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a b s t r a c t 

Two-dimensional linear wave equation in anisotropic media, on a rectangular domain with 

initial conditions and periodic boundary conditions, is considered. The energy of the prob- 

lem is contemplated. The space discretization is reached by means of finite differences on 

a uniform grid, paying attention to the mixed derivative of the equation. The discrete en- 

ergy of the semi-discrete problem is introduced. For the time integration of the system 

of ordinary differential equations obtained, a fourth order exponential splitting method, 

which is a geometric integrator, is proposed. This time integrator is efficient and easy to 

implement. The stability condition for time step and space step ratio is deduced. Numerical 

experiments displaying the good behavior in the long time integration and the efficiency 

of the numerical solution are provided. 
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1. Introduction 

Anisotropic media, in which the velocity may depend on the direction, are important in several wave propagation models,

as anisotropic Maxwell’s equations [3] or in elastic anisotropic waves in solid-earth geophysics [11] . Anisotropy seems to

be an everywhere property of earth materials and its effects on seismic data must be taken into account. Today, seismic

anisotropy is considered in exploration and reservoir characterization [24] . Stability analysis of the Perfectly Matched Layer

method applied to anisotropic waves in two dimensions are studied for example in [4,17,21] . 

In this paper we study a particular case of the equation considered in [5] , the two dimensional time-dependent

anisotropic and dispersive wave equation 

∂ tt u = α11 ∂ xx u + 2 α12 ∂ xy u + α22 ∂ yy u − s 2 u. (1)

We assume that the coefficients αij and s 2 in (1) are constant satisfying 

α11 > 0 , α22 > 0 , α11 α22 − α2 
12 > 0 , (2)

so that in the steady state the equation is elliptic. 

When a problem posed in an infinite domain is solved numerically, it is necessary to reduce the computational domain

to a finite domain, which forces us to choose suitable boundary conditions. On physical applications, it is desirable to have

numerical models that resemble the dynamics of the continuous problems. If periodic boundary conditions are taken, in-

variants of the original problem are preserved. Here, we consider Eq. (1) in a rectangular domain R = [ a, b] × [ c, d] , for the

unknown u ( x , y , t ), with periodic boundary conditions, 

u (a, y, t) = u (b, y, t) , y ∈ [ c, d] , (3)
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∂ x u (a, y, t) = ∂ x u (b, y, t) , y ∈ [ c, d] , (4) 

u (x, c, t) = u (x, d, t) , x ∈ [ a, b] , (5) 

∂ y u (x, c, t) = ∂ y u (x, d, t) , x ∈ [ a, b] . (6) 

and initial conditions, 

u (x, y, 0) = u 0 (x, y ) , ∂ t u (x, y, 0) = v 0 (x, y ) , (7) 

which satisfy the periodic boundary conditions in R . 

In an isotropic medium, α12 = 0 , α11 = α22 , we get the Klein –Gordon wave equation. If in the Eq. (1) , α12 = 0 but

α11 � = α22 , there are different speeds on x direction and on y direction, which corresponds to the orthotropic case. How-

ever, the general anisotropic case occurs when α12 � = 0. This means the existence of a spatial mixed derivative term in

(1) . In the literature there are other problems containing spatial mixed derivative terms as convection–diffusion equations

[8,13,14] , parabolic problems with application to pricing options [12,15,26] or in numerical mathematics when coordinate

transformations are applied to allow working on simple domains or on uniform grids. In [13,14] the spatial derivatives are

approximated by means of second-order finite differences, whereas in [8,12] fourth order finite differences are used. Then,

the semi-discrete system of ordinary differential equations (ODEs) is integrated using alternating direction implicit schemes

of first and second orders. For hyperbolic problems, as (1) , is less common to use implicit methods because the stability

condition is less demanding and � t and � x are of similar magnitude. 

We are interested in obtaining efficient high order in space and time schemes for the numerical solution of Eq. (1) ,

with periodic boundary conditions (3) –(6) and initial conditions (7) . In this paper, the spatial derivatives are approximated

using second and fourth order finite differences. As the boundary conditions are periodic, the matrix in the ODE system

achieved is a block circulant matrix where each block is too a circulant matrix. For second order approximation of the spatial

derivatives we prove that this matrix is symmetric negative definite and we locate the interval that contains its eigenvalues.

We study well-posedness by using the discrete energy associated to the problem. For fourth order approximation of the

spatial derivatives we compute numerically the eigenvalues of the corresponding symmetric matrix for moderate values of

the dimension of the matrix, and the eigenvalues obtained are negative values. 

We rewrite the semi-discrete problem as first order in time and the resulting ODE system is a Hamiltonian problem.

This ODE system is split in two intermediate problems which are solved exactly. A fourth order splitting scheme is achieved

by the flow composition of the two intermediate problems chosen. In stead of using alternating directions as in [8] , the

contribution of all spatial derivatives are regarded together because that the splitting obtained is computationally more

efficient. A similar splitting method is considered in [2] for an isotropic problem with absorbing boundary conditions. The

stability interval of the splitting method and the stability condition for the ratio between the time step and the space step

are studied. 

Useful overviews of splitting methods can be found in the review papers [6,20] . Splitting schemes are especially useful

in the scope of geometric integration. Actually, splitting integrators preserve structural properties of the original problem’s

flow as long as the intermediate problems’ flow do. The good performance of the geometric integrators in the long time

integration of Hamiltonian ODE systems is well showed in [10,22] . 

The paper is organized as follows. The energy of the continuous problem is introduced in Section 2 . In Section 3 , second

order approximation of the spatial derivatives are considered and the corresponding discrete energy is regarded. Section 4 is

devoted to the exponential splitting time integrator. In Section 5 fourth order approximation of the spatial derivatives are

introduced. Numerical experiments are conducted in Section 6 . The good long time behavior as well as the efficiency of the

splitting scheme by comparing with the fourth-order four-stage Runge –Kutta method in terms of CPU time are displayed. 

2. Energy of the continuous problem 

Knowing the energy of the system is important because it allows knowing an amount that is conserved over time without

solving the equation. Moreover, when the continuous problem is discretized in space, we can compare the energy of the

continuous problem with the energy of the semi-discrete problem. 

An energy, 

E(t)= 

1 

2 

∫ ∫ 
R 

((∂ t u (x, y, t)) 2 +α11 (∂ x u (x, y, t)) 2 +2 α12 ∂ x u (x, y, t) ∂ y u (x, y, t) + α22 (∂ y u (x, y, t)) 2 +s 2 u (x, y, t) 2 ) d xd y, 

can be introduced. Here 

(u, v ) = 

∫ ∫ 
R 

v ∗u d xd y, ‖ u ‖ 

2 = (u, u ) . 

Then, 
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E(t) = 

1 

2 

(‖ ∂ t u ) ‖ 

2 + α11 ‖ ∂ x u ‖ 

2 + 2 α12 (∂ x u, ∂ y u ) + α22 ‖ ∂ y u ‖ 

2 + s 2 ‖ u ‖ 

2 ) . 

From ellipticity condition (2) , it is deduced that E ( t ) is non-negative. It can be shown that solutions of (1) with periodic

boundary conditions conserve E ( t ). Multiplying Eq. (1) by ∂ t u , the equation can be rewritten as a divergence. Then, consider-

ing the integral over the rectangle R , it can be seen that E ′ (t) = 0 , from the divergence theorem and the periodic conditions.

Therefore the energy E ( t ) is constant with time and 

E(t) = E(0) = 

1 

2 

∫ ∫ 
R 

(v 0 (x, y ) 2 + α11 (∂ x u 0 (x, y )) 2 + 2 α12 ∂ x u 0 (x, y ) ∂ y u 0 (x, y ) + α22 (∂ y u 0 (x, y )) 2 + s 2 u 0 (x, y ) 2 ) d xd y. 

(8)

In this way, we can compute the energy of the problem calculating the initial energy through the initial condition. 

3. Spatial discretization 

We start approximating the spatial derivatives in (1) by using finite differences. For the sake of simplicity, we consider

the same size step in both directions x and y , that is, for a value of N , h = 

b − a 

N 

and M = 

d − c 

h 
. Let x j = a + ( j − 1) h,

j = 1 , . . . , N + 1 , and y l = c + (l − 1) h, l = 1 , . . . , M + 1 , be the nodes of the spatial discretization. This produces a uniform

grid in the computational domain and a matrix of unknowns u jl (t) = u (x j , y l , t) . 

In general, finite difference approximation involves a stencil of points surrounding u jl . In this section, second order spatial

derivatives in the direction x and in the direction y are approximated by second order central finite differences 

∂ xx u jl ≈
u j−1 ,l − 2 u jl + u j+1 ,l 

h 

2 
, 

∂ yy u jl ≈
u j,l−1 − 2 u jl + u j,l+1 

h 

2 
, 

in stencil form 

1 

h 

2 

( 

0 0 0 

1 −2 1 

0 0 0 

) 

, 
1 

h 

2 

( 

0 1 0 

0 −2 0 

0 1 0 

) 

, 

respectively. 

Mixed derivative can be approximated by second order finite differences 

∂ xy u jl ≈
u j−1 ,l−1 − u j+1 ,l−1 + u j+1 ,l+1 − u j−1 ,l+1 

4 h 

2 
, 

in stencil form 

1 

4 h 

2 

( −1 0 1 

0 0 0 

1 0 −1 

) 

. (9)

Another alternative stencil forms for second order approximation of second order of mixed derivatives are 

1 

2 h 

2 

( −1 1 0 

1 −2 1 

0 1 −1 

) 

, 
1 

2 h 

2 

( 

0 −1 1 

−1 2 −1 

1 −1 0 

) 

. (10)

The first stencil form should be used in the case α12 > 0, whereas the second is suitable when α12 < 0. If, as it happens

in (1) , the equation combines ∂ xx , ∂ yy and ∂ xy , choosing (10) instead of (9) for the approximation of mixed derivative, the

complete discretization of the differential operator produces an M-matrix [9] . Taking this into account, here mixed derivative

is approximated as follows 

if α12 > 0 , 

2 ∂ xy u jl ≈
u j−1 ,l + u j+1 ,l − 2 u jl + u j,l−1 + u j,l+1 − u j−1 ,l+1 − u j+1 ,l−1 

h 

2 
, 

if α12 < 0 , 

2 ∂ xy u jl ≈
−u j−1 ,l − u j+1 ,l + 2 u jl − u j,l−1 − u j,l+1 + u j−1 ,l−1 + u j+1 ,l+1 

h 

2 
. 

Let it be u j the approximations to the unknowns (u (x j , y 1 ) , . . . , u (x j , y M+1 )) 
T , for fixed x j . Denoting u h = [ u 

T 
1 
, . . . , u 

T 
N+1 

] T ,

we achieve the second order in time ODEs system 

d 2 u h 

dt 2 
= A u h , (11)

where the matrix of the problem is 
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A = 

1 

h 

2 
B − s 2 I, (12) 

I is the identity matrix of dimension (N + 1)(M + 1) and 

B = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

B 1 B 2 B 

T 
2 

B 

T 
2 B 1 B 2 

. . . 
. . . 

. . . 

B 

T 
2 B 1 B 2 

B 2 B 

T 
2 B 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (13) 

If α12 > 0, 

B 1 = (α22 + α12 ) C 1 − 2 α11 I M+1 , 

B 2 = α12 C 2 + α11 I M+1 , 

and, if α12 < 0, 

B 1 = (α22 − α12 ) C 1 − 2 α11 I M+1 , 

B 2 = −α12 C 
T 
2 + α11 I M+1 , 

with 

C 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−2 1 1 

1 −2 1 

. . . 
. . . 

. . . 

1 −2 1 

1 1 −2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, C 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 −1 

−1 1 

. . . 

−1 1 

0 −1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

Notice that B is a block circulant matrix where each block is in turn a circulant matrix. 

Lemma 1. The eigenvalues of matrix B in (13) , for the coefficients αij meeting (2) , satisfy 

σ (B ) ⊂ [ −4(α11 + α22 ) − 8 | α12 | , 0] . 

Proof. We begin considering the case α12 > 0. 

B = circ(B 1 , B 2 , 0 , . . . , 0 , B 

T 
2 ) , 

B 1 = circ(−2(α11 + α22 + α12 ) , α22 + α12 , 0 , . . . , 0 , α22 + α12 ) , 

B 2 = circ(α11 + α12 , 0 , . . . , 0 , −α12 ) , 

B 

T 
2 = circ(α11 + α12 , −α12 , 0 , . . . , 0) . 

We consider the following polynomials associated to the blocks of matrix B 

h 1 (z) = −2(α11 + α22 + α12 ) + (α22 + α12 ) z + (α22 + α12 ) z 
M , 

h 2 (z) = (α11 + α12 ) − α12 z 
M , 

h N+1 (z) = (α11 + α12 ) − α12 z. 

Then, the eigenvalues of matrix B are (see [16,18] ) 

λl,k = ˜ ε 0 l h 1 ( ̃  ω k ) + ˜ ε l h 2 ( ̃  ω k ) + ˜ ε N l h N+1 ( ̃  ω k ) , l = 1 , . . . , N + 1 , k = 1 , . . . , M + 1 , 

where, 

ω M+1 = exp 

(
2 π i 

M + 1 

)
, ˜ ω k = (ω M+1 ) 

k , 

ε N+1 = exp 

(
2 π i 

N + 1 

)
, ˜ ε l = (ε N+1 ) 

l . 

λl,k = −2(α11 + α22 + α12 ) + (α22 + α12 ) 

(
exp 

(
2 π ik 

M + 1 

)
+ exp 

(
2 π ikM 

M + 1 

))

+ exp 

(
2 π il 

N + 1 

)(
(α11 + α12 ) − α12 exp 

(
2 π ikM 

M + 1 

))
+ exp 

(
2 π ilN 

N + 1 

)(
(α11 + α12 ) − α12 exp 

(
2 π ik 

M + 1 

))
. 

Taking into account that, 
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exp 

(
2 π ilN 

N + 1 

)
= exp 

(
−2 π il 

N + 1 

)
, 

exp 

(
2 π ikM 

M + 1 

)
= exp 

(
−2 π ik 

M + 1 

)
, 

exp 

(
2 π il 

N + 1 

)
exp 

(
2 π ikM 

M + 1 

)
+ exp 

(
2 π ilN 

N + 1 

)
exp 

(
2 π ik 

M + 1 

)

= 2 cos 

(
2 π l 

N + 1 

)
cos 

(
2 πk 

M + 1 

)
+ 2 sin 

(
2 π l 

N + 1 

)
sin 

(
2 πk 

M + 1 

)

= 2 cos 

(
2 π l 

N + 1 

− 2 πk 

M + 1 

)
, 

and then, 

λl,k = −2(α11 + α22 + α12 ) + 2(α11 + α12 ) cos 

(
2 π l 

N + 1 

)
+ 2 ( α22 + α12 ) cos 

(
2 πk 

M + 1 

)
−2 α12 cos 

(
2 π l 

N + 1 

− 2 πk 

M + 1 

)
. 

Clearly, λl,k ∈ D = { f (x, y ) : (x, y ) ∈ [0 , 2 π ] × [0 , 2 π ] } where 

f (x, y ) = −2(α11 + α22 + α12 ) + 2(α11 + α12 ) cos (x ) + 2(α22 + α12 ) cos (y ) − 2 α12 cos (x − y ) . 

We are going to prove that D ⊂ [ −4(α11 + α22 ) − 8 | α12 | , 0] . For that, we calculate the absolute extrema of function f on

the set D . As f ( x , y ) is a continuous function in the compact domain [0, 2 π ] × [0, 2 π ], the Weierstrass Theorem guarantees

that the absolute maximum and the absolute minimum of f ( x , y ) are reached in points of [0, 2 π ] × [0, 2 π ]. First, we study

the function at the boundary. 

If y ∈ [0, 2 π ], 

f (0 , y ) = f (2 π, y ) = −2(α11 + α22 + α12 ) + 2(α11 + α12 ) + 2(α22 + α12 ) cos (y ) − 2 α12 cos (y ) 

= −2 α22 (1 + cos (y )) . 

In that case, −4 α22 ≤ f (0 , y ) = f (2 π, y ) ≤ 0 . 

If x ∈ [0, 2 π ], 

f (x, 0) = f (x, 2 π) = −2(α11 + α22 + α12 ) + 2(α11 + α12 ) cos (x ) + 2(α22 + α12 ) − 2 α12 cos (x ) 

= −2 α11 (1 + cos (x )) . 

Thus, −4 α11 ≤ f (x, 0) = f (x, 2 π) ≤ 0 . 

Second, we look for the possible extrema of f ( x , y ) in (0, 2 π ) × (0, 2 π ), which have to satisfy 

∂ f 

∂x 
= −2(α11 + α12 ) sin (x ) + 2 α12 sin (x − y ) = 0 , 

∂ f 

∂y 
= −2(α22 + α12 ) sin (y ) − 2 α12 sin (x − y ) = 0 , 

like this, 

2 α12 sin (x − y ) = 2(α11 + α12 ) sin (x ) = −2(α22 + α12 ) sin (y ) . (14)

From (14) , it is obtained 

sin (y ) = −α11 + α12 

α22 + α12 

sin (x ) , (15)

and therefore 

2 α12 sin (x − y ) = 2 α12 sin (x ) cos (y ) + 2 α12 
α11 + α12 

α22 + α12 

sin (x ) cos (x ) , (16)

and using another time (14) in (16) 

2 α12 sin (x ) cos (y ) + 2 α12 
α11 + α12 

α22 + α12 

sin (x ) cos (x ) = 2(α11 + α12 ) sin (x ) . (17)

Eq. (17) is satisfied if sin (x ) = 0 or 

α12 cos (y ) + α12 
α11 + α12 

α22 + α12 

cos (x ) = (α11 + α12 ) . (18)

From (15) , if sin (x ) = 0 , then sin (y ) = 0 , and the only option in (0, 2 π ) × (0, 2 π ) is ( π , π ), and f (π, π) = −4 α11 − 4 α22 −
8 α < 0 . 
12 
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Next, we are going to prove that (18) does not have any solution. From (18) , we have 

cos (y ) = −α11 + α12 

α22 + α12 

cos (x ) + 

α11 + α12 

α12 

. (19) 

Using that sin 

2 (y ) + cos 2 (y ) = 1 and (15) and (19) we achieve 

cos (x ) = −α12 (α22 + α12 ) 

2(α11 + α12 ) 2 
+ 

α12 

2(α22 + α12 ) 
+ 

α22 + α12 

2 α12 

. (20) 

We are going to prove that the right term in (20) is greater than 1, which can not be. The second part of the Eq. (20) is

equivalent to 

α2 
22 α

2 
11 + 2 α2 

11 α
2 
12 + 2 α2 

22 α11 α12 + 2 α2 
11 α22 α12 + 4 α11 α22 α2 

12 + 4 α11 α3 
12 + α4 

12 

2 α2 
11 
α22 α12 + 2 α2 

11 
α2 

12 
+ 4 α11 α22 α2 

12 
+ 4 α11 α3 

12 
+ 2 α22 α3 

12 
+ 2 α4 

12 

. (21) 

To prove that (21) is greater than 1 it suffices that 

α2 
22 α

2 
11 + 2 α2 

11 α
2 
12 + 2 α2 

22 α11 α12 + 2 α2 
11 α22 α12 + 4 α11 α22 α

2 
12 + 4 α11 α

3 
12 + α4 

12 

> 2 α2 
11 α22 α12 + 2 α2 

11 α
2 
12 + 4 α11 α22 α

2 
12 + 4 α11 α

3 
12 + 2 α22 α

3 
12 + 2 α4 

12 , 

or equivalently 

2 α2 
22 α11 α12 − 2 α22 α

3 
12 + α2 

22 α
2 
11 − α4 

12 = 2 α22 α12 (α11 α22 − α2 
12 ) + α2 

11 α
2 
22 − α4 

12 > 0 , 

which is true thanks to (2) . 

Then, summarizing the absolute minimum of f ( x , y ) in [0, 2 π ] × [0, 2 π ] is −4 α11 − 4 α22 − 8 α12 and the absolute maxi-

mum is 0. 

Now, we consider the case α12 < 0. 

B = circ(B 1 , B 2 , 0 , . . . , 0 , B 

T 
2 ) , 

B 1 = circ(−2(α11 + α22 − α12 ) , α22 − α12 , 0 , . . . , 0 , α22 − α12 ) , 

B 2 = circ(α11 − α12 , α12 , 0 , . . . , 0) , 

B 

T 
2 = circ(α11 − α12 , 0 , . . . , 0 , α12 ) . 

We consider the following polynomials associated to the blocks of matrix B 

h 1 (z) = −2(α11 + α22 − α12 ) + (α22 − α12 ) z + (α22 − α12 )) z 
M , 

h 2 (z) = (α11 − α12 ) + α12 z, 

h N+1 (z) = (α11 − α12 ) + α12 z 
M . 

In a similar way as in the previous case we achieve 

λl,k = −2(α11 + α22 −α12 ) + 2(α11 −α12 ) cos 

(
2 π l 

N + 1 

)
+ 2(α22 − α12 ) cos 

(
2 πk 

M + 1 

)
+ 2 α12 cos 

(
2 π l 

N+1 

+ 

2 πk 

M+1 

)
. 

In this case we consider the function 

f (x, y ) = −2(α11 + α22 + | α12 | ) + 2(α11 + | α12 | ) cos (x ) + 2(α22 + | α12 | ) cos (y ) − 2 | α12 | cos (x + y ) , 

(x, y ) ∈ [0 , 2 π ] × [0 , 2 π ] . 

Following a similar reasoning than in the case α12 > 0, we reach an equation similar to (17) but in this case with | α12 |. 

Consequently, we conclude 

σ (B ) ⊂ [ −4(α11 + α22 ) − 8 | α12 | , 0] . �

Lemma 2. The matrix 

A = 

1 

h 

2 
B − s 2 I 

is symmetric negative definite. 

Proof. As the matrix B in (13) is symmetric, this is also true for the matrix A . 

Since the eigenvalues of the matrix A are 

σ (A ) = 

{ 

1 

h 

2 
μ − s 2 , μ ∈ σ (B ) 

} 

, 

from Lemma 1 we deduce the result. �
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153 

 

Theorem 3. The discrete energy 

E h (t)(u , v ) = 

h 

2 

2 

(v T v − u 

T A u ) , (22)

is conserved for ( u h , d u h / dt ), being u h the solution of (11) . 

Proof. From Lemma 2 , (22) is a norm. If u h is a solution of (11) , 

dE h 
dt 

(t)(u h , du h /dt) = h 

2 du h 

dt 

T 
d 2 u h 

dt 2 
− h 

2 du h 

dt 

T 

A u h 

= h 

2 du h 

dt 

T 
(

d 2 u h 

dt 2 
− A u h 

)
= 0 . 

�

Then the discrete energy norm is conserved and the problem (11) is well posed. 

4. Time discretization 

We rewrite problem (11) as a first order system, naming v h = [ 
d 

dt 
u 

T 
1 , . . . , 

d 

dt 
u 

T 
N+1 ] 

T , 

d 

dt 

[
u h 

v h 

]
= 

[
0 I 
A 0 

][
u h 

v h 

]
, (23)

where I is the identity matrix of dimension (N + 1)(M + 1) . We notice system (23) is a Hamiltonian problem. 

4.1. Exponential splitting method 

Denoting k the time step, we propose to approximate the exact solution of (23) , [
u (t + k ) 
v (t + k ) 

]
= exp 

(
k 

[
0 I 
A 0 

])[
u (t ) 
v (t) 

]
, t ≥ 0 , 

by using an exponential splitting method as time integrator. We split the matrix of the problem (23) in two parts [
0 I 
A 0 

]
= 

[
0 I 
0 0 

]
+ 

[
0 0 

A 0 

]
= M 1 + M 2 . 

The intermediate problems 

d 

dt 

[
u h 

v h 

]
= M i 

[
u h 

v h 

]
, i = 1 , 2 , 

can be solved exactly using that M 

2 
i 

= 0 for i = 1 , 2 and, 

exp (kM 1 ) = 

[
I kI 
0 I 

]
, exp (kM 2 ) = 

[
I 0 

kA I 

]
. 

Then, the flows of these intermediate problems applied to [ u , v ] T are 

ψ 

[1] 

k 
: exp (kM 1 ) 

[
u 

v 

]
= 

[
u + kv 

v 

]
, 

ψ 

[2] 

k 
: exp (kM 2 ) 

[
u 

v 

]
= 

[
u 

v + kA u 

]
. 

To advance a step of size k in time, once we have solved exactly each intermediate step, it is necessary combining these

solutions to obtain an approximation of the solution of (23) . To do this, first we use the symmetric second order Strang

splitting S [2] 

S [2] 

k 
= ψ 

[1] 

k/ 2 
◦ ψ 

[2] 

k 
◦ ψ 

[1] 

k/ 2 
, (24)

and then, by composition of S [2] , we consider the fourth order integrator S [4] [23,25] 

S [4] 

k 
= S [2] 

αk 
◦ S [2] 

βk 
◦ S [2] 

αk 
, with α = 

1 

2 − 2 

1 / 3 
, β = 1 − 2 α. (25)
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175 
The advantage of composing exact solutions in this way is that geometric properties of the true flow are preserved. Sym-

plectic time integrators [10,22] not only provides better qualitative properties of the numerical solution, but also better

accuracy when a long time computation is made. 

It is possible to save some computational cost in (25) by join together the last step in the composition of S [2] 

αk 
and the

first one in S [2] 

βk 
and similarly, the last one in the composition of S [2] 

βk 
and the first one in S [2] 

αk 
. That is, 

S [4] 

k 
= ψ 

[1] 

αk/ 2 
◦ ψ 

[2] 

αk 
◦ ψ 

[1] 

αk/ 2 
◦ ψ 

[1] 

βk/ 2 
◦ ψ 

[2] 

βk 
◦ ψ 

[1] 

βk/ 2 
◦ ψ 

[1] 

αk/ 2 
◦ ψ 

[2] 

αk 
◦ ψ 

[1] 

αk/ 2 
, 

= ψ 

[1] 

αk/ 2 
◦ ψ 

[2] 

αk 
◦ ψ 

[1] 

(α+ β) k/ 2 
◦ ψ 

[2] 

βk 
◦ ψ 

[1] 

(α+ β) k/ 2 
◦ ψ 

[2] 

αk 
◦ ψ 

[1] 

αk/ 2 
. (26) 

Notice that, if many steps are performed without output, only three evaluation of ψ 

[1] and ψ 

[2] are required per time step.

This splitting method is explicit and it is easy to implement. However, it is not unconditionally stable and the stability

has to be studied. 

4.2. Stability discussion 

To study the stability of the numerical solution obtained with the scheme proposed in the previous subsection, we

consider the stability matrix and the stability interval associated to the method. Since A is symmetric negative definite, the

matrix (−A ) 1 / 2 is well defined. Considering 

Q = 

[
(−A ) 1 / 2 0 

0 I 

]
, 

the matrix M(k, −A ) with which the method S [4] 

k 
proceeds, 

S [ � ] ‖ : M(k, −A ) 

[
u 

v 

]
, 

can be expressed as M(k, −A ) = Q 

−1 R (k (−A ) 1 / 2 ) Q, where R ( ω) is the stability matrix of the method. Following [7] , R ( ω) can

be computed as [ 

1 

α

2 

ω 

0 1 

] [
1 0 

−αω 1 

][ 

1 

α + β

2 

ω 

0 1 

] [
1 0 

−βω 1 

][ 

1 

α + β

2 

ω 

0 1 

] [
1 0 

−αω 1 

][ 

1 

α

2 

ω 

0 1 

] 

. (27) 

Then, 

R (ω) = 

[
R 1 (ω) R 2 (ω) 
R 3 (ω) R 4 (ω) 

]
where 

R 1 (ω) = R 4 (ω) = 1 − ω 

2 

2 

+ 

ω 

4 

24 

+ 

1 

36 

(6 + 5 · 2 

1 / 3 + 4 · 2 

2 / 3 ) ω 

6 , (28) 

R 2 (ω) = ω − ω 

3 

6 

− 1 + 2 

1 / 3 

72 · 2 

2 / 3 
ω 

5 + 

25 + 20 · 2 

1 / 3 + 16 · 2 

2 / 3 

1728 

ω 

7 , (29) 

R 3 (ω) = −ω + 

ω 

3 

6 

+ 

4 + 4 · 2 

1 / 3 + 3 · 2 

2 / 3 

144 

ω 

5 . (30) 

The splitting method is stable if the size of the powers of M(k, −A ) are bounded in the matrix norm associated to the

discrete energy norm. In a similar way than in [2] , we rewrite the discrete energy (22) as 

E h (t)(u , v ) = 

h 

2 

2 

(
v T · v + ((−A ) 1 / 2 u ) T ((−A ) 1 / 2 u ) 

)
= || [(−A ) 1 / 2 u , v ] || 2 = || Q[ u , v ] T || 2 := || [ u , v ] || Q . 

Therefore, 

|| M 

n (k, −A ) || Q = || Q M 

n (k, −A ) Q 

−1 || 2 
= || (Q M(k, −A ) Q 

−1 
)n || 2 

= || R 

n (k (−A ) 1 / 2 ) || 2 . (31) 
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The study of the boundedness of the powers (31) is not easy in general (cf. [1] ) but, in order to do this, it is necessary

to consider the stability interval of the method. 

Definition 4. The stability interval of a method with stability matrix R ( ω) is [0, ω 

∗ ] if ω 

∗ is the largest nonnegative value

such that 

ρ(R (ω)) ≤ 1 , ω ∈ [0 , ω ∗] , 

where ρ( R ( ω)) is the spectral radius of R ( ω). 

Theorem 5. The value of ω 

∗ in the stability interval of (26) is 

ω ∗ = 

√ 

−1 + 

√ 

1 + 1152 γ

48 γ
, γ = 

6 + 5 · 2 

1 / 3 + 4 · 2 

2 / 3 

36 

. 

Proof. From (27) , det (R (ω)) = 1 . Then the eigenvalues λ1 ( ω), λ2 ( ω) of R ( ω) are the solutions of 

λ2 − 2 R 1 (ω) λ + 1 = 0 . 

If R 1 (ω) 2 − 1 > 0 the eigenvalues of R ( ω) are real numbers and, since λ1 (ω) λ2 (ω) = 1 , we deduce that ρ( R ( ω)) > 1. 

If R 1 (ω) 2 − 1 < 0 the eigenvalues of R ( ω) are complex numbers satisfying | λ j (ω) | = 1 for j = 1 , 2 and then ρ(R (ω)) = 1 .

If R 1 (ω) 2 − 1 = 0 the eigenvalues of R ( ω) are real numbers with modulus 1 and then ρ(R (ω)) = 1 . 

Let it be ω 

∗ the real nonnegative solution of R 1 (ω) − 1 = 0 . From (28) ω 

∗ is the only real nonnegative solution of 

ω 

2 
(
−1 

2 

+ 

1 

24 

ω 

2 + γω 

4 
)

= 0 , 

whose expression is 

ω ∗ = 

√ 

−1 + 

√ 

1 + 1152 γ

48 γ
≈ 0 . 9711 . 

As 

−1 

2 

+ 

1 

24 

ω 

2 + γω 

4 ≤ 0 , ω ∈ [0 , ω 

∗] , 

thus 

R 1 (ω) − 1 ≤ 0 , ω ∈ [0 , ω ∗] . 

Moreover, 

R 1 (ω) + 1 = 2 − 1 

2 

ω 

2 + 

1 

24 

ω 

4 + γω 

6 > 2 − 1 

2 

ω 

2 ≥ 3 

2 

, ω ∈ [0 , 1] . 

We conclude that 

R 1 (ω) 2 − 1 = (R 1 (ω) − 1)(R 1 (ω) + 1) ≤ 0 , ω ∈ [0 , ω ∗] , 

and we achieve the result. �

Since the eigenvalues of k (−A ) 1 / 2 = 

k 
h 
(−B + s 2 h 2 I) 1 / 2 must be in the stability interval , we obtain the stability condition 

k 

h 

√ 

4(α11 + α22 ) + 8 | α12 | + s 2 h 

2 < 

√ 

−1 + 

√ 

1 + 1152 γ

48 γ
. 

This will be reached, for sh small enough, when 

k 

h 

< 

0 . 9711 √ 

4(α11 + α22 ) + 8 | α12 | 
. (32)

Our numerical experiments corroborate that stability is achieved when the time step k is chosen to meet (32) . 

5. Fourth order spatial discretization 

Computational cost becomes especially important when the number of equations in the system increases. In order to

approach Eq. (1) with periodic boundary conditions (3) –(6) and initial conditions (7) , with higher accuracy, it is convenient

to introduce finite differences with order greater than two. Like this, higher computational efficiency can be achieved. In

this section we consider fourth order approximation of the spatial derivatives in a similar way as in Section 1.3.1 of [8] and

in Section 3.1 of [12] . 
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Second order spatial derivatives in the direction x and in the direction y are approximated by fourth order central finite

differences 

∂ xx u jl ≈
1 

h 

2 

(
− 1 

12 

u j−2 ,l + 

4 

3 

u j−1 ,l −
5 

2 

u jl + 

4 

3 

u j+1 ,l −
1 

12 

u j+2 ,l 

)
, 

∂ yy u jl ≈
1 

h 

2 

(
− 1 

12 

u j,l−2 + 

4 

3 

u j,l−1 −
5 

2 

u jl + 

4 

3 

u j,l+1 −
1 

12 

u j,l+2 

)
, 

in stencil form 

1 

12 h 

2 

⎛ 

⎜ ⎜ ⎝ 

0 0 0 0 0 

0 0 0 0 0 

−1 16 −30 16 −1 

0 0 0 0 0 

0 0 0 0 0 

⎞ 

⎟ ⎟ ⎠ 

, 
1 

12 h 

2 

⎛ 

⎜ ⎜ ⎝ 

0 0 −1 0 0 

0 0 16 0 0 

0 0 −30 0 0 

0 0 16 0 0 

0 0 −1 0 0 

⎞ 

⎟ ⎟ ⎠ 

, 

respectively. 

Mixed derivative are approximated by the following fourth order finite differences 

∂ xy u jl ≈
1 

144 h 

2 
(u j−2 ,l−2 − 8 u j−2 ,l−1 + 8 u j−2 ,l+1 − u j−2 ,l+2 − 8 u j−1 ,l−2 + 64 u j−1 ,l−1 − 64 u j−1 ,l+1 + 8 u j−1 ,l+2 8 u j+1 ,l−2 

− 6 4 u j+1 ,l−1 + 6 4 u j+1 ,l+1 − 8 u j+1 ,l+2 − u j+2 ,l−2 + 8 u j+2 ,l−1 − 8 u j+2 ,l+1 + u j+2 ,l+2 ) , 

in stencil form 

1 

144 h 

2 

⎛ 

⎜ ⎜ ⎝ 

−1 8 0 −8 1 

8 −64 0 64 −8 

0 0 0 0 0 

−8 64 0 −64 8 

1 −8 0 8 −1 

⎞ 

⎟ ⎟ ⎠ 

. 

As in Section 3 , we consider u j the approximations to the unknowns (u (x j , y 1 ) , . . . , u (x j , y M+1 )) 
T , for fixed x j . We con-

sider u h = [ u 

T 
1 
, . . . , u 

T 
N+1 

] T , and v h = [ 
d 

dt 
u 

T 
1 , . . . , 

d 

dt 
u 

T 
N+1 ] 

T . We rewrite this problem as a first order ordinary differential sys-

tem, 

d 

dt 

[
u h 

v h 

]
= 

[
0 I 
A 0 

][
u h 

v h 

]
, (33) 

where I is the identity matrix of dimension (N + 1)(M + 1) , A = 

1 

h 2 
B − s 2 I, 

B = 

1 

72 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

B 1 B 2 B 3 B 

T 
3 B 

T 
2 

B 

T 
2 B 1 B 2 B 3 B 

T 
3 

B 

T 
3 B 

T 
2 B 1 B 2 B 3 

. . . 
. . . 

. . . 
. . . 

. . . 

B 

T 
3 B 

T 
2 B 1 B 2 B 3 

B 3 B 

T 
3 B 

T 
2 B 1 B 2 

B 2 B 3 B 

T 
3 B 

T 
2 B 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (34) 

C 1 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

−180 96 −6 −6 96 

96 −180 96 −6 −6 

−6 96 −180 96 −6 

. . . 
. . . 

. . . 

−6 96 −180 96 −6 

−6 −6 96 −180 96 

96 −6 −6 96 −180 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 
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Table 1 

The three cases of αij considered. 

Run α11 α22 α12 

1.2 0.875 0.625 −0.217 

2.2 0.160 0.940 0.225 

2.4 0.472 0.628 0.443 

Table 2 

Minimum eigenvalue of matrix B . 

Run Second order FD Fourth order FD 

1.2 −7.7360 −7.9981 

2.2 −6.20 0 0 −5.8663 

2.4 −7.9440 −5.9727 
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221 

222 

 223 

 224 
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227 

 228 

 229 

 230 

231 
C 2 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 64 −8 8 −64 

−64 0 64 −8 8 

8 −64 0 64 −8 

. . . 
. . . 

. . . 

8 −64 0 64 −8 

−8 8 −64 0 64 

64 −8 8 −64 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

C 3 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 −8 1 −1 8 

8 0 −8 1 −1 

−1 8 0 −8 1 

. . . 
. . . 

. . . 

−1 8 0 −8 1 

1 −1 8 0 −8 

−8 1 −1 8 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

B 1 = α22 C 1 − 180 α11 I M+1 , 

B 2 = α12 C 2 + 96 α11 I M+1 , 

B 3 = α12 C 3 − 6 α11 I M+1 . 

Notice that A is a symmetric matrix which is five block circulant matrix and, in turn, each block is a circulant matrix with

five elements non zero in each row. 

Combining this spatial discretization with the time splitting (26) , we obtain a high order scheme whose order of consis-

tency is four in space and four in time. In this case, as in the second order case studied in Section 2 , to get the numerical

solution computed with method (26) is stable, the eigenvalues of k (−A ) 1 / 2 must be in the stability interval of the method. 

6. Numerical experiments 

In this Section we consider the problem described in Section 1 with initial conditions 

u 0 (x, y ) = 

{ 

(x + 0 . 2) 3 (0 . 2 − x ) 3 (y + 0 . 2) 3 (0 . 2 − y ) 3 

(0 . 2) 12 
, −0 . 2 < x, y < 0 . 2 , 

0 , otherwise , 

and v 0 (x, y ) = 0 , with compact support contained in the computational domain [ −1 / 4 , 1 / 4] × [ −1 / 4 , 1 / 4] . The polynomial

in u 0 is chosen so that u 0 ∈ C 1 ([ −1 / 4 , 1 / 4] × [ −1 / 4 , 1 / 4]) . These initial conditions are the same used in the numerical ex-

periments in previous paper [2] . 

We set the dispersion coefficient s 2 = 1 . For the numerical experiments we have selected three cases of coefficients αij

from [5] . Table 1 displays these coefficients with the same notation used in [5] . 

We have numerically computed the eigenvalues of matrix B (34) from Section 5 , for the αij considered, and we can con-

clude that they are non positive real numbers. Table 2 displays −4 α11 − 4 α22 − 8 α12 , the lower boundary of the minimum

eigenvalue of matrix B of Section 3 and λmin the minimum eigenvalue of matrix B of Section 5 computed numerically for

N = 80 , for the three cases of coefficients αij . 
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Table 3 

Ratio of stability. 

Run Second order FD Fourth order FD 

1.2 0.3491 0.3434 

2.2 0.3900 0.4009 

2.4 0.3445 0.3974 

Table 4 

Energy of second order and fourth order finite differences for run 1.2. 

E (0) = 1.369728648529847 

N E h , 2 E h , 4 

50 1.367571822518154 1.369706858644256 

100 1.369189187080928 1.369727238677717 

200 1.369593766456254 1.369728558830660 

400 1.369694 926954 860 1.369728642872906 

Table 5 

Energy of second order and fourth order finite differences for run 2.2. 

E (0) = 1.00694 82254 896 84 

N E h , 2 E h , 4 

50 1.0056564 4 4288419 1.006932246239829 

100 1.006625342563159 1.006947191598221 

200 1.006867508130111 1.006948159710693 

400 1.006928046352305 1.006948221342952 
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From Section 4 , to ensure stability when the exponential splitting method is used, k / h has to satisfy 

k 

h 

< 

0 . 9711 √ | λmin | 
. 

Table 3 displays the ratio of stability 
0 . 9711 √ | λmin | 

. 

It can be seen in Table 3 that the stability condition for the splitting method is acceptable. 

Now, we are going to compare the continuous energy (8) for the test problem with the discrete energy 

E h (t)(u , v ) = 

h 

2 

2 

(v T v − u 

T A u ) , 

of the semi-discrete problems. We denote by E h , 2 ( t ) the discrete energy where matrix A is the matrix obtained in Section 3 ,

when second order finite differences are used, and E h , 4 ( t ) the discrete energy where matrix A is the matrix obtained in

Section 5 , when fourth order finite differences are considered. 

Taking into account that the function to integrate in (8) for the test problem is separable and using integration by parts,

it can be seen that 

E(0) = 

1 

2 

((α11 + α22 ) I 1 + s 2 I 2 ) , 

where 

I 1 = 

4! 5! 2 

24 18 

(7 . . . 11)(7 . . . 13) 
, 

I 2 = 

(6!) 2 2 

28 

100 (7 . . . 13) 2 
. 

Tables 4–6 display the continuous energy and the discrete energies for several values of N and the three cases of coeffi-

cients αij selected. Likewise, energy error for the second order finite differences and the fourth-order finite differences are

shown in Fig. 1 . It can be appreciated, from these results, the second and fourth order of the discretization of Sections 3 and

5 , respectively. 

Finally, in the following experiments we compare the behavior of the splitting scheme and the fourth-order four-stage

Runge –Kutta method when fourth order finite differences introduced in Section 5 and the energy norm E h , 4 ( t ) are consid-

ered. We measure the relative energy error | E h, 4 (t) − E h, 4 (0) | / | E h, 4 (0) | . We set N = M = 200 and k = 10 −3 . Fig. 2 displays

relative energy error for the exponential splitting integrator and the fourth-order four-stage Runge –Kutta method, for times

from 0 to 100, for the three selected runs. 
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Table 6 

Energy of second order and fourth order finite differences for run 2.4. 

E (0) = 1.00694 82254 896 84 

N E h , 2 E h , 4 

50 1.006615902030712 1.006932246239829 

100 1.006866032223891 1.006947191598225 

200 1.006927732266519 1.006948159710716 

400 1.006943105621258 1.006948221342970 

Table 7 

N = 100 , final time T = 100 , run 2.2. 

k = 2 × 10 −3 k = 2 × 10 −4 

Error CPU Error CPU 

Splitting 7 . 4541 × 10 −8 2.9122 × 10 2 7 . 2273 × 10 −12 2.8812 × 10 3 

rk4 1 . 1375 × 10 −5 4.1804 × 10 2 2 . 6421 × 10 −10 4.1067 × 10 3 

(a) run 1.2 (b) run 2.2

(c) run 2.4

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

N

|E
h(0

)−
E

(0
)|

run 2.4

 

 
E

h,2

E
h,4

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

N

|E
h(0

)−
E

(0
)|

run 2.2

 

 
E

h,2

E
h,4

10
1

10
2

10
3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

N

|E
h(0

)−
E

(0
)|

run 1.2

 

 
E

h,2

E
h,4

Fig. 1. Energy error for the second order finite differences and the fourth-order finite differences, for run 1.2, run 2.2 and run 2.4. 
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(a) run 1.2 (b) run 2.2

(c) run 2.4
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Fig. 2. Relative energy error for the exponential splitting integrator and the fourth-order four-stage Runge –Kutta method, for run 1.2, run 2.2 and run 2.4. 
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In the three cases, the splitting method maintains the same size error throughout the interval of time [0, 100]. This

agrees with the fact that scheme (26) is a geometric integrator. Whereas for the Runge –Kutta method the size of the error

grows when the time increases. 

Lastly, we study the efficiency of the splitting scheme by comparing with the fourth-order four-stage Runge –Kutta

method measuring the computational cost in terms of CPU time. For the exponential splitting integrator, if the last step

in the composition (26) of S [4] 

k 
for one step and the first one in S [4] 

k 
for the next step are joined together, that is,

ψ 

[1] 

αk/ 2 
◦ ψ 

[1] 

αk/ 2 
= ψ 

[1] 

αk 
, only three times of step 1 are needed for each step in time. A similar analysis of the efficiency of

the algorithms to the one done in [2] can be done here. Then, regarding the products required, for the Runge –Kutta method

and the splitting method, the relation is four to three. 

We have ran both algorithms for N = 100 , with k = 2 × 10 −3 , 2 × 10 −4 and for N = 200 , with k = 10 −3 , 10 −4 and we have

measured the relative energy error and the computational cost in terms of CPU time, for final time T = 100 . 

Table 8 shows the relative energy error and the CPU for the splitting method and the Runge –Kutta method. Fixed the

time step k the ratio between the CPU for the Runge –Kutta method and the splitting method is 1.4081 for k = 10 −3 and

1.3929 for k = 10 −4 , near to the expected value 4/3. It can be seen in Fig. 3 that the splitting method is better than the

Runge –Kutta method. For the same error the computational cost is smaller. 

The numerical experiments confirm the good behavior in the long time integration and the efficiency of the splitting

method considered. 
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Table 8 

N = 200 , final time T = 100 , run 2.2. 

k = 10 −3 k = 10 −4 

Error CPU Error CPU 

Splitting 8 . 7994 × 10 −9 2.3291 × 10 3 1 . 1304 × 10 −12 2.3056 × 10 4 

rk4 6 . 1077 × 10 −7 3.2796 × 10 3 1 . 6152 × 10 −11 3.2817 × 10 4 

(a) N = 100 (b) N = 200
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Fig. 3. Relative energy error at T = 100 versus CPU time for the exponential splitting integrator and the fourth-order four-stage Runge –Kutta method for 

run 2.2, for N = 100 and N = 200 . 
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