
Basic results on the equations of magnetohydrodynamics
of partially ionized inviscid plasmas

Manuel Núñeza�

Departamento de Análisis Matemático, Universidad de Valladolid, 47005 Valladolid, Spain

�Received 7 April 2009; accepted 17 September 2009; published online 15 October 2009�

The equations of evolution of partially ionized plasmas have been far more studied
in one of their many simplifications than in its original form. They present a
relation between the velocity of each species, plus the magnetic and electric fields,
which yield as an analog of Ohm’s law a certain elliptic equation. Therefore, the
equations represent a functional evolution system, not a classical one. Nonetheless,
a priori estimates and theorems of existence may be obtained in appropriate Sobo-
lev spaces. © 2009 American Institute of Physics. �doi:10.1063/1.3246611�

I. INTRODUCTION

One of the most instructive aspects of fluid mechanics is to detail how the Boltzmann equa-
tions describing statistically how a fluid transports heat, electric charge, and magnetic fields are
drastically simplified to obtain manageable magnetohydrodynamics �MHD� systems.1 The culmi-
nation of this process is the single fluid description of classical MHD. While the range of phe-
nomena described satisfactorily by the equations of MHD is extremely wide, covering from
dynamo theory in astrophysics2 to industrial liquid metals,3 there are still many phenomena where
the multicomponent character of the plasma is a key feature of its behavior. This includes fast
magnetic reconnection,4,5 the consequences of the Hall effect,6 ambipolar drift,7 and the propaga-
tion of beams in a plasma.8 It is therefore worthwhile to analyze a more general frame by
considering a three-species plasma formed by positive ions, electrons, and neutral particles. This
covers many instances, although not certainly all; moreover, in order to bring the equations to
manageable length, we will assume each of the species incompressible and of constant density.
This excludes, in particular, ionization and recombination effects that effectively change one
species to another.9,10 Moreover, for the case of a bounded domain, we will take boundary con-
ditions for the magnetic field intended to avoid any interchange of electromagnetic energy with the
outside of the domain. The logic of the equations is clear: each of the species satisfies a momen-
tum equation with an electromagnetic forcing and collisional effects. We will omit the possible
existence of viscosity, thus degrading these equations from a Navier–Stokes type to an Euler one.
The viscous case was studied in Ref. 11, but in most applications,12 the plasma is considered
inviscid because the rarified astrophysical plasmas have indeed practically no viscosity. The col-
lision frequencies between species a and b, �ab, satisfy �a�ab=�b�ba, where �a is the material
density of species a. This density is related to the number density na by �a=mana, where ma is the
mass of a single particle of this species. The system has been known for quite a long time.13,14 The
collision coefficients �ab may be expressed in terms of fractional ionizations and plasma
temperature,15 but we will take them as constant for further simplification. Also we will abbreviate
the notation by taking units so that the speed of light is c=1 and the magnetic permeability is
�=1. If we denote by va, a=e , i ,n, the velocities of ions, electrons, and neutrals, respectively, by
Pa the respective kinetic pressures, by E the electric field, and by B the magnetic one, the
momentum equations are
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�nj�vn − v j� . �3�

The magnetic field satisfies Faraday’s equation,

�B

�t
= − � � E , �4�

which implies that � ·B=0 for all time if the initial conditions satisfy this. The system still lacks
one condition because we have five unknowns and four equations. This is given by the fact that the
current density J is the flow of positive charges,

J = ene�vi − ve� . �5�

On the other hand, as usual in these relatively low-frequency plasmas, we omit the displacement
current from Ampère’s law, and we get

� � B = J . �6�

Later we will join these laws together in a single self-contained system.

II. SIMPLIFIED VERSIONS OF THE GENERAL SYSTEM

To see how the character of the equations changes with every one of the several simplifica-
tions used in the study of particular phenomena, we will consider some of the most important. For
fast time scales, electrons will respond much more quickly than ions or neutrals, so we may take
vi=vn=0 in �1�–�3� and �5�. Writing

ve · �ve = − ve � �� � ve� + 1
2 � ��ve�2� , �7�

�1� may be written as

−
1

ene
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�t
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1

2
� ��ve�2� = −

1

mene
� Pe −

e

me
E −

e

me
�ve � B� −

�ei + �en

ene
J . �8�

Taking rotationals and using the fact that ��J=−�B,

1

ene

��B

�t
− � � �ve �

1

ene
�B� =

e

me

�B

�t
−

e

me
� � �ve � B� −

�ei + �en
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�B , �9�

i.e.,

�

�t
	B −

me

e2ne
�B
 = � � �ve � 	B −

me

e2ne
�B
� +

��ei + �en�me

e2ne
�B . �10�

The values
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de
2 =

me

e2ne
, � =

��ei + �en�me

e2ne

are called electron skin depth and resistivity, respectively. The equation

�

�t
�B − de

2�B� = −
1

ene
� � �J � �B − de

2�B�� + ��B �11�

forms the basis of electron MHD �EMHD�.16–18

Another simplification concerns the case when the plasma is totally ionized and the velocities
are small enough for the quadratic terms v j ·�v j to be safely ignored. Substituting ve=vi−J /ene

into the electron momentum equation �1�, we find

−
1
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�J

�t
+

�vi

�t
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neme
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J . �12�

Combining this with the ion momentum equation �2�, one finds

ne	1 +
me

mi

E + ne	1 −

me

mi

�vi � B� −

1

e
J � B −

me

e2

�J

�t
+

1

e
� 	Pe −

me

mi
Pi
 −

me�ei

e2 	1 −
me

mi

J = 0.

�13�

Since the ions are at least protons and, therefore, me�mi, we may take the quotient me /mi as zero
and obtain

E + vi � B = −
�Pe

ene
+

me�ie

e2ne
J +

1

ene
J � B +

me

e2ne

�J

�t
, �14�

which is the two-fluid Ohm equation. The value �ene�−1 is called the Hall coefficient. The pressure
term is the cause of the so-called Biermann battery, which in the case that ne is not constant may
provide a thermal source for the magnetic field.19 By using Faraday’s law, this yields the two-fluid
induction equation,

me

e2ne

��� � J�
�t

+
�B

�t
= ��B + � � �vi � B� −

1

ene
� � �J � B� . �15�

The electron inertia term

me

e2ne

�J

�t
�16�

is extremely small and may be omitted in low-frequency, large scale phenomena. This procedure
yields the Hall induction equation; and when the term in �� �J�B� is also ignored, the classical
MHD system.

Another different approximation involves canceling the electron velocity altogether, based on
the small contribution of the electrons’ mass to the whole momentum. This makes �1� an equilib-
rium equation,

E + vi � B = −
�Pe

ene
−

1

ene
J � B +

me��ie + �in�
e2ne

J +
me�en

ene
�vi − vn� , �17�

which is similar to �14�, except by the absence of electron inertia and the presence of the differ-
ence between the ion and neutral velocities. This is estimated by assuming that the accelerations
of ions and neutrals are similar, �vi /�t=�vn /�t. With these assumptions, by adding �2� and �3�
�without the quadratic terms�, we obtain the momentum equation for the mean velocity
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v =
�ivi + �nvn

�i + �n
, �18�

which jointly with �17�, yields a new induction equation,

�B

�t
= � � �v � B −

me��ie + �in�
e2ne

J −
r

ene
J � B

+
r2

�i�in
�J � B� � B +

r2

�i�in
	 �i

�n
� Pn − �Pi − �Pe
 � B� , �19�

where r=�i / ��i+�n�. This approximation is useful when studying the drift of charged with respect
to neutral fluid, i.e., the so-called phenomenon of ambipolar diffusion. Sometimes a further drastic
�strong coupling� simplification is taken,

vi − vn =
1

�in�i�n
J � B . �20�

III. OHM’S LAW AND CLOSED FORM OF THE SYSTEM

The mathematical problem with these simplified equations is that one often suppresses the
highest order term so that the character of the system changes radically and it seems impossible to
find a general theorem of existence covering all cases. We will consider the original systems
�1�–�4�. The set where it is defined is either the whole space R3, a periodic box Q, or a bounded
smooth domain �. In the last case, boundary conditions must be set. Since we do not want the
fluid to leave �, all the velocities must be tangential to the boundary: v j ·n ���=0. Given the
definition of the current �5�, also J ·n ���=0. Among all the solenoidal fields B satisfying ��B
=J, there is precisely one satisfying as well B�n ���=0.20 Other possible fields are of the form
B+�	, where 	 is a harmonic function in �. The jump �B�n� at the boundary is the surface
current K. As for the electric field, in the absence of free charges, it satisfies � ·E=0. Faraday’s
equation shows that E is a vector potential for −�B /�t. This may be chosen in a unique way if we
set E ·n ���=0; any sum E+�
, 
, a harmonic function, also is a vector potential, and the value
�E ·n�=�
 /�n=�s is the surface charge density. Although we could work with fixed K and �s, it
is highly convenient for simplicity to assume them to be zero, i.e., the magnetic field is normal to
the boundary and the electric field parallel to it. In these conditions, differentiating �5�,

�J

�t
= ene	 �vi

�t
−

�ve

�t

 . �21�

When we take this value to the difference between �1� and �2�, we obtain

1

ene

�J

�t
= − vi · �vi + ve · �ve −

�Pi

�i
+

�Pe

�e
+ e	 1

mi
+

1

me

E + e	 vi

mi
+

ve

me

 � B

− ��ei + �ie + �in�vi + ��ei + �ie + �en�ve + ��in − �en�vn. �22�

On the other hand, since � ·E=0,

�J

�t
= � �

�B

�t
= − � � �� � E� = �E , �23�

which implies that
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1

ene
�E − e	 1

mi
+

1

me

E

= − vi · �vi + ve · �ve −
�Pi

�i
+

�Pe

�e
+ e	 vi

mi
+

ve

me

 � B

− ��ei + �ie + �in�vi + ��ei + �ie + �en�ve + ��in − �en�vn. �24�

This is the complete law of Ohm. Unlike its simplified versions, it is not a point relation between
E and the remaining variables, but an elliptic equation. The operator acting on E is

T:E →
1

ene
�E − e	 1

mi
+

1

me

E . �25�

T is elliptic when defined in the spaces

Hs = �E � H1�R3�3:� · E = 0� , �26�

Hp = 
E � H1�Q�3:� · E = 0, E periodic,�
Q

EdV = 0� , �27�

Hd = �E � H1���3:� · E = 0, �� � E� � n��� = 0, E · n��� = 0� . �28�

This follows from the identity

��E,E� = − �
��

�� � E,E,n�d� − �� � E�2
2. �29�

The boundary integral disappears for R3; it vanishes for Q because of the antiperiodicity of the
normal vector and in a bounded domain because ���E��n=0. It is well known that in these
spaces the norm of H1 is equivalent to the L2 norm of ��E �for this reason, we impose in the
periodic case the condition of zero mean�.

The way to unify all the equations and constitutive relations into a single self-contained
system is as follows: first, we set

E = E�ve,vi,vn,Pe,Pi,B� �30�

as the solution of Eq. �24� within the spaces �26�–�28�. Then, we substitute in the original system
E as a �nonlocal� function of the remaining variables. The resulting system is not a partial
differential one; since T−1 may be written as an integral on the right hand side of �24�, it is an
integrodifferential one. Anyway it is perfectly defined. Let us see that the solutions to it really
satisfy all the requirements.

For � bounded, the fact that E lies within Hd means that ���E��n=0. By �4�, also
��B /�t��n=0. It is therefore enough for B�n=0 to hold for all time that it holds for t=0. Since
�4� also implies �E=�J /�t, we find that �J /�t satisfies precisely the same equation as the one
obtained for ene�vi−ve� by substracting �1� and �2�; hence, it is enough that J=ene�vi−ve� at time
zero for this to hold for all time. The same thing �minus the boundary conditions� holds for the
whole space case and the periodic one. As for the velocities, obviously we will choose them to lie
in the space

H = �v � �H1�3:� · v = 0,v · n = 0� . �31�

Moreover, the classic theorems on elliptic equations �see, e.g., Ref. 21� guarantee that T is an
isomorphism between the spaces Hm+2�R3�3�Hs and the subspace of Hm�R3�3 formed by solenoi-
dal fields and the same for the subspaces Hp and Hd. The bound �E�m+2�C�T�E��m will be
fundamental in Sec. IV.
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IV. A PRIORI ESTIMATES AND EXISTENCE THEOREMS

It is known that the Sobolev space Hm is an algebra provided m
3 /2. Since we will work
with spaces such that Hm−1 is an algebra, we will need m
5 /2; it is always simpler to take m as
an integer, so m=3 will be the smallest integer such that we have an existence theorem within Hm.
We will denote by � , �m the scalar product in Hm,

�u,v�m = �
����m

� D�u · D�vdV , �32�

where the integral is extended to the domain under consideration. It will be more convenient, as
well as physically meaningful, to define the following Hm norm in the space of 12-dimensional
variables:

��ve,vi,vn,B��m
2 = �e�ve�m

2 + �i�vi�m
2 + �n�vn�m

2 + �B�m
2 . �33�

Then we have the following a priori estimates:
Theorem 4.1: There exists a constant C
0 such that any solution w= �ve ,vi ,vn ,B� of (1)–(5)

satisfies

d

dt
�w�m � C��w�m + 1�2. �34�

Proof: As usual, the main difficulty lies in the pressure terms. By taking the divergence of
�1�–�3�, we find that that each Pj satisfies the following equation:

1

�e
�Pe = − �avea�bvea −

e

me
� · �ve � B� , �35�

1

�i
�Pi = − �avia�bvia +

e

mi
� · �vi � B� , �36�

1

�n
�Pn = − �avna�bvna. �37�

When w= �ve ,vi ,vn ,B� belongs to Hm, the right hand side of �35�–�37� belongs to Hm−1 since this
as well as Hm are algebras. Thus, Eqs. �35�–�37� have a unique solution in Hm+1�R3� in the whole
space case. In the periodic case, we may impose that each Pj has a zero mean to obtain again a
unique solution within Hm+1�Q�; since all solutions differ by a constant and we will deal with �Pj,
the choice is indifferent. The hardest case is the bounded domain one, on which we need boundary
conditions. These are found by multiplying �1�–�3� by the normal vector. Since E ·n=0, B�n
=0, this means that

1

� j

�Pj

�n
= − v j · �v j · n . �38�

We follow the technique of Temam.22 Since the boundary �� is locally the level set of a smooth
function �=0,

n =
��

����
, �39�

− v j · �v j · n = −
1

����
v j · �v j · �� �40�
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=−
1

����
�v j · ���v j� − v j · �2� · v j� . �41�

The last term means

v j · �2� · v j = v jav jb�a�b� .

Since v j ·� involves only tangential derivatives of the function �v j, whose value is 0 in ��, we are
left with

− v j · �v j · n =
1

����
v j · �2� · v j . �42�

When v j �Hm���3, v j ����Hm−1/2����3 by the trace theorems. Since Hm−1/2���� is again an
algebra for m
3 /2 and � is smooth, we find

��Pj

�n
�

m−1/2,��

� C�v j�m−1/2,��
2 � C�v j�m

2 . �43�

From now on we will denote all constants depending only on the domain by C to avoid a pointless
collection of subindices. Considering the right hand side of �35�–�37� plus the boundary estimate
�43� in the case of a bounded domain, we find that for all cases

��Pj�m � �Pj�m+1 � C���v j�m−1
2 + �� · �v j � B��m−1 + �v j�m

2

+ �v j�m�B�m� � C��v j�m
2 + �v j�m�B�m� � C�w�m

2 . �44�

We will prove a similar bound for all the terms in the right hand side of �1�–�4�. The first difficulty
lies in v j ·�v j since it apparently involves a term of the order of m+1. However, since Ref. 23 we
know how to deal with this: in the product �v j ·�v j ,v j�m the troublesome terms

� �v j · �D�v j� · D�v jdV ,

with ���=m integrate to zero. Thus,

��v j · �v j,v j�m� � C�v j�m
3 � C�w�m

3 . �45�

The products ��Pj ,v j�m integrate to zero in the whole space and periodic cases; nonetheless, the
bound �44� will be needed to estimate E even in these cases. For a bounded domain �, �44�
implies

1

� j
���Pj,v j�m� � C�w�m

3 . �46�

As for the terms in v j �B, we have

e

mj
��v j � B,v j�m� � C�v j�m

2 �B�m � C�w�m
3 . �47�

It remains to study the nonlocal term E. Notice that in the right hand side of �24� all the terms
belong to Hm, except for v j ·�v j, which lies within Hm−1. Considering our previous bounds on the
pressure, we get

�T�E��m−1 � C��w�m
2 + �w�m� . �48�

which implies that
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�E�m+1 � C�T�E��m−1 � C��w�m
2 + �w�m� . �49�

This bound holds a fortiori for �E�m so that

��E,v j�m� � C��w�m
3 + �w�m

2 � . �50�

As for the collisional terms, we could bound them in a simpler way, but it is worth noticing that
with our choosing of the product �33� we have that their contribution is

− �e�ei�ve − vi�m
2 − �i�in�vi − vn�m

2 − �n�ne�vn − ve�m
2 � 0 �51�

so that the total effect is negative and may be ignored. This makes good physical sense; collisions
tend to decrease the size of the velocities, and this continues for as long as not all the species have
the same motion, i.e., for as long as some difference �va−vb�m is positive. It only remains as the
magnetic field in �4�. �49� implies

��− � � E,B�m� � C�E�m+1�B�m � C��w�m
3 + �w�m

2 � . �52�

Finally, the products in the left hand side of �1�–�4� are identical to

�
j

� j	 �v j

�t
,v j


m

+ 	 �B

�t
,B


m

=
1

2

d

dt
�w�m

2 . �53�

Therefore,

d

dt
�w�m

2 � C��w�m
3 + �w�m

2 � , �54�

so that

d

dt
�w�m � C��w�m + 1�2 �55�

as stated.
We can now state the main theorem.
Theorem 4.2: Let the initial condition w�0��Hm. Then, there exists T�
0 such that a

solution of (1)–(5) exists for all t� �0,T��.
Proof: Elementary calculations on the a priori estimates �34� yield formally

�w�t��m �
�w�0��m + 1

1 − Ct�1 + �w�0��m�
− 1. �56�

Thus, if, e.g., we take T�= �2C��w0�m+1��−1 for all t� �0,T��, we have �w�t��m�2�w�0��m+1.
Going back to �1�–�4�, we see that except for the terms v j ·�v j, which belong to Hm−1, all the
remaining term in the right hand side belong to Hm for as long as w belongs to this space. In
particular, for all t� �0,T�,

��w

�t
�

m−1
� C��w�0��m + 1�2. �57�

This implies that for w�0��Hm �plus the conditions described before�, there exists a time interval
�0,T� such that there exists a unique solution,

w � C��0,T�,Hm� · �12� � AC��0,T�,Hm−1� · �12� , �58�

where � · � means R3, Q, or �, AC represents the absolutely continuous functions, and, in fact, w
takes values in a certain subspace, described as follows: � ·v j =0 for all j, v j ·n=0 when appro-
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priate; B�n=0. When the initial conditions satisfy � ·B=0, ��B�0�=ene�vi�0�−ve�0��, this
holds for all time. E is found from these variables through �24�.

The method of proof is standard �see, e.g., Ref. 24�. One approximates the system by projec-
tion in a finite-dimensional space Xk: these approximate systems may be solved finding solutions
wk in a finite time interval �0,Tk�, and the a priori estimates ensure that Tk does not shrink to zero
as we approach the initial condition w�0� by wk�0�. Moreover, the estimates provide uniform
bounds of the approximate solutions in

L���0,T�,Hm� � Lip��0,T�,Hm−1� .

The Lions–Aubin compactness theorem proves that there exists a limit w of the wk, which is a
solution of the system, and, in fact, belongs to the spaces described in �58�.

V. CONCLUSIONS

The equations describing the evolution of partially ionized, inviscid, and incompressible plas-
mas are formed by three momentum equations for each of the species: electrons, ions, and neutral
particles plus the Faraday equation for the magnetic field. A number of different simplifications
exist, dealing with particular phenomena, such as EMHD and ambipolar diffusion. Since these
simplifications often work by suppressing the higher order terms, they have no common math-
ematical characteristics and a separate study is needed for each of them. The original unsimplified
system possesses an unusual feature: the law of Ohm relating electric and magnetic fields to the
velocities of each species is not a functional identity as in the classic cases, but an elliptic
equation. This makes the whole system a functional �integrodifferential� evolution equation. The
main problem consists of tying down several equations and state laws into a single self-contained
system; once this is achieved, a priori estimates on certain Sobolev spaces are not excessively
hard to obtain. As it often happens, the case where the domain is a smooth bounded one proves
more difficult that the whole space and periodic box cases. Once these a priori estimates are
found, a local theorem of existence and uniqueness may be proved by routine methods.
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