspended by the equipment. 

Each sample was measured three times to obtain the mean.  For color determination 1.5 g of 

each powder was weighed in a glass capsule 2 cm high and 9 cm in diameter; the 

measurements were made in triplicate, with a Minolta CN-508i spectrophotometer (Minolta, 

Co. LTD, Tokyo, Japan) using the D65 illuminant with the 2-standard observer. Results are 

expressed in the CIE L*, a*, b* color space.  Assays were performed in triplicate.   

Hydration and oil absorption properties of AP and wheat flour 

The different fractions of apple pomace and wheat flour were characterized by their hydration 

and oil absorption properties. Water holding capacity (WHC) is defined as the grams of water 

retained per gram of sample when not submitted to stress. It was determined according to the 

AACC method 88-04 (AACC, 2012).  Five grams of each sample were dispersed in 100 mL 

distilled water in a graduated cylinder and left to rest for 24 h. Then, the excess water was 

removed and the swelled solid was weighed; the retained water was calculated by difference.  

Water binding capacity (WBC) is expressed as the grams of water that remain bound to the 



  

 

sample after employing low-speed centrifugation. It was determined upon AACC method 56-

30.01 (AACC, 2012). Five grams of each sample were mixed with 25 mL of distilled water in 

a Falcon tube and then centrifuged (2000 x g, 10 min). All the assays were performed in 

duplicate.  

The oil absorption capacity (OAC) was determined according to Lin et al. (1974). It was 

calculated as grams of oil bound per gram of sample on dry basis. One hundred miligrams of 

each sample were mixed with 1 mL of vegetable oil in an Eppendorf tube. The mixture was 

well stirred (30 min) in a vortex mixer and then centrifuged (3000x g, 4ºC, 10 min). Then, the 

supernatant was extracted with a pipette, the tubes were overturned for 25 min to drain the oil 

and the residue was weighed. This assay was performed by triplicates.  

Cookie preparation  

Cookies were prepared according to the procedure of Mancebo et al (2018) that is 

schematized in Figure 1.  Seven different cookie formulations (control and two replacement 

levels: 15% and 30% for each particle size of AP) were prepared. Each cookie formulation 

was made by duplicate. The same amounts of ingredients were used in all cases but water 

varied in order to reach a final moisture content of 15 %.  The amounts of the ingredients (on 

100 g dough basis) were: WF or AP-WF mixture, 43.3 g; sugar, 31.2 g; margarine, 19.4 g; 

water, 5.2 g and sodium bicarbonate, 0.9 g.  The cookie used as control sample was made 

with wheat flour and without AP. Each batch consisted of 18 cookies. A Kitchen Aid 

5KPM50 mixer (Kitchen Aid, Benton Harbor, MI, USA) was used and the pieces of dough 

were laminated in a Salva L-500-J sheeter (Salva, Lezo, Spain). An electric modular oven 

was employed for baking. Cookies were preserved in polypropylene bags at 20 °C until 

analysis. 

Dough rheology properties  

Rheological measurements were taken using a controlled strain rheometer (Thermo Scientific 

Haake RheoStress1, Thermo Fisher Scientific, Schwerte, Germany) with parallel-plate 

geometry (60-mm diameter titanium serrated plate-PP60 Ti) with a 3-mm gap and a Phoenix 

II P1- C25P water bath for temperature control (set at 25 °C). Before measuring, the dough 

was left resting for 800 s. The linear viscoelasticity region (LVR) was determined through a 

stress sweep range of 0.1-100 Pa at a constant frequency of 1 Hz. On the basis of the results 

obtained, a stress value included in the LVR was used in a frequency sweep test at 25 °C with 



  

 

a frequency range of 0.1-10 Hz. Average stress values for frequency sweeps were: 4 Pa for 

control dough, 8 Pa for dough with 15% replacement and 15 Pa for dough with 30% 

replacement. Values of elastic modulus (G’ [Pa]), viscous modulus (G’’ [Pa]), and tangent δ 

(G’’ /G’) were obtained for different frequency values (ω [Hz]). Samples were analyzed in 

duplicate.  

Cookie properties  

After cooling during an hour at room temperature, six cookies of each formulation were 

individually weighed. A caliper was used for measuring the diameter and thickness of the 

cookies. The average diameter or width of each cookie was calculated as the mean of two 

perpendicular diameters. With these six mean values the average width (W) was determined. 

The average thickness (T) was also calculated. The spread ratio (SR) of the cookies was 

expressed as the average width (W) divided by the average thickness (T).  

The texture properties of cookies were studied by a three-point bending test, carried out at 

room temperature with a TA-XT2 texture analyzer (Stable Microsystems, Surrey, UK) 

controlled by the Texture Expert software. Eight cookies of each formulation were measured 

24 h after baking. The experiment conditions were the same used by Mancebo et al. (2018): 

distance between supports, 30 mm; trigger force, 5 g; probe travel distance, 30 mm; pretest 

speed, 1.0 mm s
-1

; test speed, 2.0 mm s
-1

; and posttest speed, 10.0 mm s
-1

. The maximum 

force (N) and the displacement at rupture (mm) were measured. 

The surface color of six sugar-snap cookies from each formulation was measured at the 

center point of the upper surface with a Minolta CN-508i spectrophotometer (Minolta, Co. 

LTD, Tokyo, Japan) using the D65 illuminant with the 2-standard observer. Results are 

expressed in the CIE L*, a*, b* color space.  

Cookie acceptability 

For the hedonic sensory evaluation of cookies, 63 volunteers (19 males, 44 females) that were 

regular cookie consumers were invited to perform the test.  The range of ages was 18-64 

years with the following distribution: 78% between 18-24 years old, 17 % between 25-34 

years old and 5% elder than 35 years. The attributes that were evaluated were appearance, 

odor, texture, taste and overall appreciation on a nine-point hedonic scale. The scale of values 

ranged from “like extremely” to “dislike extremely” corresponding the highest and lowest 



  

 

scores to “9” and “1” respectively (Mancebo et al. 2015). Samples were analyzed one day 

after baking. Whole cookies were labeled with four-digit random numbers and served in 

random order.  Each evaluator received four cookies on a dish: the control cookie and cookies 

with AP362, AP482 and AP840at the replacement level of 15%. 

Statistical analysis 

The analysis of variance (ANOVA) was applied and post Tukey’s HSD was used to assess 

significant differences (confidence interval of 95%). The analysis was performed using 

Statgraphics Plus V5.1 software (Statpoint Technologies, Warrenton, USA). 

Results and Discussion 

Apple pomace powder characteristics 

The dried AP was a slightly brown and aromatic powder. Its composition was (on 100 g 

basis) as follows: moisture, 12.1±0.2 g; protein, 4.74±0.04 g; ash, 1.30±0.01 g; total dietary 

fiber, 45.1±0.1 g; fat, 1.86±0.01 g; and carbohydrates different from fiber (calculated by 

difference), 34.9 g.  Results of the measurements of particle size distribution are shown in 

Figure 2. Besides the lowest mean particle size, the more ground apple pomace (0.2 mm 

sieve) exhibited a more narrow range of sizes. The three obtained AP powders had the 

following (d(4,3)): 840 μm, 482 μm, 362 μm  and were named AP840, AP482 and AP362, 

respectively. 

Apple pomace and dough characteristics 

The particle sizes and the physical characteristics of the different fractions of ground AP are 

shown in Table 1. Apple Pomace exhibited enhanced hydration capacity compared to WF as 

shown by the higher values of WHC and WBC. In a previous work, it was reported that 

another hydration property of AP, the water imbibing capacity (WIC) which is governed by 

capillary forces was much higher than WIC of the refined rice flour or cassava starch. This 

behavior was related to the great fiber content of AP, which is rich in cellulose, pectin, and 

hemicelluloses (Rocha Parra et al. 2015b).   

For AP, WHC values ranged from 6.7 to 8.93 and WBC increased from 5.16 to 5.63; both 

parameters showed a significant positive correlation between them (r=0.9750, p<0.05). When 

AP of different particle sizes was compared, it was found that as the particle size decreased, 



  

 

the hydration capacities (WHC, WBC) were significantly higher (p<0.05).  The increase of 

hydration properties at lower particle sizes has been reported for various types of flours such 

as chestnut (Ahmed et al. 2016) and sorghum (Dayakar Rao et al. 2016) and also for carrot 

pomace (Chau et al. 2007). This increase can be associated with the greater surface area (De 

La Hera et al. 2013; Chau et al. 2007; Robertson and Eastwood 1981).  On the other hand, the 

particle size does not have a clear influence on the OAC. 

As expected, the highest L* and the lowest values for a* and b* were shown by WF. The AP 

characteristic brown color can be attributed to the partial caramelization of apple sugars 

during the drying process, in addition to Maillard reactions that occur between proteins and 

sugars as explained by Caparino et al. (2012). A significant effect of the particle size on L* of 

AP was found, with values increasing from 40.1 to 54.1 (for AP840 and AP362, 

respectively). Luminosity values were in agreement with those reported for apple pomace by 

other authors (Lavelli and Kerr 2012).  The values of a* is negative for green and positive for 

red, and b* is negative for blue and positive for yellow. The values of a* were not 

significantly different among AP samples, but a tendency to increase the reddish color was 

found as the particle size decreased. AP840 had the lowest value of b* (10.5) and there was a 

significant difference (p<0.05) when compared to AP362, which presented the highest value 

of b * (18.18). The changes observed in L* and b* values could be attributed to the oxidation 

of certain components, which would be more favored in the product with the smaller particle 

sizes due to the greater surface that is exposed. The color of the powders  made up of larger 

particles was less uniform than that of samples with smaller particles, leading to higher 

standard deviations for AP840 values.  

The mechanical spectra of the doughs are shown in Figure 3. For all samples G’ > G’’, with a 

slight dependence on frequency, indicating that all doughs exhibited a predominantly solid 

behavior. The type of viscoelastic behavior of doughs was affected by the addition level and 

particle size of AP. The dynamic moduli were higher for doughs with AP than for WF dough. 

Besides, for the highest sustitution level (30%) the dynamic moduli were higher than for the 

lowest level of AP.  Mancebo et al. (2018), Laguna et al. (2014)  also found an increase in G’ 

and G’’ values when partially susbtituting wheat flour by insoluble fibers.  Apple pomace has 

a high content of total dietary fiber, which  is mostly insoluble  (Rosell et al. 2009; Sudha et 

al. 2007). Figure 3b and 3c show the influence of the particle size on the dynamic moduli at 

each level of sustitution with AP: when the particle size decreases the value of both moduli 



  

 

increases. When WF was substituted with AP, the value of the loss tangent decreased, and for 

the two levels of added AP (15% and 30%) it was found that as the particle size decreases, 

the loss tangent decreases, indicating that the elastic behavior predominates over the viscous 

one. 

There are discrepancies about the influence of particle size on the rheological behavior of 

dispersed systems. Mancebo et al. (2015) found that the dough elastic moduli of gluten-free 

sugar-snap cookies prepared with different flours (yellow maize, precooked yellow maize, 

buckwheat, teff and short-grain and long-grain rice flour) increased when the flour particle 

size decreased. Mancebo et al. (2018) also stated that in the case of insoluble fibers, besides 

the influence of hydration properties, the particle size and geometry are important factors 

influencing dough rheology. These authors found that the addition of pea and potato fibers 

led to cookie doughs with lower dynamic moduli G’, G’’ and G* than coarse bamboo fibers, 

that were lengthier and more flat. However, opposite trends have been reported by some 

authors  (Petrović et al. 2015; Moreira et al. 2010) who found that the larger particle sizes in 

defatted wheat germ flour and chesnut flour increased the value of the dynamic moduli (G', 

G'') in oscillatory assays. This lack of agreement in the results from different researchs could 

be caused by the differences between the materials assayed in each case and the particular 

way they interact with other components of the system, particularly water.  In the present 

work, AP362 showed higher water and oil absorption capacities than AP systems with larger 

particle sizes (Table 1), which could lead to more interaction with water and fat in cookie 

dough and consequently, higher  modulus values.  

Cookie characteristics 

In Figure 4, the visual characteristics of cookies can be observed, and the physical 

characteristics are summarized in Table 2. Snap-cookie quality can mainly be described by 

two parameters, the diameter, which is directly related to the spread ratio (SR), and the 

hardness, which depends on the cookie structure. The SR is likely affected by the water-

binding components of the dough (Pareyt and Delcour 2008). For SR, the highest values were 

observed in the control sample. Comparatively, cookies with AP362 presented the lowest SR 

values, with significant differences (p<0.05) with respect to the other formulations with AP 

840 and AP482. A significant negative correlation (r=-0.9702, p<0.05) was found between 

the SR of cookies and G” of doughs. It was also observed that for the smallest particle size of 

AP used, there was no influence of the substitution level. However, a significant (p<0.05) 



  

 

influence of the substitution level was observed for samples with AP840 and AP482; SR 

decreased when the level of substitution was 30%, as is shown in Figure 4. Cookies with 30% 

of WF replacement not only had lower SR but also a smoother and less cracked surface.  

These results coincide with those reported by Toledo et al. (2017) and Naknaen et al. (2016), 

who pointed out that the incorporation of fruit by-products reduces the SR, due to the water 

absorption capacity of the fibers present in them. Similarly, Mancebo et al. (2018) reported a 

decrease in the SR in cookies in which wheat flour had been replaced with 15% of different 

insoluble fibers, and found a strong negative correlation between the water absorption 

properties and SR. In the present study, a significant (p<0.05) negative correlation was found 

between the WHC of AP and SR of cookies at a 15% level of replacement and between both 

water absorption properties (WHC/WBC) and SR at a 30% level of replacement. 

With respect to texture, it was found that all cookies enriched with AP were harder (higher 

maximum force F) than WF control (31N), and the hardest cookies (F= 75-77 N) were 

obtained with the AP of the smallest particle size. However, no clear trend was found in the 

rupture displacement (mm). The F value of cookies, obtained from the texture assays, 

significant and positively correlated with the elastic and viscous moduli of dough (r=0.9815, 

r=0.9788, respectively, p<0.05) and negatively with the loss tangent (r=-0.9886, p<0.05), 

demonstrating the strong influence of the rheological parameters of dough on the hardness of 

the final product. Moreover, the spread of cookies during baking negatively correlated with F 

(r=-0.9136, p<0.1). These results are in agreement with those reported by other authors who 

replaced WF with different ingredients such as chickpea flour (Mieszkowska and Marzec 

2016) or different soluble and insoluble fibers (Mancebo et al. 2018) in the preparation of 

cookies. Cookies prepared with finer flours were harder than those made with coarser flours, 

probably due to the more compact structure of cookies obtained with fine flours. These 

results are in agreement with Mancebo et al. (2015) who reported that the hardness was 

significantly affected by the particle size probably because cookies made from fine flour had 

a more compact structure.  Sozer et al. (2014) reported the same trend for biscuits added with 

wheat bran of two different particle sizes. These authors found that fine bran incorporation 

increased the hardness of biscuits which visually exhibited a more compact structure than 

biscuits with coarse bran. In addition, biscuits with coarse bran were rougher and more easily 

broken down in sensory assays.  



  

 

The results of color measurements are shown in Table 2.  The cookies with addition of AP 

were darker (lower L* value). Generally, the incorporation of a flour obtained from a fruit 

by-product in cookies leads to a reduction of L* values (Toledo et al. 2017). No clear trend 

was found at 15% of replacement; when the particle size decreases the lightness also 

decreases. With 30% of replacement the darkest cookies were obtained and interestingly, 

there was no influence of the particle size of the AP, probably because the main factors for 

color development were browning reactions (Maillard reaction and caramelization) that 

depend on the sugar content. 

When the parameter a* was evaluated, it was found that it presents positive values and a 

tendency to increase (i.e., a tendency to reddish values) when the AP particle size decreases. 

The lowest value of a* corresponded to the control cookie. The value of a* increased 

significantly by increasing the replacement level only for the smallest particle size (AP362). 

For all particle sizes, the value of b * increased significantly when the replacement level was 

higher.   

Sensory acceptability  

The sensory evaluation was carried out only on the cookies with a 15% replacement level, 

since cookies with 30% replacement presented an excessively hard texture and also had an 

excessively sweet and bitter taste. The results of the cookie sensory evaluation are shown in 

Figure 5.  Although the particle size did not lead to significant differences in the texture, 

many evaluators said that they found those cookies with the smallest particle size harder and 

more compact. On the other hand, certain evaluators felt AP840 had a grainy texture, which 

was not considered unfavorable. 

Although the addition of fruit and vegetable by-products generally decreases the global 

acceptability of breads, cookies and cakes (Gómez and Martinez 2017), in the present work, 

no significant differences were observed with respect to the control cookie when the different 

parameters were evaluated, with the exception of the taste. When the taste of the cookies 

containing AP was evaluated, significantly higher scores than the control were obtained for 

cookies with AP (independently of the particle size).  

 

 



  

 

Conclusions 

Apple pomace (AP), a vegetable by-product rich in fiber that is generated in large quantities 

by the juice industry can be a good alternative for enriching different foods. Particularly, the 

results of the present work show that cookies can be successfully enriched and the 

replacement of wheat flour by 15 % or 30% of AP could allow attaining levels of fiber of 3-

6% in the finished product. Sensory analysis demonstrated that the obtained product with a 

15% of replacement had a level of acceptance similar to the control cookie and its taste 

obtained even a higher score than control. From a technological point of view, one of the 

main aspects to be taken into account for converting this by-product into an adequate food 

ingredient is the degree of grinding, since the particle size had a significant influence on 

dough and cookie attributes. Apple pomace of the greatest particle size rendered less hard 

cookies with a higher spread ratio which are desirable attributes. Moreover, the level of 

replacement of wheat flour with apple pomace is another important factor in order to attain a 

good balance between the enrichment with fiber and the technological quality. Each 

particular fruit by-product would deserve a specific evaluation of its potential as food 

ingredient but the results obtained with AP are encouraging respect to the use of this and 

other pomaces as sources of fiber for healthier foods. 
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Table 1. Wheat flour (WF) and apple pomace (AP) hydration properties and oil absorption 

capacity.   

  d (4,3) (μm) WHC WBC OAC L* a* b* 

WF 95±1a 1.53±0.01 a 1.94±0.02 a 2.02±0.02 ab 90.0±1 c -0.17± 0.01 a 8.4±0.3 a 

AP840  840±2 d 6.7±0.3 b 5.16±0.05 b 1.9±0.1 a 40.1±4.1 a 6.5±1.2 b 10.5±2.7ab 

AP482  482±2 c 6.8±0.3 b 5.3±0.2 bc 2.1±0.1 ab 48.1±4.6 ab 7.39±0.03 b 14.8±1.5bc 

AP362  362±6 b 8.93±0.08 c 5.63±0.06 c 2.52±0.01 c 54.1± 0.3 b 7.86± 0.06 b 18.18±0.01c 

Mean ±SD; different letters within a column indicate significant differences (p<0.05). WBC, Water Binding Capacity; 

WHC, Water Holding Capacity; OAC, Oil absorption capacity. 

 

Table 2. Cookie properties  

 
F max (N) 

Displacement 

(mm) 

Spread 

Ratio 
L* a* b* 

Control 31.3±7.5 a 0.8±0.3 d 8.3±0.5 d 64.0±1.8 d 1.6±0.7 a 18.3±1.2 e 

AP840 15%  48.7±3.9 b 0.7±0.2 bcd 6.4±0.2 c 48.3±1.4c 5.9±0.4 b 13.5±0.8 cd 

AP840 30% 49.2±7.9 b 0.48±0.09 a 5.5±0.1 b 42.7±1.1a 6.0±0.3 bc 10.6±0.5 a 

AP482 15% 49.9±10.7 b 0.50±0.08 ab 5.5±0.4 b 46.6±0.7 b 6.3±0.4 cd 12.8±0.6 bc 

AP482 30% 63.0±7.9 c 0.6±0.1 abc 4.9±0.1 a 42.9±0.5 a 6.6±0.2 d 11.0±0.5 a 

AP362 15%  74.6±6.3 d 0.7±0.1 cd 4.8±0.1 a 47.3±0.9 bc 6.6±0.2 d 13.7±0.4 d 

AP362 30% 77.7±6.9 d 0.6±0.1 abcd 4.8±0.2 a 43.1±0.8 a 7.6±0.3 e 12.0±0.4 b 
Mean ±SD; different letters within a column indicate significant differences (p<0.05).  

 



  

 

 

Figure 1. Flow-sheet for cookie preparation based on Mancebo et al. (2018) 
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Figure 2. Particle size distribution for AP powders for AP840 (whole line), AP482 (dashed 

line), AP362 (dotted line) 

 



  

 

 

Figure 3. Typical mechanical spectra for doughs with three different particle sizes of apple 

pomace and two different replacement levels of AP. a) control, b) 15%, c) 30%. d(4,3): 

AP840= 840 μm, AP482=482 μm, AP362=362 μm    



  

 

 

Figure 4. Image of sugar-snap cookies made from wheat flour and AP. d(4,3): AP840= 840 

μm, AP482=482 μm, AP362=362 μm    

 

 

 

 

 



  

 

 

Figure 5. Sensory scores of sugar-snap cookies substituted with 15% apple pomace flour of 

different particle sizes. d(4,3): AP840= 840 μm, AP482=482 μm, AP362=362 μm.  Different 

letter above bars indicate significant differences among samples (p<0.05) 

 


