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ABSTRACT 

Five studies were conducted in Central Highlands of Ethiopia to generate alternative forest 

management options for carbon stock and soil rehabilitation in Chilimo dry afro-montane forest and 

adjacent land uses. A screening trial for fuel wood and rehabilitation of degraded lands was per-

formed for four years (2005-2009) using: Acacia decurrens, Acacia saligna, Chamaecytisus pal-

mensis, Dombeya torrida, Eucalyptus globulus, Grevillea robusta and Hagenia abyssinica under 

three soil management: control, manure and manure plus mulch. The experimental design was split 

plot, species as the main plot and treatments as subplot with three replicates. Data on survival rate, 

height growth and root collar diamater growth were taken annualy for selection experiment. Com-

posite soil sampling was taken before and after intervension using augering method. Systematic 

random sampling technique was used for Chilimo natural forest under three forest patches: Chili-

mo, Gaji and Gallessa. One time inventory was conducted using 35 sampling plots in Chilimo dry 

afro-montane mixed natural forest and 9 plots in plantation. Both biometric and soil sampling data 

were collected in these plots. Data required for aboveground biomass equation, carbon concentra-

tion and wood density for Allophyllus abyssinicus, Olea europea ssp. cuspidiata, Olinia rochetiana, 

Scolopia theifolia and Ruth glutinosa were generated using distructive sampling. Soil chemical ana-

lyzed for % C, total N, P, K, Ca, Mg, pH and CEC following appropriate procedures. Carbon con-

centration in the plant samples was estimated using ash method, while volume for wood density 

was estimated using water displacement method. Biomass equations found in the literature were 

selected, evaluated and fitted. A species propotion was calculated to develop stand density man-

agement diagram for the Chilimo natural forest. A general linear model and general linear mixed 

model were used for data analysis with SAS software and graphing using R-software. Mean separa-

tion was performed using Tukey-Kramer test. Among the six tested tree and one shrub species test-

ed G. robusta A. Cunn. Ex R. Br. showed maximum survival (100 %) followed by H .abyssinica 

(Bruce) J.F.Gmel. (93.52 %). C. palmensis (Christ.) Hutch and H. abyssinica (Bruce) J. F.Gmel 

were highly improved soil condition. E. globulus Labill. and Acacia spp presented the highest 

growth rates and biomass production. The above ground biomass and soil organic carbon and nitro-

gen stock for the Chilimo natural forest and adjacent land uses were known. Species and site specif-

ic above ground biomass equation models were found to be more accurate and reliable than using 

general equations. Diameter at breast height and total height were found to be the most independent 

fitting variables to predict the biomass. Consequently, dominant height and quadratic mean diame-
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ter were found to be the best endogenous variables for stand density management diagram for 

Chilimo forest. The major factors affecting carbon and nitrogen concentration in the Chilimo natu-

ral forest and adjacent land uses were soil depth, land use type and species. The Chilimo native dry 

afro-montane forest stores 225.03 Mg C ha
-1

 in 1 m soil depth which can serve as sources of carbon 

stock for tropical forests. Morethan 80 % of 1 m carbon stock was stored on the first 50 cm soil 

depth. In addition, native forest stores more carbon (84.4 %, 26.4 %, and 33.7 %) than bare soil, 

crops and plantations. The carbon concentration found in the plant sample was varied within and 

among a species, stem position and plant parts. Stem parts stored more carbon (56.98 %) than 

branch (56.74 %) and leaves parts (54.53 %). O. europaea ssp. cuspidiata had higher (0.67 g cm
-3

) 

wood density than others. H. abyssinica (Bruce) J. F. Gmel is recommended for soil rehabilitation, 

whereas, G. robusta A.Cunn. Ex R. Br. can be used for simultaneous fuelwood production and soil 

rehabilitation. E. globulus Labill can be planted for both soil rehabilitation and fuelwood produc-

tion, although, care should be taken when planting in degraded areas. These forest management op-

tions can be applied in similar dry afro-montane forests found in the country.  
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RESUMEN 

Se realizaron cinco estudios en la región Central HighlandEtiopía para generar alternativas 

de manejo forestal sostenible con los objetivos de secuestro de carbono y rehabilitación de suelos 

degradados  en un bosque seco afro-montano. Se comparótambiénel efecto de cambio usos, en con-

creto plantaciones y cultivos. El primer estudio (2005-2009) tuvo por objetivo la  elección de espe-

cies para producción de leñas y recuperación de suelo degradado. Las especies utilizadas fueronA-

cacia decurrens, Acacia saligna, Chamaecytisus palmensis, Dombeya torrida, Eucalyptus globulus, 

Grevillea robusta  y  Hagenia abyssinica. Se probaron tres alternativas de manejo    (control, es-

tiércol y abono más mulch). El diseño experimental fue split-plot, las especies formaron la  parcela 

principal y los tratamientos sobre el suelo las subparcelas con tres repeticiones cada una. Los datos 

sobre tasa de supervivencia, crecimiento en altura y  diámetro en el cuello de la raíz se tomaron 

anualmente. Se tomaron muestras de suelo  al principio y al final del experimento. Para desarrollar 

las alternativas de manejo sostenible en bosques naturales y plantaciones se diseñó un  muestreo 

aleatorio sistemático  en el bosque de Chilimo. Se realizó un inventario  en 35 parcelas  9 parcelas 

en plantaciones. Tanto los datos biométricos y de muestreo de suelo se recogieron en todas las  par-

celas. En el bosque natural se desarrollaron ecuciones de biomasa para estimar la cantidad de car-

bono almacenado en el suelo. Los datos necesarios para generar ecuaciones de biomasa aérea, con-

centración de carbono y la densidad de la madera para A. Allophyllus, Olea europea. Spp. cuspidia-

ta, Olinia rochetiana, Scolopia theifolia y Ruth glutinosa  se obtuvieron utilizando un muestreo 

destructivo. Tamién se realizó une estudio de las propiedades edáficas de los suelos  determinando 

el porcentaje de C, N total, P, K, Ca, Mg, pH y CIC siguiendo procedimientos adecuados. La con-

centración de carbono de  las muestras especies forestales  se estimó mediante el método de las ce-

nizas, mientras que el volumen se calculó utilizando el método de desplazamiento de agua. . Dentro 

del bosque natural se seleccionaron las especies principales   para desarrollar un diagrama de mane-

jo de  densidad. Un modelo lineal general y un modelo lineal mixto  se utilizaron para el análisis de 

datos con el software SAS y la representación gráfica utilizando R-software. La comparación de 

medias se realizó mediante la prueba de Tukey-Kramer. Los resultados de los estudios demuestras 

que, de las seis especies de árboles   y un arbusto probados G. robusta A. Cunn. Ex R. Br. mostró la 

máxima supervivencia (100%) seguida de H .abyssinica (Bruce) JFGmel. (93,52%). E. globulus 

Labill. y Acacia spp presentaron la mayor tasa de crecimiento y la producción de biomasa. H. abys-

sinica (Bruce) JF Gmel se recomienda para la rehabilitación del suelo, mientras que, G. robusta 
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A.Cunn. Ex R. Br. puede ser utilizada simultánea para la producción de leña y la rehabilitación de 

suelos. E. globulus Labill se puede plantar tanto para la rehabilitación del suelo como para  la pro-

ducción de leña, aunque. Los modelos de biomasa aérea específicos de cada especie y sitio  fueron 

más precisos y fiables que las ecuaciones generales. Diámetro a la altura del pecho y altura total 

resultaron ser las variables independientes que mejor preciden la biomasa aérea. Los principales 

factores que afectan a la concentración de carbono y nitrógeno en el bosque natural Chilimo y usos 

de la tierra cercanos  fueron la profundidad del suelo, tipo de uso de la tierra  y las especies. Los 

bosques  secos afro-montanos nativos de Chilimo almacenan 225.03 Mg C ha
-1

 a 1m  de profundi-

dad del suelo, que puede servir como fuentes de carbono de los bosques tropicales. Más de 80% de 

stock de carbono almacenado hasta 1m de profundidad se concentra en los primeros 50 cm de sue-

lo. Además, el bosque nativo almacenó más carbono (84,4%, 26,4% y 33,7%) que el  suelo desnu-

do, cultivos y plantaciones respectivamente. La altura dominante y el diámetro medio cuadrático 

resultaron ser las mejores variables endógenas para los diagramas de manejo  de  densidad del rodal 

de bosque Chilimo. La concentración de carbono varía dentro y entre especies, así como en la posi-

ción del fuste y componentes muestreados. El fuste almacenó más carbono (56,98%) que en las ra-

mas (56,74%) y las hojas (54,53%). O. europaea ssp. cuspidiata tuvo la mayor (0,67 g cm-3) den-

sidad de la madera entre todas las espcies. La densidad de la madera  disminuyó con la altura del 

fuste. Estas opciones de manejo forestal se pueden aplicar en los bosques afro-montanos secos si-

milares que se encuentran en el país. 
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1. INTRODUCTION 

1.1. African forest resources, the case of Ethiopia 

According to FAO (2010) the total world forest area is 3.952 billion hectares. Forests and 

woodlands occupy 675 million hectares (23 %) in Africa, which accounted for (16.8 %) of the glob-

al forest cover. Africa’s forest and woodlands are classified into: tropical rainforests, tropical moist 

forests, tropical dry forests, tropical shrubs, tropical mountain forests, subtropical humid forests, 

subtropical dry forests, subtropical mountain forest and plantations (FAO, 2010). The distribution 

and species composition of these forests depends on the rainfall pattern and varies along the regions 

of Africa. Central Africa has the densest forest cover while, Northern Africa have the least forest 

cover (FAO, 2010). Tropical moist forests are widely found in coastal areas of west Africa and 

equatorial central Africa, where there is abundant rainfall and low dry season including: Cameroon, 

Central Africa Republic, Congo, Equatorial Guinea and Gabon. These countries accounted 60 % of 

the tropical moist forest. However, Mali, Niger, Chad and Sudan (Sahara Desert) in the north and 

Botswana (Kalahari Desert) in the south (Narendra et al., 1994) are widely dominated by deciduous 

and open woodland and gradually bend to grassland and finally desert. The forests and woodland 

coverage of eastern Africa is 13 % (UNEP, 2002).  Kenya has the largest forest and woodland cov-

erage (30 %) followed by Uganda (21 %). Djibouti has the lowest forest cover (0.3 %) (FAO, 

2005). The natural high forest coverage of Ethiopia is 2.7 % but with the inclusion of woodlands 

and plantation forest the Ethiopian forest coverage is 10 % (Nyssen et al., 2004; Moges et al., 

2010). Planted forest area is 14.8 million hectares and these represent 5 % of the global total (FAO, 

2010). 

Dry forests cover a spectrum of vegetation types from deciduous forests with a continuous 

tree canopy to moist savanna, dry deciduous woodlands, dry savannas and dry scrubland. They con-

stitute one of the major terrestrial ecosystems, existing in all developing regions of the world: Afri-

ca, Asia and Latin America. Proportionally, they are the most prominent in Africa, where drier for-

ests in all their varieties from the desert margin scrub to closed woodland to deciduous forests-

support the most people, livestock and wildlife. Dry forest, woodlands and savanna which surround 

the major agricultural belt are fairly open and have low productivity. They are, however, the domi-

nant vegetation cover 63 % of the Sub-Saharan African countries (Chidumayo, 2004). According to 
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CIFOR (2007), dry forests are found in a band across Africa from Senegal in the west making a 

loop around the Congo basin, to Ethiopia in the east and South Africa in the south.  

Forests in Africa provide energy, food, timber and non-wood forest products (NWFPs) and 

are important contributors to wealth and health of the household at community, national, sub re-

gional and regional levels. Wood fuels are the primary energy sources in Sub-Saharan Africa and 

over 70 % of the continent population depends on forest resources (AFDB, 2003). Forests and 

woodlands are also important for combating land degradation, mitigation of climate change, con-

servation of wet lands, coastal area and freshwater ecosystems. The forests are also contributing 10 

% to 70 % of the gross domestic product (GDP) in the Sub-Saharan African countries and from 5.5 

to 9.0 % for the Ethiopian economy (FAO, 2010; Mekonnen et al., 2012).  

However, African forests and trees are seriously threatened by agricultural expansion, com-

mercial harvesting, increasing exploitation of fuelwood and other products and increasing urbaniza-

tion and industrialization. All these problems are aggravated due to inadequate land use planning, 

inappropriate agricultural systems and drought.  

Although, Africa is not a major emitter of CO2 and other greenhouse gases from commercial 

and industrial energy uses, it accounts about 20-30 % of CO2 emission due to deforestation and land 

use cover change (IPCC, 2013). To reduce deforestation and land degradation in the country, Ethio-

pia has been implemented REDD+ (Reducing Emissions from Deforestation and Forest Degrada-

tion) and now it is a REDD+ participant country to the Forest Carbon Partnership Facility (FCPF) 

of the World Bank (Moges and Tenkir, 2014). Even Ethiopia has developed the first carbon project 

under clean development mechanism (CDM) in Humbo (Welaita) before REDD+. Nowadays, there 

are regional REDD+ projects like Bale and Keffa biosphere reserve REDD+ projects (Moges and 

Tenkir, 2014). Chilimo dry afro-montane forest might be also part of the REDD+ project in the fu-

ture. 

Sustainable management of the vast and diverse African natural forest resources is proving 

to be extremely challenging. In addition, there are only little information on the biophysical aspect 

of the natural forest, estate and the properting and end use of the various tree species. The existing 

informations are lower in quality and quantity to make rational decision for sustainable manage-

ment and utilization of the forest resources in the continent.  
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1.1.1. Ethiopian forests 

Ethiopia occupies the interior of the horn of Africa stretching between 3
ᵒ
 and 15 

ᵒ
N and 33

ᵒ
 

and 48 
ᵒ
E. It covers a total area of 1.13 million km

2
 (CSA, 2000) that spands over a wide range of 

altitude, from 110 m below sea level to over 4600 m above sea level. The presence of wider 

altitudinal coverage enhances the diversity of climate, topography, soil type and vegetation 

resources. 

 Ethiopian is endowed with various landscape types resulted in different agroecological 

zones and vegetation types of the country. The vegetation types varied from tropical rain forest and 

cloud forests in the southwest to the desert scrubs in the east and northeast and diversified 

agroforestry practices and systems in the central highlands (Bongers and Tennigkeit, 2010). The 

structure and species composition of the natural vegetation types are also diverse due to the 

presence of wider physiognomic and climatic landscapes in the country. Ethiopia is among the top 

25 biodiversity rich countries in the world. More than 7000 species of plants, 240 species of 

mammals and 845 species of birds are found in the country. Among this 1150 species of plants, 22 

species of mammals and 24 species of birds are endemic (Bongers and Tennigkeit, 2010). The 

vegetation are important for production, protection and conservation functions in the country. They 

supply most of the wood products (industrial and non-industrial) consumed within the country and 

diverse non wood forest products (NWFPs) such as: wild coffee, gum, resin, honey, beeswax, 

herbal medicines and bamboo. They also provide various ecosystem services such as watershed 

protection, biodiversity conservation and carbon sequestration. The vegetation ecosystem in the 

Ethiopian plateau and mountains are the sources of a number of great rivers including one of the 

longest river in the world, Blue Nile and other big rivers in the country such as: Omo, Awash and 

Wabishebele Rivers.  

  Generally the natural vegetation types of Ethiopia is classified into 12 different major 

vegetation types based on altitudinal gradient (Friis et al., 2010): (i) Desert and semi-desert shrub 

land, (ii) Acacia-Commiphora woodland and bush land, (iii) Wooded grassland of the Western 

Gambela region, (iv) Combretum-Terminalia woodland and wooded grasslands, (v) Dry evergreen 

afro-montane forest and grasslands complex, (vi) Moist evergreen afro-montane forest, (vii) 

transition rainforest, (viii) Ericaceous belt, (ix) Afroalpine vegetation, (x) Riverine vegetation, (xi)  

Freshwater, lakes, lake shores, marshes, swamps and flood plain vegetation and (xii) Salt-water, 

lakes, lakes shores, salt marshes and plain vegetation. 



Tesfaye (2015) 

16 
 

 The natural high forests of Ethiopian are mainly found in the highlands where annual 

rainfall distribution and amount is better. The Highlands cover 44 % of the country’s total land area 

accommodate 90 % of total human population, 93 % of the cultivated land and 75 % of the 

country’s livestock population. Dry afro-montane forests and moist afro-montane forests are the 

dominant vegetation types found in the highlands. However, the dry afro-montane forests are the 

most dominant one in the central, northern and western Highlands.  

The dry afro-montane forests are dominated by both broadleaved and coniferous species 

such as: Juniperus procera, Podocarpus falcatus and Olea europaea ssp. cuspidiata e.g. Chilimo, 

Menagesha-Suba, Wefwasha and Munessa-Shashemene forests. While, the moist montane forest 

are mainly found in the southern and southwestern parts of the country and are dominated by large 

broadleaved and soft-leaved species such as: Aningeria adolfi-friendercii, Olea welwitschii, O. 

hockstetter and Croton macrostachys (Bekele, 1994 and 2003; Woldemariam, 1998; Kelbessa and 

Soromessa, 2004; Kassa et al., 2008; Shumi, 2009) where relatively higher rainfall is found 

(Bekele, 1994). 

Dry evergreen montane forests are very complex vegetation type occurring in areas of 

relatively high humidity, with limited and unreliable rain and prolonged dry season. During the dry 

season, temperature increases and day time humidity drops down and water courses either dry up or 

greatly diminish inflow (Teketay, 1996). Besides, dry afro-montane areas are inhabited by the 

majority of the Ethiopian population and represent a zone of sedentary cereal based mixed 

agriculture for centuries.  

Man made plantation forests are also another form of forests widely practiced and found in 

the country. The dominant plantation forests are composed of four genera (Eucalyptus, Cupressus, 

Pinus and Acacia). Eucalyptus accounts for, the lion’s share of the plantation forest in the country 

(90 %) followed by Cupressus lusitanica, Juniperus procera and Pinus spp, respectively (WBISPP, 

2005; Moges et al., 2010; Bekele, 2011). Eucalyptus is also the first exotic tree species to be 

formally introduced to Ethiopia by Emperor Minilik II from Australia in 1890s (Pukkala and 

Ponjonen, 1989 and 1993; Bekele, 2003). Sixty different species of genus of Eucalyptus are 

reported to have been introduced to Ethiopia, but E. globulus and E. camaldulensis are the most 

wide spread of all (Lemenih and Kassa, 2014). The area coverage of Eucalyptus plantation steadily 

increased since its introduction, for example it was only 5000 hectares in 1890s (Getahun, 2010) 

and increased to 896, 240 hectares in 2011 (Bekele, 2011).  
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  1.2. Land degradation and deforestation in Ethiopia  

Forests contribute directly to the livelihood of 1.2 billion people living in the developing 

nations (90 %) from the total population and 38 % of the total energy requirement in these nations 

is also directly obtained from forest biomass (Sims, 2003).  

Historical studies on forests showed that, forest depletion occurred when the society under 

go economic development, industrialization and urbanization (Rudel et al., 2005; Amarcher et al., 

2009). Deforestation and land degradation are the major environmental problems facing developing 

countries (Africa, Asia and Latin America) (Amarcher et al., 2009). In the 1980s and 1990s, the 

annual rate of deforestation had averaged 1 % worldwide with deforestation in tropical rainforest 

averaging 0.6 % (FAO, 2001) and between 1990 and 2000, more than 14.2 million hectares of 

tropical rainforests disappeared. Deforestation, land degradation and poor forest management 

reduce carbon storage in forests on the contrary, sustainable management, planting and 

rehabilitation of degraded lands increase carbon sequestration (FAO, 2010).  

Sub-Saharan Africa (SSA) accommodates one of the world’s fastest growing populations 

and it is significantly affected by land degradation because of deforestation, poor land management 

and conversion of fragile natural habitats into fields for crops. The forest area in East Africa was 

reduced by 783,000 hectares between 2000 and 2010: equivalent to an annual loss rate of 1.01 % 

(FAO, 2011). Shortage of forest products, loss of soil fertility and disruption of the water cycle are 

followed by poverty, hunger and social unrest in the region (Barrowclough and Ghimire, 1996). 

This general layout is similar to other tropical and sub-tropical areas and has made restoration of 

degraded lands as an essential challenge. John et al. (1997) identified some of the factors that act as 

a catalyst of such situation: intensive crop expansion, over-grazing and unsustainable fuel wood 

harvesting. Wood fuels are also the primary energy sources in Sub-Saharan Africa, accounting  for 

approximately 70 % of total energy use and contributed to directly for deforestation and indirectly 

to land degradation in these region.  

Like wise to other Sub-Saharan African countries Ethiopia faces deforestation and land 

degradation as the major environmental problems. This is due to reckless cutting of trees and shrubs 

for fuelwood, charcoal, construction wood, lumber and agricultural land expansion resulted from 

over population growth in the country. Hence, Ethiopia is one of the most populus country in Africa 

next to Nigeria with a total population of 90 million by 2015 (Bishaw, 2004; Berhe, 2004; Argaw, 

2005; FDRE, 2011). Ethiopia is an agriculturaly based economic country located in eastern Africa. 
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Agriculture is the backbone of the country, accounted 47 % of the gross domestic product (GDP), 

80 % of the employment opportunity and 60 % of the export item (Shiene, 2012). Similarly, 90 % 

of the total population is using forest biomass for energy (Alem et al., 2010; FDRE, 2011).  

Although, the remnants of dry afro-montane forests are found in the Highlands, majority of 

these forests are deforested due to the above mentioned problems (Lemenih et al., 2008). For 

example, the annual deforestation rate in the country is estimated to be 150,000 to 200,000 hectares 

(Tadesse, 2001). Most of the natural forests and wood lands are located in these areas and are 

converted into bush lands and agricultural lands (Dubale, 2001; Teketay, 2001). Nowadays, in 

addition to Highlands, deforestation is also continuing in the lowlands due to agricultural expansion 

by investors and new settlements in these areas. For example from 2000 to 2008, agricultural lands 

were expanded by about 4 million hectares and 80 % of these new expansions were come from 

conversion of forest lands, woodlands and shrub lands. The demand is also expected to increase 

from 15 million hectares in 2008 to 34 million hectares by 2030, respectively (Brown et al., 2010; 

EDRI, 2010). In addition, new threats such as: Land grabbing, biological invasion and climate 

change, which contributes to major forest depletion in the lowlands, are also emerged in the country 

(Tigabu et al., 2014). Due to deforestation, there is acute shortage of fuelwood, charcoal, 

construction wood, timber and non-wood forest products in addition to disturbed ecosystem 

services (soil erosion, hydrological imbalance, loss of biodiversity etc…), in both Highlands and 

lowlands (Lemenih and Kassa, 2014).  

Most parts of the soil found in the Highlands are degraded due to lack of vegetation cover 

and excessive soil erosion, annually 1.5 billion tonnes of top soil is eroded in the country (Tadesse, 

2001), 27 million hectares representing approximately 50 % of the highlands are already signifi-

cantly degraded and 14 million hectares are badly eroded. In two million hectares of the cultivated 

land, the soil depth is so reduced that the land is no longer able to support any vegetation cover. Fif-

ty four percent of the remaining highlands are highly susceptible to erosion (Asmono et al., 2002). 

A continental study commissioned by FAO in 38 Sub-Saharan Africa (SSA) countries, including 

Ethiopia showed that, Ethiopia is among the highest rates of nutrient depletion (Lemma et al., 

2006). The soil has become shallow as a result of persistence erosion that has been taking place for 

centuries (Zerihun, 1999). 

Titilola (2008) reported the predominant cause of land degradation and soil erosion is 

excessive human pressure or poor management of the land specifically overgrazing, over-
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cultivation of cropland and deforestation. Currently, the seemingly combined objective of restoring 

vegetation cover and production of fuel wood is a key environmental issue. Besides, restoration of 

degraded forest lands and woodlands can be paving as other potential opportunity in the future for 

firewood production where the resources are available. However, a time lag will appears and the 

allowable harvested volume should be carefully determined in these regard.  

 Though, relentless efforts have been made to avoid land degradation in the country through 

tree planting and soil and water conservation measures, the problem is still continuing. Then, spe-

cies selection for afforestation is crucial as the tree species may affect soil properties differently (Li 

et al., 2012). Other interim management solutions such as physical soil retention structures may be 

needed prior to establishing vegetation in degraded lands (Yitbarek et al., 2012). Exclosures have 

been identified as a valuable rehabilitation option when the main driver of land degradation is graz-

ing (Mekuria and Aynekulu, 2011) or intense recreational use (Özcan et al., 2013). Both measures 

are expensive for local communities. Effective restoration practices should be based on local per-

ceptions of soil erosion and should include easily available local management options (Kiome and 

Stocking, 1995). The application of manure has demonstrated to be positively affecting the infiltra-

tion capacity of soils and plant production on grazed lands at low cost (Tadesse et al., 2003). In ad-

dition, mulching can both enhance conditions for plant growth in harsh environments (Blanco-

Garcia and Lindig-Cisneros, 2005) and protect topsoil against erosion (Roose and Barthés, 2001). 

Consequently, the correct selection of plant species and soil management is vital for both fuel wood 

production and soil rehabilitation (Figure, 1). 

In recent years the fuel wood crisis that links deforestation with fuel wood consumption has 

been discarded as many of the harvest occurs on species growing “outside” the forest (Mahiri and 

Howorth, 2001). This pattern of fuel wood consumption is improved by householders ‘tree planta-

tions’, where natural forests are scarce (Bewket, 2003). As a consequence, tree planting has 

emerged as a plausible option to fulfill the fuel wood demand (Lemenih and Bongers, 2010) but 

there may not be a link between tree planting and fuel wood consumption (Gebreegziabher and van 

Kooten, 2013). A wide research program is needed to fulfill the lacks of information regarding this 

issue. 
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(a). Initial stage (b). Initial stage (C). Land degradation 

 

  

(d). Land preparation (e). After 1 year : A. saligna (f). After 1 year : A. saligna 

 

  

(g). After 2 years: A. saligna (h). After 3 years: G. robusta (i). After 4 years : C. palmensis 

Fig. 1: Images from rehabilitation of degraded lands in the study areas, Fig.1 (a), (b), (c), (d), (e), (f)): 

Showed the status of a degraded land,land preparation ,tree planting and A. saligna after one year,(Fig.1 

(g), (h), (i)) : Showed A. saligna, G. robusta and C. palmensis trees after two,three and four years planted 

under Debrelibanos site, Central Highlands of, Ethiopia. Photos by: Mehari A. Tesfaye (2005-2009) 

(Debrelibanos, Ethiopia). 

1.3. Carbon stock in tropical and Ethiopian forests 

Human activities are increasing the stocks of greenhouse gases emitted to the atmosphere. 

As a result the current level of greenhouse gases in the atmosphere is raised from 280 to 430 ppm, 

causing the world to warm by more than 0.5 degree celsius and will lead further warming in the 

future (IPCC, 2013). Different measures are considered to solve the problem and among this, 
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forests fix large amount of carbon in the process of photosynthesis and store it in the form of 

biomass. Carbon storage in forest ecosystems involves numerous components including biomass 

carbon and soil carbon (Annissa et al., 2013). As more photosynthesis occurs, more CO2 is 

converted  into biomass, reducing carbon in the atmosphere and sequestering it in plant tissue above 

and below ground (IPCC, 2003; Gorte, 2009) resulting in growth of different parts (Charon and 

Rasal, 2010). Biomass production in different forms plays an important role in carbon sequestration 

in trees (Charon and Rasa, 2012). Aboveground biomass, belowground biomass, deadwood, litter, 

stumps and humus are the major carbon pools in any forest ecosystem (FAO, 2005; IPPC, 2003 and 

2007). 

IPCC (2013) reported the global forests cover over 4 billion hectares and contribute around 

50 % global greenhouse gas mitigation. The tropical forests spread over 13.76 million km
2
 area 

worldwide accounted about 60 % of the global forest cover and store an estimated 193-229 Pg of 

carbon in aboveground biomass and recycling 915 Gt of carbon each year, through photosynthesis 

and net primary production (Brown, 1997; FAO, 2005; Millennium forest resources assessment re-

port, 2005; Baccini et al., 2008) or roughly 20 times the annual emission from combustion and land 

use change (Friedlingstein et al., 2010). Tropical rain forests contribute substantially to the global 

carbon cycle accounting for 40 % terresterial net primary production, 60 % of forest biomass and 27 

% of carbon stored in forest soils. Tropical dry forests constitute more than 40 % of all tropical for-

ests, having a net terrestrial primary production of 40 %, stored 60 % carbon and contain half of 

world species (Mayaux et al., 2005; Miles et al., 2006; Chidumayo et al., 2011). Global climate 

change will further reduce rainfall intensity and seasonality in the tropics; this has a bigger impact 

on the livelihood of the people in the tropics including plant and animal species (FAO, 2006). In-

creament of atmospheric concentrations of CO2 also affect plant metabolism directly through photo-

synthesis and this has altered the dynamics of tropical forests (Chidumayo et al., 2011). The factors 

limiting carbon sequestration capacity must be understood to predict the changing role of tropical 

forests in the global carbon cycle. 

Soil is the largest carbon reservoirs of the terrestrial carbon cycle 1500-1550 Gt of organic 

carbon and soil inorganic carbon approximately 750 Gt both to 1 m depth. About three times more 

carbon is contained in soils than in the world’s vegetation 560 Gt and soils hold double the amount 

of carbon that is present in the atmosphere 720 Gt (Post et al ., 2001; Lal, 2004b). Soils play a key 

role in the global carbon budget and greenhouse effect and it contains 3.5 % of the earth’s carbon 
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reserves, compared with 1.7 % in the atmosphere, 8.9 % in fossil fuels, 1.0 % in biota and 84.9 % 

in the oceans (Lal, 2004a). Carbon stocked in organic form in soils (SOC) is affected by 

environmental factors such as topography, parent material or soil depth (Fu et al., 2004; Johnson et 

al., 2000). Forest soils are subjected to lower human disturbance than agricultural soils and having 

lower bulk density than others soils due to the presence of higher organic matter content (Lal, 

2005). Forest soils are part of any forest ecosystem and play a vital role in the global carbon cycle 

(Jabaggy and Jackson, 2000; Rooney, 2013). And, about 40 % of the total SOC of the global soils 

resides in forest ecosystem (Six and Jastrow, 2002; Baker, 2007). 

 The national carbon stock of Ethiopia was estimated to be 153 Tg C by Houghton (1998), 

867 Tg C by Gibbs et al. (2007) and 2.5 Gt of C by Sisay (2010). Consequently, estimation of the 

natural high forest carbon stock was ranging between 101 Mg C ha
-1

 (Brown, 1997; Moges et al., 

2010) and 200 Mg C ha
-1

 (Temam, 2010; Tsegaye, 2010). The discrepancy between these values is 

due to the different methods and tools used for the authors and the variability in soil, topography 

and forest types. Nevertheless, biomass equations and forest growth models are very scarce for 

Ethiopian condition, although, there are few works done by some authors (Zerfu, 2002; Embaye et 

al., 2005; Woldeyohannes, 2005; Mamo and Sterba, 2006; Zewdie et al., 2009). Thus, localized 

carbon stocking assessment works should have been made in these regards (IBC, 2005; Moges et 

al., 2010). 

Majority of the high forests found in Ethiopia are managed primarily for protection and con-

servation pupose while commercial utilization is secondary objective, in light of the status of the 

remaining natural high forests and the national overall objectives, the forestry administration at the 

Federal level has classified 58 of the most important high forest areas totaling an estimated area of 

2 million hectares as National Forest Priority Areas of the country (NFAs). Over two-third of these 

high forests are heavily disturbed forest and needs appropriate management. The estimated annual 

height and diameter growth for these forests is very low (Bekele, 2001). In addittion, there are lim-

ited informations’ how to manage these forests in a sustainable way and to show their importance 

for climate change mitigation and adaptation (Lemenih and Kassa, 2014). Likewise, the soil carbon 

and nitrogen stock and concentration both in the forest floor, mineral soil and adjacent land uses are 

also scanty. 
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1.4. Chilimo dry afro-montane forest of Ethiopia 

          Chilimo forest is one of the few remnants of dry afro-montane forest located in Dendi dis-

trict, Western Shewa zone, Oromia administrative region, Ethiopia. The forest is found 70 km 

southwest of Addis Ababa. The forest is geographically located at 38° 07′ E to 38° 10′ E and 9° 30′ 

to 9° 50′ N’ longitude, with an altitude range of 2,170-3,054 m above sea level (Figure 3). The 

mean annual temperature of the area ranges between 15-20 
º
C and receives a mean annual precipita-

tion of 1,264 mm (Shumi, 2009). Köppen’s classification defines the climate of Chilimo forest is 

classified as warm temperate climate I (CWB) type (EMA, 1988). The forest is a small enclave in 

the western section of a chain of hills and ridges that stretch 200 km from north of Addis Ababa 

westwards up to the Ghedeo highlands, locally river valleys and gorges cut through the chain. A 

number of rivers, for example, Awash River it is one of the longest rivers in the country, starting 

from this forest. The forest is also home to over 180 species of birds and 21 species of mammals 

including endemic subspecies Meneliks bushbuck, vervet monkey, colobus monkey, Anubis ba-

boon and leopard (Woldemariam, 1998). Besides, the forest is found in the nearby the capital city 

Addis Ababa, easily accessible through all-weather road and having old historical palaces inside it.  

Chilimo forest is composed of mixed broad leaved Podocarpus falcatus, Olea europaea ssp. 

cuspidiata, Scolopia theifolia, Rhus glutinosa, Olinia rochetiana and Allophylus abyssinicus and 

coniferous forest species Juniperus procera are the major species in the forest (Bekele, 2003; 

Kelbessa and Soromessa, 2004; Kassa et al., 2008). Accordingly Shumi (2009) investigated 42 spe-

cies 27 (64 %) of trees and 15 (36 %) of shrubs in the forest. Similarly, the inventory result for this 

thesis work found a total of 33 different native species (22 tree species and 11 shrub species) in 

three forest patches (Chilimo, Gallessa and Gaji). The density also varied from 2, 533 stems ha
-1 

found in Chilimo to 848 stems ha
-1

 found in Gallessa patch. Besides, adjacent to the natural forest 

more than 400 hectares of small patches of plantations of different introduced tree species (Euca-

lyptus saligna, Eucalyptus camaldulensis, Pinus patula, Cupressus lusitanica) and native tree spe-

cies (Juniperus procera, Hagenia abyssinica, Podocarpus falcatus) are found (Kassa et al., 2008). 

These plantation forests are serving as sources of income for the local community. 

Like in many parts of Ethiopia, Chilimo forest was previously a closed dense forest before 

the Italian occupation (1936-1941) (Shumi, 2009). Since, Italians introduced a number of expatriate 

millers (7 sawmills) and established a camp inside the forest for timber extraction and the forest 

suffered from intensive exploitation. Chilimo forest was among the most commercially exploited 
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forests in the country. Its accessibility and proximity to market centers including Addis Ababa, the 

capital of Ethiopia contributed to its exploitation (Bekele, 2003). Higher timber extraction rates 

along with over grazing and agricultural expansion in the forest radically reduced the forest area 

from 22,000 hectares in 1982 to 11, 000 hectares in 1984 and 6,000 hectares in 1991 and are sur-

rounded by vast areas of agricultural land (Shumi, 2009). 

            For over a century, Chilimo forest was owned and controlled by the state. Nevertheless, the 

state control from 1991 to 1996 had weakened. This resulted in increasing conversion of forest land 

into agriculture land and reckless cutting of trees for timber, construction wood and fuel wood. 

Thus, to maintain the continuity of the remaining forest, the government classified Chilimo forest 

into 58 of the National Forest Priority Areas (NFPAs). Then few years ago Chilimo forest was 

managed by the community through participatory forest management approach facilitated by Farm 

Africa (Farm Africa, 2000; Negassa and Wiersum, 2006). However, Farm Africa had left the forest 

in 2005 and it was transferred to Oromiya wildlife and Forest enterprise government office. Cur-

rently Chilimo forest is owned by 12 Forest User Groups (FUGs), more than 3,000 households with 

a total population over 15,000 people live inside or on the periphery of the forest (Kassa et al., 

2008). Agriculture is the main activity of the community; however, both forestry and crop produc-

tion contribute almost equal to maintain their livelihoods (Negassa and Weirsum, 2006; Kassa et 

al., 2008). The forest user groups are generating income through selling timber from planted forest. 

In addition, this research output enables them to harvest some amount of wood from the natural 

forest. Secondly the outputs obtained from this research result can be taken as a forest management 

tool for Oromia forest and wildlife enterprise office.  

The Oromiya forest and wildlife enterprise office are advocating preservation and protection 

of the natural forest through participatory forest management approach excluding harvesting from 

the existed natural forest. Accordingly, cutting of trees in the natural forest is prohibited by law and 

the community benefited only by collection and using deadwood, fallen twigs and dried trees. Nev-

ertheless, this management approach might not be sustainable in the future because the plantation 

forest might be depleted soon due to overutilization without regulation. This is supported by several 

evidences, inventoried stumps found in this study and elsewhere (Negassa and Wiersum, 2006; 

Kassa et al., 2009; Shumi, 2009), showed that, the natural forest is not free from illegal cutting. Be-

sides, there is scanty of information regarding appropriate forest management options to increase 

productivity and ensure sustainability of the forest. Thus, new informations, at local, national and 
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regional level are needed in relation to carbon stock in the soil and aboveground biomass. Alterna-

tive income generating mechanism such as carbon trade should be implemented to support the local 

community.  

  

(a). Chilimo natural forest (b). P. patula plantation  

  

(c). Remnants of crop residue (d). Degraded land adjacent to Chilimo natural forest 

  

(e). Litter fall in plantation forest (f). Herbaceous plant and dead wood in   

Chilimo natural forest 

Fig. 2: Described the carbon stock found in different land use types adjacent to Chilimo forest; (Fig. 2 (a)): 
showed natural forest composed of different tree species, Fig. 2 (b): Pinus patula plantation forest planted 
adjacent to Chilimo natural forest after 25 years of planted, Fig. 2 (c): Showed remnants of wheat crop 
residue after harvest adjacent to Chilimo natural forest, Fig. 2 (d): A degraded abandoned land adjacent to 
Chilimo forest, Fig. 2 (e) and 2 (f): Litter fall under Pinus patula plantation and dead wood and litter fall 
under the Chilimo natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
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1.5. Forest management tools available for African tropical forests 

Forest management is a branch of forestry concerned with the overall administrative, eco-

nomic, legal and social aspects for silvicultural, protection and forest regulation (Glossary of Forest 

Terms in British Columbia, 2008). Tropical forests are under pressure due to conversion to pastoral 

and agricultural land or to forest plantations (Kent, 2004; Garder et al., 2009). The experience in 

other countries such as Zambia (Kokwe, 2012), showed that management intervention on natural 

forests increases wood production, carbon sequestration, besides its benefit in terms of biodiversity 

conservation and watershed protection. The average accumulation rate of CO2 in managed forest is 

around 5.5 tons ha
-1 

yr
-1

 in wood lands and 21 tons ha
-1 

yr
-1

 in tropical rainforests, subtropical for-

ests and woodland forest (Moges et al., 2010), while unmanaged tropical rainforests grow at a rate 

of about 0.5 tons ha
-1

yr
-1

 (Lewis et al., 2009) leading to around 40 fold increase in annual yield. Di-

verse management tools are available for the sustainable management of African forest including 

growth and yield modelling and stand density management diagram (Vanclay, 1994). 

Forest growth and yield models are key tools for the sustainable forest management. Most 

of the forest growth and yield modelling studies addressed plantation and temperate forests. While, 

growth and yield models for mixed tropical forest in general and tropical and subtropical African 

forest in particular are very limited (Botkin, 1993;Vanclay, 1989, 1994  and 2003; Alder et al., 

2002, Vanclay, 2003). Moreover, ≥ 90 % of the the forests in developed countries have forest man-

agement plan, in the contrary, only 6 % of the total forests found in the developing countries have 

forest management plan (Nabuurs et al., 2007). 

In addition, stand density diagrams are a management tools which facilitates decision 

making process for forest managers. It has been widely used as an important management tool for 

even-aged stands in many regions across North America and Europe (Drew et al., 1979; Smith, 

1989; Wilson et al., 1999; Valbuena et al., 2008). Moreover, to even-aged plantation stands during 

the early to mid-1990s, SDMDs and stand density index were also developed for mixed species and 

uneven-aged stands as a management tool (Long, 1995; Shaw, 2000; Ducey and Larson, 2003; 

Woodall et al., 2005; Swift et al., 2007).  

 The application of these forest management tools are very scarce for both Ethiopian and 

African forest but there are few works done by (Vanclay, 1994; Woldeyohannes, 2005; Zewdie et 

http://www.communitycarbonforestry.org),while/
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al., 2009; Fayolle et al., 2013; Ngomanda et al., 2014). Thus, adequate research works should be 

conducted on this topic. 

2. OBJECTIVES OF THE THESIS  

2.1. Aims and specific objectives 

The major aim of this thesis is to generate appropriate forest management options to 

increase carbon stock and rehabilitation of degraded lands in Chilimo dry afro-montane forest and 

adjacent land uses, in Central Highlands of Ethiopia. To accomplish this general objective five 

specific objectives are proposed and implemented.  

Specific objective 1: Selection of tree species and soil management for restoring degraded 

lands in Ethiopian Central Highlands 

 

            Land degradation and deforestation are major environmental problems in Central Highlands 

of Ethiopia in particular and overall the country in general caused by reckless cutting of trees and 

lack of well-established soil management. Restoration programs need scientific information about 

the species and soil management best suited for rehabilitating degraded lands. The purpose of this 

specific objective was to evaluate six tree: Acacia decurrense, Acacia saligna, Dombeya torrida, 

Eucalyptus globulus, Grevillea robusta, Hagenia abyssinica and one shrub species: Chamaecytisus 

palmensis, under three soil management options: control, manure and manure plus mulch, in 

degraded Central Highlands of Ethiopia for four years (2005-2009) and finally to screen the best 

performing species and soil management for both fuelwood production and rehabilitation of 

degraded soil. 

 

Specific objective 2: Aboveground biomass equation model development for five native 

species in a tropical mixed forest of Ethiopia 

 

Among the existing native tree species in the Chilimo dry afro-montane mixed forest: Allo-

phyllus abyssinicus (4 %), Olea europaea ssp. cuspidiata (8 %), Olinia rochetiana (5 %), Rhus glu-

tinosa (3 %) and Scolopia theifolia (5 %) contributed about 25 % of the total population (in number 

of trees ha
-1

) and 23 % (5.04 m
2 

ha
-1

) of total basal area in the overall population. Then, the purpose 

of this specific objective was to develop biomass models to estimate above ground biomass and 
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carbon stocks for the above mentioned tree species in the tropical mixed forest. Finally, the equa-

tions will be applied for sustainable management of Chilimo dry afro-montane forest in particular 

and other dry afro-montane forests in general. 

 

Specific objective 3: Impacts of changes in land use, species and elevation on soil organic 

carbon and total nitrogen in Ethiopian Central Highlands  

 

Information regarding soil organic carbon and nitrogen stock (SOC and SON) and concen-

tration and bulk density are lacking in Chilimo dry afro-montane forest (both in forest floor and 

mineral soil) and adjacent land uses (plantation forest, crop land and degraded land) along elevation 

gradient and species. Therefore, the purpose of the specific objective was to quantify soil organic 

carbon (SOC) and soil organic nitrogen (SON) stock, concentration and bulk density of mineral soil 

and forest floor following an elevation gradient, land use types and introduced planted species (Cu-

pressus lusitanica, Eucalyptus saligna  and Pinus patula) along four soil depths (0-10 cm, 10-30 

cm, 30-50 cm, 50-100 cm). 

 

Specific objective 4: Evaluation and formulation of stand density management diagram 

model for Chilimo dry afro-montane forest using species proportion. 

 

Stand density management diagrams are useful tools for designing, displaying and 

evaluating alternative density management regime for both even-aged and uneven-aged forests. 

However, informations in this regards are very scanty in Chilimo dry afro-montane forest in 

particular and all the Ethiopian forests in general. Thus, the specific objective was to develop stand 

density management diagram for Chilimo dry afro-montane mixed forest using species proportion.  

 

Specific objective 5: Evaluation and estimation of carbon concentration and wood density 

along plant parts and stem position for five most commonly grown tree species in Ethiopia. 

 

Chilimo forest is one of the few remnants of dry afro-montane forest found in central 

highlands of Ethiopia. However, informations regarding carbon concentration (% C) and wood 

density at species level, its parts and stem position (tree height) are lacking, thus the specific 

objective was to estimate carbon concentration and wood density for five most commonly grown 

native tree species : Allophyllus abyssinicus, Olea europaea ssp. cuspidiata, Olinia rochetiana, 
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Rhus glutinosa and Scolopia theifolia in a tropical mixed forest along plant parts (stem, branch and 

leave) and stem position (from stump height to commercial height) among and within a species. 

2.2. Conceptual model  

The conceptual model presented below was showed the cause and effect relationship 

between deforestion and land degradation in central highlands of Ethiopia. The narrow arrays 

pointed downwards indicated the other problem caused due to the presence of above problems.The 

thick red arrows showed the root causes of the problems i.e lack of fast growing tree species and 

soil management options in degraded land and lack of appropriate forest management options in the 

Chilimo natural forest. To alleviate these problems five studies (I-V) were done as indicated in the 

conceptual model. In doing so the results obtained: selection of fast growing tree and shrub species 

and soil management for fuelwood production and rehabilitation of degaraded lands and generation 

of appropriate forest management options for sustainable management and utilization of Chilimo 

dry afro-montane forest were presented and pointed upward using green thick lines to address the 

prementioined problems. 
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3. MATERIAL AND METHODS 

3.1. Study sites 

Debrelibanos study site 

 Debrelibanos degraded site was located geographically at 9º 38’ 19.66’’ N latitude and 38º 

49’ 34.46’’ E longitude, 2,600 m above sea level (Figure 3) in Debrelibanos district, Northern 

shewa zone, Oromia administrative region, Central Highlands of Ethiopia. Meteorological data 

were obtained from Ethiopian Meteorological Agency in Addis Ababa 

((http://www.ethiomet.gov.et/).  The averaged mean annual maximum and minimum temperature of 

the study area were 21 ºC and 8 ºC, respectively, with an annual mean averaged precipitation of 1, 

200 mm falling mostly in July and August. Köppen’s classification is temperate highland tropical 

climate with dry winters.  

Chilimo dry afro-montane forest 

Chilimo dry afro-montane forest is geographically located at 38° 07′ E to 38° 10′ E and 9° 

30′ to 9° 50’ N’ longitude, at an altitude of 2,170-3,054 m above sea level (Figure 3) in Dendi 

district, Western Shewa zone, Oromia Administrative Region, Central Highlands of Ethiopia. The 

mean annual temperature of the area ranges between 15-20 
º
C and receives a mean annual 

precipitation of 1,264 mm (Shumi, 2009). Köppen’s classification defines the climate of Chilimo 

forest is classified as warm temperate climate I (CWB) type (EMA, 1988). 
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Fig. 3: Location map of study sites of Debrelibanos district and Chilimo dry afro-montane forest. 

 

3.2. Experimental design and sampling 

 Debrelibanos experimental site was selected through a participatory process with local 

stakeholders. A focus group discussion was conducted with district agricultural experts, 

development agents and farmers. The experimental site was selected based on accessibility and 

representativenss of degraded land on sandy soil, rock outcrops and without vegetation cover. A 

total of seven species: two native tree species (Dombeya torrida (J.F.Gmel.) Bamps and Hagenia 

abyssinica (Bruce) J.F.Gmel.), four introduced tree species (Acacia decurrens Willd. Acacia 

saligna (Labill.) H. L.Wendl., Eucalyptus globulus Labill. and Grevillea robusta A.Cunn. ex R. 

Br.) and one exotic shrub species Chamaecytisus palmensis (Christ.) Hutch was identified for this 

study. Three soil management options i) control  ii) addition of manure and iii) addition of manure 
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plus mulch were applied after planting in July 2005 (manure) and in December 2005 (mulching). 

The experimental layout was organized as a split-plot design, with tree species as the main plot and 

soil management options as sub-plots; it was organized in three blocks to control variation along a 

slope gradient and three replicates for each species. The main plot consisted of 90 trees divided into 

three groups of 30 trees; each arranged into five rows, with six trees in each row. The distance 

between trees in the same row and between rows in the same sub-plot was 1.5 m, while the distance 

between treatments in the main plot and sub-plots was 2 m.  

A systematic random sampling approach was implemented to conduct inventory in Chilimo 

dry afro-montane forest. Primarily, Chilimo forest was stratified into 3 major natural forest patches 

Chilimo, Gallessa and Gaji and an inventory was taken to compile information about species 

composition, diameter distribution and general forest condition. A total of thirty-five, 20x20 m 

square sample plots were marked based on Neyman optimal allocation formula (Köhl et al., 2006) 

along elevation gradient. The plots were laid out following top-down parts of the mountain. The 

distance between plots were 100 m and plot location was determined using measuring tape, GPS, 

altimeter and compass. Sampling and data collection were done in the measured plots of the mixed 

natural forest. Individual species were categorized into trees (≥ 5 cm diameter at breast height-dbh-) 

shrubs and saplings (height ≥ 1.3 m and dbh 2.5-5 cm) and seedlings (height 0.30-1.3 m and dbh ≤ 

2.5 cm) following Lamprecht’s classification (1989). 

 

3.3. Data gathering 

3.3.1. Tree data 

Survival counts, tree height growth and root collar diameter (RCD) growth measurements 

were taken at 12, 24, 36 and 48 months after planting for A. decurrense, A. saligna, C. palmensis, 

D. torrida, E. globulus, G. robusta  and  H. abyssinica in Debrelibanos degraded study site fenced 

experiment (study I). For Chilimo dry afro-montane forest, dendrometric tree datas such as: 

diameter at breast height (1.30 m) (dbh), diamater at ground base (db), crown diameter (cd), crown 

length (cl), total height (h), commercial height (hc) and height at branching stems (hb) were taken 

from one time inventory from 35 temporary sampled plots (study IV). The above dendrometric tree 

datas were also measured for 90 cut trees (20 tree per species of O. europaea ssp. cuspidiata, O. 

rochetiana, and S. theifolia and 15 trees per species of A. abyssinicus and R. glutinosa) for biomass 
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equation purpose (study II) and more 15 sampled trees (3 trees per species) for carbon 

concentration and wood density estimation in the plant samples. Tree diameter was measured with 

a metallic calliper and diameter tape. Crown height and total height were measured using a Vertex 

III digital tree height measurement instrument. 

 

(a). A degraded land without plantation                                            (b). A. saligna plantation 
Fig. 4: Images of Acacia saligna after 2 years planted in degraded lands. Fig. 4 (a): Showed a degraded land 
before intervention and Fig. 4 (b): Showed a degraed land planted with A. saligna after two years of inter-
vension. Photo by: Mehari A. Tesfaye (2009) (Guder, Ethiopia). 
 

 

(a). Chilimo natural forest                                                   (b). Biometric data collection for A. abyssinicus 
Fig. 5:  Biometric data collection in the natural forest. Fig. 5 (a): Showed partial view of the existing natural 
forest and Fig. 5 (b): showed biometric data collection for A. abyssinicus species in the natural forest. 
Photo by: Mehari A. Tesfaye (2012), (Chilimo, Ethiopia). 



Forest management options for carbon stock and soil rehabilitation in Chilimo dry afro-montane forest, Ethiopia 
 

37 

3.3.2. Biomass data 

 A total of  90 trees (20 tree per species of O. europaea ssp. cuspidiata, O. rochetiana, and 

S. theifolia and 15 trees per species of A. abyssinicus and R. glutinosa) from different diameter 

classes were selected, cut and divided into different sections (study II). The branches were de-

limbed and separated into different biomass components (stem, large branches (diameter > 7 cm), 

thick branches (diameter 2-7 cm), thin branches (diameter ≤ 2 cm) plus leaves). Fresh weights of 

each component were recorded in the field and then samples were taken to the laboratory and oven 

dried at 67 ºC and 102 ºC to constant weight. Smalian’s formula (Nicolas et al., 2012) was used to 

calculate the volume of stems and large branches (Ø > 7 cm). The large branches were obtained on-

ly in few trees and its weight was added into stem biomass. However, for A. decurrense, A. saligna, 

C. palmensis, D. torrida, E. globulus, G. robusta and H. abyssinica biomass was calculated from 

volume and wood specific gravity. Volume was calculated from the average height and diameter of 

the experiment trees and total biomass calculations were based on tree volume and specific gravity, 

using values obtained from the specific gravity biomass data were taken at 48 months (study I).  

 

(a). Fresh weight biomass data sampling in the field         (b). Stem biomass cutting using cross cut saw 
Fig. 6: Biomass data collection and sampling in the field Fig. 6 (a): Fresh weight sampling in the field using 
weigh and Fig. 6 (b): Stem biomass data collection (cutting) using two man cross cut saw in the natural for-
est. Photo by: Mehari A. Tesfaye (2013) (Chilimo, Ethiopia). 
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3.3.3 Coarse wood debris and stump data collection 

Coarse wood debris (logs and stumps) for Juniperus procera, Podocarpus falcatus and Olea 

europaea ssp. cuspidiata were sampled inside 20 mx20 m plot (study III). Weight for coarse wood 

(logs and fallen branches) were measured in the field and then samples were taken into laboratory 

and oven dried at 102 ºC to constant weight. Number of stumps found in the plot and the species of 

the stump were also recorded (study III). The diameters of the stumps were measured in their bases 

and at the top using metallic calliper and diameter tape. Individual height of stumps was also meas-

ured using a measuring tape. The volume of the stump was calculated using Smalian’s formula (Ni-

colas et al., 2012). Weighted mean wood density (WD) of 0.66 was used to calculate the biomass 

i.e. wood density for Juniperus procera (0.54), Podocarpus falcatus (0.52) and Olea europaea ssp. 

cuspidiata (0.91) (WUARC, 1995). 

  

(a). Dead wood collected in the main plot                              (b). Illegally cut stump in the plot 
Fig. 7: Showed dead wood and stump samples in the natural forest Fig. 7 (a): Fallen Juniperus procera dead 
wood samples collected in one of the main plot and Fig. 7 (b):  Illegally cut Juniperus procera stump found in 
one of the main plot in of the natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 

3.3.4. Soil data (study I and study III) 

Soil sampling for planted trees under degraded land in Debrelibanos study site was carried 

out before and after plantation experiment. Soil augering was carried out in 3 m x 3 m subplot at the 

initial and final stage of the experiment at 0-10 cm, 10-30 cm and 30-50 cm depth for each treat-
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ment and species combination. Seventy two composite soil samples in total were collected from 

three soil depths. Three random sampling points were mixed to form one composite sample.  

Soil sampled also carried out in Chilimo dry afro-montane forest and its adjacent land uses 

(natural forest, plantation forest, cropland and degraded soils). Both forest floor and mineral soil 

sampling were done inside main plots (20 m x 20 m). Forty forest floor samples were collected by 

using 0.25 m x 0.25 m metallic frame quadrant. The depth of the forest floor was measured using a 

metallic ruler. In eighteen main plots, mineral soil samples were taken below the forest floor up to 1 

m depth using pit method (1 m x 60 cm) due to representativeness of the samples. A total of 33 pits 

in four land use types were dug for soil sample collection. Then, soil samples were taken in four soil 

depth (0-10 cm, 10-30 cm, 30-50 cm and 50-100) cm. Soil bulk density was calculated using metal-

lic cylinder method (6.5 cm height, diameter and width) for each soil depth. A total of 280 samples 

(140 soil samples for C % and total N % analysed plus 140 cylinder samples for bulk density ana-

lysed) were collected.   

  

Fig. 8: An example of soil sampling in different land use types of the study area using pit sampling method. 
Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 

3.3.5. Wood density and carbon concentration (study V)  

Carbon concentration and wood density were collected for five tree species: A. abyssinicus, 

O. europaea ssp. cuspidiata, O. rochetiana, R. glutinosa and S. theifolia in Chilimo dry afro-

montane forest. Total carbon concentration and wood density in the plant sample were estimated 
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using destructive sampling. Trees were felled using local axes and cross cut saw and cut as close to 

the ground as possible. Wood samples were extracted using crosscut saw and chain saw. A total of 

15 trees (3 trees per species) were selected to cover the entire diameter classes. A total of 105 discs, 

six cross-sectional discs (5 discs from stem and one disc from big branches) having a size of 30-50 

mm thick, were collected per single tree. Discs were taken from each section, starting from stump 

height and every one meter along the stem upto the end of the commercial height (≤ 7 cm) and one 

sample for large branches per tree. Leaves samples were also taken from each tree for the same 

purpose. Fresh weights of each wood and leaves samples were taken in the field and then taken into 

the laboratory. 

  

  (a).  Allophyllus abyssinicus extracted wood sample       ( b). Olinia rochetiana extracted wood sample 
Fig. 9:   Showed wood sampling for the sampled trees, Fig. 9 (a): a wood sampled (white color) extartced 
from A. abyssinicus tree and Fig. 9 (b): a wood sampled (red color) extracted from O. Rochetiana tree in the 
study area. Photo by: Mehari A. Tesfaye (2013) (Chilimo, Ethiopia). 
 

3.4. Laboratory methods 

3.4.1. Soil analysis 

The collected samples were air-dried, sieved (2 mm diameter) and ground before analysis. 

The samples were analysed for pH (1: 2.5 soil: water ratio) (Schofield and Tailor, 1955), total N 
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(%) using Kjeldhal’s method (Keeny and Nelson, 1982), organic carbon (%) according to Walkley - 

Black’s method (Bremmer and Jenkinson, 1960), available Phosphorus (units) using Olsen’s meth-

od (Olsen and Sommers, 1982), ammonium and sodium acetate were applied to determine cation 

exchange capacity, exchangeable K were measured with flame photometer (study I) (Thomas, 

1982) at Holetta research centre, Ethiopia (www.eiar.gov.et/index.php). 

Forest floor layers were air-dried and homogenized before the analyses were performed. All 

samples were weighted and subsamples were oven dried for 24 hours at 65 ºC to constant weight. 

The chemical analysis for organic carbon in the forest floor were done by drying samples at 105 ºC 

and then ashes at 550 ºC (Ben-Dar and Banin, 1989). The loss in weight between 105 ºC and 550 ºC 

constitutes the organic matter content. Then organic matter content was converted into organic car-

bon by multiplyin it with 0.58 which has been found to be the most covenient conversion factor 

from organic matter to carbon content in the forest floor (de Vos et al., 2005). Similarly, bulk densi-

ty for each soil depth was determined using a 5 cm diameter and 5 cm height metallic-cylinder 

coarse sampling method following the procedure of Blake (1965). Total N was determined using 

Kjeldahl’s method following the procedure in Keeny and Nelson (1982). Chemical analysis was 

performed at Holetta research centre, Ethiopia (www.eiar.gov.et/index.php).  

3.4.2. Wood density and carbon concentration 

Similar to forest floor samples woody parts were oven dried at 102 ºC and 67 ºC to constant 

weight in the laboratory. The oven dried wood samples were weighed, splatted into pieces, chopped 

and finally ground into 0.2 mm with a grinding mill. Carbon % was estimated by ash methods de-

scribed by (Ben-Dar and Banin, 1989; Allen et al., 1986; Negi et al., 2003; Jone et al., 2009). Oven 

dried and ground plant samples were placed in the graphite furnace at 105 ºC and 400 ºC  tempera-

ture for four hours. Then, the carbon concentration was determined using the following formula 

(study V): 

Ash %  X 100                                  (1) 

)58.0%(% AshC                                      (2) 

http://www.eiar.gov.et/index.php
http://www.eiar.gov.et/index.php
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Where, C: the organic carbon concentration, w105: weight of dry ground plant sample at 105 ºC, 

w400: weight of ground plant sample at 400 ºC and 0.58 is the carbon concentration in the organic 

matter of wood. 

Similarly, volume (cm
-3

) for wood density calcualtion was estimated using water displace-

ment method. Then wood density was calculated using the ratio of oven dry weight of wood (g) and 

volume (cm
-3

). The carbon concentration and wood density analysis were performed at Holetta re-

search centre, Ethiopia (www.eiar.gov.et/index.php). 

3.5. Statistical analysis 

Before performing actual statistical analysis datas were classified into longitudinal, spatial 

and autocorrellation datas. Height growth, root collar diameter growth, survival and soil datas 

(study I) were categorized as longitudinal datas. Carbon and nitrogen concentration and stock 

(study III) were spatial datas. The datas were analyzed using general linear mixed model. Tree da-

ta, biomass, wood density and carbon concentration are autocorrelation datas and a correllattion 

analysis was performed. A general linear model was used for these datas. However, some datas lack 

homogenity and had heteroscedasticity problem, a logarithmic and arcsine transformation were per-

fomed for these datas. The detailed statistical analysis was presented below. 

3.5.1. Mixed models 

Survival rate, height growth, root collar diameter growth and biomass (study I) and carbon 

and nitrogen stock and concentration and bulk density datas for (study III) were performed using 

Proc-Mixed Model on SAS (SAS Inst. Inc., 2012) (study III) and mean separation using Tukey-

Kramer test. We tested the following general structure to obtain a model of survival, height and root 

collar diameter (study I): 

                                                                                      (3) 

The model used for biomass data were also presented as (study I): 

                                                           (4) 

For soil organic carbon and nitrogen stock and concentration we used a linear mixed model 

analysis of variance with repeated measurements, considering one between-subjects factor (species, 

http://www.eiar.gov.et/index.php
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land use type or altitude) and one within-subjects factor (depth with four levels) using the mathe-

matical model (study III): 

                                                [5) 

 The assumptions for the errors in the linear mixed model were: 

  , with = random variance for the errors at depth k. 

 , with =correlation coefficient    (6) 

3.5.2. General linear models 

Soil datas for (study I) and carbon and nitrogen concentration and stock (study III) were 

analysed using SAS PROC GLM method (SAS Inst. Inc., 2012). Mean comparison was made using 

least square means. A significance level of 0.05 is assumed across the analysis (Study I). An analy-

sis of equality of means was performed using a Tukey-Kramer test for multiple comparisons among 

elevation classes at α=0.05 (Study III). 

 For biomass data 12 biomass equations found in the literature (Balboa-Murias, 2006; Ruiz-

Peinado et al., 2011 and 2012) were evaluated and selected, simultaneously fitted using joint gener-

alized regression. Model fits were performed using the SAS MODEL procedure (SAS Inst. Inc., 

2012). The model efficiency were compared with previously developed general models (Brown et 

al., 1989; Brown and Lugo, 1992; Brown, 1997; Chave  et al., 2005) for tropical areas using aver-

age deviation (S), relative bias (RB), relative root mean square (RRMSE) and applying a paired t-

test for estimation values (study II): 

                                                                                       (7) 

                           [8] 

               [9] 

SAS PROC GLM (SAS Inst. Inc., 1999) was used with altitude (3 levels), land use types (4 levels) 

and species (3 levels) as main factors. The mathematical formulation of the model was (study III):    

                 [10] 
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SDMD using species proportion and carbon concentration and wood density datas were also 

analyzed using Proc GLM and Proc logistic model (SAS Inst. Inc., 2012) and the model used for 

species proportion as (study IV): 

    (11)           

                                                                             

   (12)   

 For carbon concentration and wood density the following models were used (study V): 

              (13)       

The logistic model was performed with the following structure: 

                                                                                               (14)  

                                                                        (15) 

Table 1: Summery of the statistical methods used 

Data analysis Study I Study II Study III Study IV Study V 

Linear Mixed Model X  X   

GLM  X X X X 

Correlation analysis  X   X 

Logistic     X 

3.5.3. R- software 

Interaction plots for height, root collar diameter, survival and soil chemical parametres in 

the degraded lands (study I) and carbon and nitrogen concentration and bulk density along land use 

type, elevation and species (study III) were performed using R (R- Development Core Team, 2012 

and 2014).  
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4. RESULTS 

4.1. Performance and soil condition of selected species in degraded highlands of Ethiopia 

(study I)  

The four years evaluation result of survival rate, height growth, root collar diameter growth, 

biomass production and its effect on soil fertility for six (introduced and native) tree and one shrub 

species under three soil management option: control, addition of manure, addition of manure plus 

mulch were species dependent. G. robusta and H. abyssinica had good survival rate, while A. 

decurrense was poorly survived. H. abyssinica and C. palmensis showed poor growth rates while 

these species showed highest soil improvement conditions. E. globulus and Acacia species 

outperformed in terms of growth rates and biomass production. 

Survival: G. robusta (100 %) showed the highest overall survival rate followed by H. abyssinica 

(93.52 %) (Figure 1, study I) where as, A. decurrense showed the lowest survival rate. Differences 

in survival rate among species appeared when they were compared at time points. A. decurrense 

showed the lowest survival rate at all measurement times, though; it was similar to A. saligna 

through the experiment. The differences was stronger as early as 24 months after planting (Table 

III, study I). 

 

Height growth: The response of A. decurrense and A. saligna height growth was similar across the 

soil management options. Time since planting (age) was also an important variable with 

considerable variation across species. For example, A. saligna height growth was faster upto 24 

months after planting and then decreased whereas E. globulus experienced fast height growth 

throughout the whole experiment (Figure 10 (a)). G. robusta and H. abyssinica showed the same 

height growth pattern and the application of manure and or manure plus mulch resulted in similar 

height growth, which was higher than that of the control treatment (Figure 10 (b)). Height growth 

differences were noticeable 12 months after planting, H. abyssinica and E. globulus showed the 

lowest and highest mean differences, respectively (Table V, study I). 
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Fig. 10: Showed the effect of time since planting and soil management on height growth in degraded lands. 
Fig. 10 (a): Tree height planted species time since planting.   Fig. 10 (b): Height (cm) on soil management 
option. 

Root collar diameter growth: A. saligna showed a stronger response to manure plus mulch 

treatment than other species, whereas C. palmensis exhibited increased root collar diameter when 

either soil management options applied (Figure 2(e), study I). The root collar diameter of A. 

saligna increased for 36 months after planting. At 48 months, E. globulus showed higher root collar 

diameter (RCD) average. The other species showed similar values at 12 and 24 months after 

planting; root collar diameter differences become more pronounced C. palmensis, D. torrida and H. 

abyssinica had the lowest RCD average at the end of the experiment (Figure 11 (a)). The final 

model for RCD showed that neither the fixed effects for species and treatment in the slope nor the 

interaction between species and treatment were significant (Figure 11(b)). E. globulus outperformed 

all species in height growth but had almost the same root collar diameter as A. saligna at the end of 

the experiment. 
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Fig. 11: Showed the effect of time since planting and soil management on root collar dimater growth on 
degraded lands. Fig. 11 (a): RCD (cm) planted species time since planting.  Fig. 11 (b): RCD (cm) on soil 
management option. 

Biomass production: Tree biomass production was similar in all soil management application 

(Table VII, study I), except for E. globulus (11.71 kg tree
-1

), A. saligna (8.76 kg tree
-1

) and A. 

decurrense (6.41 kg tree
-1

). Mulching induced overlaid results between the control and mulching 

plus manure treatment. Comparison of control with mulching plus manure treatments revealed the 

treatment fixed effect to be highly significant (p < 0.0001). The interaction between species and 

treatment was highly insignificant in all cases. E. globulus produced more biomass than other 

species, followed by A. saligna (Table 2). 
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Table 2: Differences of least squares means for biomass production 48 months after planting and statistical 
significance of null hypothesis according to Tukey-Kramer’s adjustment. Bold values indicate significant at 
0.05 significant levels. 

Species 

comparison 

48 months after planting 

Estimate P-value 

AD-As -2.343 0.870 

AD-CP 3.609 0.519 

AD-DT 5.079 0.189 

AD-EG -5.292 0.160 

AD-GR 4.297 0.337 

AD-HA 5.693 0.115 

AS-CP 5.952 0.093 

AS-DT 7.422 0.026 

AS-EG -2.949 0.715 

AS-GR 6.640 0.052 

AS-HA 8.037 0.015 

CP-DT 1.470 0.984 

CP-EG -8.901 0.007 

CP-GR 0.688 1.000 

CP-HA 2.084 0.919 

DT-EG -10.371 0.002 

DT-GR -0.782 1.000 

DT-HA 0.614 1.000 

EG-GR 9.589 0.004 

EG-HA 10.986 0.001 

GR-HA 1.397 0.987 

EG: Eucalyptus globulus, AS: Acacia saligna, AD: Acacia decurrense, CP: Chamaecytisus palmensis, GR: Grevillea 

robusta, DT: Dombeya torrida, HA: Hagenia abyssinica. 

Soil condition: Nitrogen concentration was affected by species, time, depth and interaction of time 

and species, indicating a strong species control on this soil parameter. The significant interaction 

effect of species, time and depth for organic carbon and cationic exchange capacity was mainly 
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controlled by depth. After 4 years since planting, pH did not change. Soil parameter values (% OC, 

% N, P (ppm), K (meg/100g soil) increased in native H. abyssinica and D. torrida (Figure 3 and 4, 

study I), whereas nitrogen and carbon concentration decreased in E. globulus plantation along the 

whole profile [Figure 5 (c) and (e), study I]. C. palmensis showed the highest N and C increase 4 

years after plantation [Figure 6 (c), study I]. Acacia spp showed a decreasing pattern in nitrogen 

and carbon concentration and available potassium (Figures 12 and 13), whereas G. robusta showed 

increased nitrogen and carbon contents (Figure, 14). All species increased available P in soils. The 

concentration of nitrogen is significantly low in Acacia spp and E. globulus. C. palmensis showed 

the highest amount of nitrogen (0.11 %) in the top soil (0-10 cm) 4 years after plantation followed 

by H. abyssinica (0.09 %) and D. torrida (0.08 %). Differences in K concentration are found in 10-

30 cm. CEC in E. globulus and A. decurrense plots is significantly lower than that found in D. 

torrida and G. robusta plots. 

 

 

Fig. 12: Mean value and standard error bars for soil properties at the beginning and at the end of the 

experiment in native Dombeya torrida plots. Dark bars are mean value before planting. Light bars are mean 

after 48 months planting. 



Tesfaye (2015) 

52 
 

 
Fig. 13: Mean value and standard error bars for soil properties at the beginning and at the end of the exper-
iment in Acacia saligna plots. Dark bars are mean value before planting. Light bars are mean value after 48 
months. 
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Fig. 14: Mean value and standard error bars for soil properties at the beginning and at the end of the ex-
periement in Grevillea robusta plots. Dark bars are mean value before planting. Light bars are mean value 
after 48 months. 
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Table 3: Diagonal table of significance soil parameter differences between species at different soil depths. 
OC: Organic carbon, N: nitrogen, CEC: Cationic Exchange Capacity, K: Potassium. In parenthesis, p-value at 
0.05 level. 
 

0-10 cm AD AS CP DT EG GR HA

AD

AS

CP
OC (0.0055)     N 

(0.0016)

OC (0.0037)   N 

(0.0458)
N (0.0069)

DT CEC (0.0418) OC (0.0397)

EG
OC (0.0039)    

N (0.0004)

CEC (0.0385)    N 

(0.0180)
CEC (0.0473) N (0.0016)

GR N (0.0288)

HA
OC (0.0288)       N 

(0.0069)

pH (0.0375) 

OC (0.0198)   N 

(0.0042)

10-30 cm AD AS CP DT EG GR HA

AD

AS

CP
OC (0.0270)         K 

(0.0442)

DT K (0.0262)

EG CEC (0.0383)
OC (0.0305)    

N (0.0427)
CEC (0.0126)

K (0.0335)     CEC 

(0.0032)

N (0.0232)        CEC 

(0.0365)

GR
K (0.0271)      CEC 

(0.0390)

HA

30-50 cm AD AS CP DT EG GR HA

AD

AS
K (0.0178)     

N(0.0314)

CP N (0.0118) N (0.0151)

DT

EG

GR

HA
 

 

4.2. Biomass model, partitioning and comparison (study II) 

The results revealed biomass based equations for A. abyssinicus, O. europaea ssp. cuspidi-

ata, O. rochetiana, R. glutinosa and S. theifolia were different to each other. For example, the 

aboveground, stem and thin branches plus foliage biomass fractions for all the five studied species 
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were strongly correlated to dbh and stump diameter (Table 4, study II). Similarly, most biomass 

fractions were also correlated to total height and commercial height. So, the Spearman’s correlation 

revealed that biomass models could use dbh and total height as independent variables. From 12 bi-

omass equations tested only four biomass equations were fitted (Table 3 and 5, study II). Crown 

and stem biomass fractions were fitted for O. rochetiana, R. glutinosa and S. theifolia. However, 

only above ground biomass was fitted for A. abyssinicus. The model parameters were significant at 

the 99 % confidence level (p < 0.001) (Table 5, study II). All stem biomass models showed higher 

biomass efficiency values than crown and branch models. Aboveground biomass models fitted in 

the Seemingly-unrelated regression (SUR) process showed high R
2
-Adj values varying between 

0.96 for O. europaea and 0.79 for S. theifolia. The observed-predicted values for total aboveground 

biomass did not show any presence of bias in the fitted models (Table 3, study II).  

O. europaea ssp. cuspidiata and O. rochetiana exhibited similar biomass allocation trends 

and in these species the stem fraction accumulated more biomass than the crown fraction. While, in 

R. glutinosa crown fractions accumulated more biomass (53 %) than stem fractions (47 %) at the 

diameter class of 10 cm. However, stem fractions accumulated more biomass than crown fractions 

at higher diameter classes (15 and 20 cm). The comparison of general models to our models re-

vealed Brown et al. (1989) presented the poorest results in terms of average deviation (ranged from 

32 % to 59 %) and over estimation for all species. The higher average deviation (86 %) was found 

using the model of Brown (1997) for R. glutinosa (Table 6, study II), other species between 28 % 

and 39 %. The t-test showed Brown et al. (1989), model was not appropriate for four of the five 

studied species (A. abyssinicus, O. europaea ssp. cuspidiata, O. rochetiana, R. glutinosa) and 

Chave et al. (2005) model were also not suitable for three species (A. abyssinicus, O. rochetiana, R. 

glutinosa). 

4.3. SOC and SON concentration and bulk density along elevation, land use and species 

(study III) 

Highest, bulk density value were found under degraded land, cultivated lands and Pinus 

plantation. The highest Carbon and Nitrogen stock and concentration were found under natural 

forest, top soil and higher elevation gradients, however; the lowest Carbon and Nitrogen stock and 

concentration were found under degraded land, sub soil and low elevation gradients. The bulk 

density was different among the introduced species, however, the carbon and nitrogen 
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concentration were higher in Eucalyptus saligna and lowest in Pinus patula plantation although 

statistically non-significant results were found. 

Bulk density along attitudinal gradient and land use types 

The bulk density of mineral soil was ranged from 0.5 g cm
-3

 dry soil to a maximum value of 

1.40 g cm
-3

 dry soil. Bulk density was significantly varied among land use types and soil depth 

(Table 2, study III). Bulk density was significantly lower in the natural forest as compared to the 

other land use types in all soil depths. The higher value were found in crops and degraded lands 

(Figure 2, study III). Bulk density was significantly different between soil depths in natural forest 

from low values in the upper layer and higher values in the deepest layer (Figure 3, study III). 

Carbon and nitrogen concentration along altitude 

The forest floor carbon concentration ranged from 319.2 to 666 g C kg
-1

 of soil whereas the 

nitrogen concentration was ranged from 9.6 to 19.8 g N kg
-1

 of soil with increasing concentrations 

in the upper part of the gradient for carbon and in the middle part of the gradient for nitrogen 

although, statistically non-significant (Table 3, study III). The mean carbon and nitrogen stock for 

the forest floor was 9.36 ± 1.17 Mg C ha
-1

 and 0.25 ± 0.03 Mg N ha
-1

, respectively. The mineral 

soil C concentration ranged from 7 g C kg
-1

 soil to 129.4 g C kg
-1

 soil, whereas the N concentration 

was ranged from 0.6 to 10 g N kg
-1

 soil.  In the upper part of the gradient there were higher average 

values of C and N concentration (114.2 and 8.1 N kg
-1

) (Table 3, study III), although, the 

difference were non-significant (Table 4, study III). 

Land use type  

The results revealed that carbon and nitrogen concentration were highly influenced by land 

use type and soil depth (Table 2, study III). The carbon and nitrogen concentration in the native 

forest was always higher than other land use types in all the sampled soil depths. Nitrogen 

concentration was similar in crop and degraded land where as natural forest and plantations showed 

higher values in the first 30 cm. Carbon stock in the natural forest is the highest of all land uses at 

all depths (225.03 Mg ha
-1

) in one meter depth (Table 6, study III). In plantations the carbon stock 

is one third less than in natural forest but 35 % more in crops and 77 % more than in degraded land 
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at the same depth, on the first 10 cm of mineral soil plantations has significant more carbon content 

than crop and degraded land (Table 6, study III).  

Introduced species  

The species effect was significant on bulk density values (Table 7, study III). Soil bulk 

density in eucalyptus plantation was 22 % significantly higher than in Cupressus lusitanica planta-

tions (Figure 4, study III). However, species did not influence carbon and nitrogen stock. Total 

carbon stored upto 1 m in plantations ranged from 112.43 ± 4.32 and 185.83 ± 29.9 Mg C ha
-1 

for 

Pinus patula and Eucalyptus saligna, respectively (Table 8, study III) whereas total nitrogen stock 

ranged from 8.50 ± 0.44 and 12.26 ± 1.9 Mg N ha
-1

 for the same species. Cupressus lusitanica has 

an intermediate value.  

4.4. Stand density management model evaluation and fitting (study IV) 

The stand density management diagram for Chilimo mixed forest revealed that dominant 

height and quadratic mean diameter were the best endogenous fitting variables (Table 2, study IV). 

All the estimated parameter for P. falcatus and five estimated parameters for J. procera were 

significant (p < 0.05). Likewise, volume was better fitted than number of stems and basal area. The 

R
2
 adjusted validation data for P. falcatus was over 0.80 and 0.95 for the quadratic mean diameter 

and volume model, respectively. Although, the stand density management diagram for J. procera 

and P. falcatus showed similar trends (Figure 2 and 3, study IV), the volume, total height and 

number of stems per hectare varied among the species.  J. procera was the dominant tree species in 

the Chilimo dry afro-montane forest with a mean quadratic diameter up to 80 cm. However, P. 

falcatus was structuraley belongs to both dominant and codominant group and dominated by 

medium sized height and diameter trees. However, higher numbers of naturally regenerated 

seedlings were observed for the species. Similarly, for species proportion the number of stems was 

exceeded upto 1025 stems ha
-1

. Alternative management options were developed by considering 

species proportion for J. procera and P. falcatus (Figure 5, study IV). The minimum quadratic 

mean diameter to be thinned will be 25 cm and the maximum diameter will be also 35 cm (Table 5, 

study IV). Thinning will be applied for J. procera and P. falcatus. 
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4.5. Carbon concentration and wood density for five most commonly tree species (study V) 

The carbon concentration and wood density were different among and within the species, 

plant parts and stem position (height). The major dendrometric variables were correlated to carbon 

content and wood density. Wood density was moderately to highly correlate to commercial height, 

basal area and stem. The carbon concentration ranged from 57.12 % for O. rochetiana to 56.43 % 

% for A. abyssinicus (Figure 2, study V). The wood density ranged from 0.67 g cm
-3

 for O. 

europaea ssp. cuspidiata to 0.42 g cm
-3

 for A. abyssinicus.  Stem parts had higher (56.98 %) carbon 

content than branch and leaves parts (Figure 4, study V). The carbon concentration and wood 

density showed a decreasing trend along with increasing in tree height (stem position). 
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5. DISCUSSION 

 Major finding of five studies conducted in a degraded land and in a tropical dry afro-

montane mixed forest located in the Central Highlands of Ethiopia are presented. The species and 

soil management screened for fuelwood production and rehabilitation of degraded lands can be 

used in the national afforestation and reforestation programmes. The best performed tree species E. 

globulus, G. robusta and H .abyssinica can be planted on abandoned degraded lands, along home-

steads and farm baundaries in central Highlands of Ethiopia to alleviate fuelwood shortage. In addi-

tion, the species can provide construction wood, farm implements and generating income for the 

society. The information, technologies and practices generated from Chilimo dry afro-montane for-

est can be applied for the other Ethiopian forests too and for REDD+ (Reducing Emissions from 

Deforestation and Forest Degradation) projects in the country. In Ethiopia REDD+ is implemented 

with three major objectives: (i) conservation of indigenous remnant trees and natural forests, (ii) 

sustainable management of forests and (iii) enhancement of carbon stock. The project is evolving as 

an integral part of a wider green economic growth strategy and the climate resilience strategy in the 

country (http://www.theredddesk.org/countries/ethiopia). Ethiopia is also a participant country of the 

World Bank Forest Carbon Partnership Facility (FCPF) for example under this facility the follow-

ing projects are ongoing: Bale-mountain ecoregion conservation centre, Keffa biosphere reserve 

and Humbo clean development mechanism (CDM) projects. Consequently, majority of the rem-

nants of the high forests are managed primarily for protection and conservation pupose while com-

mercial utilization is a secondary objective. These forests have classified into 58 National Forest 

Priority Areas (NFAs) of the country. The forests also play an important role in the global carbon 

cycle and contribute to mitigation of climate change through carbon (sequestration, substitution and 

conservation). However, over two-thirds of these high forests are heavily disturbed forests and 

needs appropriate management intervension (Bekele, 2001). In addittion, there are scanty infor-

mations about how to manage these forests and to show their importances for the above mentioned 

objectives (Lemenih and Kassa, 2014). The information obtained from this thesis can be taken as an 

input for sustainable management and utilization of these forests. Between the key information by 

this thesis is the following, (i) species selection and soil management for simultaneous fuelwood 

production and soil rehabilitation, (ii) above ground biomass equation, (iii) soil organic carbon and 

total nitrogen stock and concentration along land use, elevation and species, (iv) stand density man-

http://www.theredddesk.org/countries/ethiopia
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agement diagram for mixed forest and (v) carbon concentration and wood density in the plant sam-

ple for five most commonly grown tree species. 

5.1. Performance and soil condition of selected species in degraded highlands of Ethiopia 

(study I)  

The combination of survival, root collar diameter and height growth, total biomass produc-

tion and changes in soil fertility after 48 months provides a five-dimensional indicator of species 

suitability for both objectives. The best option would always be that with the highest values in all 

five indicators; however, none of the species fulfilled these five requirements. 

G. robusta, H. abyssinica and E. globulus had the highest survival rates while C. palmensis 

and A. saligna had intermediate survival rate. Peter et al. (2005) reported a survival rate of 100 % in 

Australia for G. robusta and Arredondo et al. (1998) reported, in Chile, a survival rate of 25 % and 

60 % for A. saligna and C. palmensis, respectively. 

 E. globulus, A. saligna and A. decurrense had faster root collar diameter and height growth 

and produced maximum biomass production than other species and the soil management signifi-

cantly impacted their growth. Similarly, Mekonnen et al. (2006) reported greater height and root 

collar diameter growth for E. globulus in central highlands of Ethiopia. G. robusta showed inter-

mediate height and root collar diameter growth. H. abyssinica, D. torrida and C. palmensis had 

lower root collar diameter and height growth and biomass production but improving nitrogen, car-

bon and available potassium. E. globulus depleted nitrogen, whereas Acacia species did not show a 

clear pattern. 

Plantation of selected native or exotic species can play a major role in the rehabilitating de-

graded land with little enhancement of biodiversity (Chazdon, 2008). Eucalyptus is one of the most 

popular species widely planted in Ethiopia. E. camaldulensis and E. globulus are the two dominant 

species (Lemenih and Kassa, 2014).  E. globulus is the prevailing feature of the rural landscape and 

important to maintain livelihood for smallholder farmers in the Ethiopian highlands (FAO, 2009; 

Gil et al., 2010). Socio-economic studies on E. globulus and E. camaldulensis in the country 

showed, planting of these species generated adequate income to the households more than agricul-

tural crops do especially in degraded soil (Daba, 1998; Gebre-Markos, 1998; Jagger and Pender, 

2000; Zerihun, 2002; Holden et al., 2003; Tesfaye, 2009). 
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E. globulus is not improving soil fertility in this experiment, although, it produced highest 

biomass and better growth, there are two opposite arguements regarding the role eucalyptus for soil 

fertility improvement and soil rehabilitation, those who are supporting and advocating the species, 

they considered eucalyptus as a fast growing tree species, it requires minimum care and protection, 

it is widely grown in a wider ecological zones and poor environments, it coppices after harvest, im-

proving soil fertility and rehabilitation of degraded lands, swampy and drier areas (Ponjonen and 

Pukkala, 1990; Jagger and Pender, 2000 and 2003; Mekonnen et al., 2007; Nduwamugo et al., 

2007; Kelemu and Tadesse, 2010). In the meantime, Fialho and Zinn (2012) in Brazil found similar 

carbon concentration under eucalyptus plantation as compared to adjacent natural forest. Similarly 

Oballa et al. (2010) in Kenya also found higher nutrient concentration under eucalyptus plantation 

than adjacent tea plantation. Higher regeneration and undergrowth were also reported under Euca-

lyptus plantations than other exotic tree species (Cupressus lusitanica and Pinus patula) in Ethiopia 

(Biruk, 2012). Alem and Woldemariam (2010), found E. grandis used as a shade in coffee planta-

tion in Southern Ethiopia and the density of coffee stems found under E. grandis plantation (1022 

stems per ha
-1

) was more or less similar to the coffee stems found under natural forest (1042 stems 

per ha
-1

).  

In the contrary, others blamed eucalyptus for its environment deterioration i.e. they stated 

eucalyptus: depletes under ground water, facilitate soil erosion, depletes soil nutrients and introduc-

es allellophatic effets to mimic the undergrowth of other species (Davidson, 1985; FAO, 1988; 

Teketay, 2000; Amare, 2002; Munishi, 2009; Ndowamungo et al., 2007). In the mean time, Wu et 

al. (2013) reported the negative impact of eucalyptus on dissolved organic carbon concentration 

and Teketay (2003) found lower carbon concentration under eucalyptus plantation than natural for-

est. Neverthless, there is no concrete evidence and agreement that proved its detrimental effect on 

the under growth species (Biruk, 2012). 

  H. abyssinica increased significantly organic carbon in the top soil to 30 cm deep [Figure 

3(e)], study I). G. robusta also improved soil condition (Figure 16; study I) and it has best survival 

and possess excellent firewood properties in its natural distribution area (Jaing and Singh, 1999). E. 

globulus is the most productive species in terms of biomass production for firewood also shows 

good survival rate and preferred by farmers for planting (Beweket, 2003). Eucalyptus is used as 

main sources of income for small scale farmers, besides solving shortage of wood demands in cen-

tral highlands of Ethiopia (Biruk, 2012). H. abyssinica might be considered for reforestation pro-
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grams to rehabilitate degraded lands and exotic G. robusta and to a lesser extent E. globulus, as a 

preliminary step to natural vegetation recovery and as good providers of raw material for fuel wood 

production. 

5.2. Biomass model, partitioning and comparison (study II) 

Site and species specific biomass based equation models for the five tree species: Allophyl-

lus abyssinicus, Olea europaea ssp. cuspidiata, Olinia rochetiana, Ruth glutinosa and Scolopia 

theifolia were developed in a tropical dry afro-montane mixed forest, Central Highlands of Ethio-

pia.  

Among the various measured dendrometric variables, diameter at breast height (dbh) and to-

tal height were considered as independent variables in all the biomass fractions (Table 5, study II). 

Several authors have also been advocated the use of these variables (Brown et al., 1989; Basuki et 

al., 2009; Ruiz-Peinado et al., 2011 and 2012). Chave et al. (2005) reported dbh, wood specific 

gravity, total height and forest type as important variables for prediction of tree biomass in tropical 

forests. Later, Henry et al. (2011) advocated these variables, due to the variation in wood gravity, 

volume and biomass, while, Feldpausch et al. (2012) reported total height improves the accuracy of 

biomass estimation in tropical forests. Fitted biomass equations were specific dependent (Table 5, 

study II) e.g. only total above ground biomass was fitted for A. abyssinicus due to low biomass of 

crown biomass and foliage biomass. For the other four species, biomass equations were developed 

for the stem and crown biomass fractions. Similar results are also reported by Negash et al. (2013). 

All the estimated parameters of the biomass models showed positive coefficient values. This imples 

an increasing in height growth resulted in increasing in diameter growth. Although, some authors 

proposed the use of generalized equations to estimate aboveground biomass in African tropical for-

ests (Brown et al., 1989; Brown and Lugo, 1992; Brown, 1997; Chave et al., 2005), the  use of spe-

cies and site-specific equations are advocated by several authors (Ketterings et al.,  2001; Litton 

and Kauffman, 2008; Henry et al., 2011). In addition, local or sub-national stage biomass equations 

are very important for accurate estimate of biomass models for REDD
+
 measuring, reporting and 

verification country level natural resources management and inventories (Naesset, 2007; Peterson et 

al., 2007). Biomass mapping in Africa suffers from lack of regional and site specific allometric 

equations. Besides, the existing general and specific biomass equations in the region (Brown et al., 

1989; Brown and Lugo, 1992; Brown, 2002; Chave et al., 2005; Henry et al., 2010; Djomo et al., 
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2010) there is a lack of local biomass equations. Neverthless, Chave et al. (2005) did not use trees 

from Sub Saharan African countries forests used to develop generalized allometric equations for 

African forests. Some authors have inventoried tree biomass equations for South America (Návar, 

2009) and Europe (Zianis et al., 2005) but no report from Sub-Saharan Africa and or under studied 

(Henry et al., 2011). Currently, national and continental data bases for allometric equation for Afri-

ca are few and it should be continually updated and studied (Chave et al., 2005; Zianis et al, 2005; 

Návar, 2009; Henry et al., 2011a; Henry et al., 2013). Thus, site and species specific biomass equa-

tion models are very important for African forests (Ngomanda et al., 2014). The comparison of the 

generalized models (Brown et al., 1989; Brown and Lugo, 1992; Brown, et al., 1997; Chave et al., 

2005) to the fitted models for these studies species (Table 6, study II) showed that, the accuracy 

vary with the species. Brown et al. (1997) model is valid for only R. glutinosa (p-value < 0.05). 

Chave et al. (2005) showed acceptable statistics for only two of the species. Stem biomass propor-

tions in O. europaea ssp. cuspidiata and O. rochetiana were nearly constant along the diameter dis-

tribution (Figure 3, study II). However, stem proportions over above ground biomass was higher 

than crown to above ground biomass proportion in R. glutinosa and S. theifolia were growing when 

diameter is increasing. Our results are consistent with other findings e.g. Henry et al. (2010), found 

higher biomass accumulation in the stem fraction (72 %) than in crown fractions (28 %) and Mate 

et al. (2014), showed mean biomass partitioning values for three tropical species ranged between 

46-77 % for stem and 23-54 % for crown, considering these authors trees with higher diameter than 

sampled trees of this study.  

These biomass equation models are important for the sustainable utilization and manage-

ment of these five tree species in Chilimo dry afro-montane mixed forest in particular and other dry 

afro-montane forest in general. In line with this, above ground biomass equation models are im-

portant tools for reporting and monitoring carbon stock for reducing land degradation and defor-

estation in the country and acquiring adequate information to benefit the poor farmers in developing 

countries from carbon trade in the world market (Siwe et al., 2011; UNFCC, 2011). 

5.3. SOC and SON concentration and bulk density along elevation gradient, land use and 

species (study III) 

Soil organic carbon stock (SOC) play an important role in productivity and sustainable use 

of soil for tropical forest ecosystem through the moderation of cation exchange capacity (CEC), wa-

ter holding capacity, soil structure, resistance against erosion, nutrient retention and availability and 
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buffering against sudden fluctuations and pH. Understanding the soil organic carbon and nitrogen 

stock and concentration are important for carbon management, climate change mitigation and adap-

tation. Estimates of soil carbon stocks at regional, national and global scales are important for the 

understanding of changes in carbon flux (Yimer et al., 2006). The information’s are useful to im-

plement sustainable management in the Chilimo forest and for carbon trade in REDD
+
 project.  

The carbon and nitrogen concentrations and stocks were higher under the higher and middle 

altitudinal classes as compared to lower altitudinal classes, although, statistically non-significant 

results were found (Table 4, study III). This was might be due to better nutrient cycling and lower 

human disturbance. In the contrary, the lower stock and concentration in the lower altitudinal clas-

ses was might be due to higher human disturbance and animal interferences. Ngo et al. (2013) re-

ported the variation in carbon storage among tropical forests is due to variation in species composi-

tion, disturbance history, climate regimes and soil fertility. Higher soil organic carbon was reported 

in the top soil (0-15 cm) under middle and higher altitudinal elevation (Shrestha et al., 2004; 

Awashi et al., 2005; Shrestha and Singh, 2007) a similar result was also reported in Rungwe moun-

tains areas of Tanzania (Zewdu and Hὂgreb, 2004; Sah and Brumme, 2003; Mwakinsunga and Ma-

jule, 2012).  

The results revealed land use type and soil depth significantly affected soil organic carbon 

and nitrogen stock and concentration and bulk density in the mineral soil. The carbon and nitrogen 

stock (225.03 Mg ha
-1

) in one meter depth were higher in the natural forest for all the sampled soil 

depth (Table 6, study III). The total nitrogen concentration in natural forest is also higher by 82 %, 

52 % and 27 % more than degraded land, crop land and plantation, respectively. In the contrary, the 

lowest carbon and nitrogen concentration were found under degraded land and deepest soil. The 

higher stock in the natural forest was might be due to better nutrient input through litter fall, higher 

species diversity and density, low human disturbance and lower soil erosion. Continous removal, 

and surface crusting and lack of inputs in degraded and cultivated lands resulted in lower value.  Lv 

and Liang (2012) reported land cover changes affect litters, plant root, soil fauna, soil microorgan-

isms and soil condition. Several authors reported the significant impact of land use change from 

cropland to forestland and viceversa (Guo and Gifford, 2002; Zhang, 2010), though, the magnitude 

varies from place to place. Wu et al. (2013) estimated a SOC loss of 10 % - 40 % in the cultivated 

soils than non-cultivated soil in China. Solomon et al. (2002), found a reduction in 55 % - 60 % in 

carbon stock from conversion natural forest to crop land. Ashagrie et al. (2005) and Girmay et al. 
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(2008) reported a significant reduction in SOC and SON (50 % and above) when natural forest 

were converted into plantation.  

Soil sampled under E. saligna plantation had higher SOC and SON stock as compared to 

other introduced species, although, statistically non-significant results were found. The higher SOC 

and SON stock under Eucalyptus plantation was might be due to better litter fall and lower soil ero-

sion. Similarly, Lemma et al. (2006) found higher SOC under E. grandis than C. lusitanica and P. 

patula. Berthron et al. (2009) found a significant decrease in soil organic C and N with Pinus affor-

estation but not with other studied species (Eucalyptus, angiosperm, conifers). On the other hand, 

our research findings of soil carbon stock was ranged from 112.43 ± 4.32 and 185.83 ± 29.9 Mg C 

ha
-1 

for P. patula  and E. saligna, respectively (Table 8, study III) are in consistent with other find-

ings in Africa e.g. 152 Mg C ha
-1

 for cocoa agroforestry in South Cameroon (Duguma et al., 2001) 

and 66-88 Mg C ha
-1

 in oil palm (Egbe et al., 2012) and in other parts of the world, 150 Mg C ha
-1 

(82-242) in Spain (Balboa-Murias et al., 2006) an average of 135 Mg C ha
-1

 in Pinus radiata and 

99 Mg C ha
-1

 in Pinus pinaster reported by Balboa-Murias et al. (2004). 

Bulk density is the most discriminating factor in soil properties in relation to land use and 

management (Shukla et al., 2004), the highest value were found in crops and degraded land. How-

ever, bulk density was significantly lower in the natural forest in all sampled soil depths; this was 

might be due to higher litter fall and decomposition rate in the natural forest and opposite condition 

in the degraded land and cropland. The bulk density was significantly varied among introduced 

species; this was might be due to varied in the amount of litter fall and decomposition rate and root-

ing nature of the species. Similarly, Hajabbasi et al. (1997) reported higher soil organic matter con-

tent improves soil texture and this resuled in a decreasing of bulk density in natural forests. Celika 

(2005) showed, cultivated soils have higher bulk density than adjacent soils under forests and pas-

tures in the southern Mediterranean highlands of Turkey.  

Although, our measurements results of the soil organic carbon and nitrogen concentration 

and stock measurements in native natural forest and plantation forest are higher than those reported 

in some regions (Beets et al., 2002; Harms et al., 2005; Yimer et al., 2006; Twongyirwe et al., 

2013) the results are consistent with other findings (Michel et al., 2004; Omoro et al., 2013; 

Shelukindo et al., 2014). 
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5.4. Stand density management model evaluation and fitting (study IV) 

Stand density management diagrams (SDMD) are adequate and simple tools to introduce 

model forecasting where data are scarce and appropriate decision making processes to enhance fu-

ture stand dynamics is needed. Between, the key issues that could be addressed with SDMD are for 

instance volume, wood properties or habitat characteristics of the forest. By using data from 35 

temporary plots located in Chilimo dry afro-montane forest density management diagrams were 

developed. SDMD are important tools for decision making process for forest managers based on 

stand information of maximum and minimum density of stems, dominant height and total stand 

volume. By using SDMD we can determine total stand volume, total height, quadratic mean diame-

ter and density directly for any point using the stand volume isolines (Figure 5, study IV). Thinning 

operations were showed based on self-thinning rule starting over 60 % of the maximum Reineke 

index (Dean and Baldwin, 1996) (Figure 5, study IV). Minimum level of Reineke index is 35 % to 

allow full site occupancy showed in the graph. Whole-stand models as SDMD, allow managers to 

adopt decisions in an effective-cost manner under low-economic return silvicultural systems. Other 

modeling approach such as empirical individual-tree or process-based models can be more useful to 

understand ecosystem dynamics but more detailed data are needed. However, SDMD are practical 

tools basic in extensive silvicultural applied in low productivity forests (Valbuena et al., 2008). 

5.5. Carbon concentration and wood density for five most commonly tree species (study V) 

The carbon concentration and wood density for the five studied tree species found in Chili-

mo dry afro-montane forest: A. abyssinicus, O. europea ssp. cuspidiata, O. rochetiana, R. glutinosa 

and S. theifolia were significantly varied among the tree species, plant parts and stem height within 

and among the species. These variations were might be due to differences in physical and chemical 

properties of wood and growth pattern of the tree species under study. Similar results are also re-

ported by Chavan and Rasal (2012) that found a higher carbon concentration in the stem parts than 

leave, branch and bark parts for Annona retiacula and Annona squamosa while Herrero et al. 

(2011) and Castaño-Santamaria and Bravo (2012) reported specific variations in carbon concentra-

tion and wood density along heart wood, sapwood and bark stem parts of the three Mediterranean 

Pinus spp. These variations in Mediterranean pines were also related with cambial age of the wood. 

The carbon concentration for our studied species were ranged from with a maximum value 57.12 % 
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to 56.43 %  and the wood density was ranged from with a maximum value 0.67 g cm
-3

 to the mini-

mum value of 0.42 g cm
-3

  (Figure  2, study V). Our wood density findings for the five tree species 

mentioned above are in line with other research results (Brown et al., 1989; Brown, 1997; Paroline 

and Worbes, 2000; Houghton et al., 2001). In this study, the carbon concentration and wood density 

showed a decreasing trend along with increasing in tree height (stem position); this was might be 

due to variation in wood structure and chemical composition. Similar findings by Barahona (2005) 

found higher values of wood density and carbon content in the bottom parts of a tree than top parts. 

Amorim (1991) and Desatro et al. (1993) found a decreasing trends in wood density for trees grown 

in the tropics from breast height of 1.3 m to top commercial height (≤ 7 cm diameter). Higuchi and 

de Carravalho (1994) found a higher wood density at the breast height than the top parts. Structural 

differences in wood density are strongly correlated with differences in mechanical and chemical 

properties of wood, water transportation efficiency, buckling and bending properties of wood and 

the proportion of juvenile wood (Zobel and van Buijtene, 1989; Gertner and Meinzer, 2005; Pitter-

mannet et al., 2006). 
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6. GENERAL CONCLUSIONS 

A total of five studies were conducted in a degraded land fenced experiment and in the 

Chilimo dry afro-montane forest in Central Highlands of Ethiopia. The studies were focused on: (1) 

Best performed tree and shrub species and soil management under degraded land, (2) Aboveground 

biomass equation for mixed tropical forest, (3) Soil carbon and nitrogen stock and concentration 

and bulk density in the forest floor and mineral soil along elevation, land use and species, (4) Stand 

density management diagram for mixed species and (5) Carbon concentration and wood density for 

five tropical native tree species. In addition, the following conclusions can be drawn from these 

studies:   

1   G. robusta showed the highest overall survival rate followed by H. abyssinica. A. 

decurrense showed the lowest survival rate. E. globulus outperformed all species in height growth 

and biomass production and had a similar root collar diameter growth as A. saligna.  H. abyssinica, 

C. palmensis and D. torrida showed the lowest growth and biomass production, but all of them 

improved soil conditions 48 months after plantation. A. saligna showed a stronger response to 

manure plus mulch than other species.  

 2     Dry biomass production was highly significant for E. globulus, although, it was non- 

significant across soil management options and there is no clear effect of any of the soil 

management option in growth. Native tree species might not show better growth performance in 

harsh environment conditions however, native species improved soil conditions in these 

environmental conditions. 

3    Tree diameter and total height were considered as the best independent variables for 

biomass estimation for (A. abyssinicus, O. europaea ssp. cuspidiata, O. rochetiana, R. glutinosa 

and S. theifolia). Crown biomass were fitted for three of the five species studied (O. rochetiana, R. 

glutinosa and S. theifolia) due to high variability in branch biomass fraction and resulting from 

inter-specific competition in the mixed tropical forest. However, an aboveground model was 

developed for A. abyssinicus based on its biomass heterogeneity and small weight of crown 

biomass. 

4   The generalized models proved unsuitable for these types of forest and to improve 

estimation accuracy and reduce uncertainty, we suggest the application of the species-specific 

models developed in this study to similar Ethiopian mixed forests and other tropical montane forest. 
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5     Soil depth is a more important factor than elevation gradient in the study area, although, 

carbon and nitrogen concentration and stock diminished near human settlement which were located 

in the lower part of the elevation gradient. Bulk density can have an important confounding effect in 

soil condition assessment and an efficient estimation method of soil carbon and nitrogen must be 

performed accordingly. 

 6    Chilimo native dry afro-montane forest stores 225.03 Mg C ha
-1

 in 1 m soil depth and 

80 % of 1 m carbon stock is stored on the first 50 cm soil depth. Natural forest stored more carbon 

and nitrogen than adjacent land uses where as soil degradation resulted 82 % loss of nitrogen stock. 

7   Conversion of cropland and degraded land into plantations ameliorate soil condition 

degradation and species selection did not affect carbon and nitrogen stock despite significantly 

lower value of bulk density were found in Pinus patula plantation. 

8     Dominant height and quadratic mean diameter were found to be the best endogenous 

fitting variables for stand density management diagram for Chilimo mixed forest. Formulating 

SDMD using species proportion is better than treating each species independently and SDMD have 

a positive impact in improving growth and yield of the forest. In addition, this SDMD is the first in 

Africa and can serve to support the sustainable management of Chilimo dry afro-montane forests. 

 9     The carbon concentration and wood density varied among and within species, plant 

parts and stem position. Higher carbon concentration and wood density values were found at the 

stump height as compared to other position. Among the studied species, the wood density of O. 

europaea ssp. cuspidiata was higher as compared to other studied species and estimation of carbon 

concentration and wood density at species level is very important to provide updated information 

for different institutions regarding carbon conservation and sequestration for Chilimo dry afro-

montane natural forest. 

10    It is suggested that the use of native tree species and plantations could have a positive 

impact in C and N storage as other studies demonstrated in the same area. All the above outputs 

serve as a management tool for the sustainable management of Chilimo forest in general and 

implementing carbon trade in particular. 
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6. CONCLUSIONES GENERALES 

En total cinco estudios se llevaron a cabo en un experimento cercado en tierras degradadas y 

en el bosque seco afro-montano de Chilimo en la Sierra Central de Etiopía. Los estudios se centran 

en: (1) las especies de árboles y arbustos y la manejo del suelo más adecuado para tierras 

degradadas, (2) ecuación de biomasa aérea para especies de bosques tropicales mixtos, (3) El 

carbono del suelo y nitrógeno de valores y la concentración y la densidad aparente en el suelo del 

bosque y suelo mineral a lo largo de la elevación, el uso y las especies de la tierra, (4) Diagrama de 

manejo de densidad para la  gestión  especies mixtas y (5)  concentración de carbono y densidad de 

la madera de cinco especies nativas de árboles tropicales.  Las siguientes conclusiones se pueden 

extraer de estos estudios: 

 1 G. robusta mostró que la tasa de supervivencia global más alta, seguido por H. abyssinica. 

A. decurrense mostró la menor tasa de supervivencia. E. globulus superó todas las especies en  crecimiento 

en altura y la producción de biomasa y tuvo un crecimiento del diámetro de cuello similar a A. saligna. H. 

abyssinica, C. y D. palmensis torrida mostraron el crecimiento y producción de biomasa más bajo, pero 

todos ellos mejoraron las condiciones del suelo 48 meses después de la plantación. A. saligna mostró una 

respuesta más fuerte al estiércol más mulch que otras especies. 

2  la producción de biomasa seca fue altamente significativa para E. globulus, aunque fue no 

significativa comparando  las opciones de manejo del suelo y no hay un efecto claro de cualquiera de la 

opción de gestión del suelo en el crecimiento. Especies de árboles nativos podrían no mostrar un mayor 

crecimiento en condiciones ambientales duras sin embargo, mejoran las condiciones del suelo en estas 

condiciones ambientales. 

3  El diámetro y altura total fueron consideradas como las mejores variables independientes 

para la estimación de la biomasa para la (A. abyssinicus, O. europaea ssp. Cuspidiata, O. rochetiana, R. 

glutinosa y S. theifolia). Modelos para biomasa de la copa fueron ajustados solo para tres de las cinco 

especies estudiadas (O. rochetiana, R. glutinosa y S. theifolia) debido a la alta variabilidad en esta fracción 

de biomasacomo resultado de la competencia inter-específica en el bosque tropical mixto. Sin embargo, un 

modelo de biomasas para  A. abyssinicus se ajustó basado en la heterogeneidad  y poco peso de la biomasa 

de la copa. 

4  Los modelos generales resultaron ser inadecuados para este tipo de bosque, para mejorar la 

precisión de la estimación y reducir la incertidumbre se sugiere la aplicación de los modelos específicos de 

especies desarrolladas en este estudio para los bosques mixtos etíopes similares y otros bosques montanos 

tropicales. 



Tesfaye (2015) 

76 
 

5 La profundidad del suelo es un factor importante de gradiente altitudinal en el área de 

estudio, si bien, la concentración de carbono y stock nitrógeno disminuyeron cerca de los asentamientos 

humanos localizados en la parte inferior del gradiente altitudinal, La densidad aparente puede generar  

confusión  en la evaluación de la condición del suelo y un método de estimación eficiente de carbono  y 

nitrógeno en el suelo debe ser realizado. 

6 El bosque seco nativo afro-montano de Chilimo almacena 225.03 Mg C ha
-1

 a 1-m de 

profundidad del suelo y el 80% del carbono se almacena hasta 50 cm de profundidad. Bosque natural 

almacena más carbono y nitrógeno que los otros usos de la tierra adyacente, donde la degradación del suelo 

resulta en un 82% de pérdida del stock de nitrógeno. 

7  La conversión de cultivos y tierras degradadas en plantaciones aminoraron las condiciones 

de degradación del suelo, y la selección de especies no afectaron el stock de carbono y nitrógeno  a pesar 

valor significativamente más bajo de densidad aparente encontrado en la plantación de Pinus patula. 

8 Altura dominante y el diámetro medio cuadrático resultaron ser las mejores variables de 

ajuste endógenos para los diagramas de manejo  de  densidad para  bosques mixtos de Chilimo. Formular 

SDMD utilizando la proporción de especies  fue mejor  que tratar  cada especie independiente y SDMD tiene 

un impacto positivo en la mejora del crecimiento y rendimiento del bosque. Además, este SDMD es el  

primero para bosques de África y puede servir para apoyar la gestión sostenible de los bosques afro-

montanos secos de Chilimo. 

9  La concentración de carbono y densidad madera varió entre y dentro de una especie, partes 

de la planta y  posición en el fuste, los mayores valores de concentración de carbono y densidad de madera  

se encontraron a la altura del tocón en comparación con otras posición. Entre las especies estudiadas, la 

densidad de la madera de O. europaea ssp. cuspidiata fue mayor en comparación con las otras especies. La 

estimación de la concentración de carbono y densidad de la madera a nivel de especies es relevante para  

proporcionar información actualizada a diferentes instituciones realacionadas con la conservación y 

secuestro de carbono de los bosques naturales afro-montano secos de Chilimo. 

10   Se sugiere que el uso de especies y plantaciones de árboles nativos podría tener un impacto 

positivo en el almacenamiento de C y N como otros estudios lo han demostrados en la misma zona. Todas 

las alternativas  anteriores sirven como herramientas  para la gestión sostenible de los bosques de Chilimo en 

general y especialmente para la implementación de mercados de carbono. 
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7. ANNEXES  

 

 

Fig.1: Predicted and residual values for RCD. 

 

Fig.2: Predicted and residual values for Height.
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Fig. 3: Observed and predicted values for survival. 

 

Fig. 4: Bulk density data distribution along soil depth and land use type. 
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Fig. 5: Normal distribution data for carbon stock along land use, elevation gradient and species. 

 

Fig. 6: Probalaity distribution nitrogen concentration data along land use, elevation gradient and spp. 
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Sas codes used for data analysis  

Performance and soil condition of selected species in degraded highlands of Ethiopia (study I) 

Sas code for survival height, root collar diameter, and biomass data 
Sas syntax for height and RCD for degraded data 

data a; 

set mehari.hrcd; 

run; 

data a; 

set a; 

logH=log(height_1+0.5); 

time=log(1+TSP/10); 

LogRCD=log(RCD+0.5); 

run; 

/*Program for height model*/ 

proc mixed data=a METHOD=reml; 

class treatment species ind ; 

 model logH = species treatment time time*species /solution 

 outpred=pred_height outpm=pm_height; 

 random intercept time/type=UN subject=ind; 

 make 'solutionr' out=solut; 

 lsmeans species/adjust=Tukey; 

 lsmeans treatment/adjust=Tukey; 

 lsmeans species/at time=0.78845736 diff adjust=Tukey; 

 lsmeans species/at time=1.223775432 diff adjust=Tukey; 

 lsmeans species/at time=1.526056303 diff adjust=Tukey; 

 lsmeans species/at time=1.757857918 diff adjust=Tukey; 

 lsmeans treatment/at time=0.78845736 diff adjust=Tukey; 

 lsmeans treatment/at time=1.223775432 diff adjust=Tukey; 

 lsmeans treatment/at time=1.526056303 diff adjust=Tukey; 

 lsmeans treatment/at time=1.757857918 diff adjust=Tukey; 

 title 'Modelo definitivo'; 

 run; 

/*Program for RCD model*/ 

proc mixed data=a METHOD=reml; 

class treatment species ind block; 

 model logRCD = species treatment time time*species/solution 

 outpred=pred_RCD_full outpm=pm_RCD_full; 

 /*random intercept/ type=UN subject=block;*/ 

 random  intercept time/  type=UN subject=ind; 

 lsmeans species/adjust=Tukey; 

 lsmeans treatment/adjust=Tukey; 

 lsmeans species/at time=0.78845736 diff adjust=Tukey; 

 lsmeans species/at time=1.223775432 diff adjust=Tukey; 

 lsmeans species/at time=1.526056303 diff adjust=Tukey; 

 lsmeans species/at time=1.757857918 diff adjust=Tukey; 

 lsmeans treatment/at time=0.78845736 diff adjust=Tukey; 

 lsmeans treatment/at time=1.223775432 diff adjust=Tukey; 

 lsmeans treatment/at time=1.526056303 diff adjust=Tukey; 

 lsmeans treatment/at time=1.757857918 diff adjust=Tukey; 

title 'Modelo definitivo'; 

run; 

data b; 

set mehari.survival; 

time=log(1+TSP/10); 
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run; 

/*PROGRAM FOR SURVIVAL, ARCSIN (SQUARE ROOT) TRANSFORMATION AND WEIGHTED REGRES-

SION*/ 

 proc sort data=b; 

 by TSP; 

proc means noprint; 

 by TSP; 

 var arcsen; 

 output out=var var=var; 

data weight; 

 merge b var; 

 by TSP; 

 WT=1/var; 

run; 

proc mixed data=weight METHOD=reml; 

class treatment species block; 

 weight WT; 

 model arcsen = species  TSP/ solution 

 outpred=pred_weight outpm=pm_survival_weight; 

 random  block/; 

   lsmeans species/adjust=Tukey; 

/* lsmeans treatment/adjust=Tukey;*/ 

 lsmeans species/at TSP=12 diff adjust=Tukey; 

 lsmeans species/at TSP=24 diff adjust=Tukey; 

 lsmeans species/at TSP=36 diff adjust=Tukey; 

 lsmeans species/at TSP=48 diff adjust=Tukey; 

 /*lsmeans treatment/at time=0.78845736 diff adjust=Tukey; 

 lsmeans treatment/at time=1.223775432 diff adjust=Tukey; 

 lsmeans treatment/at time=1.526056303 diff adjust=Tukey; 

 lsmeans treatment/at time=1.757857918 diff adjust=Tukey;*/ 

 title 'Modelo definitivo'; 

 run; 

data wtres; 

 set pred_weight; 

 wtres=sqrt(wt)*Resid; 

proc plot data=wtres; 

 plot wtres*Pred; 

proc univariate normal plot data=wtres; 

var wtres; 

run; 

 

Sas code used for analysis of soil data 
title 'MULTIVARITE ANALYSIS pH'; 

data ph; 

set mehari.ph; 

run; 

proc sort data=ph; 

by species rep; 

run; 

proc means data=ph n mean std uclm lclm; 

by species ; 

var y1-y6; 

output out=ph_mean mean=media1-media6 stderr=se1-se6; 

run; 

*To evaluate the impact of time on soil pH* 



Tesfaye (2015) 

104 
 

proc glm data=ph; 

class species; 

model y1-y6 = species / nouni; 

repeated time 2, depth 3/ summary printe; 

lsmeans species / adjust=Tukey pdiff; 

run; 

title 'MULTIVARIATE ANALYSIS ORGANIC CARBON'; 

data oc; 

set mehari.oc; 

run; 

proc sort data=oc; 

by species rep; 

run; 

proc means data=oc; 

by species; 

var y1-y6; 

output out=oc_mean mean=media1-media6 stderr=se1-se6; 

run; 

/*The impact of time on species (initial and final stage) 

proc glm data=oc; 

class species ; 

model y1-y6 = species / nouni; 

repeated time 2, depth 3/ summary printe; 

lsmeans species / pdiff; 

run; 

title 'MULTIVARIATE ANALYSIS NITROGEN'; 

data Nit; 

set mehari.Nit; 

run; 

proc sort data=Nit; 

by species rep; 

run; 

proc means data=Nit; 

by species ; 

var y1-y6; 

output out=nit_mean mean=media1-media6 stderr=se1-se6; 

run; 

/* The impact of time on species (initial and final stage* 

proc glm data=Nit; 

class species ; 

model y1-y6 = species / nouni; 

repeated time 2, depth 3/ summary printe; 

lsmeans species / pdiff; 

run; 

title 'MULTIVARIATE ANALYSIS PHOSPORUS'; 

data P; 

set mehari.P; 

run; 

proc sort data=P; 

by species rep; 

run; 

proc means data=P; 

by species ; 

var y1-y6; 

output out=p_mean mean=media1-media6 stderr=se1-se6; 

run; 
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/* The impact of time on species (initial and final stage) 

proc glm data=P; 

class species ; 

model y1-y6 = species / nouni; 

repeated time 2, depth 3/ summary printe; 

lsmeans species / pdiff; 

run; 

title 'MULTIVARIATE ANALYSIS POTASIUM'; 

data K; 

set mehari.K; 

run; 

proc sort data=K; 

by species rep; 

run; 

proc means data=K; 

by species ; 

var y1-y6; 

output out=k_nean mean=media1-media6 stderr=se1-se6; 

run; 

/* The impact of time on species (initial and final stage) 

proc glm data=K; 

class species ; 

model y1-y6 = species / nouni; 

repeated time 2, depth 3/ summary printe; 

lsmeans species / pdiff; 

run; 

title 'MULTIVARIATE ANALYSIS CATION EXCHANGE CAPACITY'; 

data cec; 

set mehari.cec; 

run; 

proc sort data=cec; 

by species rep; 

run; 

proc means data=cec; 

by species ; 

var y1-y6; 

output out=cec_mean mean=media1-media6 stderr=se1-se6; 

run; 

/* The impact of time on species (initial and final stage) 

proc glm data=cec; 

class species ; 

model y1-y6 = species / nouni; 

repeated time 2, depth 3/ summary printe; 

lsmeans species / pdiff; 

run; 

 

Biomass model, partitioning and comparison (study II) 

*Spearman correlation syntx* 

PROC CORR DATA=olea1 SPEARMAN; 

VAR Tree d db h hc hb cl cd bs br27 br2 bt cr; 

TITLE'bs br27 br2 bt cr', 

run; 

*Biomasa equation model fitting process syntx* 

libname bio 'd:\Documents and Settings\mahari\Escritorio'; 
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run; 

options nolabel ; 

proc import datafile= "d:\Documents and Settings\mahari\Escritorio\Mehari-Ricardo\olea02.xls" out=olea02; 

run; 

quit; 

PROC IMPORT OUT=bio.olea02 

DATAFILE= "d:\Documents and Settings\mahari\Escritorio\Mehari-Ricardo\olea02.xls"  

            DBMS=EXCEL REPLACE; 

     RANGE="Hoja1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

RUN; 

data olea02; set bio.olea02; 

run; 

data one;set olea02; 

d=d; 

db=db; 

h=h; 

hc=hc; 

hb=hb; 

ba=ba; 

d2h=d*d*h; 

db2h=db*db*h; 

d2=d*d; 

dh=d*h; 

dbhb=db*hb; 

dbhc=db*hc; 

dbh=db*h; 

d2hc=d*d*hc; 

db2hc=db*db*hc; 

d2hb=d*d*hb; 

db2hb=db*db*hb; 

dhb=d*hb; 

dhc=d*hc; 

ba2hc=ba*ba*hc; 

ba2hb=ba*ba*hb; 

bs=stem; 

br27=branches27; 

br2=branches2; 

br=root; 

bt=above; 

run; 

data one; set one; 

ld=log(d); 

ldb=log(db); 

lh=log(h); 

lhb=log(hb); 

lhc=log(hc); 

d2=d*d; 

db2=db*db; 

ld2=log(d*d); 

ldb2=log(db*db); 

d2h=d*d*h; 
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d2hc=d*d*hc; 

d2hb=d*d*hb; 

db2h=db*db*h; 

db2h=db*db*hc; 

ld2h=log(d2h); 

ldb2h=log(db2h); 

ldb2hc=log(db2hc); 

ldb2hb=log(db2hb); 

dh=d*h; 

dbh=db*h; 

bah=ba*h; 

ldh=log(dh); 

ldhc=log(dhc); 

ldbh=log(dbh); 

ldbhb=log(dbhb); 

ldbhc=log(dbhc); 

ldbhb=log(dbhb); 

lba=log(ba); 

lba2hc=log(ba2hc); 

run;  

*/removing outliers/* 

data two;set one; 

if tree=18 then delete; 

if tree=9 or tree=11 then delete; 

run;quit; 

*Stem biomass; 

*model 1; 

proc model data=one; 

 parms a1; 

 bs=a1*(dh);   

fit bs start=(a1=0.50275)/out=residualbs; 

run; /*for make grap to see outlayers*/ 

proc gplot data=one; 

plot bs*d; 

run; 

proc gplot data=two; 

plot bs*d; 

run; 

*Stem biomass; 

*model 1; 

proc model data=one; 

 parms a1; 

 bs=a1*(dh);   

fit bs start=(a1=0.50275)/out=residualbs; 

run; 

/*for make grap to see outlayers*/ 

proc gplot data=one; 

plot bs*d; 

run; 

proc gplot data=two; 

plot bs*d; 

run; 

proc model data=two; 

 parms a1; 

 bs=a1*(dh);   

fit bs start=(a1=0.050275)/out=residuolsbs; 
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run; 

title *modelo2; 

proc model data=two; 

 parms a1; 

  bs=a1*(d2h); 

fit bs start=(a1=0.050275)/out=residualbs; 

run; 

*modelo2.5; 

proc model data=two; 

 parms a1 a2; 

 bs=a1*d+a2*d2;  

fit bs start=(a1 0.072525 a2 1.887325 )/out=residualbs; 

run; 

*modelo3; 

proc model data=two; 

 parms a1 a2 a3; 

  bs=a1*d+a2*d2+a3*(d2h); 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residualbs; 

run; 

*modelo4; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*d+a2*h; 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residualbs; 

run; 

*modelo5; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*d2+a2*(d2h); 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residualsbs; 

run; 

*modelo6; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*d2+a2*h; 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residualsbs; 

run; 

*modelo7; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*d2+a2*h+a3*(d2h); 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbs; 

run; 

*modelo8; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*(d2h)+a2*(dh); 

fit bs start=(a1 0.072525 a2 1.887325 )/out=residuolsbs; 

run; 

*modelo9; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*(d2)+a2*(dh)+a3*(d2h); 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbs; 

run; 

*modelo10; 
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proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*(d**a2)*(h**a3); 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbs; 

run; 

*modelo11; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*(d**a2); 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbs; 

run; 

*modelo12; 

proc model data=two; 

 parms a1 a2 a3; 

 bs=a1*((d2h)**a2); 

fit bs start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbs; 

run; quit; 

*biomass and leaves + biomass <2cm; 

title modelo1; 

proc model data=two; 

 parms a1; 

 br2=a1*(dh);   

fit br2 start=(a1 0.0050275)/out=residuolsbr2; 

run; quit; 

title *modelo2; 

proc model data=two; 

 parms a1; 

  br2=a1*(d2h); 

fit br2 start=(a1 0.020275)/out=residuolsbr2; 

run; quit; 

*modelo2.5; 

proc model data=two; 

 parms a1 a2; 

 br2=a1*d+a2*d2;  

fit br2 start=(a1 0.072525 a2 1.887325)/out=residuolsbr2; 

run; 

*modelo3; 

proc model data=two; 

 parms a1 a2 a3; 

  br2=a1*d+a2*d2+a3*(d2h); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo4; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*d+a2*h; 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo5; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*d2+a2*(d2h); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo6; 

proc model data=two; 
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 parms a1 a2 a3; 

 br2=a1*d2+a2*h; 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo7; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*d2+a2*h+a3*(d2h); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo8; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*(d2h)+a2*(dh); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo9; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*(d2)+a2*(dh)+a3*(d2h); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo10; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*(d**a2)*(h**a3); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo11; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*(d**a2); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; 

*modelo12; 

proc model data=two; 

 parms a1 a2 a3; 

 br2=a1*((d2h)**a2); 

fit br2 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr2; 

run; quit; 

*/Probamos los modelos branches between2-7cm*/; 

title *modelo1; 

proc model data=two; 

 parms a1; 

 br27=a1*(dh);   

fit br27 start=(a1=-2.50275)/out=residuolsbr27; 

run;quit; 

proc gplot data=two; 

plot br27*d; 

run; 

title *modelo2; 

proc model data=two; 

 parms a1; 

  br27=a1*(d2h); 

fit br27 start=(a1=-2.50275)/out=residuolsbr27; 

run; quit; 
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title *modelo2.5; 

proc model data=two; 

 parms a1 a2; 

 br27=a1*d+a2*d2;  

fit br27 start=(a1 0.072525 a2 1.887325)/out=residuolsbr27; 

run;quit; 

title *modelo3; 

proc model data=two; 

 parms a1 a2 a3; 

  br27=a1*d+a2*d2+a3*(d2h); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo4; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*d+a2*h; 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo5; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*d2+a2*(d2h); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo6; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*d2+a2*h; 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo7; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*d2+a2*h+a3*(d2h); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo8; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*(d2h)+a2*(dh); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

 title *modelo9; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*(d2)+a2*(dh)+a3*(d2h); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo10; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*(d**a2)*(h**a3); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo11; 

proc model data=two; 
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 parms a1 a2 a3; 

 br27=a1*(d**a2); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

title *modelo12; 

proc model data=two; 

 parms a1 a2 a3; 

 br27=a1*((d2h)**a2); 

fit br27 start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbr27; 

run;quit; 

*total biomass (bs+b27+b2); 

title *modelo1; 

proc model data=two; 

 parms a1; 

 bt=a1*(dh);   

fit bt start=(a1 0.50275)/out=residuolsbt; 

run;quit; 

title *modelo2; 

proc model data=two; 

 parms a1; 

  bt=a1*(d2h); 

fit bt start=(a1 0.50275)/out=residuolsbt; 

run;quit; 

title*modelo2.5; 

proc model data=two; 

 parms a1 a2; 

 bt=a1*d+a2*d2;  

fit bt start=(a1 0.072525 a2 1.887325)/out=residuolsbt; 

run;quit; 

title *modelo3; 

proc model data=two; 

 parms a1 a2 a3; 

  bt=a1*d+a2*d2+a3*(d2h); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo4; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*d+a2*h; 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo5; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*d2+a2*(d2h); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo6; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*d2+a2*h; 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo7; 

proc model data=two; 

 parms a1 a2 a3; 
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 bt=a1*d2+a2*h+a3*(d2h); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo8; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*(d2h)+a2*(dh); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo9; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*(d2)+a2*(dh)+a3*(d2h); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo10; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*(d**a2)*(h**a3); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title*modelo11; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*(d**a2); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

title *modelo12; 

proc model data=two; 

 parms a1 a2 a3; 

 bt=a1*((d2h)**a2); 

fit bt start=(a1 0.072525 a2 1.887325 a3 0.74115 )/out=residuolsbt; 

run;quit; 

 

*******************************calculamos el peso; 

*correction and checking for stems; 

proc nlin data=two;  method=marquardt; 

model bs=a1*(d2h);    

parameters a1= 0.028567;   

output sse=est out=dos r=r p=p student=st ;  

run; 

proc gplot data=dos; 

plot st*p =1; 

symbol1 v =circle c=blue; 

run;quit; 

data three; set dos; 

r2=r*r; 

lr=log(r2);run; 

proc reg data=three; 

model lr=lh; 

run; 

quit; 

data four;set three; 

peso=1/((h**3.77202));  

run; 

proc nlin data=four; 
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model bs=a1*(d2h);_weight_=peso;  

parameters a1= 0.0286 ;  

output out=resitwo r=r1 p=p1 student=st1 sse=sse; 

run;  

data four;set resitwo; 

rp=st1*(peso**0.5); 

run; 

proc gplot;  

plot rp*p1=1; 

symbol1 v=circle c=blue; 

run; 

quit; 

*for see the outlayers; 

*Branches 2; 

proc nlin data=two  method=marquardt;  

model br2=a1*(d2h);  

parameters a1 0.006226;  

output sse=est out=dos r=r p=p student=st ;  

run; 

proc gplot data=dos; 

plot br2*d =1; 

symbol1 v =circle c=blue; 

run;quit; 

data three; set dos; 

r2=r*r; 

lr=log(r2);run; 

proc reg data=three; 

model lr=lh; 

run; 

quit; 

data four; set three; 

peso=1/((h**0.09685));  

run; 

proc nlin data=four; 

model br2=a1*(d2h);_weight_=peso;  

parameters a1 0.00623;  

output out=resitwo r=r1 p=p1 student=st1 sse=sse; 

run;  

data four; set resitwo; rp=st1*(peso**0.5); 

run; 

proc gplot;  

plot rp*p1=1; 

symbol1 v=circle c=blue; 

run; 

quit; 

*Branches 27; 

proc nlin data=two  method=marquardt;  

model br27=a1*d2+a2*h;  

parameters a1 0.059522 a2 0.624346;   

output sse=est out=dos r=r p=p student=st;  

run; 

proc gplot data=dos; 

plot br27*d =1; 

symbol1 v =circle c=blue; 

run;quit; 

data three; set dos; 
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r2=r*r; 

lr=log (r2);run; 

*calculo el peso;/* in this part you will get a result*/ 

proc reg data=three; 

model lr=ldh; 

run; 

quit; 

data four; set three; 

peso=1/((dh**-0.07514));  

run; 

proc nlin data=four; 

model br27=a1*d2+a2*h;  _weight_=peso;  

parameters a1 0.0595 a2 0.6243;  

output out=resitwo r=r1 p=p1 student=st1 sse=sse; 

run;  

data four; set resitwo;  

rp=st1*(peso**0.5); 

run; 

proc gplot;  

plot rp*p1=1; 

symbol1 v=circle c=blue; 

run; 

quit; 

*total biomass correction; 

proc nlin data=two method=marquardt;  

model bt=a1*d2h;  

parameters a1 0.042519 ;   

output sse=est out=dos r=r p=p student=st;  

run; 

proc gplot data=dos; 

plot bt*d =1; 

symbol1 v =circle c=blue; 

run;quit; 

data three; set dos; 

r2=r*r; 

lr=log(r2);run; 

proc reg data=three; 

model lr=ld2h; 

run; 

quit; 

data four; set three; 

peso=1/((d2h**0.64347));  

run; 

proc nlin data=four; 

model bt=a1*d2h;_weight_=peso;  

parameters a1 0.0425;  

output out=resittwo r=r1 p=p1 student=st1 sse=sse; 

run;  

data four; set resitwo;  

rp=st1*(peso**0.5); 

run; 

proc gplot;  

plot rp*p1=1; 

symbol1 v=circle c=blue; 

run; 

quit; 
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data two;set one; 

if tree=18 then delete; 

if tree=9 or tree=11 then delete; 

run;quit; 

data simul;set one; 

if tree=18 then delete; 

if tree=9 or tree=11 then delete; 

run;quit; 

ods pdf file= 'd:\Documents and settings\mahari\Escritorio\Olea02.pdf'; 

title 'Olea02 biomass equation system'; 

run; 

title AJUSTE SUR; 

Proc model data=simul;var bs br2 br27 bt d2 d2h h/* this depent on the model that you choose*/; 

parms  a1 a2 a3 a4;  

    bs=a1*(d2h);   

 resid.bs=resid.bs/((h**3.77202)**0.5); 

    e1 = actual.bs - pred.bs; 

 br2=a2*(d2h);    

 resid.br2=resid.br2/((h**0.09685)**0.5); 

    e2 = actual.br2 - pred.br2; 

 br27=a3*d2+a4*h; 

 resid.br27=resid.br27/((dh**-0.07514)**0.5); 

    e3 = actual.br27 - pred.br27; 

  bt=((a1*(d2h))+ 

  (a2*(d2h))+ 

  (a3*d2+a4*h) 

  ); 

 resid.bt=resid.bt/ ((d2h**0.64347)**0.5); 

    e4 = actual.bt - pred.bt; 

 outvars e1 e2 e3 e4; 

      fit  br2 br27 bs bt /* here the final estimated parameters*/ 

      start=(a1 0.0286 a2 0.00623  a3 0.0595 a4 0.6290 

             

            ) / 

      sur outs=Smatrix outest=coeff cov out=values outpredict collin; 

quit; 

run; 

ods pdf close; 

quit; 

run; 

 

SOC and SON concentration and bulk density along elevation gradient, land use and species 

(study III) 
Sas code for C and N stock and bulk density for mineral soi 

data datos; 

input lut$ sp$ plotno parcel$ parcel altitude altitude_class sample_depth depth$ length c_pc  c_conc  n_pc n_conc bd

 stoniness SOC_layer SOC_fd mass_layermass_fd mref mex SOC_fm Thickness SON_layer SON_fd 

SON_fm; 

cards; 

datas; 

run; 

options pagesize=max; 

*ods pdf file="d:\desktop\mahari\desktop\Geoderma_julio2.pdf"; 

*ods graphics on; 

/*Does land use type and depth influence C and N concentration?*/ 
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/*ANALYSIS OF NORMALITY OF GROUPS AND EQUAL VARIANCES*/ 

proc sort data=datos; 

by lut depth; 

run; 

proc univariate normal; 

var c_conc; 

*var n_conc; 

by lut depth; 

run; 

TITLE 'TYPE=TOEPH, TOTAL CARBON (CONCENTRATION)'; 

data datos; 

set datos; 

if parcela=10 then delete; 

if parcela=12 then delete; 

if parcela=13 then delete; 

If parcela=14 then delete; 

if parcela=15 then delete; 

if parcela=16 then delete; 

if parcela=17 then delete; 

if parcela=21 then delete; 

if parcela=25 then delete; 

if parcela=27 then delete; 

if parcela=28 then delete; 

run; 

PROC MIXED DATA=datos; 

 CLASS PARCEL LUT DEPTH; 

 MODEL C_CONC = LUT DEPTH LUT*DEPTH/OUTPM=SOC; 

 *RANDOM PARCELA; 

 REPEATED DEPTH/SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS LUT DEPTH LUT*DEPTH/diff cl pdiff adjust=Tukey; 

RUN; 

proc univariate data=soc normal plot; 

var resid; 

QQPLOT resid /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1); 

INSET MEAN STD /CFILL=BLANK FORMAT=5.2; 

HISTOGRAM / NORMAL(COLOR=MAROON W=4)CFILL= BLUE CFRAME= LIGR;  

INSET MEAN STD /CFILL=BLANK FORMAT=5.2; 

run; 

TITLE 'TYPE=TOEPH, TOTAL NITROGEN (CONCENTRATION)'; 

PROC MIXED DATA=datos; 

 CLASS PARCEL LUT DEPTH; 

 MODEL N_CONC = LUT DEPTH LUT*DEPTH / OUTPM=SON; 

 *RANDOM PARCELA; 

 REPEATED DEPTH / SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS LUT DEPTH LUT*DEPTH/ diff cl adjust=Tukey; 

RUN; 

proc univariate data=son normal plot; 

var resid; 

QQPLOT resid /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1); 

INSET MEAN STD /CFILL=BLANK FORMAT=5.2; 

HISTOGRAM / NORMAL(COLOR=MAROON W=4)CFILL= BLUE CFRAME= LIGR;  

INSET MEAN STD /CFILL=BLANK FORMAT=5.2; 

run; 

*ods pdf close; 

*quit; 

ods pdf file="d:\Documents and Settings\mahari\Escritorio\Geoderma July2014_julio22.pdf"; 
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*ods graphics on; 

/*Is bulk density different across soil depths and land use types?/  

TITLE 'TYPE=TOEPH, BULK DENSITY ACROSS DEPTH AND LUT'; 

PROC MIXED DATA=datos; 

 CLASS PARCEL LUT DEPTH; 

 MODEL BD = LUT DEPTH LUT*DEPTH / OUTPM=bulk; 

 *RANDOM PARCELA; 

 REPEATED DEPTH / SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS LUT DEPTH LUT*DEPTH/ diff cl adjust=Tukey; 

RUN; 

proc univariate data=bulk normal plot; 

var resid; 

QQPLOT resid /NORMAL (MU=EST SIGMA=EST COLOR=RED L=1); 

INSET MEAN STD /CFILL=BLANK FORMAT=5.2; 

HISTOGRAM / NORMAL(COLOR=MAROON W=4)CFILL= BLUE CFRAME= LIGR;  

INSET MEAN STD /CFILL=BLANK FORMAT=5.2; 

run; 

/*Is there land use effect on carbon and nitrogen stock?*/ 

TITLE 'ANALYSIS OF VARIANCE BY LAND USE AND FIXED MASS AT A SPECIFIC DEPTH'; 

PROC SORT DATA=DATOS; 

 BY SAMPLE_DEPTH LUT; 

RUN; 

TITLE2 'CARBON STOCK AT FIXED MASS'; 

PROC GLM DATA=datos; 

 CLASS LUT; 

 MODEL SOC_FM = LUT; 

 BY sample_depth; 

 LSMEANS LUT / ADJUST=TUKEY TDIFF PDIFF; 

 MEANS LUT/ ALPHA=0.05 TUKEY CLM CLDIFF; 

RUN;  

TITLE2 'NITROGEN STOCK AT FIXED MASS'; 

PROC GLM DATA=datos; 

 CLASS LUT; 

 MODEL SON_FM = LUT; 

 BY sample_depth; 

 LSMEANS LUT / ADJUST=TUKEY PDIFF; 

 MEANS LUT/ ALPHA=0.05 TUKEY CLM CLDIFF; 

RUN; 

/*NATURAL FOREST. Is there an altitudinal effect on carbon/nitrogen concentration in natural forests?*/ 

DATA NF; 

SET DATOS; 

IF LUT="NF"; 

RUN; 

TITLE 'TYPE=TOEPH, TOTAL CARBON (CONCENTRATION)'; 

PROC MIXED DATA=NF; 

 CLASS PARCEL ALTITUDE_CLASS DEPTH; 

 MODEL C_CONC = ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH/OUTPM=SOC; 

 *RANDOM PARCELA; 

 REPEATED DEPTH/SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH/ diff cl adjust=Tukey; 

RUN; 

TITLE 'TYPE=TOEPH, TOTAL NITROGEN (CONCENTRATION)'; 

PROC MIXED DATA=NF; 

 CLASS PARCEL ALTITUDE_CLASS DEPTH; 

 MODEL n_CONC = ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH/OUTPM=SOC; 

 *RANDOM PARCELA; 
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 REPEATED DEPTH /SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH/ diff cl adjust=Tukey; 

RUN; 

/*NF. Is there an altitudinal effect on bulk density across depths in NF?*/ 

TITLE 'TYPE=TOEPH, BULK DENSITY IN NATIVE FOREST'; 

PROC MIXED DATA=NF; 

 CLASS PARCEL ALTITUDE_CLASS DEPTH; 

 MODEL BD = ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH / OUTPM=SOC; 

 *RANDOM PARCELA; 

 REPEATED DEPTH / SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH/ diff cl adjust=Tukey; 

RUN; 

/*NATURAL FOREST. Is there an altitudinal effect on carbon/nitrogen stock in NF?  

/*Atlitudinal effect on carbon stock in natural forests*/ 

 

TITLE 'CARBON STOCK ALTITUDE CLASS NF'; 

PROC GLM DATA=datos; 

 CLASS ALTITUDE_CLASS; 

 MODEL SOC_FM = ALTITUDE_CLASS; 

 BY sample_depth; 

 LSMEANS ALTITUDE_CLASS / ADJUST=TUKEY PDIFF; 

 MEANS ALTITUDE_CLASS / ALPHA=0.05 TUKEY CLM CLDIFF; 

RUN; 

/*Atlitudinal effect on nitrogen stock in natural forests*/ 

TITLE 'NITROGEN STOCK ALTITUDE CLASS NF'; 

PROC GLM DATA=datos; 

 CLASS ALTITUDE_CLASS; 

 MODEL SON_FM = ALTITUDE_CLASS; 

 BY sample_depth; 

 LSMEANS ALTITUDE_CLASS / ADJUST=TUKEY PDIFF; 

 MEANS ALTITUDE_CLASS / ALPHA=0.05 TUKEY CLM CLDIFF; 

RUN; 

/*PLANTATIONS. Is there a species effect on C/N concentration in PLANTATIONS?*/ 

DATA Pln; 

SET DATOS; 

IF LUT="Pln"; 

if sp="Mixed" then delete; 

RUN; 

TITLE 'TYPE=TOEPH, TOTAL CARBON (CONCENTRATION) PLANTATION'; 

PROC MIXED DATA=PLN; 

 CLASS PARCEL SP DEPTH; 

 MODEL C_CONC = SP DEPTH SP*DEPTH / OUTPM=CCONC; 

 *RANDOM PARCELA; 

 REPEATED DEPTH / SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS SP DEPTH SP*DEPTH/ diff cl adjust=Tukey; 

RUN; 

PROC MIXED DATA=PLN; 

 CLASS PARCEL SP DEPTH; 

 MODEL N_CONC = SP DEPTH SP*DEPTH / OUTPM=NCONC; 

 *RANDOM PARCELA; 

 REPEATED DEPTH / SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS SP DEPTH SP*DEPTH/ diff cl adjust=Tukey; 

RUN; 

TITLE 'TYPE=TOEPH, TOTAL NITROGEN (CONCENTRATION) PLANTATION'; 

PROC MIXED DATA=NF; 

 CLASS PARCEL ALTITUDE_CLASS DEPTH; 
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 MODEL n_CONC = ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH / OUTPM=SOC; 

 *RANDOM PARCELA; 

 REPEATED DEPTH / SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS ALTITUDE_CLASS DEPTH ALTITUDE_CLASS*DEPTH/ diff cl adjust=Tukey; 

RUN; 
/*PLANTATIONS. Is there a spp effect on bulk density across depths in PL?*/ 

TITLE 'TYPE=TOEPH, BULK DENSITY PLANTATION'; 

PROC MIXED DATA=pln; 

 CLASS PARCEL SP DEPTH; 

 MODEL BD = SP DEPTH SP*DEPTH / OUTPM=BULK; 

 *RANDOM PARCELA; 

 REPEATED DEPTH / SUB=PARCEL TYPE=TOEPH R RCORR; 

 LSMEANS SP DEPTH SP*DEPTH/ diff cl adjust=Tukey; 

RUN; 

/*PLANTATIONS. Is there an altitudinal effect on C/N stock in PLANTATIONS?*/ 

/*Is there any SPECIES effect on carbon stock in natural forests*/ 

TITLE 'TYPE=TOEPH, SOC PLANTATION'; 

PROC GLM DATA=Pln; 

 CLASS SP; 

 MODEL soc_fm = SP; 

 BY sample_depth; 

 LSMEANS SP / ADJUST=TUKEY PDIFF; 

 MEANS SP / ALPHA=0.05 TUKEY CLM CLDIFF; 

RUN; 

/*Is there any SPECIES effect on NITROGEN stock in PLANTATIONS*/ 

TITLE 'TYPE=TOEPH,SON PLANTATION'; 

PROC GLM DATA=Pln; 

 CLASS SP; 

 MODEL son_fm = SP; 

 BY sample_depth; 

 LSMEANS SP / ADJUST=TUKEY PDIFF; 

 MEANS SP / ALPHA=0.05 TUKEY CLM CLDIFF; 

RUN; 

ods pdf close; 

quit; 

Forest floor along soil depth and elevation gradient 
data forestfloor; 

input Plot Fpatch Transect Altitude Ctotal Ntotal SOC SON; 

cards; 

data; 

run; 

proc sort data=forestfloor; 

by altitude; 

run; 

PROC GLM DATA=FORESTFLOOR; 

class altitude; 

MODEL Ctotal=altitude; 

lsmeans altitude / adj=tukey prt; 

run; 

proc univariate data=forestfloor; 

var ctotal; 

by altitude; 

run; 

PROC GLM DATA=FORESTFLOOR; 

class altitude; 

MODEL ntotal=altitude; 
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lsmeans altitude / adj=tukey prt; 

run; 

proc univariate data=forestfloor; 

var ntotal; 

by altitude; 

run; 

PROC GLM DATA=FORESTFLOOR; 

class altitude; 

MODEL soc=altitude; 

lsmeans altitude / adj=tukey prt; 

run; 

proc univariate data=forestfloor; 

var soc; 

by altitude; 

run; 

proc univariate data=forestfloor; 

var ntotal; 

by altitude; 

run; 

PROC GLM DATA=FORESTFLOOR; 

class altitude; 

MODEL son=altitude; 

lsmeans altitude / adj=tukey prt; 

run; 

proc univariate data=forestfloor; 

var son; 

by altitude; 

run; 

 

Stand density management model evaluation and fitting (study IV) 

 
sas code for stand density management diagram 

PROC IMPORT OUT= Mehari 

DATAFILE= "d:\Documents and Settings\mahari\Escritorio\SDMD_proportion\spp_proprtion_AUG_2014.xls" 

DBMS=EXCEL2000 REPLACE; 

GETNAMES=YES; 

RUN; 

ods pdf file="d:\Documents and Settings\mahari\Escritorio\mixed proportion_chilimo.pdf"; 

PROC DATA; 

SET dataname; 

PROP = (VT_VTJP/VT_tot) + (VT_PF/VT_tot); 

MIXFRAC_N= 0.5- ABS(PROP - 0.5); 

MIX_N= MIXFRAC_N*ln_N; 

MIX_Ho = MIXFRAC_N*ln_Ho; 

MIX_QMD =MIXFRAC_N*ln_QMD; 

**** MODEL statement*** 

PROC MODEL; 

maxiter = 200; 

parms a01 a02 a11 a12 a21 a22 a31 a32 a41 a42 a51 a52 a61 a62;exogenous ln_Holn_VT; 

ln_QMD = a01 + a02*MIXFRAC_N + a11*ln_N + a12*MIX_N +a21*ln_Ho + a22*MIX_Ho; 

ln_VT = a31 + a32*MIXFRAC_N + a41*ln_QMD + a42*MIX_QMD + a51*ln_Ho + a52*MIX_Ho + a61*ln_N+ 

a62*MIXFRAC_N*ln_N; 

fit ln_QMD ln_VT; 

run; 

ods pdf close; 
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quit; 

PROC MODEL; 

maxiter = 200; 

parms a01 a02 a11 a12 a21 a22 a31 a32 a41;  

ln_QMD = a01 + a02*ln_QMD+a11*ln_N; 

ln_VT = a12 + a21*MIX_N + (a22+ a31*MIX_QMD)*ln_QMD+ (a32 + a41*MIX_Ho)*ln_N; 

fit ln_QMD ln_VT; 

run; 

PROC MODEL; 

maxiter = 200; 

parms a01 a02 a11 a12 a21 a22 a31 a32 a41 a42 a51 a52;  

ln_QMD = a01+a02*ln_QMD+a11*ln_N*+a12*ln_Ho; 

ln_VT = a21+a22*MIX_N+(a31+a32*MIX_QMD)*ln_QMD+(a41+a42*MIX_Ho)*ln_Ho+(a51+a52*MIX_N)*ln_N; 

fit ln_QMD ln_VT; 

run; 

 

Carbon concentration and wood density of five most commonly tree species (study IV) 

Spearman correlation analysis for carbón content and Wood density 

PROC IMPORT OUT=Work.carbon1 

            DATAFILE= "d:\Documents and Settings\mahari\Escritorio\Mehari Thesis\%OC in 5 spp\carbon1.xls"  

            DBMS=EXCEL REPLACE; 

     Sheet="Hoja1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

RUN; 

 Proc Corr data=carbon1; 

 by Spp parts height; 

 Var OC WD; 

 run; 

Analysis using OC and WD Proc-glm 

PROC IMPORT OUT=Work.carbon01; 

            DATAFILE= "d:\Document and setting\mahari\Escritorio\Mehari Thesis\%OC in 5 spp\carbon01.xls"  

            DBMS=EXCEL REPLACE; 

     Sheet="Hoja1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

RUN; 

 Proc glm data=carbon01; 

Class spp rep parts height; 

model OC=spp parts height spp*parts spp*height parts*height; 

run; 

Proc glm data=carbon01; 

Class spp rep parts height; 

model WD=spp parts height spp*parts spp*height parts*height; 

run; 

Proc glm data=carbon01; 

Class spp rep parts height; 

model CC=spp parts height spp*parts spp*height parts*height; 

run;          
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Ethiopia. 

Abstract 

In the Ethiopian Central Highlands, a serious soil degradation occurs while fuel wood de-

mand is high. This study consists of an evaluation of seven tree species for fuel wood and soil res-

toration under three soil management options: control, manure and manure plus mulch, in degraded 

highlands of Ethiopia. The experimental design was a split-plot, species as the main plot and treat-

ment as subplot, with three replicates. Survival count, height and root collar diameter growth meas-

urements were measured annually until 48 months. Biomass production for fuel wood was inferred 

at the end of the experiment. Before and after the experiment, soil parameters (pH, organic carbon, 

N, P, K and cation exchange capacity) were measured to test changes in soil condition because of 

species plantation. A mixed-model and repeated analysis of variance was performed. Grevillea ro-

busta A.Cunn. Ex R. Br. showed maximum survival (100 %), followed by H. abyssinica (Bruce) J. 

F. Gmel. (93.52 %); while the lowest survival rate was recorded for A. decurrens Willd. (57.41 %). 

Hagenia abyssinica (Bruce) J.F.Gmel. and Chamaecytisus palmensis (Christ.) Hutch showed the 

lowest growth rates but both species showed the highest soil condition improvement. E. globulus 

Labill. and Acacia species presented the highest growth rates and biomass although Eucalyptus de-

pleted soil nitrogen. H. abyssinica (Bruce) J. F.Gmel. is recommended for soil rehabilitation where-

as, Grevillea robusta A. Cunn. Ex R. Br. can be used for simultaneous fuel wood production and 

soil rehabilitation. An ecological based study on E. globulus’ Labill. an effect in Central Highlands 

is recommended before recommendation for large scale fuel wood plantations. 

Keywords:  tree growth; survival; biomass; nitrogen depletion; mixed model 
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Introduction 

Sub-Saharan Africa (SSA) accommodates one of the world’s fastest growing populations 

and it is significantly affected by land degradation because of deforestation, poor land management 

and conversion of fragile natural habitats into fields for crops. The forest area in East Africa was 

reduced by 783,000 hectares between 2000 and 2010: equivalent to an annual loss rate of 1.01 % 

(FAO, 2011). Shortages of forest products, loss of soil fertility and disruption of the water cycle are 

followed by poverty, hunger and social unrest in the region (Barrowclough and Ghimire, 1996).  

This general layout of deforestation and its consequences is similar to other tropical and 

sub-tropical area (López-García and Ayala-Alcántara, 2012; De la Paix et al., 2013) and has made 

restoration of degraded land an essential challenge.  John et al. (1997) identified some of the factors 

that act as a catalyst of such situation: intensive crop expansion, over-grazing and unsustainable 

fuel wood harvesting. In recent years the fuel wood crisis that links deforestation with fuel wood 

consumption has been discarded as many of the harvest occurs on species growing “outside” the 

forest (Mahiri and Howorth, 2001; Bensel, 2008). This pattern of fuelwood consumption is im-

proved by householders’ tree plantations, where natural forests are scarce (Bewket, 2003). As a 

consequence, tree planting has emerged as a plausible option for fulfill the fuelwood demand 

(Lemenih and Bongers, 2010). However, there may not be a link between tree planting and fuel 

wood consumption (Gebreegziabher and van Kooten, 2013). 

In Ethiopia nearly 1.5 billion tons of topsoil is lost every year (Tadesse, 2001). Despite 

efforts to combat land degradation in all SSA and Ethiopia in particular (Yitbarek et al., 2012), the 

scope and magnitude of the problem continues and the country is identified among those which has 

expanded cropland area at the expense of natural habitats (Phalan et al., 2013). Currently, the 

seemingly contradictory objective of restoring vegetation cover and production of fuel wood is a 

key environmental issue. 

With this regard, species selection for afforestation is crucial as the tree species may affect 

soil properties differently (Li et al., 2012). However, interim management solutions such as 

physical soil retention structures may be needed prior to establishing vegetation (Yitbarek et al., 

2012). Exclosures have been identified as a valuable rehabilitation option when the main driver of 

land degradation is grazing (Mekuria and Aynekulu, 2011) or intense recreational use (Özcan et al., 

2013). However, these measures are expensive for local communities. Effective restoration 
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practices should be based on local perceptions of soil erosion and should include easily available 

local management options (Kiome and Stocking, 1995). The application of manure has 

demonstrated to positively affect the infiltration capacity of soils and plant production on grazed 

lands (Tadesse et al., 2003) at low cost. In addition, mulching can both enhance conditions for plant 

growth in harsh environments (Blanco-García and Lindig-Cisneros, 2005) and protect topsoil 

against erosion (Roose and Barethès, 2001). The correct selection of plant species and soil 

management is vital for both fuel wood production and soil rehabilitation. 

           Motivation for this study stems from the lack of research on species selection for plantations 

that pursues two objectives: land rehabilitation while assuring fuelwood production in the Ethiopian 

Central Highlands. The aim was to determine which species and soil management options are better 

adapted to current Highlands’s conditions. On the basis of the observations and previous studies, 

we hypothesized that native tree species might not show better performance for both objectives in 

this harsh environment. 

Material and Methods 

Study Area 

The study was conducted from 2005 to 2009 in the central highlands of Ethiopia. The study 

site was located at 9 º38’19.66’’ N latitude and 38º 49’ 34.46’’ E longitude, at 2, 600 m above sea 

level (Figure S1). Meteorological data were obtained from Ethiopian Meteorological Agency in 

Addis Ababa. The 5 year (2005-2009) averaged mean annual maximum and minimum temperature 

of the study area were 21 ºC and 8 ºC, respectively, with 5 year annual mean averaged precipitation 

1,200 mm falling mostly in July and August.  Köppen’s classification is temperate highland tropical 

climate with dry winters.  

The experimental site was selected through a participatory process with local stakeholders. 

A focus group discussion was conducted with district agricultural experts, development agents and 

farmers. The farmers were selected on the basis of age (young: 18-35 years old; adult: 35-55 and 

old: > 55), average income per household per year (poor: $ 232; medium: $ 407; rich: $ 700) and 

gender. Ten key informant interviewers (development agents, agricultural experts, community ad-

ministrators) and 40 random households were selected to ascertain commitment and attitude to-

wards the project, in order to avoid a negative impact on the experimental layout. The experimental 
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site was selected based on accessibility and representativeness of degraded land on sandy soil, rock 

outcrops and without vegetation cover. The experimental site was a cultivated land until 1995 when 

it was abandoned due to soil fertility depletion.  

Species Selection and Experimental Design 

The same participatory process as for selection of experimental site was used for the selec-

tion of tree species and soil management options. Species were selected based on local adaptability. 

A total of seven species were identified in this study: two native tree species (Dombeya torrida (J. 

F. Gmel.) Bamps and Hagenia abyssinica (Bruce) J. F. Gmel.), four exotic tree species (Acacia de-

currense Willd., Acacia saligna (Labill.) H.L.Wendl., Eucalyptus globulus Labill. and Grevillea 

robusta A.Cunn. Ex R. Br.) and one exotic shrub Chamaecytisus palmensis (Christ.) Hutch. All 

seeds were directly sown in polyethylene bags for eight months and were exposed to similar water-

ing, shading, weeding and hardening off practices until 20-30 cm high.   

Three soil management options were applied, based on local perceptions of erosion control: 

i) a control treatment where nothing was done to correct the initial degraded condition, ii) applica-

tion of manure, and iii) application of manure plus mulching. Three kilograms of decomposed ma-

nure were added to the planting pits (40 cm deep) during seedling planting on 12
th

, July, 2005, 

while 0.5 kilogram of mulching with air dried grass was applied in the preceding dry season to con-

serve moisture and avoid the desiccation of soil and seedlings. 

The experimental layout was organized as a split-plot design, with tree species as the main 

plot and soil management options as sub-plots; it was organized in three blocks to control variation 

along a slope gradient and three replicates for each species. The main plot consisted of 90 trees di-

vided into three groups of 30 trees, each arranged into five rows, with six trees in each row. The 

distance between trees in the same row and between rows in the same sub-plot was 1.5 m whereas 

the distance between treatments in the main plot and sub-plots was 2 m. Weeding and hoeing were 

applied uniformly to the entire plot on 10
th 

of August and 12
th

 of September 2005 (Figure S3). 
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Data Collection and Procedure 

The 12 inner trees in every sub-plot were assessed for data collection and the rest were con-

sidered border trees. Survival counts, along with tree height and root collar diameter measurements 

were taken at 12, 24, 36 and 48 months after planting. 

Volume was calculated from the average height and diameter of the experiment trees; total 

biomass calculations were based on tree volume and specific gravity, using values obtained from 

the specific gravity. Table I provides a summary of data 1 and 4 years after planting. 

Soil Sampling and Analysis 

Soil augering was carried out in 3 mx3 m subplot at the initial and final stage of the experi-

ment, at 0-10, 10-30 and 30-50 cm depth. A total of 72 composite soil samples were collected for 

analysis. Three random sampling points were mixed to form one composite sample. The collected 

samples were air-dried, sieved (2 mm diameter) and grounded before analysis. The samples were 

analysed for pH (1:2.5 soil: water ratio), total N (%) using Kjeldahl’s method, Organic carbon (%) 

according to Walkely- Black’s method, available phosphorus (units) using Olsen’s method, pH was 

determined using a suspension of 1:5 soil: water ratio. Ammonium and sodium acetate were applied 

to determine cation excheangable capacity (CEC), exchangeable K were measured with flame pho-

tometer.  

 The mean values and standard errors for soil variables at the beginning and end of the ex-

periment are shown in Table I. 



Tesfaye (2015) 

132 
 

Table I: Mean values of response variables 12 and 48 months after planting. 

Spp: specieas, EG: Eucalyptus globulus, AS: Acacia saligna, AD: Acacia decurrense, CP: Chamaecytisus palmensis, GR: Grevillea robusta, DT: 
Dombeya torrida, HA: Hagenia abyssinica. Thin lines indicate standard error of the mean.standard deviation of the mean in parenthesis 

TSP: Time since planting. Standard deviation of the mean in parenthesis. 

 

SPP Period 
Height 
(m) 

RCD 
(cm) 

Survival 
(%) 

pH % OC % N P (ppm) K (meg/100g soil) CEC (meg/100g soil) 

0-
10cm 

10-
30cm 

30-
50cm 

0-
10cm 

10-
30cm 

30-
50cm 

0-
10cm 

10-
30cm 

30-
50cm 

0-
10cm 

10-
30cm 

30-
50cm 

0-
10cm 

10-
30cm 

30-
50cm 

0-
10cm 

10-
30cm 

30-
50cm 

AD 

12 

0.97 

(0.30) 

1.33 

(0.39) 

83. 2 

(11.0) 

7.99 

(0.20) 

8.05 

(0.10) 

8.15 

(0.10) 

0.91 

(0.10) 

0.75 

(0.14) 

0.51 

(0.20) 

0.063 

(0.01) 

0.047 

(0.01) 

0.033 

(0.01) 

1.67 

(0.12) 

1.60 

(0.20) 

1.67 

(0.23) 

0.89 

(0.14) 

0.90 

(0.21) 

0.84 

(0.10) 

20.27 

(4.27) 

22.18 

(5.69) 

23.48 

(10.83) 

48 

6.52 

(2.07) 

7.34 

(2.09) 

56.4 

(19.3) 

7.96 

(0.14) 

7.78 

(0.47) 

7.74 

(0.52) 

0.85 

(0.15) 

0.62 

(0.40) 

0.63 

(0.20) 

0.053 

(0.01) 

0.057 

(0.011) 

0.053 

(0.012) 

2.60 

(0.40) 

2.53 

(0.70) 

2.80 

(1.06) 

0.84 

(0.10) 

0.71 

(0.30) 

0.73 

(0.37) 

16.50 

(1.95) 

17.99 

(4.24) 

22.92 

(4.96) 

AS 

12 

1.12 

(0.32) 

1.98 

(0.63) 

88.1 

(12.1) 

7.99 

(0.20) 

8.05 

(0.10) 

8.15 

(0.10) 

0.91 

(0.10) 

0.75 

(0.14) 

0.51 

(0.20) 

0.063 

(0.01) 

0.047 

(0.01) 

0.033 

(0.01) 

1.67 

(0.12) 

1.60 

(0.20) 

1.67 

(0.23) 

0.89 

(0.14) 

0.90 

(0.21) 

0.84 

(0.10) 

20.27 

(4.27) 

21.86 

(4.46) 

23.50 

(0.82) 

48 

5.24 

(1.33) 

8.68 

(3.03) 

68. 3 

(24.2) 

7.96 

(0.14) 

7.78 

(0.47) 

7.74 

(0.52) 

0.79 

(0.37) 

0.84 

(0.10) 

0.57 

(0.12) 

0.05 

(0.01) 

0.053 

(0.01) 

0.043 

(0.02) 

2.13 

(0.76) 

1.87 

(0.04) 

2.27 

(1.50) 

0.82 

(0.41) 

0.71 

(0.48) 

0.57 

(0.42) 

19.03 

(1.57) 

21.32 

(1.53) 

17.78 

(2.81) 

CP 

12 

1.02 

(0.34) 

1.40 

(0.37) 

91.7 

(11.1) 

7.99 

(0.20) 

8.05 

(0.10) 

8.15 

(0.10) 

0.91 

(0.10) 

0.75 

(0.14) 

0.51 

(0.20) 

0.063 

(0.01) 

0.047 

(0.01) 

0.033 

(0.01) 

1.67 

(0.12) 

1.60 

(0.20) 

1.67 

(0.23) 

0.89 

(0.14) 

0.90 

(0.21) 

0.84 

(0.10) 

20.27 

(4.27) 

21.86 

(4.46) 

23.48 

(0.88) 

48 

3.34 

(1.61) 

5.33 

(2.87) 

70.4 

(22.1) 

7.64 

(0.14) 

7.57 

(0.25) 

7.57 

(0.25) 

1.89 

(0.50) 

1.40 

(0.17) 

0.81 

(0.37) 

0.107 

(0.03) 

0.077 

(0.05) 

0.107 

(0.08) 

2.93 

(0.99) 

2.20 

(0.60) 

2.67 

(0.46) 

1.07 

(0.04) 

1.03 

(0.11) 

1.11 

(0.14) 

18.75 

(2.16) 

20.59 

(2.48) 

24.28 

(7.76) 

DT 

12 

0.84 

(0.15) 

1.62 

(0.34) 

99.1 

(2.7) 

7.99 

(0.20) 

8.05 

(0.10) 

8.15 

(0.10) 

0.91 

(0.10) 

0.75 

(0.14) 

0.51 

(0.20) 

0.063 

(0.01) 

0.047 

(0.01) 

0.033 

(0.01) 

1.67 

(0.12) 

1.60 

(0.30) 

1.67 

(0.23) 

0.89 

(0.14) 

0.90 

(0.21) 

0.84 

(0.10) 

20.27 

(4.27) 

21.86 

(4.46) 

23.50 

(0.82) 

48 
3.13 
(0.97) 

4.86 
(1.25) 

58.3 
(19.4 ) 

7.96 
(0.10) 

7.96 
(0.47) 

7.93 
(0.24) 

1.17 
(0.45) 

0.86 
(0.14) 

0.71 
(0.24) 

0.08 
(0.03) 

0.073 
(0.05 ) 

0.05 
(0.03) 

2.73 
(0.70) 

2.35 
(0.96) 

2.33 
(0.64) 

1.08 
(0.17) 

1.08 
(0.18) 

0.89 
(0.16) 

20.71 
(3.86) 

23.21 
(1.72) 

18.54 
(0.89) 

EG 

12 

0.79 

(0.16) 

1.14 

(0.23) 

88.93 

(10.3 ) 

7.99 

(0.20) 

8.05 

(0.10) 

8.15 

(0.10) 

0.91 

(0.10) 

0.75 

(0.14) 

0.51 

(0.20) 

0.063 

(0.01) 

0.047 

(0.01) 

0.033 

(0.01) 

1.67 

(0.12) 

1.60 

(0.20) 

1.67 

(0.23) 

0.89 

(0.14) 

0.90 

(0.21) 

0.84 

(0.10) 

20.27 

(4.27) 

21.86 

(5.47) 

20.60 

(5.53) 

48 
8.63 
(1.65) 

8.92 
(2.19) 

76.9 
(18.7) 

7.83 
(0.18) 

7.62 
(0.47) 

7.85 
(0.23) 

0.79 
(0.09) 

0.64 
(0.23) 

0.39 
(0.13) 

0.043 
(0.01) 

0.03 
(0.01) 

0.03 
(0.01) 

1.93 
(0.06) 

1.83 
(0.35) 

2.03 
(0.74) 

0.90 
(0.19) 

0.65 
(0.04) 

0.93 
(0.04) 

16.42 
(1.87) 

13.85 
(1.08) 

25.94 
(0.55) 

GR 

12 

0.50 

(0.12) 

1.18 

(0.22) 100 

7.99 

(0.20) 

8.05 

(0.10) 

8.15 

(0.10) 

0.91 

(0.10) 

0.75 

(0.14) 

0.51 

(0.20) 

0.063 

(0.01) 

0.047 

(0.02) 

0.033 

(0.01) 

1.67 

(0.12) 

1.60 

(0.20) 

1.67 

(0.23) 

0.89 

(0.14) 

0.90 

(0.21) 

0.84 

(0.10) 

20.27 

(4.27) 

21.86 

(5.47) 

23.50 

(0.82) 

48 

3.41 

(0.89) 

6.22 

(1.91) 100 

7.72 

(0.28) 

7.85 

(0.38) 

7.86 

(0.20) 

1.36 

(0.60) 

1.22 

(0.78) 

0.60 

(0.58) 

0.063 

(0.01) 

0.047 

(0.02) 

0.03 

(0.01) 

2.60 

(0.87) 

2.07 

(0.31) 

2.37 

(0.74) 

0.98 

(0.08) 

1.08 

(0.19) 

0.93 

(0.19) 

20.51 

(1.70) 

25.45 

(7.98) 

21.84 

(9.56) 

HA 

12 
0.25 
(0.08) 

1.20 
(0.24) 

97.3 
(4.0) 

7.99 
(0.20) 

8.05 
(0.10) 

8.15 
(0.10) 

0.91 
(0.10) 

0.75 
(0.14) 

0.51 
(0.20) 

0.063 
(0.01) 

0.047 
(0.01) 

0.033 
(0.01) 

1.67 
(0.12) 

1.60 
(0.20) 

1.67 
(0.23) 

0.89 
(0.14) 

0.90 
(0.21) 

0.84 
(0.10) 

20.27 
(4.27) 

21.86 
(4.46) 

23.48 
(0.84) 

48 

1.78 

(0.85) 

4.47 

(1.45) 

90.7 

(9.5) 

7.60 

(0.28) 

7.65 

(0.22) 

7.68 

(0.24) 

1.62 

(0.25) 

1.13 

(0.41) 

0.51 

(0.36) 

0.097 

(0.01) 

0.083 

(0.01) 

0.053 

(0.01) 

2.30 

(0.50) 

2.27 

(0.46) 

2.40 

(0.35) 

1.05 

(0.04) 

0.89 

(0.19) 

0.75 

(0.24) 

18.73 

(2.18) 

21.42 

(4.29) 

18.36 

(0.09) 
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Statistical Analysis 

Correlation among observations and plausible blocking random effect were accounted for 

by fitting a multilevel linear mixed model for longitudinal data, using SAS v. 8.01 PROC MIXED 

software (SAS Inst. Inc., 1999). Species and soil management options were considered as fixed ef-

fects, block and tree were considered as random effects and age at time of measurement was con-

sidered a covariate. Fixed interaction between treatment and species and random interactions were 

considered since visual inspection of the interaction plots showed clear patterns. All interactions 

were considered to affect the slope of the relationship between response and predictors. Interaction 

plots were performed with R statistical software, version 2.15.0 (R-Development Core Team, 

2012). 

The linear mixed model requires a linear relationship between response and predictors, as 

well as normality in residuals. Because survival data is a proportion, normality and homogenous 

variance were not expected. Consequently, we applied a squared arcsine transformation to the re-

sponse variable (Sabin and Stafford, 1990), i. e. , where the squared arcsine 

is transformed response variable for survival data and  is the proportion of individuals. 

Height and root collar diameter were plotted over time to discern both heteroscedasticity in 

data, indicated by greater variability in the response variable and curvature in the temporal pattern 

(Figure S4). Heteroscedasticity was treated by logarithmic transformation of the response variable 

to , where y is height or root collar diameter. Curvature was taken into account by loga-

rithmic conversion of time according to Verbeke and Molenberghs (2000). Plotting individual 

height or root collar diameter trajectories over time also served to reveal any random tree effect for 

individual trees, in both the intercept and the slope (Figure S5).  

We tested the following general structure to obtain a model of survival, height and root col-

lar diameter: 

                                                  (1) 

where,  is the response variable of the  i-th tree at time j, and μ is the intercept or grand mean, 

,

, AD: A. decurrens, AS: A. saligna, CP: C. palmensis, DT: D. torrida, EG: E. globulus, GR: G.robusta, HA: 

H. abyssinica, C: Control, M: Manure, MM: Manure plus Mulch. The parameter  reflects the 
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overall slope for the time effect and makes it possible to test group differences in species or treat-

ment,  are parameters for species  

 

 

 Fig.  1: Percentage of trees alive by species throughout the life span of the experiment. Points indicate the 
month of measurement 12, 24, 36 and 48. EG: Eucalyptus globulus, AS: Acacia saligna, AD: Acacia decu-
rrense, CP: Chamaecytisus palmensis, GR: Grevillea robusta, DT: Dombeya torrida, HA: Hagenia abyssinica. 
 

and treatment fixed effects,  is any fixed interaction,  and  are random tree parameters 

with variance  and  ,  is the block random effect with variance ,  is random inter-

action effect with variance , and  accounts for within-tree random variation . Due to both 

the randomized experimental layout and time transformation, the subject - specific intercepts were 

considered to be independent of the treatment (Verbeke and Molenberghs, 2000). 

Biomass data was analyzed with a mixed linear model approach in order to avoid an error 

term construction in the generalized linear model (SAS Inst. Inc, 1999). The model tested was: 

   (2) 
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where  is the biomass of the average tree of species s under k treatment in the b
th

 block,  is the 

intercept, is the species fixed effect (i.e. 

),   is the treatment fixed ef-

fect (i.e. ),  is the interaction fixed effect between species and treat-

ment,  is the block random effect with variance ,  is the interaction random effect between 

treatment and block with variance , and  accounts for error due to within-species variation 

and variance parameter .  

A paired-wise mean comparison by species was made using Tukey’s test to reveal the dif-

ferences in the response variable at every measurement time. 

Soil data are repeated measures in both time (before and 4 years after planting) and space 

(soil depth). We conducted a multivariate approach in which both repetition patterns are taken into 

account using SAS v. 8.01 PROC GLM software (SAS Inst. Inc., 1999). A least squares mean 

comparison for the main effect is performed to analyse differences between soil depths before and 

after plantation. A significance level of 0.05 is assumed across the analysis. 

Results 

Planted Tree Species Survival Rate 

G. robusta showed the highest overall survival rate (100 %), followed by native H. abys-

sinica (93.52 %), (Figure 1). The Figure 2(a) and (b) showed interaction between treatment and 

species, whereas the effect of block-treatment interaction was slightly lower. The final significant 

model included the species fixed effect in both the intercept and the slope and a random interaction 

between block and treatment in the slope (Table II). 

Differences among species appear when they were compared at time points. A. decurrense 

showed the lowest survival rate at all measurement times. Although, it was similar to A. saligna 

throughout the experiment, stronger differences appeared as early as 24 months after planting (Ta-

ble III). The variance of the random interaction between treatment and block was low (0.001386) 

compared to the residual variance (0.03735); however, the null model likelihood ratio test for ap-

propriateness of the model with the variance component was significant (p-value 0.0273). 
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Fig. 2: Interaction plots for the covariates tested. From top to bottom: survival, height growth and root col-
lar diameter growth. Species X Treatment interaction (left panel). Block X Treatment interaction (right pan-
el). EG: Eucalyptus globulus, AS: Acacia saligna, AD: Acacia decurrense, CP: Chamaecytisus palmensis, GR: 
Grevillea robusta, DT: Dombeya torrida, HA: Hagenia abyssinica. Thin lines indicate standard error of the 
mean. 
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Table II: Solution for fixed effects and covariance parameter estimates for survival data. 

Fixed effect 

Parameter 

in model (1) Estimate S.E P-value 

Intercept μ 1.5866 0.182 <0.0001 

Species β1 -0.1158 0.1659 0.4857 

 

β2 -0.1064 0.1659 0.5218 

 

β3 0.0522 0.1659 0.7533 

 

β4 0.5643 0.1659 0.0008 

 

β5 -0.1274 0.1659 0.4431 

 

β6 -0.01585 0.1659 0.924 

 

β7 0 - - 

time β0 -0.1286 0.09423 0.1738 

time*spp β8 -0.222 0.1333 0.0972 

 

β9 -0.1445 0.1333 0.2792 

 

β10 -0.1931 0.1333 0.1487 

 

β11 -0.5945 0.1333 <0.0001 

 

β12 -0.05538 0.1333 0.6781 

 

β13 0.1286 0.1333 0.3357 

 

β14 0 - - 

Random effect 

    Block*treatment δ
2
υ

2
 0.001386 

  Residual variance δ
2
 0.03735 

  S.E.: standard error of the mean. β1- β7  and β8- β14 stand for A. decurrense, A. saligna, C. palmensis,  

 D. torrida,  E. globulus, G. robusta and H. abyssinica, respectively. 

 

 



Tesfaye (2015) 

138 
 

Table III: Differences of least squares means for survival and statistical significance of null hypothesis ac-
cording to Tukey-Kramer’s adjustment. 

Species 

compar-

ison 

Time Since Planting 

12 months 24 months 36 months 48 months 

Esti-

mate p-value 

Esti-

mate p-value 

Esti-

mate p-value 

Esti-

mate p-value 

AD-AS -0.063 0.987 -0.094 0.4250 -0.117 0.2796 -0.134 0.499 

AD-CP -0.188 0.241 -0.200 0.0010 -0.208 0.0017 -0.215 0.046 

AD-DT -0.422 <0.0001 -0.271 <0.0001 -0.164 0.0313 -0.081 0.919 

AD-EG -0.104 0.861 -0.171 0.0070 -0.219 0.0007 -0.257 0.007 

AD-GR -0.343 0.001 -0.485 <0.0001 -0.586 <0.0001 -0.664 <0.0001 

AD-HA -0.270 0.018 -0.360 <0.0001 -0.424 <0.0001 -0.473 <0.0001 

AS-CP -0.125 0.721 -0.105 0.2904 -0.091 0.5827 -0.081 0.919 

AS-DT -0.359 0.000 -0.176 0.0047 -0.047 0.9724 0.054 0.989 

AS-EG -0.041 0.999 -0.077 0.6696 -0.103 0.4389 -0.123 0.608 

AS-GR -0.280 0.012 -0.391 <0.0001 -0.469 <0.0001 -0.530 <0.0001 

AS-HA -0.207 0.148 -0.265 <0.0001 -0.307 <0.0001 -0.339 <0.0001 

CP-DT -0.234 0.065 -0.071 0.7468 0.044 0.9790 0.134 0.499 

CP-EG 0.084 0.945 0.028 0.9969 -0.011 1.0000 -0.042 0.997 

CP-GR -0.155 0.477 -0.285 <0.0001 -0.378 <0.0001 -0.450 <0.0001 

CP-HA -0.082 0.952 -0.160 0.0153 -0.216 0.0010 -0.259 0.007 

DT-EG 0.318 0.002 0.099 0.3600 -0.056 0.9370 -0.176 0.179 

DT-GR 0.079 0.959 -0.214 0.0002 -0.422 <0.0001 -0.584 <0.0001 

DT-HA 0.152 0.499 -0.089 0.5018 -0.260 <0.0001 -0.393 <0.0001 

EG-GR -0.239 0.054 -0.314 <0.0001 -0.367 <0.00001 -0.408 <0.0001 

EG-HA -0.166 0.391 -0.188 0.0019 -0.204 0.0023 -0.217 0.043 

GR-HA 0.073 0.972 0.125 0.1589 0.162 0.0336 0.191 0.110 

In bold: significant differences among species at 95% of confidence 
EG: Eucalyptus globulus, AS: Acacia saligna, AD: Acacia decurrense, CP: Chamaecytisus palmensis, GR: Grevillea 

robusta, DT: Dombeya torrida, HA: Hagenia abyssinica.  

 

 

 



Forest management options for carbon stock and soil rehabilitation in Chilimo dry afro-montane forest, Ethiopia 
 

139 

Height Growth 

The interaction plot showed weak species and treatment interaction in all soil management 

options applied [Figure 2(c) and (d)]. The subplot treatment factor had little influence on H. abys-

sinica height growth; whereas E. globulus presented greater height value with soil management op-

tions. For the remaining species, the response was less pronounced. The response of A. decurrense 

and A. saligna height growth was similar across the soil management options. The block effect and 

the interaction between treatment and block were also weak (Figure 2(d)). Time since planting 

(age) was also an important variable with considerable variation across species. For example, A. 

saligna height growth was faster up to 24 months after planting and then decreased’ whereas E. 

globulus experienced fast height growth throughout the experiment (Figure S4).  

Species and treatment effects were significantly different, though; the difference between 

soil management options was not significantly different. The random effect for the intercept and the 

slope revealed that the covariances for both effects (0.0393 and 0.0984 respectively) to be higher 

than the residual variance (0.0195), indicating the strong random effect associated with individuals 

(Table IV). On average, the fixed effects revealed that G. robusta and H. abyssinica showed the 

same height growth pattern and the application of either soil management option resulted in similar 

height growth, which was higher than that of the control treatment. Height growth differences were 

noticeable 12 months after planting. H. abyssinica and E. globulus showed the lowest and highest 

mean difference, respectively (Table V). 

Root Collar Diameter Growth Performance 

Visual inspection of the interaction plot showed that the interaction between species and 

treatment was more pronounced than in height growth [Figure 2(e)], A. saligna showed a stronger 

response to manure + mulch treatment than other species, whereas C. palmensis exhibited increased 

root collar diameter when either soil management options were applied. 
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Table IV: Solution for fixed effects and covariance parameters estimates for height and root collar diameter. 

Fixed effects 

Parame-

ters in 

model (1) 

Height Root collar diamater 

Estimate S.E p-value Estimate S.E p-value 

Intercept μ -1.066 0.031 <0.0001 -0.777 0.039 <0.0001 

Species β1 0.400 0.048 <0.0001 -0.119 0.060 0.049 

 

β2 0.714 0.046 <0.0001 0.448 0.058 <0.0001 

 

β3 0.888 0.046 <0.0001 0.227 0.058 <0.0001 

 

β4 0.717 0.045 <0.0001 0.503 0.057 <0.0001 

 

β5 -0.182 0.045 <0.0001 -0.673 0.057 <0.0001 

 

β6 0.046 0.043 0.2807 -0.258 0.055 <0.0001 

 

β7 0.000 - - - - - 

Time β0 1.185 0.039 <0.0001 1.485 0.042 <0.0001 

Time*spp β8 0.358 0.057 <0.0001 0.225 0.062 0.0003 

 

β9 0.154 0.055 0.0051 0.105 0.059 0.0769 

 

β10 -0.335 0.543 <0.0001 -0.149 0.059 0.0012 

 

β11 -0.220 0.540 <0.0001 -0.301 0.059 <0.0001 

 

β12 1.022 0.054 <0.0001 0.851 0.058 <0.0001 

 

β13 0.339 0.052 <0.0001 0.392 0.056 <0.0001 

 

β14 0.000 - 0 0.000 - - 

 

β15 -0.124 0.020 -0.189 -0.189 0.025 <0.0001 

 

β16 -0.036 0.020 -0.062 -0.062 0.024 0.011 

 

β17 0.000 - 0 0.000 - - 

Intercept δ
2
b1 0.0393 0.0495 

    Slope δ
2
b2 0.0984 0.0929 

    Residual variance δ
2
 0.0198 0.0324         

. Β1- β7 and β8- β14 stand for A. decurrense,   A. saligna, C. palmensis, D.  torrida,  E. globulus, G. robusta and H. abys-

sinica  respectively. Β15- β17 stands for Control, Manure and Manure + mulch interaction with time respectively. 
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Table V: Differences of least squares means for height growth and statistical significance of null hypothesis 
according to Tukey-Kramer’s adjustment. 

Species 

comparison 

Time Since Planting   

12 months 24 months 36 months 48   months 

Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

AD-AS -0.172 <0.0001 -0.063 0.710 -0.002 1.0000 0.046 0.994 

AD-CP -0.008 1.000 0.360 <0.0001 0.569 <0.0001 0.729 <0.0001 

AD-DT 0.084 0.025 0.905 <0.0001 0.565 <0.0001 0.699 <0.0001 

AD-EG 0.122 <0.0001 -0.230 <0.0001 -0.431 <0.0001 -0.585 <0.0001 

AD-GR 0.367 <0.0001 0.376 <0.0001 0.382 <0.0001 0.386 <0.0001 

AD-HA 0.648 <0.0001 0.838 <0.0001 0.946 <0.0001 1.029 <0.0001 

AS-CP 0.164 <0.0001 0.423 <0.0001 0.571 <0.0001 0.684 <0.0001 

AS-DT 0.256 <0.0001 0.454 <0.0001 0.567 <0.0001 0.653 <0.0001 

AS-EG 0.294 <0.0001 -0.167 0.0006 -0.429 <0.0001 -0.631 <0.0001 

AS-GR 0.538 <0.0001 0.440 <0.0001 0.383 <0.0001 0.340 <0.0001 

AS-HA 0.820 <0.0001 0.901 <0.0001 0.948 <0.0001 0.983 <0.0001 

CP-DT 0.092 0.006 0.031 0.9847 -0.004 1.0000 -0.030 0.9990 

CP-EG 0.130 <0.0001 -0.590 <0.0001 -1.000 <0.0001 -1.314 <0.0001 

CP-GR 0.374 <0.0001 0.017 0.9995 -0.187 0.0052 -0.343 <0.0001 

CP-HA 0.656 <0.0001 0.478 <0.0001 0.377 <0.0001 0.300 <0.0001 

DT-EG 0.038 0.750 -0.621 <0.0001 -0.996 <0.0001 -1.284 <0.0001 

DT-GR 0.283 <0.0001 -0.014 0.9997 -0.183 0.0053 -0.313 <0.0001 

DT-HA 0.564 <0.0001 0.447 <0.0001 0.381 <0.0001 0.330 <0.0001 

EG-GR 0.244 <0.0001 0.606 <0.0001 0.813 <0.0001 0.971 <0.0001 

EG-HA 0.526 <0.0001 1.068 <0.0001 1.377 <0.0001 1.614 <0.0001 

GR-HA 0.282 <0.0001 0.462 <0.0001 0.564 <0.0001 0.643 <0.0001 

In bold: significant differences between species at 95% of confidence 
EG: Eucalyptus globulus, AS: Acacia saligna, AD: Acacia decurrense, CP: Chamaecytisus palmensis, GR: Grevillea 

robusta,  DT: Dombeya torrida, HA: Hagenia abyssinica.  
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Table VI:  Differences of least squares means for root collar diameter growth and statistical significance of 
null hypothesis according to Tukey-Kramer’s adjustment. 

Species 

comparison 

Time Since Planting 

12 months 24 months 36 months 48 months 

Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

AD-AS -0.483 <0.0001 -0.420 <0.0001 -0.384 0.0001 -0.355 <0.0001 

AD-CP -0.087 0.270 0.112 0.229 0.225 0.0015 0.311 0.001 

AD-DT -0.258 <0.0001 0.021 0.999 0.180 0.047 0.302 0.001 

AD-EG 0.120 0.034 -0.213 0.000 -0.402 <0.0001 -0.548 <0.0001 

AD-GR 0.023 0.996 -0.066 0.791 -0.116 0.4375 -0.155 0.300 

AD-HA 0.037 0.956 0.157 0.014 0.225 0.0034 0.277 0.002 

AS-CP 0.397 <0.0001 0.531 <0.0001 0.608 <0.0001 0.667 <0.0001 

AS-DT 0.226 <0.0001 0.441 <0.0001 0.564 <0.0001 0.658 <0.0001 

AS-EG 0.603 <0.0001 0.207 0.0002 -0.019 0.9999 -0.192 0.103 

AS-GR 0.506 <0.0001 0.345 <0.0001 0.267 <0.0001 0.201 0.054 

AS-HA 0.521 <0.0001 0.576 <0.0001 0.608 <0.0001 0.632 <0.0001 

CP-DT -0.171 <0.0001 -0.090 0.4239 -0.044 0.9886 -0.001 1.000 

CP-EG 0.206 <0.0001 -0.325 <0.0001 -0.627 <0.0001 -0.859 <0.0001 

CP-GR 0.110 0.0390 -0.177 0.0016 -0.341 <0.0001 -0.466 <0.0001 

CP-HA 0.124 0.0120 0.045 0.9553 0.000 1.000 -0.035 0.9999 

DT-EG 0.377 <0.0001 -0.234 <0.0001 -0.583 <0.0001 -0.850 <0.0001 

DT-GR 0.281 <0.0001 -0.087 0.4259 -0.296 <0.0001 -0.457 <0.0001 

DT-HA 0.295 <0.0001 0.135 0.0365 0.044 0.9867 -0.025 1.0000 

EG-GR -0.096 0.111 0.147 0.0193 0.286 <0.0001 0.393 <0.0001 

EG-HA -0.082 0.270 0.370 <0.0001 0.627 <0.0001 0.824 <0.0002 

GR-HA 0.014 1.000 0.222 <0.0001 0.341 <0.0001 0.432 <0.0003 

In bold: significant differences between species at 95% of confidence. 
EG: Eucalyptus globulus, AS: Acacia saligna; AD: Acacia decurrense; CP: Chamaecytisus palmensis; GR: Grevillea 

robusta; DT: Dombeya torrida; HA: Hagenia abyssinica.  
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Table VII: Solution for fixed effects and covariance parameters estimates for biomass 48 months after 
planting. 

Fixed effects Parameters in model (2) Estimate S.E p-value 

Intercept μ 1.7251 1.4712 0.3617 

Species α1 5.6933 1.9071 0.0114 

 

α2 8.0367 1.9071 0.0012 

 

α3 2.0844 1.9071 0.2959 

 

α4 0.6144 1.9071 0.7529 

 

α5 10.9856 1.9071 <0.0001 

 

α6 1.3967 1.9071 0.478 

 

α7 0         -         - 

Treatment β1 -2.0543 0.7102 0.0062 

 

β2 -0.961 0.7102 0.1837 

 

β3 0 -           - 

Random effect         

Block δ
2
bb 0.5331 

  spp*block δ
2
vkb 3.69 

  Residual  variace δ
2
ε 5.2966     

 

α1- α7  stand for A. decurrense,  A. saligna,  C. palmensis,  D. torrida,  E. globulus, G. robusta and H. abyssinica  res-

pectively.  β1- β3 stands for Control, Manure and Manure + Mulch treatment, respectively. 

. 
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Table VIII: Repeated multivariate analysis of variance for soil parameters. 

  

Between effect Within effects 

Effect F p_value Effect F p_value 

pH Species 0.31 0.9193 Time 43.87 0.0001 

    

Time*species 0.74 0.6264 

    

Depth 5.05 0.0134 

    

Depth*species 1.08 0.4139 

    

Time*depth 2.62 0.0904 

    

Time*depth*species 0.49 0.905 

Carbon (%) Species 2.08 0.1217 Time 6.59 0.0224 

    

Time*species 1.76 0.1799 

    

Depth 59.25 0.0001 

    

Depth*species 1.41 0.221 

    

Time*depth 5.9 0.0073 

    

Time*depth*species 2.93 0.0093 

Nitrogen (%) Species 3.87 0.0174 Time 8.81 0.0102 

    

Time*species 3.13 0.0368 

    

Depth 21.66 0.0001 

    

Depth*species 0.68 0.76 

    

Time*depth 1.68 0.2042 

    

Time*depth*species 0.91 0.5497 

P (ppm) Species 0.56 0.7557 Time 21.8 0.0004 

    

Time*species 0.54 0.7729 

    

Depth 4.18 0.0258 

    

Depth*species 0.41 0.9451 

    

Time*depth 1.19 0.3192 

    

Time*depth*species 0.33 0.9773 

K (meg/100 gr) Species 0.93 0.5083 Time 0.04 0.8379 

    

Time*species 1.48 0.2538 

    

Depth 5.22 0.0118 

    

Depth*species 1.38 0.2312 

    

Time*depth 1.59 0.2216 

    

Time*depth*species 1.18 0.3429 

CEC (meg/100 gr) Species 0.43 0.8179 Time 2.43 0.1413 

    

Time*species 0.24 0.9577 

    

Depth 5.78 0.0079 

    

Depth*species 0.86 0.5955 

    

Time*depth 0.04 0.9641 

        Time*depth*species 2.39 0.0282 

Bold values indicate significance at 0.05 levels. 
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Time since planting was also an important variable and notably different: the root collar diameter of 

A. saligna increased for 36 months after planting. At 48 months, E. globulus showed higher average 

(RCD) values. The other species showed similar values at 12 and 24 months after planting; from 

that point on, root collar diameter differences became more pronounced. C. palmensis, D. torrida 

and H. abyssinica had the lowest RCD values at the end of the experiment (Figure S4). 

The final model for root collar diameter included random individual effect on the intercept 

and the slope. Neither the fixed effects for species and treatment in the slope nor the interaction be-

tween species and treatment were significant. The solution for fixed effects gave results similar to 

those of the height model (Table IV), although, none of the species had RCD values similar to those 

of H. abyssinica. Comparison of the species at each time point showed fewer RCD differences be-

tween species than in the height growth comparison (Tables V and VI): E. globulus outperformed 

all species in height growth but had almost the same root collar diameter as A. saligna at the end of 

the experiment. 

 Biomass Production 

Tree biomass production was similar in all soil management applications (Table VII), ex-

cept for E. globulus (11.71 kg tree
-1

), A. saligna (8.76 kg tree
-1

) and A. decurrense (6.41 kg tree
-1

). 

Mulching induced overlaid results between the control and mulching plus manure treatment. Com-

parison of control with mulching plus manure treatments revealed that the treatment fixed effect to 

be highly significant (p < 0.0001), with a biomass production gradient from 3.79 kg tree
-1

for the 

control to 4.88 kg tree
-1

 with manure to 5.84 kg tree
-1

 with mulching plus manure treatment. The 

interaction between species and treatment was highly insignificant in all cases.  

Differences of least squares means showed that E. globulus produced more biomass than 

other species, followed closely by A. saligna. These were significantly greater than D. torrida and 

H. abyssinica, which presented the lowest biomass production (Table SI). 

Soil Condition 

The significance of treatment effects on growth and biomass production was not very high, 

indicating that tree species is the main factor controlling the performance of indicator variables (i.e. 

growth, survival and biomass). For this reason, we tested species effect on soil properties. In so do-



Tesfaye (2015) 

146 
 

ing we also avoid expensive analysis of soil depths across treatments. Statistical analysis of be-

tween and within effects in the multivariate repeated analysis are shown in Table VIII. 

 Nitrogen concentration was affected by species, time, depth and the interaction of time and 

species, indicating a 

 

Fig. 3: Mean value and standard error bars for soil properties at the beginning and end of the experiment in 
native Hagenia abyssinica plots. Dark bars are mean values before planting. Light bars are mean value after 
48 months. 
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Fig. 4: Mean value standard error bars for soil properties at the beginning and at the end of the experiment 
in native Dombeya torrida plots. Dark bars are mean value before planting. Light bars are mean value after 
48 months. 

strong species control on this soil parameter. Time was significant for all soil properties except for 

K and CEC, whereas depth within effect was significant for all soil properties. The significant in-

teraction effect of species, time and depth for organic carbon and cationic exchange capacity was 

mainly controlled by depth. 

Differences in some soil parameters within species between initial conditions and four years 

after planting were detected. After 4 years since planting, pH did not change. Soil parameter values 

increased in native H. abyssinica and D. torrida (Figure 3 and 4) whereas nitrogen and carbon con-

centration decreased in E. globulus plantation along the whole profile [Figure 5 (c) and (e)]. C. 
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palmensis showed the highest N and carbon increase four years after plantation [Figure 6 (c)].  Aca-

cia spp showed a decreasing pattern in nitrogen and carbon concentrations and available potassium 

in top soil [Figure S6 and S7 (c), (d) and (e)], whereas G. robusta showed increased nitrogen and 

carbon contents [Figure S8 (c) and (e)]. All species increased available P in soils. 

 The higher differences between species are in the top mineral soil and later up to 30 cm and 

they are mainly due to changes in carbon, nitrogen from 0 to 10 cm; K concentrations from 10 to 30 

cm and CEC (Table SII). pH and P concentration did not show differences across species. Acacia 

spp. and E. globulus had significantly less organic carbon in the top mineral soil (0-10 cm) than H. 

abyssinica, G. robusta and C. palmensis. The concentration of nitrogen is significantly low in Aca-

cia spp. and E. globulus as compared with C. palmensis that showed the highest amount of nitrogen 

(0.11 %) in the topsoil (0-10 cm) four years after plantation followed by H. abyssinica (0.09 %) and 

D. torrida (0.08 %). Differences in K concentration are found in 10-30 cm. Acacia spp and E. glob-

ulus showed the minimum K values, which were significantly different from the rest of species. 

CEC in E. globulus and A. decurrense (16.4 and 16.5 meq/100g soil) plots is significantly lower 

than that found in D. torrida and G. robusta plots (20.7 and 20.5 meq/100g soil). The same pattern 

occurs from 10 to 30 cm deep. 

Discussion 

This study presents a screening of six tree species and one shrub species for use in the resto-

ration of degraded land and fuel wood production in the Central Highlands of Ethiopia. The combi-

nation of survival, height, root collar diameter growth, total biomass production and soil condition 

change after 48 months provides a five-dimensional indicator of species suitability for both objec-

tives. The best options would always be that with the highest values in all five indicators; however, 

none of the species studied perfectly fulfilled these requirements. In fact, contradictory results for 

restoration and fuel wood production were found. 

Native H. abyssinica and exotic G. robusta and E. globulus had the highest survival rates; 

the lowest survival rates were recorded for native D. torrida and exotic A. decurrense. An interme-

diate group was formed by C. palmensis and A. saligna.  Peter et al. (2005) reported a survival rate 

of 100 % for G. robusta on a mixed rainforest tree plantation in Australia after six years. In Chile, a 

screening trial for degraded highlands reported a survival rate of less than 25 % for A. saligna and 

less than 60 % for C. palmensis (Arredondo et al., 1998). 
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Exotic E. globulus, A. saligna and A. decurrense had faster root collar diameter and height 

growth than other species and the soil management significantly impacted their growth. Mekonnen 

et al. (2006) also found, that E. globulus had greater height and root collar diameter growth com-

pared to other species growing on nitisols of the Ethiopian. 

  
Fig. 5: Mean value and standard error bars for soil properties at the beginning and at the end of the exper-
iment in exotic Eucalyptus globulus plots. Dark bars are mean value before planting. Light bars are mean 
value after 48 months. 
 

Central Highlands. A. decurrense and A. saligna had rather similar growth patterns, although some 

reduction in height growth occurred after 24 months in the ground. Although, G. robusta showed 

the highest survival rate, its height and root collar growth was intermediate. Although, soil condi-

tions were enriched by management options, we suspect the improvement was insufficient to meet 

the fertility requirements for the species, although, the species can slightly improve soil conditions 
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(Figure S8). This species is highly palatable to sheep so illegal grazing in reforestation areas is 

common. The species is therefore not recommended for widespread rehabilitation of degraded 

lands, unless local laws are formulated and implemented to protect from free animal grazing.  

Higher dry biomass production occurred with E. globulus, A. decurrense and A. saligna, 

whereas C. palmensis, G. robusta, H. abyssinica and D. torrida presented lower dry biomass pro-

duction. Contrary to biomass production, the impact of species plantations in soil conditions re-

versed the ranking. Native H. abyssinica and D. torrida and exotic C. palmensis are the species that 

best improve nitrogen, carbon and available potassium in soils 48 months after plantation. E. globu-

lus plantations depleted nitrogen from soils significantly in the first 10 cm whereas Acacia species 

did not show a clear pattern. In our results it is surprising that Acacia species did not increase nitro-

gen concentrations in the topsoil, which can suggest strong leaching from top soil to deeper layers 

(Figure S6 and S7). This might affect groundwater as strong NOx contamination has been found in 

catchments afforested with A. saligna (Jovanovic et al., 2009) so large restoration programs with 

these species should take into account long-term negative effects. 

Wood energy dependence has traditionally seen as a deforestation and land degradation vec-

tor in developing countries (Geist and Lambin, 2002), although it has been also argued that fuel 

wood collection impacts can be mitigated adapting new managerial practices (Hiemstra-van der 

Horst and Hovorka, 2009) or collecting species other than the native found in natural forests. Plan-

tation of selected native or exotic species can play a major role in rehabilitating degraded land with 

little enhancement of biodiversity (Chazdon, 2008). However, Eucalyptus plantations in Ethiopia 

have a high potential for restoring species diversity (Yirdaw and Luukanen, 2003). In this regard, 

plantations of exotic species are considered as buffers or biological corridors that prevent deforesta-

tion in natural forests and foster rapid succession as well as provide fuel wood for local population 

(Lemenih and Bongers, 2010). 
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Fig. 6: Mean value and standard error bars for soil properties at the beginning and at the end of the exper-
iment in exotic Chamaecytisus palmensis plots. Dark bars are mean value before planting. Light bars are 
mean value after 48 months. 

Although our results clearly indicated E. globulus to be the best performing species for fuel 

wood production with high survival rates, the best growth rates for height and root collar diameter, 

and largest biomass production it should be noted that the species do not improve soil conditions 

and can even deplete nitrogen concentrations 48 months after plantation. Nevertheless, soil carbon 

concentration is not affected by eucalyptus as earlier noted by Fialho and Zinn (2012) in Brazil. 

With regards to carbon dynamics, it must be considered to analyse eucalyptus effects on a case by 

case basis as such species group can have a negative effect on  dissolved organic carbon concentra-
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tion five years after plantation (Wu et al., 2013). A balance between wood production for fuel and 

land reclamation is difficult to meet in areas where scarcity of natural resources is high. 

Fast-growing trees help ameliorating harsh and fluctuating microclimate conditions. This 

creates potential for rapid restoration of degraded lands through the accumulation of organic matter, 

and for future development of mixed stands that combine fast-growing exotics and naturally regen-

erated native species (Otsamo, 2000).  

With this regard, H. abyssinica increased significantly the amount of organic carbon in the 

top soil and the tendency continues up to 30 cm deep [Figure 3(e)]. G. robusta also improved soil 

condition (Figure S8), and it is the best option in terms of survival and has been considered to pos-

sess excellent firewood properties in its natural distribution area (Jaing and Singh, 1999). E. globu-

lus is the most productive species in terms of biomass production for firewood and it has shown a 

good survival rate and growth performance; it is usually preferred as an alternative for farmers and 

household needs (Bewket, 2003), however, as pointed by our results, a thorough, study on the eco-

logical impact of E. globulus is needed for the Central Highlands in Ethiopia. With the information 

obtained from our experiment, native H. abyssinica might be considered for reforestation programs 

to rehabilitate degraded lands and exotic G. robusta and to a lesser extend E. globulus, as a prelimi-

nary step to natural vegetation recovery and as good providers of raw material for fuel production.  

 

Conclusions 

 

The results of this study confirm that (i) G. robusta showed the highest overall survival rate 

followed by H. abyssinica. A. decurrense showed the lowest survival rate; (ii) E. globulus outper-

formed all species in height growth and biomass production and had a similar root collar diameter 

growth as A. saligna; however, it depleted nitrogen in the top soil; (iii) H. abyssinica, C. palmensis 

and D. torrida showed the lowest growth and biomass production, but all of them improved soil 

conditions 48 months after plantation; (iv) G. robusta and H. abyssinica resulted in similar height 

growth pattern over application of soil management options. A. saligna showed a stronger response 

to manure plus mulch than other species; (v) Dry biomass production was highly significant for E. 

globulus, although it was non-significant across soil management options and (vi) there is not a 

clear effect of any of the soil management options in growth. Finally, we have to modulate our 

working hypothesis that native tree species might not show better growth performance in harsh en-
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vironment because native species improved soil conditions. We recommend the use of native H. 

abyssinica for improving soil conditions of degraded land and exotic G. robusta for both soil reha-

bilitation and firewood production; whereas E. globulus plantations should be considered a good 

alternative for firewood production after a complete study upon the ecological impact of the species 

has been performed. More research is needed to confirm if planting native H. abyssinica in the un-

derstory of those species is appropriate to reclaim natural vegetation cover. 
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Fig S1. Climate data; Figure S2. Mean growth pattern; Figure S3. Soil properties error bars for 

Acacia decurrenes; Figure S4. Soil properties error bars for Acacia saligna; Figure S5. Soil proper-

ties error bars for Grevillea robusta. Table S1. Differences of least squares means for biomass pro-

duction. Table S2. Diagonal table of significance soil parameter differences. 
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  Supp Fig. S1: Location map of study area.  

 

Supp Fig. S2: Max temperature, minimum temperature and rainfall of the study area. 
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Supp Fig. S3. Images from the experiment. A. Bare land before plantation. B. Hagenia abyssinica. C. Acacia 
saligna. D. Eucalyptus globulus. E. Chamaecytisus palmensis, F. Grevillea robusta. 
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Table S1. Differences of least squares means for biomass production 48 months after planting and 

statistical significance of null hypothesis according to Tukey-Kramer’s adjustment. EG: Eucalyptus globulus, 

AS: Acacia saligna, AD: Acacia decurrense, CP: Chamaecytisus palmensis, GR: Grevillea robusta, DT: 

Dombeya torrida, HA: Hagenia abyssinica abyssinica. 

Species 

comparison 

48 months after planting 

Estimate P-value 

AD-As -2.343 0.870 

AD-CP 3.609 0.519 

AD-DT 5.079 0.189 

AD-EG -5.292 0.160 

AD-GR 4.297 0.337 

AD-HA 5.693 0.115 

AS-CP 5.952 0.093 

AS-DT 7.422 0.026 

AS-EG -2.949 0.715 

AS-GR 6.640 0.052 

AS-HA 8.037 0.015 

CP-DT 1.470 0.984 

CP-EG -8.901 0.007 

CP-GR 0.688 1.000 

CP-HA 2.084 0.919 

DT-EG -10.371 0.002 

DT-GR -0.782 1.000 

DT-HA 0.614 1.000 

EG-GR 9.589 0.004 

EG-HA 10.986 0.001 

GR-HA 1.397 0.987 
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Table S2: Diagonal table of significance soil parameter differences between species at different soil depths. 
OC: Organic carbon, N: nitrogen, CEC: Cationic Exchange Capacity, K: Potassium. In parenthesis p-value at 
0.05 level. 
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 Aboveground biomass equations for sustainable production of fuel wood in a native dry trop-

ical afro-montane forest of Ethiopia 

Mehari A. Tesfaye
1, 2

, Ricardo Ruiz-Peinado
2, 3

, Andrés Bravo-Oviedo
2, 3

, Felipe Bravo
1, 2 

1University of Valladolid at Palencia (UVa), Avda.Madrid, 44, 34071 Palencia, Spain, 2INIA-Forest Research Centre, Ctra A. 

Coruña, km. 7.5 Madrid, Spain,3Sustainable Forest Management Research Institute, UVa-INIA. 

Abstract 

Biomass equations are needed to correctly quantify harvestable stock and biomass for sus-

tainability in forest management, but information of this kind is scarce in Ethiopia. The objective of 

this study was to develop biomass equation models five of the most common native tree species in 

the Chilimo dry afro-montane mixed forest in the central highlands of Ethiopia: Allophyllus abys-

sinicus, Olea europaea ssp. cuspidiata, Olinia rochetiana, Rhus glutinosa and Scolopia theifolia. A 

total of  90 trees, (20 trees per species of O. europaea, O. rochetiana and S. theifolia and 15 trees 

per species of A. abyssinicus and R. glutinosa) from different diameter classes were selected, felled 

and divided into sections: thin branches with leaves (< 2 cm), thick branches (2-7 cm), large 

branches (>7 cm) and stem with bark. Biomass equation models (the first developed for these five 

species) were selected and fitted using joint generalized regression to ensure the additivity property 

between the biomass components of tree fractions and total biomass. Diameter at breast height and 

total height were used as independent variables. The models were found to be accurate and con-

sistent with other biomass estimations for sustainable fuelwood utilization of these species. A linear 

correlation between observed and predicted values was found for all five species, along a single, 

straight line. Thus, the models can be considered reliable for estimating aboveground biomass in 

the Chilimo forest and applied more generally in similar forest types. 

Key words: Chilimo forest, tropical forest, biomass models, carbon stock, additivity, Ethiopia 
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Introduction 

Forests play an important role in mitigating global climate change. The IPCC (2007) esti-

mates that forests cover over 4 billion hectares of the earth’s surface and contribute to around 50 % 

of global greenhouse gas mitigation.  

Tropical forests account for about 60 % of global forest cover and store an estimated 193-229 Pg of 

carbon in aboveground biomass (Brown, 1997; FAO, 2005; Baccini et al., 2012), roughly 20 times 

the annual emissions from combustion and changes in land use (Friedlingstein et al., 2010). Tropi-

cal dry forests represent around 42 % of all tropical forest ecosystems (Mayaux et al., 2005; Miles 

et al., 2006).  

The need for accurate estimates of forest biomass is increasing due to its importance in 

managing commercial and fuelwood, global carbon cycle budgeting and sustainable forest man-

agement, along with the assessment of forest structure and condition, forest productivity or carbon 

fluxes based on sequential changes in biomass (Cole, 2006). In developing countries, about 38 % of 

primary energy consumption comes from forest biomass (Sims, 2003), in Ethiopia, biomass sup-

plies 93 % of total household energy consumption (Alem et al., 2010). To successfully implement 

mitigating policies and take advantage of the REDD (Reducing Emission from Deforestation and 

Forest Degradation) programme of the United Nations Framework Convention in Climate Change 

(UNFCCC) (Chatuvedi et al., 2011; Miah et al., 2011), these countries need well-authenticated es-

timates of forest carbon stocks. 

Consequently, through direct or indirect methods, it is both important and urgent to quantify 

tree biomass and how it is distributed among the different tree components (Brown, 2002). Destruc-

tive methods directly measure biomass by harvesting the tree and measuring the actual mass of each 

of its components (Kangas and Maltamo, 2006). Though very accurate (Henry et al., 2011), cutting 

down trees is both costly and time consuming. In contrast, indirect methods using biomass models 

and biomass expansion factors (BEFs) to estimate tree biomass are inexpensive and time efficient 

(Peltier et al., 2007). However, tools for biomass estimation are scare in the tropics and existing 

models do not accurately represent the actual forests (Henry et al., 2011). Most models for tropical 

rainforest species were developed in Latin America and South Africa. Though some studies have 

recently emerged in east Africa and Ethiopia (Zerfu, 2002; Embaye et al., 2005; Mamo and Sterba, 

2006; Zewdie et al., 2009; Henry et al., 2010; Fayolle et al., 2013; Ngomanda et al., 2014), at-
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tempts to develop biomass equations for these places and Sub-Saharan Africa in general have been 

very limited (Henry et al., 2011). More research is needed in these areas. 

Forest was once naturally abundant in Ethiopia, covering about 40 % of the country in 1900. 

The numbers have declined drastically since then, to 16 % in 1985 and 2.7 % by 2004 (Nyssen et 

al., 2004). National carbon stocks for the same years have been estimated at 153 Tg C by Houghton 

(1999), 867 Tg C by Gibbs et al. (2007) and 2.5 Gt C by Sisay (2010). Estimates of the naturally 

high forest carbon stock density range from 101 Mg C ha
-1

 (Brown, 1997; Moges  et al., 2010) to 

200 Mg C ha
-1

 (Temam, 2010), depending on the methodology and tools used soil classification, 

topography and forest types. Localized carbon stocking capacity studies are urgently needed to aid 

sustainable management of the existing forest (IBC, 2005; Moges et al., 2010). 

Located in the central highland plateau of Ethiopia, the Chilimo forest is one of the few re-

maining dry afro-montane mixed forests and is composed of both broad-leaf and the more dominant 

coniferous species. The main species (based on density) include Juniperus procera, Podocarpus 

falcatus, Olea europaea subsp. cuspidata, Scolopia theifolia, Rhus glutinosa, Olinia rochetiana and 

Allophylus abyssinicus (Kelbessa and Soromossa, 2004; Kassa et al., 2009). The forest represents a 

vital ecological space for birds, mammal species and water supply. It is the source of several large 

rivers, including the Awash River. However, the Chilimo forest has been subjected to human im-

pact for over 2,000 years. The current rate of deforestation is extremely high due to clearing for fuel 

wood, agricultural land expansion, lumber and farm implements. Chilimo forest cover has shrunk 

from 22,000 hectares in 1982 to its present-day size of 6,000 hectares (Shumi, 2009; Teshome and 

Ensermu, 2013). The Ethiopian government has proclaimed this forest as a National Priority Pro-

tection Forest area. Since above  and below-ground biomass estimates for most Ethiopian species 

are non-existent, the main objective of this study was to develop biomass and carbon stock estima-

tion models for use in developing sustainable biomass harvesting practices for five of the most 

common native species in dry tropical afro-montane forest: Allophyllus abyssinicus (Hochst.) 

Radlk. Olea europaea L. ssp. cuspidata (Wall. ex G. Don) Cif, Olinia rochetiana A. Juss, Rhus glu-

tinosa Hochst. Ex A. Rich. and Scolopia theifolia (Gilg.). Although the coniferous J. procera and 

the broadleaf P. falcatus are the most abundant and dominant trees in the forest, cutting them down 

is prohibited by law and it was therefore not possible to develop biomass-based equations for these 

endangered species. Consequently, the species included in this study are under increased pressure 
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from the local human population in search of wood for fuel, construction wood, farm implements 

and charcoal (Kassa et al., 2009; Teshome and Ensermu, 2013). 

Material and Methods 

Study site location 

The experimental site was located in the Chilimo dry afro-montane forest of the Western 

Shewa zone, in the Dendi district of the central highlands of Ethiopia (38° 07′ E to 38° 10′ E longi-

tude  and  9° 30′ to 9° 50′ N’ latitude), at an altitude of 2,170-3,054 m above sea level (Figure 1). 

The mean annual temperature ranges between 15 
º
C and 20 

º
C and average annual precipitation is 

1,264 mm (Shumi, 2009). Köppen’s typology classifies the Chilimo forest as a temperate highland 

climate with dry winters (CWB) (EMA, 1988). 

 

 

Fig. 1: Location map and sampling plots of Chilimo dry afro-montane mixed forest (Ethiopia). 
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Exploration and pilot survey 

A preliminary discussion forum was held with the higher officials of the Oromiya Wildlife 

and Forest Enterprise in Addis Ababa. Subsequently, a field survey was conducted for physical ob-

servation of the Chilimo, Gaji and Gallessa patches.  

Prior to biomass data collection, an inventory was taken to compile information about spe-

cies composition, diameter distribution and general forest conditions. A total of thirty-five 20 x 20 

m square sample plots were marked based on the Neyman optimal allocation formula (Köhl et al., 

2006) for the altitudinal gradient. The plots were laid out along 100 m of ground distance starting 

from the highest ridges to the lowest ridges of the mountains, using a measuring tape, GPS, altime-

ter and compass. The boundaries of the main plots were pegged and marked then altitude, slope, 

latitude and longitude were recorded from the centre of each main plot. The distance between two 

consecutive transect lines varied from 300 m to 1 km, depending on the accessibility of the next 

transect. A total of 33 different native species (22 tree and 11 shrub species) were recorded and 

density of trees varied from 2, 533 ha
-1 

in the Chilimo patch to 848 ha
-1

 in the Gallessa patch. Simi-

larly, the cumulative density of the five species studied varied from 400 stems ha
-1

 in the Chilimo 

patch to 94 stems ha
-1

 in the Gallessa patch (Table 1). 
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Table 1: General description of Chilimo natural forest (mean ± standard deviation). 

Forest 

patch 

Latitude Longitude Altitude (m) Aspect 

(%) 

Plots Tree 

spp 

Density 

(N ha
-1

) 

Density 

studied spp 

Dg (cm) Gm
2 
ha

-1
 Gm

2
 ha

-1
 

studied 

species 

Chilimo 
N09°04´013´´- 

N09°04’857’’ 

E038°08´557´´- 

E038°09´960´’ 
2470-2770 8-70 % 20 26 2533±28 400±8 26.12±5.3 18.9±1.92 6.21±1.4 

Gallessa 
N09°05´162´´- 

N09°05’765’’ 

E038°09´847´´- 

E038°10´283´’ 
2700-2921 25-70 % 11 20 848±10 94±3.5 19.88±2.5 18.18±1.91 3.37±1.1 

Gaji 
N09°04´269´´- 

N09°04’340’’ 

E038°09´861´´- 

E038°10´025´’ 
2680-2793 45-50 % 4 18 1638±20 358±5 23.45±4.4 13.81±1.40 5.54±1.2 

Total 
N09°04´013´´- 

N09°05’765’’ 

E038°08´557´´- 

E038°10´025´’ 
2470-2921 25-70% 35     

Dg: quadratic mean diameter, G: basal area, spp: species, ha: hectare, m: meter 
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Data collection and sampling 

Sampling and data collection were done in the measured plots of the mixed natural forest. 

Individual species were categorized into trees ( ≥ 5 cm diameter at breast height -dbh-), shrubs, sap-

lings (height  ≥ 1.3 m and dbh 2.5-5 cm) and seedlings (height 0.30-1.3 m and dbh ≤ 2.5 cm) fol-

lowing Lamprecht’s classification (Lamprecht, 1989). All trees and saplings found in the plots were 

then numbered and marked and tree diameters were measured with a calliper. Crown height, height 

at branching stems and total height were measured using a Vertex III digital tree height measure-

ment instrument. In cases where trees branched at or below breast height, diameter was measured 

separately for each branch. Likewise, the diameter of each stem was measured separately for trees 

with multiple stems connecting near the ground. For irregularities and or buttresses on large trunks, 

measurement was taken at the nearest lower point. Shrubs, seedlings and saplings were not record-

ed for the aboveground biomass equation work due to their minimal contribution in this forest. A. 

abyssinicus (4 %), O. europaea ssp. cuspidiata (8 %), O. rochetiana (5 %), R. glutinosa (3 %) and 

S. theifolia (5 %) accounted for 25 % of the total native tree population in terms of number of trees 

ha
-1

 and 23 % (5.04 m
2 

ha
-1

) of total basal area in the overall population. These tree species were 

selected for developing aboveground biomass-based equations for sustainable fuel wood production 

because they are the most abundant and dominant tree species in the natural forest after J. procera 

and P. falcatus (endangered species). The studied species serve as a source of fuel wood for the lo-

cal community and the nearby town of Ginchi (Kassa et al., 2009; Shumi, 2009; Teshome and 

Ensermu, 2013). Further attention and research is needed for the sustainable management of these 

species. 

Data 

Trees of each species were selected, cut and sampled based on diameter classes at 5-cm in-

tervals that were obtained from inventory data. Prior to felling, diameter at breast height (dbh = 1.30 

m), diameter at ground base (db), crown diameter (cd) and crown length (cl) were measured for 

each tree. After the trees were cut down, diameter at each meter interval, total height (h), commer-

cial height (hc) (height up to a stem diameter of 7 cm) and height at branching stems (hb) were 

measured. The branches were de-limbed and separated at first into four biomass components: stem 

with bark (commercial volume, up to a stem diameter of 7 cm), big branches (diameter larger than 7 
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cm), thick branches (diameter between 2 and 7 cm) and thin branches (diameter smaller than 2 cm) 

plus leaves. Fresh weights of each component were recorded in the field and then samples were tak-

en to the laboratory and oven dried at 102 ºC to constant weight. Smalian´s formula (Nicholas et al., 

2012) was used to calculate the volume of stems and large branches (Ø > 7 cm). Since there were 

very few large branches (>7 cm) among these species, biomass from this fraction was incorporated 

into the stem fraction. The main species variables for the sample trees are listed in Table 2. The 

minimum dbh was recorded for O. rochetiana (6.15 cm) followed by O. europaea (6.20 cm). In-

versely, O. europaea ssp. cuspidiata presented the maximum dbh (28.80 cm), followed by O. 

rochetiana (27.50 cm) (Table 2). 
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Table   2: Summary of main tree variables for the five most dominant species in Chilimo forest. 
Studied 

variables 

A. abyssinicus O. europaea O. rochetiana R. glutinosa S. theifolia 

Me

an 

SD Min

imu

m 

Max-

imum 

Mean SD Min

imu

m 

Max-

imum 

Mean SD Min

imu

m 

Max-

imum 

Me

an 

SD Min

imu

m 

Max-

imum 

Me

an 

SD Min

imu

m 

Max-

imum 

Dbh (cm) 11.3 3.9 6.4 21.3 14.5 5.9 6.3 28.8 14.9 6.68 6.2 27.5 15.6 4.9 9.0 23.5 11.8 4.1 6.4 22.0 

db (cm) 13.9 6.2 0.2 27.3 18.2 6.3 9.9 31.9 17.9 8.36 7.6 34.8 18.8 5.0 12.7 27.5 14.6 4.1 8.0 22.9 

h (m) 10.6 3.1 7.0 17.0 10.6 2.1 5.9 14.5 12.6 2.92 7.3 19.4 11.3 3.0 6.0 17.4 8.2 1.9 5.6 13.0 

hc(m) 6.7 3.4 0.3 13.5 5.8 2.7 0.5 10.7 8.0 3.58 1.0 14.0 6.3 2.3 1.6 11.4 4.6 2.2 1.9 9.5 

hb (m) 4.7 2.6 2.0 12.7 4.0 1.5 1.7 7.0 4.7 1.62 2.0 7.4 4.6 1.9 2.2 9.2 13.7 47.4 1.8 215.0 

BS (kg) 32.3 35.6 0.0 130.4 84.2 83.5 4.9 302.9 93.5 97.33 0.0 349.9 65.2 50.4 9.0 168.8 36.3 37.2 5.3 129.3 

Br27(kg) 12.1 4.0 4.3 17.4 19.6 11.5 6.0 46.7 26.9 20.42 7.7 89.2 17.2 7.8 5.6 28.3 23.4 14.8 9.8 72.8 

Br2 (kg) 7.7 3.5 1.5 13.2 16.7 12.2 1.4 37.9 19.2 14.05 3.0 48.3 8.8 5.7 2.4 22.5 22.6 14.8 6.3 79.1 

Crown 

(kg) 

19.8 6.5 5.8 28.3 36.3 22.7 7.4 84.6 46.1 32.19 11.7 129.8 26.0 12.1 8.1 49.6 46.0 28.2 17.8 151.9 

Above 

(kg) 

52.1 38.2 11.6 157.6 120.5 104.7 14.3 366.7 139.5 124.1 13.7 451.9 19.2 58.7 17.2 202.4 82.3 52.3 23.0 281.1 

N 15 15 15 15 20 20 20 20 20 20 20 20 15 15 15 15 20 20 20 20 

Where, SD: standard deviation, dbh: diameter at breast height (1.30 m), db: diameter at base, h: total height, hc: commercial height, hb: branching height, BS: 

biomass of stem, Br2: biomass of thin branches plus foliage (< 2 cm), Br27: biomass of thick branches (2-7 cm), above: stem+thick branches (2-7 cm) + (thin 

branches+ leaves) or stem+crown, N: number of observations. 
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Data analysis 

A correlation analysis between the biomass weight of the different fractions and the bio-

metric tree measurements was carried out using the Spearman method, in order to identify signifi-

cant predictor variables. To fit the biomass models, different linear and non-linear equations (Table 

3) were evaluated for each biomass fraction. The best one was selected based on the MRES (mean 

residual for evaluating bias), the RMSE (root mean square error for evaluating precision) and bio-

logical behavior. The selected models were then simultaneously fitted using joint generalized re-

gression (Seemingly Unrelated Regression, SUR), where cross-equation error correlation was taken 

into consideration to ensure the additivity property between biomass components and total above-

ground biomass (Balboa-Murias et al., 2006; Ruiz-Peinado et al., 2011 and 2012). Weighted re-

gression was used to avoid heteroscedasticity: each observation was weighted by the inverse of its 

variance to homogenize the variance of residuals. Models were fitted using the MODEL procedure 

included in the SAS/ETS software (SAS Institute Inc., 1999). Biomass partitioning between species 

was studied by applying the best fitted models to the mean value of the diameter classes sampled 

and the mean height, which was calculated in a dbh-height relationship using field data. 

 To compare the predictive accuracy of the general equations developed for tropical dry for-

ests (Brown et al., 1989; Brown and Lugo, 1992; Brown, 1997; Chave et al., 2005), the Ethiopian 

site-specific fitted models were evaluated using average deviation (S) [equation 1], relative bias 

(RB) [equation 2], relative root mean square error (RRMSE) [equation 3] (Tedeschi, 2006) and a 

paired t-test for estimation values: 

       [1] 

       [2] 

       [3] 

where  is the predicted value,  is the observed value and n is the number of observations. 
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Table 3: Biomass models evaluated for different tree components. 

Model Equation Model Equation 

1 W= β*(d*h) 7 W= (β*d
2
)+(λ*h) 

2 W= β*(d
2
*h) 8 W= (β*d

2
)+(λ*h)+(θ*d

2
*h) 

3 W= (β*d)+(λ*d
2
)+(θ*d

2
*h) 9 W= (β*d

2
)+λ*(d*h) 

4 W= (β*d)+(λ*h) 10 W= β*(d
2
*h)+ λ *(d*h) 

5 W= (β*d
2
)+λ*(d

2
*h) 11 W= β*(d

λ
) *(h

θ
) 

6 W= β*(d
2
*h) 

λ
 12 W= β*d+ λ*d

2
 

Where W: biomass weight (kg) for the different fractions, d: dbh (cm), h: tree height (m), β, λ, θ: parameters of the 

models. 

Results 

Correlation of dendrometric variables to dry biomass fractions 

The aboveground, stem and thin branches plus foliage biomass fractions for all five species 

were strongly correlated to dbh and stump diameter (Table 4). Similarly, most biomass fractions 

were also correlated to total height and commercial height. However, the thick branches fraction of 

A. abyssinicus and R. glutinosa were non-correlated to dbh and stump diameter and most biomass 

fractions were not significantly correlated to tree branching height, crown length or crown diameter. 

Spearman’s correlation results indicated that biomass models could use dbh and total height as in-

dependent variables. These variables are usually measured in forest inventories and commonly used 

for biomass estimation models of this type. 
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 Table 4: Spearman correlation coefficients between biomass components and dendrometric variables  
                for the studied species. 

Spp Biomass fractions Dendrometric variables 

h hc hb dbh db cd cl 

 
A. ab-
yssini-
cus 

Stem 0.72
**

 0.96
***

 0.32
ns

 0.85
***

 0.82
***

 0.13
ns

 0.46
ns

 

Thick branches (2-7) 0.20
ns

 0.02
ns

 0.01
ns

 0.22
ns

 0.25
ns

 0.05
ns

 -0.08
ns

 

Thin branches + L 0.64
*
 0.58

*
 0.38

ns
 0.65

**
 0.64

*
 0.10

ns
 0.29

ns
 

Crown 0.48
ns

 0.36
ns

 0.19
ns

 0.54
*
 0.48

ns
 0.11

ns
 0.15

ns
 

Above 0.86
***

 0.93
***

 0.24
ns

 0.91
***

 0.89
***

 0.07
ns

 0.50
ns

 

O. eu-
ropaea 

Stem 0.71
***

 0.81
***

 0.09
ns

 0.95
***

 0.89
***

 0.67
**

 0.48
*
 

Thick branches (2-7) 0.70
**

 0.86
***

 0.08
ns

 0.89
***

 0.84
***

 0.81
***

 0.39
ns

 

Thin branches + L 0.54
*
 0.76

***
 -0.11

ns
 0.92

***
 0.88

***
 0.51

*
 0.36

ns
 

Crown 0.62
**

 0.84
***

 -0.02
ns

 0.95
***

 0.91
***

 0.67
**

 0.39
ns

 

Above 0.68
**

 0.85
***

 0.05
ns

 0.96
***

 0.93
***

 0.68
*
 0.48

*
 

O 
.rochet
iana 

Stem 0.84
***

 0.87
***

 0.36
ns

 0.92
***

 0.93
***

 0.75
***

 0.69
**

 

Thick branches (2-7) 0.69
**

 0.57
**

 0.41
ns

 0.76
**

 0.83
***

 0.64
**

 0.64
**

 

Thin branches + L 0.67
***

 0.56
**

 0.29
ns

 0.82
***

 0.82
***

 0.55
*
 0.62

**
 

Crown 0.69
**

 0.57
**

 0.37
ns

 0.83
***

 0.87
***

 0.62
**

 0.82
**

*
 

Above 0.83
***

 0.83
***

 0.40
ns

 0.94
***

 0.95
***

 0.74
***

 0.68
**

 

R. glu-
tinosa 

Stem 0.49
ns

 0.88
***

 0.19
ns

 0.98
***

 0.94
***

 0.44
ns

 0.69
**

 
Thick branches (2-7) 0.63

*
 0.36

ns
 -0.38

ns
 0.41

ns
 0.44

ns
 0.58

*
 0.59

*
 

Thin branches + L 0.61
*
 0.59

*
 0.04

ns
 0.68

*
 0.68

*
 0.14

ns
 0.73

**
 

Crown 0.61
*
 0.52

ns
 -0.26

ns
 0.68

*
 0.71

**
 0.47

ns
 0.73

**
 

Above 0.63
*
 0.83

***
 0.10

ns
 0.92

***
 0.89

**
 0.46

ns
 0.74

**
 

S. 
theifo-
lia 

Stem 0.90
***

 0.89
***

 0.14
ns

 0.92
***

 0.88
***

 0.34
ns

 0.48
*
 

Thick branches (2-7) 0.79
***

 0.81
**

 0.02
ns

 0.73
***

 0.71
**

 0.35
ns

 0.47
*
 

Thin branches+ L 0.49
*
 0.53

*
 0.17

ns
 0.70

***
 0.70

**
 0.33

ns
 0.39

ns
 

Crown 0.76
***

 0.81
***

 0.05
ns

 0.85
***

 0.88
***

 0.40
ns

 0.48
*
 

Above 0.87
***

 0.90
***

 0.16
ns

 0.89
***

 0.83
***

 0.41
ns

 0.53
*
 

Note: Above: stem+thick branches (2-7 cm) + (thin branches plus leaves) or stem+crown,* = p ≤ 
0.05, **= p ≤ 0.01, *** = p ≤ 0.001, hc: commercial height, hb: branching height, h: total height, 

dbh: diameter at breast height, db: tree basal diameter, cd: crown diameter, cl: crown length. L: 

leave. 
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Fitted models  

Based on goodness-of-fit statistics and biological behaviour, models 1, 2, 5 and 7 (Table 3 

and 5) were selected for different components and species. Due to fitting problems, biomass for all 

branches and leaves were combined into a crown fraction for O. rochetiana, R. glutinosa and S. 

theifolia; and one model was fitted for this fraction. Similarly, the model that treated all compo-

nents together as aboveground biomass provided the best fit for A. abyssinicus. These calculated 

model parameters were statistically significant at the 99 % confidence level (p < 0.001) (Table 5). 

All fitted models for stem biomass showed R
2 

-Adj values higher than 0.75. Due to high variability, 

branch or crown models presented lower values, ranging from 0.79 for the thick branches fraction 

in O. europaea to 0.55 for crown biomass in S. theifolia. Aboveground biomass models fitted with 

SUR (except for A. abyssinicus) showed high R
2
-Adj values ranging from 0.96 for O. europaea to 

0.79 for S. theifolia. 

The selected models were also tested for accuracy based on observed and predicted data. 

The observed vs predicted values for total aboveground biomass revealed no bias in the fitted mod-

els, though, efficiency varied among the species (Table 5). The results indicated that the selected 

models are efficient. Figure 2 shows how observed and predicted aboveground biomass values are 

close to 1:1 line.  



Tesfaye (2015) 

176 
 

Table 5: Simultaneous fit of biomass models for the most important native species of Chilimo natural forest. 

Species Fracti-

on 

MRE

S 

RMS

E 

R
2
_A

dj. 

Selected model Estimated 

parameters 

Pr > |t| 

A.abyssinicus Above 0.01 10.27 0.84 Wa= β*(d*h) 0.3937 <.0001 

Olea europaea Stem 0.72 12.01 0.93 Ws= β*(d
2
*h) 0.02746 <0.0001 

Br27 -0.53 4.47 0.79 Wbr27= 

(β*d
2
)+(λ*h) 

0.05744 <.0001 

0.6856 0.0008 

Br2 0.09 5.29 0.69 Wb2= β*(d
2
*h) 0.006584 <.0001 

Above 0.27 12.03 0.96 Wa=∑Wi   

Olinia roche-

tiana 

Stem 0.25 35.06 0.76 Ws=β*(d*h) 0.3990 <.0001 

Crown 1.31 14.41 0.58 Wc= 

(β*d
2
)+λ*(d

2
*h) 

0.4550 <.0001 

-0.02163 <.0001 

Above 1.56 33.38 0.85 Wa=∑Wi   

Rhus glutinosa Stem 3.34 10.57 0.79 Ws=β*(d
2
*h) 0.01604 <.0001 

Crown -1.24 6.28 0.68 Wc= (β*d
2
)+(λ*h) 0.04867 0.0017 

1.3033 <.0001 

Above 2.11 11.11 0.88 Wa=∑Wi   

Scolopia 

theifolia 

Stem 1.52 6.94 0.75 Ws=β*(d
2
*h) 0.02107 <.0001 

Crown 0.65 7.67 0.55 Wc= β*(d*h) 0.4253 <.0001 

Above 2.17 11.04 0.79 Wa= ∑Wi   

 

Where, Above: stem+Br2+Br27 or stem+crown, Wi: biomass weight (kg) of the different fractions, d: dbh 

(cm), h: tree height (m), β, λ: parameters of the models, Br2: branches with a diameter less than 2cm plus 

leaves, Br27: thick branches between 2-7cm, MRES: mean residual, RMSE: root of the mean quadratic error 

(kg), R2-Adj.: r2 adjusted correlation coefficient. 
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Fig. 2: Observed vs predicted values for aboveground biomass of the studied species 

Biomass partitioning 

Aboveground biomass partitioning of O. europaea ssp. cuspidiata, O. rochetiana, R. gluti-

nosa and S. theifolia into stem and crown biomass fractions is summarized in figure 3. The biomass 

proportions were estimated by applying the fitted models to the sample diameter classes and the 

corresponding estimated total height. O. europaea and O. rochetiana exhibited similar biomass al-

location: the stem fraction accumulated more biomass than the crown fraction (60-70 %) in all di-

ameter classes. R. glutinosa crown fractions accumulated more biomass (53 %) than stem fractions 

(47 %) in the 10 cm diameter class; but stem fractions accumulated more biomass than crown frac-
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tions in the 15 and 20 cm diameter classes (61 % and 69 %, respectively). The S. theifolia crown 

fraction was greater than the stem fraction in all diameter classes. 

 

Fig. 3: Aboveground biomass partitioning for the main sampled tree species. 

Model comparison 

The comparison of fitted models using generalized equations developed for tropical forest 

(Brown et al., 1989; Brown and Lugo, 1992; Brown, 1997; Chave et al., 2005) showed that the 

equation developed by Brown et al. (1989) presented the poorest results (32-59 % average devia-

tion) for aboveground biomass predictions. The deviation values were species-dependent and the 

highest average deviation (86 %) occurred when the Brown model (Brown, 1997) was applied to R. 

glutinosa (Table 6). Deviation for the other species ranged from 28 % to 39 %. Relative bias 

showed over-or- underestimation of the generalized models, showing the Brown et al. (1989) mod-

el overestimation in all species. The t-test also revealed the inadequacy of the Brown et al. (1989) 

model for four of the five species studied (A. abyssinicus, O. europaea, O. rochetiana, R. glutino-

sa). Similarly, the Chave et al. (2005) model was also unsuitable for three species (A. abyssinicus, 

O. rochetiana, R. glutinosa). 
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Table   6: Comparison of models for aboveground biomass estimation in tropical forest (site-specific and 
generalized equations). 

 

Species Model reference 

Average de-

viation (%) 

Relative 

bias (%) 

Relative 

RMSE 

t-test 

t-

Statistic 

p-

value 

A. abyssinicus This study 21.09 -7.41 0.280 0.004 0.9969 

Generalized Brown et al. (1989) 38.95 36.14 0.416 4.4287 0.0006 

Generalized Brown & Lugo (1992) 23.36 -2.58 0.342 -0.8096 0.4327 

Generalized Brown (1997) 33.75 -19.19 0.495 -1.7582 0.1022 

Generalized Chave et al. (2005) 19.61 6.99 0.271 0.4332 0.6720 

Olea europaea This study 14.32 -5.29 0.204 0.0955 0.9251 

Generalized Brown et al. (1989) 43.21 40.81 0.445 6.2926 <.0001 

Generalized Brown & Lugo (1992) 18.41 15.12 0.216 4.0902 0.0008 

Generalized Brown (1997) 28.30 -9.95 0.341 -1.9002 0.0756 

Generalized Chave et al. (2005) 21.76 -16.51 0.276 -3.5292 0.0028 

O. rochetiana This study 29.18 -19.43 0.408 0.2015 0.8427 

Generalized Brown et al. (1989) 46.50 44.16 0.497 4.2731 0.0005 

Generalized Brown & Lugo (1992) 22.23 9.46 0.303 -0.2241 0.8253 

Generalized Brown (1997) 39.38 -8.31 0.507 -1.7996 0.0897 

Generalized Chave et al. (2005) 19.33 11.02 0.249 0.5996 0.5167 

Rhus glutinosa This study 13.32 4.17 0.156 0.6595 0.5244 

Generalized Brown et al. (1989) 32.05 13.07 0.374 0.4016 0.6965 

Generalized Brown & Lugo (1992) 29.77 -22.89 0.390 -2.126 0.0593 

Generalized Brown (1997) 85.98 -78.59 1.082 -2.7029 0.0222 

Generalized Chave et al. (2005) 37.45 -36.47 0.461 -2.8738 0.0166 

S.theifolia This study 13.59 2.43 0.168 0.4193 0.8290 

Generalized Brown et al. (1989) 58.71 55.45 0.582 10.1593 <.0001 

Generalized Brown & Lugo (1992) 43.31 40.91 0.444 9.2180 <.0001 

Generalized Brown (1997) 31.25 19.47 0.344 1.9076 0.0750 

Generalized Chave et al. (2005) 38.94 36.78 0.401 8.4323 <.0001 
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 Discussion 

Biomass and carbon stock estimates for tropical forest species help us to better understand 

the importance of tropical forests in the global carbon cycle and how to manage these forests for 

sustainable production and fuel wood harvesting. They also serve as valuable tools for policy-

makers and stakeholders. Developing specific biomass models for species in Ethiopian dry afro-

montane mixed forests will contribute to the sustainable management of these forests. The models 

developed in this study included dbh and total height as independent variables in all the biomass 

fractions (Table 5). Although, commercial height showed a high correlation with biomass weight 

(Table 4), accurate measurement of these variables in the field is difficult (Segura and Kanninen, 

2005). Combining these values provided better fit results and estimation values than the use of dbh 

alone. Several authors have advocated the combined use of dbh and height as independent model 

variables (Basuki et al., 2009; Ruiz-Peinado et al., 2011 and 2012), because height could incorpo-

rate indirect information about site conditions (competition, fertility...). Henry et al. (2011) advo-

cated the combined use of these variables due to variations in wood gravity, volume and biomass 

among and within ecological zones and trees. Feldpausch et al. (2012) found that including total 

height in models improved the accuracy of biomass estimates in tropical forest because it avoided 

biomass overestimation in large trees. Chave et al. (2005) also found dbh, wood specific gravity, 

total height and forest type (in decreasing order) to be important variables for predicting tree bio-

mass in tropical forests. These authors observed a standard error reduction from 19.5 % when total 

height was not available to 12.5 % when total height was available, across all types of tropical for-

ests. Brown et al. (1989) developed general biomass models for wet, moist and dry tropical mixed 

forests by including dbh and height as predictive variables. Such models facilitate practical, effort-

less and timely applications, because the independent variables are easily measured in the field and 

commonly recorded in forest inventories (Ketterings et al., 2001). 

Equations were developed for each biomass fraction according to species (Table 5). Models 

were developed for all biomass fractions of O. europaea; but only an aboveground biomass equa-

tion could be developed for A. abyssinicus, possibly due to the low crown and foliage biomass of 

this species. Models were developed for stem and crown biomass fractions of the other three spe-

cies studied (O. rochetiana, S. theifolia and R. glutinosa). Combining thick branches and thin 

branches with leaves into a crown biomass fraction resulted in better fitting efficiency, due to the 
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high variability in these fractions. Similar results reported by other authors corroborate the lower 

prediction potential of the branch and foliage biomass models over the stem model (Negash et al., 

2013). Cole and Ewel (2006) argue that weather, herbivores and inter-plant competition affect the 

variability of the crown biomass fraction. In mixed forest, inter-specific competition strongly influ-

enced crown geometry, resulting in high biomass heterogeneity. 

All the estimator parameters of the biomass models showed positive coefficient values for 

all species and biomass fractions, except one parameter for crown biomass in R. glutinosa. It affect-

ed total height as an independent variable and could indicate that taller trees allocate less biomass to 

crown due to light competition processes for this species (Vanninen and Mäkelä, 2000). 

Although some authors have proposed the use of generalized equations to estimate above-

ground biomass in African tropical forests (Brown et al., 1989; Brown and Lugo, 1992; Brown, 

1997; Chave et al., 2005) others advocate the use of species-specific and site-specific equations. 

Such equations reflect the great variability in tree architecture and wood gravity among and within 

the species (Ketterings et al., 2001; Litton and Kauffman, 2008; Henry et al., 2011), making it pos-

sible to more accurately quantify harvestable biomass for fuel wood and other purposes. Several 

authors have also reported that generalized equations were unsuitable for African tropical forests 

(Henry et al., 2010; Ngomanda et al., 2014). Comparison of the generalized models (Brown et al., 

1989; Brown and Lugo, 1992; Brown, 1997; Chave et al., 2005) to the fitted models for the studied 

species (Table 6) showed that accuracy varied according to species. The Brown et al. (1997) model 

was not valid for these species (p-value < 0.05 in four species and high statistics for R. glutinosa). 

The Chave et al. (2005) model was unsatisfactory for three of the studied species, but showed ac-

ceptable statistics for the other two. Although, the Brown and Lugo (1992) and the Brown (2002) 

models were valid for three and four species, respectively, they also showed poor statistics (average 

deviation, relative bias and relative RMSE). In light of these results and the high heterogeneity of 

species in tropical mixed forests, we advise the use of site-specific models if they are available. 

This conclusion is based on results for five relatively small tree species (maximum sampled diame-

ter: 28.8 cm; maximum sampled height: 19.4 m); the accuracy of generalized models might im-

prove when applied to large trees. In the literature on biomass estimation in tropical forests, there 

are findings regarding both the precision of generalized equations (Fayolle et al., 2013) and the ad-

vantages of site-specific equations (Segura and Kanninen, 2005; Ngomanda et al., 2014). Deo 

(2008) argued that the relatively small sample number of trees used for developing generalized bi-
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omass equations in the tropics led to biased predictions and emphasized the need for site-specific 

equations. In recent years, several site-specific models have been developed for tropical species in 

general and sub-Saharan species in particular; which are described in the review of Henry et al. 

(2011). 

 Biomass partitioning is an important factor in quantifying exploitable dendromass (for tim-

ber yield or firewood). Stem biomass proportions in O. europaea and O. rochetiana were nearly 

constant across the diameter classes (Figure 3), but increased with increasing diameter in R. gluti-

nosa and S. theifolia. However, the crown fraction in S. theifolia was always greater than the stem 

fraction. This might be due to its umbrella-shaped crown, which contributes significantly to branch 

volume. Tropical species vary greatly in leaf morphology and crown structure, leading to differ-

ences in biomass allocation among species (Poorter et al., 2006). Henry et al. (2010) found mean 

figures with higher biomass accumulation in the stem fraction (72 %) than in crown fractions (28 

%) for 16 tropical species in Africa. The results of Mate et al. (2014) for three tropical species (of 

greater diameter than those sampled in this study) showed mean biomass partitioning values that 

ranged between 46 % and 77 % for stems and from 23 % to 54 % for crowns. Likewise, Henry et 

al. (2010) found that stem biomass tended to decrease as crown biomass increased, and vice versa. 

This finding was not corroborated for the species we examined, where the stem fraction always in-

creased with tree size and diameter range. Biomass distribution among tree components might be 

related to site conditions, mainly light and space competition in dense forest (as sampled at this 

study), resulting in trees with lower crowns than in open forests. 

Conclusions 

Tree diameter and total height were considered the best independent variables for biomass 

estimation of the species studied in the Chilimo dry afro-montane mixed forest, due to their high 

correlation with biomass dry weight. Crown biomass models were fitted for three of the five species 

studied (O. rochetiana, R. glutinosa and S. theifolia) due to high variability in branch biomass frac-

tions resulting from inter-specific competition in the mixed tropical forest. An aboveground model 

was developed for A. abyssinicus based in its biomass heterogeneity and small weight of crown bi-

omass. The generalized models proved unsuitable for this type of forest. To improve estimation ac-

curacy and reduce uncertainty, we suggest the application of the species-specific models developed 

in this study to similar Ethiopian mixed forests and other tropical montane forests. Such equations 
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can be used for estimating the carbon stock of the forest, identifying its role as a carbon sink, estab-

lishing its carbon trade value and informing management policies regarding sustainability and bio-

mass harvesting for these species for fuel wood. 
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Abstract 

African tropical forests are claimed to play a prevalent role in carbon sequestration at the 

global scale. However, the rate of deforestation is increasing and the impact of land use change 

deserves an updated and critical look. This work emphasizes the role of bulk density as a main 

driver in carbon and nitrogen stock across four land use types: natural forest, tree plantations, crops 

and degraded soil. The study is conducted in the Central Highlands of Ethiopia where deforestation 

and human pressure on native forests is exacerbated and erosion has caused large soil losses. The 

methodological approach consists of evaluating first the bulk density confounding effect and 

estimate C and N stock based on a fixed mass method rather than the usual fixed depth method to 

compare differences across land use types. In the native forest an elevation gradient is hypothesized 

as a main factor in controlling C and N concentration and stock whereas in plantations, tree species 

identity is considered the main factor. The C and N concentration and bulk density in mineral soil 

were analyzed as repeated measures in an irregular vertical space ranging from 0-10 cm, 10-30 cm, 

30-50 cm and 50-100 cm using a linear mixed model approach, whereas single observations from 

the forest floor are analyzed by a generalized linear model. Results indicate that soil depth is a more 

important factor than elevation in native forests although C and N concentration and stock 

diminished near human settlements. The native forest stored on average 84.4 %, 26.4 %, 33.7 % 

more carbon than bare soil, crops and plantations respectively and 82.4 %, 51.8 %, 27.1 % more 

nitrogen. However, conversion of crop and degraded land to plantations ameliorates soil condition 

degradation, although, species selection did not affect carbon and nitrogen stock. It is suggested 

that the use of native tree species in plantations could have a positive impact in C and N storage as 

other studies have demonstrated in the same area. 

Key words: forest floor, mineral soil, soil depth, mixed model, species identity, impact assessment 
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Introduction  

Forests in general and forest soils in particular play a vital role in the global carbon balance.  

The global soil carbon pool has been estimated to contain more than 3.3-fold the atmospheric 

carbon pool and 4.5-fold the biotic pool (Lal, 2004) and forest soils account for 54 % of stored 

carbon in old-growth forests (Luyssaert et al., 2008).  Pan et al. (2011) quantified the forest carbon 

sinks at global level and estimated the total stock to be 861 Pg of which 383 Pg (45 %) are in soil 

(to a depth of 1 m), 363 Pg (42 %) in above and belowground biomass, 73 Pg (8 %) in deadwood 

and 43 Pg (5 %) in litter. One third of the global soil carbon is found in the tropics (Lemma et al., 

2006).  

In forest ecosystems, biomass and soil carbon are stored in dynamic equilibrium with the 

environment. Soil Organic carbon (SOC) is affected by environmental factors such as topography, 

parent material or soil depth (Fu et al., 2004; Johnson et al., 2000). The key relationships between 

environmental factors and soil depth are indirect and potentially complex. Topography influences 

precipitation, temperature, solar radiation and relative humidity (Tsui et al., 2004); aspect 

determines length of exposure to sunlight and can influence soil weathering and vegetation (Rech et 

al., 2001; Sidari et al., 2008; Yimer et al., 2006).  

 Land use and plant species also significantly influence SOC estimations. In the tropics, 

deforestation and changes in land use are significantly impacting the global carbon cycle by 

increasing the rate of carbon emissions (Silver et al., 2000). Conversion of forest into agricultural 

ecosystems negatively affects SOC concentration and stock by 20-50 % (Solomon et al., 2002; 

Lemenih and Itanna, 2004; Lal, 2005). In tropical forests, which serve as powerful carbon sinks, 

deforestation accounts for 20 % of total anthropogenic CO2 emissions into the atmosphere (Baccini 

et al., 2008).  

Mitigation strategies to reduce the impact of climate change (FAO, 2006) by augmenting 

carbon sequestration and reducing CO2 emissions from soils include proper forest management and 

afforestation or reforestation programs. Quantification and continuous assessment of changes in C 

and N pool sizes and fluxes is fundamental to understanding the effects of changes in land use/land 

cover on ecosystem functioning and limiting greenhouse gas emissions (Jaramillo et al., 2003; 

Lemma et al., 2006).  

Forest cover in Ethiopia decreased by more than 90 % between 1900 and 2004 (4,073, 213 

ha) (Nyssen et al., 2004). Tree plantations cover approximately 500,000 ha (WBISPP, 2005), of 
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which 133,041 ha were established as public plantations between 1978 and 1989. The most 

common species are Eucalyptus spp. (58 %), Cupressus lusitanica (29 %), Juniperus procera (4 %) 

and Pinus spp (2 %) (Moges et al., 2010). The Highlands account for 45 % of the country’s total 

area, supporting about 85 % of the human population and 75 % of the livestock population. Forest 

cover can be broadly separated into dry or moist montane forest. Dry montane forests are 

dominated by scherophyll evergreen, while moist montane forests are characterized by large 

broadleaf and soft-leaf species (Gatzweiller, 2007). However, much of the Highland forest is 

disappearing or being converted into agricultural land (Teketay, 2001). Annual deforestation in the 

Highlands is estimated at 150,000  to  200,000 hectares fertile topsoil loss is estimated at 1.9 billion 

Mg of soil yr
-1

 and an average of 42 Mg ha
-1 

is eroded annually (UNEP, 2002; World Bank,  2001). 

Ethiopia also has one of the highest rates of soil nutrient depletion (Lemma et al., 2006). However, 

there is very little research about how land use category, species composition and elevation affect 

carbon and nitrogen concentration and stock. 

The Chilimo forest is one of the few remnants of native dry afro-montane forest, located in 

the central highland plateau of Ethiopia. Native coniferous species predominate in this mixed 

broad-leaf and coniferous forest, where the main species include Juniperus procera, Podocarpus 

falcatus, Prunus africana, Olea europaea ssp. cuspidiata, Scolopia theifolia, Rhus glutinosa, Olinia 

rochetiana, Allophylus abyssinicus (Kelbessa and Soromessa, 2004). A centre of biodiversity and 

endemism, the Chilimo forest is also home to over 180 bird species, 21 mammal species and 

several precintive subspecies such as the Meneliks bushbuck, vervet monkey, Colobus monkey, 

Anubis baboon and leopard (Woldemariam, 1998). Soromessa and Kelbessa (2014) reported a total 

213 different plant species categorized into 83 families, including 17 plant species that are unique 

to the Chilimo forest. Due to continuous deforestation, the Chilimo forest cover has declined from 

22,000 ha in 1982 to 6,000 ha in 1991 (Shumi, 2009). Consequently, some plant species are 

becoming endangered (Soromessa and Kelbessa, 2014) as the need for fuel wood, arable land and 

timber drive forest degradation (Soromesa and Kelbessa, 2013). In order to minimize deforestation, 

the forest has been categorized as one of Ethiopia’s 58 national priority forest protection areas and 

receives more attention due to its potential as a carbon sink. Alternative strategies to reduce the 

pressure on the native forest by alleviating the fuel wood shortage include fast-growing tree and 

shrub plantations around homesteads, establishment of clear farm boundaries and wood lots in 

nearby rural communities (Alebachew, 2012). At the same time, carbon assessment of the forest 
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floor and mineral soil is generating vital information regarding the importance of the forest for 

carbon exchange and climate change mitigation at local, regional and international levels. The 

history, topography, stewardship and intense transformation in land use of the Chilimo forest make 

it an optimal case study. 

On these premises, we hypothesized that soil organic carbon (SOC) and soil organic 

nitrogen (SON) stock in the forest floor and in mineral soil would vary along an elevation gradient 

in native forest. Likewise, land use and tree species would also determine SOC and SON stock at 

different depths. The specific research questions to be addressed in this study are (1-4):   

1. Does soil bulk density significantly vary across land use categories and or soil depths? Do 

carbon and nitrogen concentration and stock in the forest floor vary along an elevation gra-

dient? 

2.  Do carbon and nitrogen concentrations and stocks in mineral soil change at different soil 

depths along an elevation gradient in native dry afro-montane forests? 

3. How does intensive land use change soil carbon and nitrogen concentrations and stocks at 

different soil depths? 

4. Does species selection have any effect on carbon and nitrogen concentrations and stocks at 

different soil depths in plantations? 

 

Material and Methods 

Study site location and description 

The experimental site is located in the Chilimo-Gaji dry afro-montane forest of the Western Shewa 

zone of the Dendi district in the central Highlands of Ethiopia. The forest is surrounded by crop 

land (mainly teff, Eragrostis tef), degraded areas and three 28 years old plantations of Eucalyptus 

saligna, Cupressus lusitanica and Pinus patula. Geographically it is located from  38° 07′ E to 38° 

10′ E  longitude and  9° 30′ to 9° 50′ N’ latitude, at an elevation of 2,170 to 3,054 m above sea level 

(Figure 1, Table 1). The mean annual temperature of the area ranges between 15 and 20 
º
C and the 

mean annual precipitation is 1,264 mm. A total of 33 different native species (22 tree and 11 shrub 

species) were recorded in the forest. The quadratic mean diameter i.e. the square root of the ratio of 

square of diameter at breast height to number of stems of the sampled plantation and natural forest 
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ranged from 12.79 to 26.12 cm and the basal area for the sample plots studied ranged from 13.81 to 

25.5 m
2
 ha

-1
 (Table 1). 

 

Fig. 1: Location map of Chilimo dry afro-montane forest. 
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Table 1: General description of Chilimo natural forest and adjacent land use types. 

Land use 

type 

Forest 

patch 
Latitude Longitude 

Altitude 

range 

(m) 

Aspect 

(%) 

No. 

sample 

plots 

No soil 

samples 

Density 

(N ha
-1

) 
Dg (cm) G (m

2
ha

-1
) 

Native 

forest 
Chilimo 

N09°04´013´´- 

N09°04’857’’ 

E038°08´557´´- 

E038°09´960´’ 

2470-

2770 

8-70 

% 
20 40 2533±28 26.12±5.3 18.9±1.92 

Native 

forest 
Gallessa 

N09°05´162´´- 

N09°05’765’’ 

E038°09´847´´- 

E038°10´283´’ 

2700-

2921 

25-70 

% 
11 20 848±10 19.88±2.5 18.18±1.91 

Native 

forest 
Gaji 

N09°04´269´´- 

N09°04’340’’ 

E038°09´861´´- 

E038°10´025´’ 

2680-

2793 

45-50 

% 
4 12 1638±20 23.45±4.4 13.81±1.40 

Plantation Cupressus 
N09°04´115´´- 

N09°04’297’’ 

E038°07´808´´- 

E038°07´849´’ 

2370-

2420 

3-12 

% 
3 12 575±8 23.42±4.4 25.5±2.60 

Plantation Eucalyptus 
N09°04´155´´- 

N09°04’298’’ 

E038°03´0011´´- 

E038°08´0011´’ 

2360-

2400 
3-10% 3 12 1000±13 12.79±2.2 14.67±1.50 

Plantation Pinus 
N09°03´514´´- 

N09°03’676’’ 

E038°08´260´´- 

E038°08´329´’ 

2396-

2405 

6-20 

% 
3 12 1167±15 14.52±3.2 21.25±2.16 

Crop Chilimo 
N09°04´48´´- 

N09°03’532’’ 

E038°08´559´’- 

E038°08´612’’ 

2406-

2423 

5-15 

% 
3 12       

Degraded 

land 
Chilimo 

N09°03´805´´- 

N09°04’266’’ 

E038°07´703´’- 

E038°07´793’’ 

2350-

2425 

8-30 

% 
3 12       

Dg: quadratic mean diameter, Gm2: basal area. 
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Forest floor sampling 

The Chilimo forest site was stratified into 3 major natural forest patches: Chilimo, Gallessa, 

and Gaji. Thirty-five 20 x 20 m plots were laid out following a top-down gradient, from the top 

edge of the mountain to the bottom (10 plots in Chilimo, 5 plots in Gallessa, 3 plots in Gaji), and 

approximately 150 m away from the outer ridge in order to avoid edge effects. The distance 

between one plot edges to the next plot edge was 100 m and plot location was determined using 

measuring tape, GPS, altimeter and compass. Forty forest floor samples were collected within a 

0.25 x 0.25 m (0.0625 m
2
) metallic frame in the centre of the main plot. A metallic ruler was used 

to measure the depth of the forest floor. 

Mineral soil sampling 

Mineral soil samples were taken below the forest floor up to a nominative depth of 1 m. 

Firstly, sample pits (1 m long x 60 cm wide) were dug at the centre of the main plot in every other 

plot. A total of 33 pits (18 in natural forest, 9 in plantations, 3 in cultivated land and 3 in degraded 

lands) were dug for soil collection. Samples were taken from four soil depth categories (0-10 cm, 

10-30 cm, 30-50 cm and 50-100 cm). Soil bulk density was calculated with a 5-cm high cylinder 

that was introduced vertically in one sampling point for each depth interval. A total of 280 samples 

(140 soil samples for C % and total N % analysed plus 140 cylinder samples for bulk density 

analysed) were collected. 

Laboratory analysis 

Forest floor sample layers were air-dried and homogenized prior to analysis. All samples 

were weighed and sub-samples were oven-dried for 24 hours at 65 °C to constant weight. The 

chemical analysis for organic carbon in the forest floor was done by drying samples at 105 °C and 

subsequently burning it at 550 °C (Ben-Dar and Banin, 1989). The loss in weight between 105 ºC 

and 550 ºC constitutes the organic matter content. Then organic matter content was converted into 

organic carbon by multiplyin it with 0.58 which has been found to be the most covenient conver-

sion factor from organic matter to carbon content in the forest floor (de Vos et al., 2005). 

 Mineral soil sampled was air dried and passed into less than 2 mm sieve size to obtain the 

fine fraction for chemical analysis. The coarse rock fragments (> 2 mm) sieved sizes were removed 
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from the sample and their percentage (% of stoniness and or rockiness) were calculated by oven 

dried samples at 67 ºC for 24 hours for each soil depth. Total organic carbon analysis was made for 

ground fine soil samples using dry potassium dichromate oxidation following the procedure de-

scribed in Anderson and Ingram (1996). Bulk density for each soil depth was the ratio of mass of 

core sampled oven dry weight of dry soil to volume of 5 cm diameter and 5 cm height steel-

cylinder following the procedure of Blake (1965). Total N was determined using Kjeldahl’s meth-

od, following the procedure in Keeny and Nelson (1982). 

Data analysis approach 

Elevation was converted to three discrete classes in order to analyze the effect of the 

altitudinal gradient: Class 1 (low elevation): ≤ 2599 m, Class 2 (middle elevation): 2600-2700 m 

and Class 3 (high elevation): ≥ 2701 m. A preliminary analysis of normality and equal variances 

among groups was performed before selecting the most suitable statistical analysis.  

Carbon and nitrogen concentration in forest floor 

Data for carbon and nitrogen concentrations and stocks in the forest floor were analysed 

using the SAS PROC GLM method (SAS Inst. Inc., 1999). To analyse equality of means, we used a 

Tukey-Kramer test for multiple comparisons among elevation classes at α=0.05. 

Bulk density, Carbon and nitrogen concentration in mineral soil 

The C and N concentration and bulk density in mineral soil were analyzed as repeated 

measurements in an irregular vertical space ranging from 0-10 cm, 10-30 cm, 30-50 cm and 50-100 

cm. Results from a previous analysis of bulk density differences among treatments (elevation 

classes, land use and species planted) indicated the most appropriate method for estimation of 

carbon and nitrogen stock (fixed-mass vs fixed-depth). For these analyses, the SAS PROC MIXED 

method was used with a Toeplitz heterogeneous variance structure (SAS Inst. Inc., 1999). We used 

a linear mixed model analysis of variance with repeated measurements, considering one between-

subjects factor (species, land use type or elevation) and one within-subjects factor (depth at four 

levels) according to the mathematical model: 

    (eq.1) 
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where i=1,…,n for the between-subjects factor (n=3 for species and elevation, n=4 for land use 

type), j=1,…,n for the replicates and k=1, 2, 3, 4 for the within-subject factor (depths), 

observed value of the dependent variable for the plot j of level i in the between-subject factor 

at depth k;  is the general mean effect,  is the main effect of the i
th

 level for the between-subject 

factor;  is the main effect of the k
th

 depth;  is the interaction effect of the i
th

 level for the 

between-subject factor and the k
th

 depth; is the  random error in the dependent variable for the 

plot j of level i in the between-subject factor at depth k. 

 The assumptions for the errors in the linear mixed model were: 

 , with = random variance for the errors at depth k. 

, 

where  is the correlation coefficient for the errors at consecutive depths. 

 We used the TOEPH variance-covariance matrix for the errors (Heterogeneous Toeplitz), 

with four variance parameters and three correlation coefficients, which were estimated using the 

restricted maximum likelihood method (REML).  

Carbon and nitrogen stock in the mineral soil were calculated by depths using carbon 

concentrations, thickness of each layer and soil bulk density at each depth, on a fixed-depth basis 

(Ellert et al., 2008): 

  (eq. 2) 

Where   is the soil organic carbon (SOCFD) stock or nitrogen stock (SONFD) to a fixed depth 

(Mg C ha
-1

 to the specified depth),  is the bulk density of core segment (g cm
-3

),  is the 

organic C concentration of core segment (mg C g
-1

 dry soil), and  is the length of core segment 

(cm). The statistical analysis approach for comparing C and N stock at different depths (0-10 cm; 

10-30 cm; 30-50 cm and 50-100 cm) was similar to the mixed model approach already described. 

 However, calculating element stock with eq.2 can lead to biased comparisons if bulk density 

is significantly different between land uses or treatments (Ellert et al., 2008). As an alternative, 

SOC stock to fixed mass was calculated if differences in bulk density were detected (research 

question 2), using the following equation: 

 (eq. 3) 
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where  is the soil organic carbon (SOCFM) or nitrogen (SONFM) stock for a fixed mass of  

(the lowest soil mass at a specified depth),  is the soil mass subtracted to equalize soil mass 

among treatments and  is the stock concentration in the deepest soil core segments (mg C g
-1

 dry 

soil) (core segment = n) (Ellert et al., 2008). For analysing stock calculated at fixed mass, we 

selected an SAS PROC GLM general linear model (SAS Inst. Inc., 1999) that compared species (3 

levels), elevation (3 levels) and land use (4 levels) as main factors at different soil sampling depths 

(0-10 cm, 0-30 cm, 0-50 cm and 0-100 cm). The mathematical formulation of the model was: 

 
(eq. 4) 

with i=1,…,n for the levels of the factor (n=3 for species and elevation, n=4 for land use type) and 

j=1,…,n for the replicates; is the observed value of the dependent variable for the plot j in the 

level i of the factor;  is the general mean effect;  is the main effect of the level i of the factor; 

is the  random error in the dependent variable for the plot j in the level i of the factor. Errors 

were assumed to be independent and equally distributed with normal distribution; , 

and  is the random variance for the errors.  

 Finally, the Tukey-Kramer test was used for comparisons of least squares means. Values are 

reported as mean ± standard error of the mean. 

Results 

Does soil bulk density significantly vary across land uses and soil depths? 

The bulk density of mineral soil ranged from a minimum value of 0.5 g cm
-3

 dry soil to a 

maximum value of 1.40 g cm
-3

 dry soil. Bulk density significantly varied among land use types and 

soil depth and the interaction of both (Table 2). Studentized residuals followed a normal 

distribution (p < 0.3693). Bulk density was significantly lower in natural forest compared to other 

land use categories in the upper 10 cm. Values were higher in crop land and degraded land (Figure 

2). Bulk density was only significantly different between the upper and the lower layer in natural 

forest soils with lower values in the upper layer than in the deepest (Figure 2, capital letters); 

whereas bulk density in the first 10 cm of plantation soils was significantly lower than in the other 

profiles. For crop land and degraded soils, bulk density was rather constant across soil depths; there 
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were no significant differences among these two land use categories or across depths in the same 

category (Figure 2). 

Table 2: Mixed effects model for bulk density (g cm-3) carbon and nitrogen concentration (mg g-1). 

Response variable Effect F-test p-value Covariance parameters 

Bulk density 

  

  

  

  

  

  

Land use 13.47 <0.0001 σ1
2
 0.0138 

Depth 6.86 0.0004 σ2
2
 0.01348 

Land use x depth 2.53 0.0062 σ3
2
 0.01989 

      σ4
2
 0.01177 

      Toeph 1 0.7029 

      Toeph 2 0.508 

      Toeph 3 0.4119 

Carbon concentration 

  

  

  

  

  

  

Land use 11.33 <0.0001 σ1
2
 810.52 

Depth 14.75 <0.0001 σ2
2
 507.75 

Land use x depth 3.57 0.0009 σ3
2
 167.566 

      σ4
2
 43.23 

      Toeph 1 0.643 

      Toeph 2 0.54 

      Toeph 3 0.3481 

Nitrogen concentra-

tion  

  

  

  

  

  

Land use 6.23 0.0025 σ1
2
 4.5237 

Depth 10.91 <0.0001 σ2
2
 4.5619 

Land use x depth 2.31 0.0231 σ3
2
 1.2349 

      σ4
2
 0.3353 

      Toeph 1 0.7866 

      Toeph 2 0.6454 

      Toeph 3 0.4226 
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Fig. 2: Bulk density (g cm-3) at different depths by land use type. Different letters indicate significance.  

 

Do carbon and nitrogen concentrations and stocks in the forest floor and at different depths 

in mineral soil in native dry afro-montane forest vary along an elevation gradient? 

 

The minimum and maximum forest floor carbon concentrations ranged from 319.2 mg C g
-1

 

to 666 g C kg
-1

 of soil, whereas the nitrogen concentration ranged from 9.6 to 19.8 mg N g
-1

 of soil, 

with concentrations in the upper part of the elevation gradient and increasing mean nitrogen 

concentrations in the middle part (Table 3). The general linear model revealed no association of 

carbon and nitrogen concentration with elevation in natural forest (F-test p-value > 0.05 in both 

cases). The same occurred for carbon and nitrogen stock, there was no significant variation with 

elevation (F-test p-value > 0.05 in both cases). The mean carbon and nitrogen stocks for the forest 

floor were 9.36 ± 1.17 Mg C ha
-1

 and 0.25 ± 0.03 Mg N ha
-1

, respectively.  

In mineral soil, carbon concentration ranged from 7 mg C g
-1

 to 129.4 mg C g
-1

 of soil, 

whereas nitrogen concentration ranged from 0.6 to 10 mg N g
-1

 of soil. In the upper part of the 



Forest management options for carbon stock and soil rehabilitation in Chilimo dry afro-montane forest, Ethiopia 
 

203 
 

gradient there were higher average C and N concentration values (114.2 mg C g
-1

  and 8.1 mg N g
-1

, 

Table 3), though the mixed model suggested that these differences were not significant (Table 4). 

Results from the bulk density analysis (research question 1) confirmed the appropriateness 

of using the fixed-mass approach to analyse carbon and nitrogen stock changes along an altitudinal 

gradient in natural forests. There was no strong departure from normality and the general linear 

model for carbon stock showed no significant variation along the gradient at the same soil depth 

(Table 5). This indicated that the soil storing capacity was quite homogenous across the elevation 

gradient studied. For nitrogen stock, however, significant variation appeared in the first 10 cm 

(Table 5) between the upper part of the gradient (4.07 ± 0.46 Mg C ha
-1

) and the lower part (2.06 ± 

0.48 Mg C ha
-1

). 

Table 3: Carbon (C) and nitrogen (N) concentration (mg g-1) in forest floor and mineral soil at different 
depths (cm) by altitude classes. 

Altitude class Depth (cm) C (mg g
-1

) N (mg g
-1

) 

1 Forest floor 424.5 ± 34.8 11.16 ± 0.5 

  0-10 80.5 ± 13.5 4.06 ± 0.94 

  10-30 50.13 ± 15.12 2.96 ± 1.22 

  30-50 24.17 ± 13.95 2.17 ± 1.25 

  50-100 18.16 ± 5.33 1.56 ± 0.37 

  0-100 46.5 ± 8.7 2.8 ± 0.5 

2 Forest floor 517.02 ± 31.5 14.63 ± 1.05 

  0-10 98.98 ± 9.95 6.5 ± 0.68 

  10-30 70.23 ± 11.29 2.23 ± 0.91 

  30-50 35.35 ± 13.68 2.58 ±0.46 

  50-100 17.33 ± 3.33 1.63 ± 0.29 

  0-100 55.6 ± 7.6 3.9 ± 0.5 

3 Forest floor 524.15 ± 36.44 13.85 ± 0.94 

  0-10 114.2 ± 13.64 8.1 ± 0.94 

  10-30 62.35 ± 19.34 4.42 ± 1.41 

  30-50 30.7 ± 11.28 2.55 ± 0.99 

  50-100 17.75 ± 7.02 1.42 ± 0.61 

  0-100 56.2 ± 11.4 4.1 ± 0.79 
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Table 4: Mixed effects model of carbon and nitrogen concentration (mg g-1) in natural forest along the alti-
dudinal gradient and by sampling depths. 

Response variable Effect F-test p-value Covariance parameters 

Carbon concentration 

  

  

  

  

  

  

Altitude 0.29 0.7559 σ1
2
 825.91 

Depth 35.94 0.0001 σ2
2
 1007.22 

Altitude x depth 1.12 0.3755 σ3
2
 336.94 

      σ4
2
 86.94 

      Toeph 1 0.658 

      Toeph 2 0.5983 

      Toeph 3 0.3704 

Nitrogen concentra-

tion  

  

  

  

  

  

Altitude 0.74 0.502 σ1
2
 3.281 

Depth 45.13 0.0001 σ2
2
 5.799 

Altitude x depth 3.97 0.0048 σ3
2
 2.707 

      σ4
2
 0.6917 

      Toeph 1 0.8052 

      Toeph 2 0.7715 

      Toeph 3 0.5455 

Table 5: Soil organic carbon (SOC) and nitrogen stock (SON) (Mg ha-1) in natural forests by altidude classes 
and soil depths. 

Altitude class Depth (cm) SOC (Mg ha-1) SON (Mg ha-1) 

1 0-10 40.3 ± 6.77 2.06a ± 0.48 

  0-30 105 ± 18.73 5.73 ± 1.80 

  0-50 154 ± 33.21 5.62 ± 3.24 

  0-100 198.33 ± 44.16 12.4 ± 4.19 

2 0-10 49.52 ± 4.98 3.26ab ± 0.34 

  0-30 136.12 ± 15.63 9.3 ± 1.27 

  0-50 190.97 ± 23.33 13.27 ± 1.93 

  0-100 233.58 ± 29.42 16.8 ±  2.47 

3 0-10 57.12 ± 6.81 4.07b ± 0.46 

  0-30 137.07 ± 23.71 9.78 ± 1.88 

  0-50 189.25 ± 41.6 13.72 ± 3.33 

  0-100 232.22 ± 57.71 17.2 ± 4.78 

Different letters in the upper 10 cm of mineral soil indicate significant differences (p < 0.05) 
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How does land use change soil carbon and nitrogen concentrations and stocks at different soil 

depths? 

The results showed that the carbon and nitrogen concentrations were highly influenced by 

land use and soil depth (Table 2). Analysis of studentized residuals showed that the normality 

assumption was not met for carbon concentration (p < 0.0047) or nitrogen concentration (p < 

0.0001). Among the four land use types, carbon and nitrogen concentration in native forest was 

always higher than other land use types at all soil depths. Non-parametric comparison of least 

squares means indicated significant differences (Figure 3a) in carbon concentration, whereas native 

forest and plantations showed differences according to depth. Nitrogen concentration analysis 

showed differences in natural forest and plantations according to soil depth, whereas crop land and 

degraded land were quite homogenous (Figure 3b). Nitrogen concentration was similar in crop land 

and degraded land, whereas natural forest and plantations showed higher values in the upper 30 cm. 

Mean carbon stock was higher in natural forest than in all other land use categories and at 

all depths (225.03 ± 22.7 Mg C ha
-1

 at one meter depth) (Table 6). In plantations, carbon stock at 

the same depth was one-third less than in natural forest but 35 % more than in crop land and 77 % 

more than in degraded land. The first 10 cm of mineral soil plantations had significantly more 

carbon content than crop land and degraded land (Table 6), though; the differences vanished at 

depths below 50 cm.  

Native forest stored more nitrogen per hectare but the differences were only significant 

compared to crop land and degraded land in the upper 10 cm. The total nitrogen confidence interval 

in native forest to 1 meter was 15.90 ± 1.98 Mg N ha
-1

, which was 82 %, 52 % and 27 % more than 

in degraded land, crop land and plantations, respectively. 
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Fig.  3a: Carbon concentration (mg g-1) at different depths by land use type. Different letters indicate. 
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Fig.  3b: Nitrogen concentration (mg g-1) at different depths by land use type. Different letters indicate. 
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Table 6: Carbon and nitrogen stock (Mg ha-1) in mineral soil at different sampling depths by land use type. 
 

Response vari-

ables 

Depth 

(cm) Crop Degraded land Natural forest Plantation 

 

C  stock 

 (Mg ha
-1

)  

  

0-10 14.3
ac

 ± 1.15 6.56
a
 ± 1.84 49.73

b
 ± 3.63 32.83

c 
± 4.42 

0-30 43.60
ac

 ± .97 17.73
a
 ± 4.19 129.27

b
 ± 10.87 79.15

c
 ± 8.29 

0-50 69.26
a
 ± 10.09 26.26

a 
± 6.26 182.02

b
 ± 17.28   116.08

a
 ± 12.92 

0-100 98.10
a 
± 16.09 35.10

a
 ± 9.89 225.03

b
 ± 22.7 149.21

a
 ± 16.10 

 

N stock 

 (Mg ha
-1

)  

  

0-10 1.03
ac

 ± 0.07 0.43
a
 ±  0.09 3.23

b
 ±  0.30 2.28

bc
 ± 0.33 

0-30 3.23
ab

 ± 0.38 1.13
b
 ± 0.20 8.62

a
 ± 0.96 6.13

a
 ± 1.05 

0-50 5.40
ab

 ± 0.79 1.80
b
 ±  0.26 12.42

a
 ± 1.51 9.10

a
 ± 1.19 

0-100 7.66
ab

 ± 1.25 2.80
b
 ± 0.40 15.90

a
 ± 1.98 11.59

a
 ± 1.70 

 

Does species selection have any effect on carbon and nitrogen concentration and stock at 

different soil depths in plantations? 

Sampling depth had a strong effect on carbon and nitrogen concentrations. The species 

effect was significant on bulk density values (Table 7). Soil bulk density in Eucalyptus plantations 

was 21 %, significantly higher than in Pinus patula plantations (Figure 4). However, species did not 

influence carbon and nitrogen stock calculated with the fixed-mass method. To a depth of 1 m, total 

carbon stored in plantations ranged from 112.43 ± 4.32 to 185.83 ± 29.9 Mg C ha
-1 

for Pinus patula 

and Eucalyptus saligna, respectively (Table 8), whereas total nitrogen stock ranged from 8.50 ± 

0.44 to 12.26 ± 1.9 Mg N ha
-1

 for the same species. Cupressus lusitanica plantations presented 

intermediate values for carbon storage (126.1 ± 32.2 Mg C ha
-1

 ± standard error) and nitrogen stock 

(9.1 ± 1.8 Mg N ha
-1

). 
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Table   7:  Mixed effects model of carbon, nitrogen concentration (mg g-1) and bulk density (g cm-3) in plan-
tations. 

Response variable Effect F-test p-value Covariance parameters 

 C (mg g
-1

) Species 1.64 0.274 σ1
2
 508.620 

  Depth 22.35 <0.0001 σ2
2
 139.290 

  Species x Depth 0.8 0.5835 σ3
2
 18.130 

        σ4
2
 7.700 

        Toeph 1 0.420 

        Toeph 2 -0.050 

        Toeph 3 0.025 

N (mg g
-1

) Species 1.15 0.3784 σ1
2
 1.748 

  Depth 27.22 <0.0001 σ2
2
 0.433 

  Species x Depth 0.42 0.8555 σ3
2
 0.095 

        σ4
2
 0.041 

        Toeph 1 0.382 

        Toeph 2 -0.205 

        Toeph 3 -0.040 

Bulk density (g cm
-3

) Species 12.2 0.0077 σ1
2
 0.015 

  Depth 11.3 0.0002 σ2
2
 0.006 

  Species x Depth 4.03 0.0099 σ3
2
 0.024 

        σ4
2
 0.001 

        Toeph 1 0.525 

        Toeph 2 -0.060 

        Toeph 3 -0.301 

 



Forest management options for carbon stock and soil rehabilitation in Chilimo dry afro-montane forest, Ethiopia 
 

209 
 

Table   8: Carbon and Nitrogen stock (Mg ha-1) in plantations at different sampling depths. 

 

Cupressus L. Eucalyptus S. Pinus patula

Species

B
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k 
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ity
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0

0.
5

1.
0
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5
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0

a a b

 

Fig.  4: Bulk density (g cm-3) in plantations by species. Different letters indicate significant differences (p < 
0.05). 

Species Depth (cm) SOC (Mg ha
-1

) SON (Mg ha
-1

) 

Eucaliptus saligna 0-10 33.53 ± 5.56 2.1 ± 0.21 

  0-30 90.80 ± 10.34 5.83 ± 0.47 

  0-50 142.96 ± 21.78 2.12 ± 1.23 

  0-100 185.83 ± 29.94 12.26 ± 1.89 

Cupressus lusitanica 0-10 26.8 ± 10.75 1.86 ± 0.68 

  0-30 66.70 ± 22.50 4.63 ± 1.34 

  0-50 98.46 ± 32.82 6.93 ± 1.87 

  0-100 126.1±  32.20 9.10 ± 1.76 

Pinus patula 0-10 24.96 ± 1.03 1.80 ± 0.1 

  0-30 62.9 ± 1.80 4.67 ± 0.12 

  0-50 89.00 ± 1.80 6.76 ± 0.26 

  0-100 112.43 ± 4.32 8.50 ± 0.44 
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Discussion 

The effect of changes in land use on carbon and nitrogen stock can be exacerbated if 

differences in bulk density are not taken into account (Wendt and Hauser, 2013). In this study, we 

analysed bulk density to see if it was significantly different among treatments (land use type, 

elevation classes in native forests and tree species in plantations) and applied the fixed-mass 

method when necessary (Ellert et al., 2008). By modifying the type of statistical analysis used, we 

obtained more accurate results. Assad et al. (2013) applied the fixed-mass method and found 

differences in carbon stocks among different land uses, to a maximum depth of 60 cm. We 

extended the sampling depth to 1 m and include nitrogen stock in the analysis.  

Bulk density was significantly influenced by type of land use and soil depth. Higher bulk 

densities were observed in degraded land and sub-soil, due to higher soil compaction, higher 

erosion rate, lack of inputs and low soil fertility. This finding is consistent with other studies on the 

impact of changes in land use (Gebremariam and Kebede, 2010; Michel et al., 2010; Awotoye et 

al., 2013; Sierra et al., 2013). The strong confounding effect of soil bulk density may lead to 

overestimation of soil carbon accumulation capacity (Murty et al., 2002) and misleading 

conclusions in assessments of the impact of changes in land use. For example, SOC variation after 

forest conversion was non-significant using the fixed-depth method (Twongyirne et al., 2013), due 

to large site-to-site variation. We argue that accurate C and N stock estimation can only be 

performed when the bulk density effect is discounted and that the fixed-mass method is more 

appropriate. However, much debate continues regarding which is the best estimation method of 

bulk density (Lee et al., 2009; Wendt and Hauser, 2013). 

The fixed-mass method of calculating soil carbon and nitrogen stocks provides the added 

advantage of facilitating comparison of the percentage of carbon/nitrogen stored at different depths. 

Figures 5a and 5b show the distribution of carbon and nitrogen stock by sampling layers. 

Remarkably, around 80 % of both elements (to 1 m depth) is stored in the upper 50 cm of soil. The 

implication of this finding is clear for large-scale evaluation of carbon stocks in dry afro-montane 

forests. Sampling effort would be drastically reduced if the nominal 1 m sampling pit depth found 

in local studies can be reduced by half. Soil tillage in crop land can reduce the amount of total 

carbon stored in the upper 10 cm. Figure 5a indicates that sampling depth should be greater for crop 

land than for natural forests, where most of the carbon is stored in the upper-most part of the soil 

(Murty et al., 2002). 
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Fig. 5a: Percentage of soil organic carbon distribution at sampling depths. 
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Fig. 5b: Percentage of soil organic nitrogen distribution at sampling depths. 
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As suggested by other studies (Zewdu et al., 2004; Twongyirne et al., 2013), carbon stock 

did not vary significantly with elevation. Nevertheless, the pattern indicated lower carbon and 

nitrogen stock at lower elevation, which might be due to the higher impact of anthropogenic 

factors. Greater numbers of farming communities live in or around the forest at this end of the 

elevation gradient and their livelihoods depend on the forest. This implies continuous removal of 

fallen litter, dead wood and twigs, collection of firewood, charcoal making, logging for 

construction wood, forest clearing for agricultural land and livestock overgrazing. 

Land use is a major factor in carbon and nitrogen stocks. Girmay et al. (2008) reviewed the 

carbon stock in topsoil (0-10 cm) in Ethiopia and found it decreased after conversion of native 

forest into crop lands (-63 %) and plantations (-83 %). Solomon et al. (2002) indicated that 

conversion of humid tropical forests for maize (Zea mays) cultivation in Southern Ethiopia resulted 

in a 55-60 % reduction in SOC stock, from 58.3 to 63.9 Mg C ha
-1

 in forest soil to 33.9 to 39.7 Mg 

C ha
-1

 in cultivated land. In Brazil, Zinn et al. (2002) reported a 23-48 % loss in SOC after a native 

wooded savannah was converted to Eucalyptus plantation. Ashagrie et al. (2005) also reported 

losses of 13 Mg C ha
-1

 over a period of 21 years in southern Ethiopia when natural forest was 

converted to Eucalyptus plantation. Rhoades et al. (2000) reported a 70 % reduction in SOC in 

Ecuador in the upper 30 cm of top soil when original forest was converted to sugarcane plantation 

(Saccharum spp.). Berhangaray et al. (2013) investigated the impact of changes in land use on soil 

carbon and found higher SOC under trees than under pasture and agricultural lands. In our study, 

tree plantations stored 34 % less carbon than native forest, but the land use change sequence was 

different. Plantations were originally planted outside the forest on bare or degraded land. In this 

situation, tree plantations stored 80 % more carbon than degraded land and 56.4 % more than crop 

land.  

The finding that nitrogen concentration and stock was higher in these plantations than in 

crop land or degraded land may be explained by a recovery of soil conditions 28 years after 

plantation establishment. However, the exotic species selected by local communities might have 

diminished the potential recovery effect of plantations, as native species improve soil conditions to 

a greater extent than exotic species do (Tesfaye et al., 2014). 

Tree species can alter soil carbon sequestration capacity, total nitrogen and other soil 

characteristics. Our results showed that species selection for plantation purposes impacted soil 

carbon and nitrogen concentration and stock across soil depth. Soil sampled under an introduced E. 
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saligna plantation had higher SOC and SON stock compared to other non-native species. SOC and 

SON were also significantly higher under E. saligna at all soil depths and under P. patula in the 

upper 50 cm. Afforestation of farmland (formerly degraded land) resulted higher in carbon and 

nitrogen accretion after 28 years. However, the magnitude of accretion was species dependent: for 

example, net increases of 41.9 ± 4.24 Mg C ha
-1

 for E. saligna, 19.95 ± 1.36 Mg C ha
-1

 for C. 

lusitanica, and 15.1 ± 1.08 Mg C ha
-1 

for P. patula were found. The higher SOC and SON stock 

under Eucalyptus plantation might be due to higher litter fall, better decomposition rate and lower 

soil erosion rate compared to other introduced tree species. This was also evident in the higher 

number of gullies and rills recorded in the C. lusitanica plantation, compared to the E. saligna and 

P. patula plantations. 

 Our results are also consistent with findings by other authors. In a similar carbon isotope 

analysis, Lemma et al. (2006) in South-western Ethiopia, found higher amounts of total SOC in the 

soil under E. grandis than under C. lusitanica and P. patula. Solomon et al. (2002) in southern 

Ethiopia found land converted from mixed native species to C. lusitanica plantation showed a 27 % 

loss in SOC stock over a period of 25 years. In contrast, Zerfu (2002) indicated increased SOC 

stock under a Eucalyptus plantation established on degraded land. Similarly, in south-western 

Ethiopia Lemma et al. (2006) reported a net SOC increase of 69.9 Mg ha
-1

 under C. lusitanica and 

29.3 Mg ha
-1

 under P. patula 20 years after plantation establishment. 

Finally, our results showed that C and N concentrations and stock under native natural forest 

and plantation forest in Chilimo were generally higher than those reported in other regions (Beets et 

al., 2002; Harms et al., 2005; Yimer et al., 2008; Twongyirwe et al., 2013) and suggest two 

management strategies for improving soil conditions in the central Highlands. The first is to 

maintain and preserve the Chilimo natural forest in order to maintain carbon storage in the future as 

other African tropical forests do (Lewis et al., 2009). The second is to recover abandoned crop land 

and degraded lands by establishing tree plantations to avoid overharvesting in natural forests and 

considering the inclusion of native species that can improve soil condition in a more efficient way 

(Tesfaye et al., 2014). 
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Conclusions 

This study has successfully answered the research questions presented in the introduction 

and yields the following conclusions: (i) Bulk density can have an important confounding effect on 

soil condition assessment and an efficient estimation method for soil carbon and nitrogen must be 

applied accordingly. (ii) Soil depth is a more important factor than elevation in the study area, 

though C and N concentration and stock diminished near human settlements located in the lowest 

part of the elevation gradient. (iii) Chilimo natural forest stored more carbon and nitrogen than 

adjacent land use categories, but crop land and degraded land converted to plantations ameliorated 

soil degradation. (iv) Species selection did not affect carbon and nitrogen stock, despite the 

significantly lower bulk density values found in Pinus patula plantations. We suggest that using 

native tree species in plantations could have a positive impact on C and N storage, as other studies 

have demonstrated. 
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Abstract 

Chilimo forest is one of the few remnants of dry afro-montane forest located in Central 

Highlands of Ethiopia. Also it has been during the last century one of the most exploited and dis-

turbed forest in the country. Stand density management diagram (SDMD) is a stand-level model 

that graphically illustrates the relationships between wood yield, density and mortality throughout 

all stages of stand development. SDMD is a useful tool for designing, displaying and evaluating 

alternative density management regime for both even-aged and uneven-aged forest stands. Howev-

er, information in this regards and other silvicultural management operations are lacking for most 

Ethiopian forests in general and for Chilimo dry afro-montane forest in particular. The purpose of 

the study is to develop a stand density management diagram model for the existing mixed natural 

forest using appropriate species proportion for Juniperus procera and Podocarpus falcatus. Two 

linear equations were simultaneously fitted to relate quadratic mean diameter with stand density and 

dominant height and to relate total stand volume with quadratic mean diameter, stand density and 

dominant height for each species. Dominant height and quadratic mean diameter were found to be 

the best endogenous variables for SDMD for Chilimo forest. The relationship between stand densi-

ty, dominant height, quadratic mean diameter and stand volume are represented in the SDMD. 

Formulating SDMD using species proportion is better than treating each species independently. 

This stand density management diagram is the first diagram developed for mixed-forest in Africa 

and can be serve to support the sustainable management of Chilimo dry afro-montane forest in par-

ticular and other dry afro-montane forests in general. 

Key words: Species proportion, mixed species, thinning operation, dominant height, Chilimo 
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Introduction 

Stand density management control (through initial spacing in forestation and/or pre-

commercial and commercial thinning) modifies the level of growing stock to achieve the manage-

ment objectives established for a given stand (Newton, 1997; Barrio-Anta et al., 2006; Castedo-

Dorado et al., 2009). Stand Density Management Diagrams (SDMDs) graphically illustrate the re-

lationships between, yield, density and density-dependent mortality during the stand development 

phases (Newton and Weetman, 1994). Also, SDMDs are management tools which facilitate deci-

sion making process for forest managers under limited information. Appropriate decision must en-

hance future stand values, trees and wood properties and habitat characteristics. SDMDs are de-

signed to assist managers in applying different density management regimes regarding the timing 

and intensity of thinning treatments based on the theory of self-thinning and the relationships be-

tween average diameter, top height and volume of stands within the stand density (trees ha
-1

) 

(Woods, 1999; Farnden, 2002 ; Álvarez-González  et al., 2005). Due to the increasing interest on 

biomass, maximization of wood yield in addition to financial return became a key objective for for-

esters (Cole and Ewel, 2006; Bravo et al., 2008; Castedo and Dorado, 2009). This objective re-

quires estimation of the tree size distribution as it is related with product price so during the last 

decade, structural yield prediction has been included in SDMDs (i.e, Newton et al., 2005; Castedo-

Dorado et al., 2009). 

  Since Ando (1962) seminal paper on SDMDs several improvements and modifications have 

been developed such as the replacement of the original yield, density equations and the application 

of different density indexes (i.e., McCarter and Long, 1986; Newton and Weetman, 1994; Newton, 

1997; Diaz-Maroto et al., 2010). Due to its easy use and applicability it is not surprising that 

SDMDs became an important management tool for even-aged stands in many regions across North 

America and Europe (Drew and Flewelling, 1979; Smith, 1989; Wilson et al., 1999; Valbuena et 

al., 2008; Bravo et al., 2012). Moreover, during the last decade and late XXth century, SDMDs 

were also developed for mixed species stands (Newton, 1997; Woodall et al., 2005; Swift et al., 

2007). Determining appropriate levels of growing stock at the stand level is a complex process in-

volving both biological and technological aspect. It requires selection of upper and lower limits for 

growing stock (Dean and Baldwin, 1996). SDMDs are one of the most effective methods available 

for the design, display and evaluation of alternative density management regimes for both even-

aged and uneven-aged stands (Woodall et al., 2005) due to the relative low effect of site variance 
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on the diagram’s shape (Kershaw et al., 1991). SDMDs are used in combination with data reflect-

ing stand structure to project stand future development including yield prediction. 

Management of stocking using SDMD for both natural and plantation forest are also lacking 

in the country. Thus, adequate research works should be made in this regard. 

  Chilimo forest is one of the few remnants of dry afro-montane forest, located in the central 

highland plateau of Ethiopia managed by local community through participatory forest manage-

ment (Shumi, 2009). Currently the Oromiya forest and wildlife enterprise is a governmental organi-

zation aimed at facilitation the management approach. In the process they are advocating preserva-

tion and protection of the natural forest with little benefit to the local community. However, differ-

ent assessment works showed the forest is suffered from illegal harvesting (Shumi, 2009). Imple-

mentation of alternative management options could be very useful to benefit the society by main-

taining sustainability of the forest. Stand density management is an option in both circumstances. 

Thus, the specific objective of this work is to develop a SDMD for the management of Chilimo 

mixed dry afro-montane forest using appropriate species proportion of two dominant species: Juni-

perus procera (Hoechst. Ex. Endl) and Podocarpus falcatus (Thunb. Mirb). The selected tree spe-

cies were accounted about (52 %) of the total population i.e. J. procera (28 %), P. falcatus (24 %). 

Material and Methods 

Study site location 

The experimental site is located in the Chilimo dry afro-montane forest of the Western 

Shewa zone, in the Dendi district of the central highlands of Ethiopia (38° 07′ E to 38° 10′ E longi-

tude and 9° 30′ to 9° 50′ N’ latitude), at an altitude of 2,170-3,054 m above sea level (Figure 1, 

study II). The mean annual temperature ranges between 15 ºC and 20 ºC and the area receives an 

average of 1,264 mm precipitation yearly (Shumi, 2009). Köppen’s typology classifies the Chilimo 

forest as a temperate highland climate with dry winters (CWB) (EMA, 1988). 

Reconnaissance survey 

A preliminary discussion forum was held with the higher officials of the Oromiya Wildlife 

and Forest Enterprise in Addis Ababa. Subsequently, a reconnaissance survey was conducted 

through a field visit and physical observation across the Chilimo forest. Three patches (Chilimo, 
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Gaji and Gallessa) were selected based on accessibility and representativeness for further study. 

Then an inventory work had been done starting from Chilimo proceed to Gallessa and finally to 

Gaji forest patches. 

Plot sampling 

A total of thirty five -20 x 20 m square sampled plots were marked out, based on the Ney-

man optimal allocation formula (Kangas, 2006; Köhl et al., 2006) for the altitudinal gradient. The 

plots were laid out along 100 m of ground distance, starting from the highest ridges to the lowest 

ridges of the mountains’ using a measuring tape, GPS, altimeter and compass. The boundaries of 

the main plots were pegged and marked, then altitude, slope, latitude and longitude data were rec-

orded from the centre of each main plot. The distance between two consecutive transect lines was 

300 m to 1 km, depending on the accessibility of the next transect. A total of 33 different native 

species (22 tree species and 11 shrub species) were recorded; density varied from 2,533 stems ha
-1

 

in the Chilimo forest patch to 848 stems ha
-1

 in the Gallessa forest patch. 

 Data collection and sampling 

Individual species were categorized into trees (≥ 5 cm diameter at breast height), shrubs, 

saplings (height ≥ 1.3 m and dbh 2.5-5 cm) and seedlings (height 0.30-1.3 m and dbh ≤ 2.5 cm) fol-

lowing the Lamprecht classification (Lamprecht, 1989). All trees and saplings found in the plots 

were then numbered and marked. Tree diameter (cm) was measured to the nearest two digits using 

a metallic calliper. Crown height and total height (meter) was measured using Vertex III digital 

electronics tree height measurement instrument. In cases where trees branched at or below the 

breast height, diameter was measured separately for each branch. Likewise, the diameter at each 

stem was measured separately for trees with multiple stems connecting near the ground. For irregu-

larities and or buttresses on large trunks, measurement was taken at the nearest lower point. Di-

amater measurements and height measurements were made for 822 stems. Basal area (BA) (m
2 

ha
-

1), Volume (Vt) (m3 ha
-1

) and quadratic mean diamater (Dq) (cm) were calculated using inventoried 

data. Both commercial volume and total volume was calculated using the conventional volume 

equation because local volume equations not available for these species:  

V =   (Atta-Boateng and Moser, 1998)        [1] 
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Where V= tree volume, DBH= diameter at breast height, h = total height and or commercial height 

 = form factor (0.42) (Atta-Boateng and Moser, 1998) 

SDI (Reineke index) was calculated using the formula        

  SDI =                                                         [2] 

where SDI= stand density index, Dq= quadratic mean diameter, N =number of stems ha
-1

 

Studied species proportion  

The species proportion for Juniperus procera and Podocarpus falcatus were calculated us-

ing number of stems, basal area and total volume with the general formula:  

   MSP (N) =    (Pretzsch, 2007)                              [3] 

 Where MSP species proportion in stems, : number of stems of species A, : number of      

stems spp B 

Data analysis 

The data was analyzed by using density, quadratic mean diameter and total height primarily equa-

tion 4 was fit by species group using least square regression: 

                     [4] 

Volume is the mean tree gross total volume (m
3
 tree

-1
) and density is the total number of stems per 

hectare. The magnitude of the coefficients in eq. 5 appeared to decrease for mixed species stands 

relative to pure Juniperus procera and Podocarpus falcatus stands. So according with Swift et al. 

(2007) an alternative form of eq. 5 was fitted by expanding the coefficients to include a term for the 

mixture proportion as deviation from the pure stands (mixfrac) degree of departure from pure spe-

cies condition using the formula (Swift et al., 2007): 

 

[5]      Where 
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                             [6] 

                 [7] 

                                                        [8] 

  Where:  = mixed proportion, N= number of stems, Ho: dominant height and QMD: 

quadratic mean diameter, JP: Juniperus procera, PF: podocarpus falcatus, ABS: absolute 

 Dbhq isoline 

The relationship between ln (volume) and ln (density) was found close to linear for a given 

quadratic mean diameter and parallel when quadratic mean diameter was changed. Thus, the rela-

tionship between ln (volume) and ln (density) were given by equation: 

                                      [9] 

The    expand the intercept parameter of the linear relationship between ln (vol-

ume) and ln (density). In a similar way as Swift et al. (2007) did, we expanded each of the coeffi-

cients in eq. 9 to include the Juniperus-Podocarpus fraction, resulting in the following equation: 

 

 (10) 

        

Total height isolines 

  We found a species-dependent relationship between volume and top height and density 

curve downwards as density increases and the slope of the relationship between ln (volume) and ln 

(density) increases as top height increases so (eq. 11) was developed by using weighted linear re-

gression (the mean tree volume was used to weight the residuals) and including species proportions 

to expand paremeters (eq. 12): 

                             [11] 

           [12] 
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Over all model structure and data analysis 

Two general linear models (eq. 13) and (eq. 14) relating quadratic mean diameter and stand 

volume with density and dominant height were considered for SDMD model evaluation and fitting 

process were used primarily for J. procera and P. falcatus and these models were further expanded 

to model  (eq. 15)  and (eq. 16) by incorporation of species proportion: 

                                             [13] 

                                [14] 

Where  

                N: stand density (stem ha
-1

) 

               QMD: Quadratic stem diameter (cm) 

               Ho: Dominant height (m) 

              VT: Stand volume (m
3 

ha
-1

) 

              ᵦi (I = 0-6): regression coefficients 

         

   (15)                    

                           (16)                              

                N: stand density (stem ha
-1

) 

               QMD: Quadratic stem diameter (cm) 

     MIXFRAC : mixture fraction 

    MIX: mixture   

               Ho: Dominant height (m) 

              VT: Stand volume (m
3
ha

-1
) 

              ᵦi (i= 01-62): regression coefficients 

Thus, Ln N and Ln Ho are exogenous variables (defined) independently of the system while 

VT and QMD are instrumental endogenous variables (Borders, 1989). The best independent fitting 

variables were selected using volume, basal area and density. Model fitting and data analysis were 

performed using the MODEL procedure in the SAS/ETS software (SAS Institute Inc., 2012). Best 
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fitting models were selected based on higher regression correlation coefficient and the quality of the 

graph performed. 

 The quadratic mean and total height isoline graphs were formulated using the fitted models. 

Besides, the density management diagram were developed using quadratic mean diameter on the x-

axis (logarithmic scale) while the number of stems per hectare (logarithmic scale) on the y-axis. 

However, thinning operation was recommended using species proportion for overall the Chilimo 

dry afro-montane forest. 

Results 

General description 

The results revealed, quadratic mean diameter (QMD), volume, dominant height (Ho) and 

number of stems (N) were varied among the tree species (Table 1). J. procera and P. falcatus ac-

counted morethan 50 % of the total basal area and density in the Chilimo dry afro-montane mixed 

forest. These species are very important both economically and ecologically. Moreover, use for 

high quality timber which is durable and resistant to termite attack. Other species i.e. Allophyllus 

abyssinicus, Olea europaea ssp. Cuspidiata, Olinia rochetiana, Ruth glutinosa and S. theifolia ac-

counted about 25 % of the total population interms of basal area and density and belong to both in 

the dominat and co-dominant group in the forest. These species are widely utilized for fuelwood, 

construction wood and lumber by the local community as compared to the above mentioned spe-

cies. 
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Table 1: Summary of the data sets used to develop the Juniperus-Podocarpus SDMD: n=number of plot 

measurements. 

Attributes 

 

Juniperus procera Podocarpus falcatus All species in the forest 

n Mean (range) n Mean (range) n Mean (range) 

Density (stems/ha) 

Top height (m) 

Basal area (m
2
/ha) 

Volume (m
3
/ha) 

Quadratic mean di-

amater (QMD) (cm) 

35 

35 

35 

35 

35 

145.71 (0-525) 

15.98 (0-32.10) 

12.39 (0-64) 

114.55 (0-692.75) 

23.90 (0-79.84) 

35 

35 

35 

35 

35 

115 (0-475) 

7.78 (0-22.73) 

2.23 (0-17) 

20.99 (0-230.22) 

8.65 (0-43.48) 

35 

35 

35 

35 

35 

596.43 (125-1025) 

24.16 (13.29-34.24) 

25.92 (6.25-76.00) 

228.11 (5.5-692.75) 

24.29 (12.19-79.84) 

Model evaluation and fitting results 

The model evaluation and simultaneous fitting results of the two dominant species and their 

proportion under study were summarized in table 2 and 3. The results revealed dominant height and 

quadratic mean diameter were found to be the best endogenous fitting variables for stand density 

management diagrams (Table 2). Goodness of fit was adequate (the R
2
 adjusted validation data set 

was over 0.60 for the quadratic mean diameter equation and over 0.95 for the volume equation) in 

all models. 
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Table 2: Results of the variance analysis, adjust and nonlinear regression obtained from making the simul-
taneous adjust of the system of equation to calculate the quadratic stem diameter [1] and the stand volume 
[2] using two equations and two species composition. 

Equation J. procera P. falcatus species proportion 
QMD V QMD V QMD V 

DF Model 3 4 3 4 6 8 

DF error 19 18 13 12 29 27 

SSE 1.67 1.59 1.24 0.89 1.45 6.43 

MSE 0.09 0.09 0.10 0.07 0.05 0.24 

RMSE 0.30 0.30 0.31 0.27 0.22 0.49 

R
2
 0.64 0.93 0.80 0.98 0.70 0.76 

R
2
 adj. 0.60 0.92 0.77 0.95 0.65 0.70 

Where: DF: degree of freedom, SSE: sum of squared error, MSE: mean Residuals, RMSE: root of the mean 
quadratic error, R2: correlation coefficient, R2_adj: adjusted correlation coefficient, QMD: quadratic mean 
diameter, V: volume. 

 

The correlated coefficient value for the estimated parameters is presented in table 3 and 4, 

the model efficiency varied among the species. All the estimated parameters for P. falcatus and five 

parameters for J. procera were significant (p < 0.05). However, for the species proportion, seven 

parameters in volume, six parameters in number of stems and five parameters in basal area were 

also significant. The estimated parameters for the volume data set were better than basal area and 

number of stems. The R
2 

adjusted values for the validation data set for P. falcatus was higher, 

which was over 0.80 for the quadratic mean diameter and over 0.95 for the volume model. Howev-

er, the adjusted R
2
 value for the validation data of diameter at breast height for J. procera was low-

er than P. falcatus (0.60). Thus, two linear-equation models which consider the same sets of inde-

pendent variables were selected to develop the SDMD.  
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Table 3: Values of the coefficients of the nonlinear regression obtained from the simultaneous adjust of the 

system of equations to calculate quadratic stem diameter [1] and stand volume [2] for J. procera and P. fal-

catus separately using (eq. 13 and eq. 14). 

 

Coefficients J. procera P. falcatus 

Estimate ± SE Pr > /t/ Estimate ± SE Pr > /t/ 

β0 -0.804794±0.87 0.3653 1.61596±0.75 0.0491 

β1 -0.24993±0.17 0.1608 -0.50234±0.17 0.0119 

β2 1.388187±0.28 <.0001 3.119281±0.50 <.0001 

β3 -10.1877±1.49 <0.0001 -11.9455±1.50 <0.0001 

β4 1.55153±0.23 <0.0001 2.418808±0.23 <.0001 

β5 1.942324±0.58 0.0036 0.951593±0.38 0.0285 

β6 1.039522±0.25 0.0006 1.11629±0.17 <0.0001 

Where: β0: the y-intercept for QMD, β3: y-intercept for VT, β1: model parameter for N, β2: model parame-
ter for Ho; β4: model parameter for QMD, β5: model paramete for Ho and β6: model parameter for N. 
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Table 4: Values of the coefficients of the nonlinear regression obtained from the simultaneous adjust of the 
system of equations to calculate quadratic stem diameter [1] and stand volume [2] for mixed forest studied 
species using (eq.15 and eq.16). 

Par

ama

ter 

Volume Basal area Number of stems (N) 

Estimate SE Pr > /t/ Estimate SE Pr > /t/ Estimate SE Pr > 

/t/ 

β01 

β02 

β11 

β12 

β21 

β22 

β31 

β32 

β41 

β42 

β51 

β52 

β61 

β62 

2.897416 

-0.00117 

-0.58115 

-0.06936 

0.646314 

0.011675 

-12.60544 

2.444265 

2.198373 

1.29198 

1.472016 

-1.14605 

0.972655 

-0.6712 

0.654 

0.002 

0.107 

0.120 

0.180 

0.083 

2.237 

7.661 

0.494 

2.967 

0.523 

2.725 

0.389 

2.106 

0.0001 

0.5539 

<0.0001 

0.5688 

0.0012 

0.8892 

<.0001 

0.7521 

0.0001 

0.6667 

0.0090 

0.6790 

0.0186 

0.7524 

3.382004 

-3.57605 

-0.56839 

-0.0674 

0.487582 

1.111381 

-12.7042 

5.230836 

2.108279 

1.197907 

1.761332 

-3.34268 

0.782145 

0.741133 

0.879 

3.654 

0.099 

0.115 

0.257 

1.125 

2.746 

12.471 

0.508 

3.576 

0.581 

3.057 

0.406 

1.888 

0.0006 

0.3358 

<.0001 

0.5632 

0.0676 

0.3316 

<.0001 

0.6783 

0.0003 

0.7402 

0.0053 

0.2839 

0.0643 

0.6977 

3.116092 

-2.26465 

-0.67893 

0.654378 

0.673544 

-0.00697 

-11.3893 

-2.0532 

2.016638 

2.280185 

1.527939 

-2.07677 

0.671582 

0.813058 

0.632 

1.421 

0.122 

0.482 

0.168 

0.081 

1.935 

3.972 

0.460 

2.900 

0.563 

2.746 

0.413 

1.305 

<.0001 

0.1218 

<.0001 

0.1851 

0.0004 

0.9321 

<.0001 

0.6094 

0.0002 

0.4386 

0.0114 

0.4560 

0.1154 

0.5384 

Where: β01:the y-intercept for QMD, β02:model paramater for MIXFRAC, β11: Model parameter for N, β12: 

Model parameter fro MIX_N, β21:model parameter for Ho, β22: model parameter fro MIX_Ho, β31: the y-

intercept for VT, β32: model parameter for MIXFRAC, β41: model parameter for QMD, β41: model parame-

ter for MIX_QMD, β51: model parameter for Ho; β52: model parameter for MIX_Ho, β61: model parameter 

for N, β62: model parameter for MIXFRAC_N. Number in bold are statistically significant p < 0.05. 
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Table 5: The result of fitting eq. 9 and 10, 11 and 12. 

Equation 9 and 10 Equation 11 and 12 

Paramater estimate S.E Pr > /t/ estimate S.E Pr > /t/ 

β0 

β1 

β2 

β3 

β0ᵒ 

β01 

β02 

β10 

β11 

β12 

β20 

β21 

β22 

β30 

β31 

-44E-14 

1.0000 

6.8E-14 

- 

- 

-10.5325 

0.276774 

- 

2.814531 

-0.01337 

- 

1.13389 

0.025535 

- 

- 

0.0982 

0.0388

0.0180 

- 

- 

1.9283 

0.2732 

- 

0.3605 

0.2984 

- 

0.3409 

0.2704 

- 

- 

0.0001 

0.0001 

0.0001 

- 

- 

<.0001 

0.3193 

- 

<0.0001 

0.9646 

- 

0.0024 

0.9254 

- 

- 

-388E-15 

1.0000 

1.2E-10 

0.0001 

-11.361 

-0.38768 

- 

2.033989 

0.346418 

- 

1.469933 

-0.28699 

- 

0.726249 

0.171168 

0.1094 

0.0388 

0.0002 

0.00001 

1.9982 

1.4603 

- 

0.4764 

0.5071 

- 

0.5584 

0.4543 

- 

0.4206 

0.4502 

0.0001 

0.0001 

0.0001 

0.0001 

<.0001 

0.7927 

- 

0.0002 

0.5003 

- 

0.0138 

0.5329 

- 

0.1047 

0.7068 

Number in bold are statisticall significant at p < 0.05. 
Where: β0 : the y-intercept for volume eq.9 and the estimator parameter for top height eq.11, β1: the esti-

mator parameter for dbhq eq.9 and the power estimator for density eq.11, β2: the estimator parameter for 

density eq.9 and the power estimator for density eq.11, β01: the y-intercept for volume eq.10 and the esti-

mator parameter for MIXFRAC eq.12, β02: the estimator parameter for J.procera eq.10, β11: the y-intercept 

for J. procera density eq.10 and the estimator parameter for MIXFRAC_Ho eq.12, β12: the estimator pa-

rameter for dbhq eq.10: β21: the y-intercept for density, eq.10 and the estimator paramete for MIXFRAC_N 

eq.9 and 10, β22: the estimator parameter for mixfrack J.procera eq.10, β31: the power estimator for densi-

ty eq.11, β0ᵒ : the y-intercept for eq.12, β10: the y-intercept for MIXFRAC eq.12, β20: y –intercept for 

MIXFRAC  eq.12, β30: the y-intercept eq.12, β31: the estimator parameter for MIXFRAC eq.12. 
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Stand density management diagram model for the species proportion  

Maximum density lines plus diameter and height isolines were graphed using actual data for 

J. procera, P. falcatus and J. procera/P. falcatus species proportion as shown in figure 2 and 3. The 

relationship between volume and density was apperead to be linear for a given dbh and parallel as 

dbh changed (Figure 2). The graph produced using top height and density was also showed a linear 

relationship between top height and density for both pure species and species proportion, though, 

the relationship was weak (Figure 3). 

The SDMD was formulated using quadratic mean diameter and total height for J. procera, 

P. falcatus and Juniperus/Podocarpus proportion and the results are presented in figure 4. In the 

graph the total volume, total height and number of stems were presented using different colours and 

features. The total volume was represented using blue dotted lines running diagonally from x-axis 

to y-axis and the total height (m) was represented using red solid lines running from x-axis to y-axis 

with similar fashion. Similarly, the number of stems and stand density index was represented using 

black solid lines running in the same position as volume and total height do. In the graph we can 

read any combinations of quadratic mean diameter, density, total volume and total height. 

Volume, total height and number of stems per hectare were varied among the species. J. 

procera dominated by big diameter stemmed trees with a mean quadratic mean diameter upto 80 

cm while P. falcatus was dominated by medium sized stems with a higher regeneration status in the 

forest. The number of stems in the SDMD of Chilimo mixed forest was exceeded up to 1025 stem 

ha
-1

.  

Alternative management options were developed for the Chilimo dry afro-montane forest by 

considering species proportion of J. procera and P. falcatus, because species specific management 

option is not advisable for such a type of forest to maximize productivity of the forest and benefit-

ing the local community (Figure 4). The quadratic mean diameter, stand volume and number of 

stems to be retained and removed before and after thinning was also estimated (Table 5). The vol-

ume after thinning was also showed increment (Table 5). The minimum and maximum quadratic 

mean diameter to be thinned will be 25 and 35 cm, respectively (Table 5). Natural mortality was not 

considered between thinning operations. Thus, thinning will be applied for J. procera and P. falca-

tus. A similar assumption was also reported in the previous SDMDs developmet for other species 

(McCarter and Long, 1986; Dean and Baldwin, 1996; Barrio-Anta et al., 2005).  
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Fig. 2: The maximum size density line and the quadratic mean diameter isolines form eq. 7 are plotted 
through the actual data. 
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Fig. 3: The dominant height isolines from eq. 8 are plotted through the actual data. 
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Discussion 

Forest management is included as a key tool in REDD+ projects (Moges and Tenkir, 2014)  

and proper biomass and carbon stock estimations in tropical forests will help foresters to better  un-

derstand the importance of tropical forest management in the global carbon cycle budgeting and 

how to implement in sustainable management at operational level. Also this information could 

serve as a valuable tool for policy-makers and stakeholders during the decision making proccess to 

maintain and improve forest condition while the provision of valuable environmental services (in-

cling timber and firewood) is ensure so local communities could be engage in forestry related activ-

ities. In this study, data from a single measurement 35 plots were analyzed to develop stand density 

management diagram for J. procera, P. falcatus and Juniperus/Podocarpus mixed forests useful for 

operational forestry in Chilimo forest but also can be used in other dry afro-montane forests. The 

density management diagrams reflect the impact of stand compositon and structure on stand devel-

opment including wood yield. Appropriate decision making processes must enhance future stand 

volume, wood properties and habitat characteristics and SDMDs can help foresters to establish ap-

propriate management guidelines including carefully designed thinning operations to benefit the 

local communities. Although, SDMD are widely used for even aged pure stands in the past, current-

ly it is also used for the management of mixed stands (Swift et al., 2007). 

  The growth and yield of trees and stands are fundamental tools for understanding the rela-

tionships between density management and wood production. By using SDMDs managers can rec-

ommend appropriate thinning operations where the maximum yield will be obtained. Due to the 

lacking of permanent plot in the study area (Chilimo natural forest), Dean and Baldwin’s (1996) 

bounds of self thining and full site occupancy were adopted (Figure 4). These values (60 and 35% 

of maximum RDI) must be locally estimated in the near future by establishing a permanent plot 

network. Other modeling approach as empirical or process-base models can be also useful to under-

stand ecosystem dynamics and propose management guidelines. However, as Valbuena et al. ( 

2008) stated SDMDs are practical tools that can be easily implemented where silvicultural 

knowledge is scarce and in low productivity forests where it is not realistic invest funds to improve 

management tools. 
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Fig. 4: Stand density management diagram and alternatives for chilimo natural forest with Juniperus and 
Podocarpus proportion. 
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Table 5: Alternative silvicultural density management options for Chilimo dry afro-montane forest. 

Alternative Quadratic mean diameter  (cm) Stand volume (m
3 

ha
-1

) Density (stem ha
-1

) 

Before after before after before after 

I-II 25 29.00 265.00 150.00 673 362 

III-IV 29.00 33.00 150.00 210.00 362 350 

V-IV 33.00 35.00 210.00 330.00 350 250 

Conclusions 

Stand density management diagrams can be used as a foundation tool to develop thinning 

operation schedules to benefit the local community living inside or around Chilimo dry-afro-

montane forest in particular and to enhance productivity of the forest in general. Dominant height 

and quadratic mean diameter were found to be the best endogenous variables for SDMD for Chili-

mo forest. The SDMD fitted for the volume data set were better than basal area and number of 

stems. Formulating SDMD using species proportion is better than treating each species independet-

ly. This stand density management diagram is the first diagram developed for mixed-forest in Af-

rixa and can be serve to support the sustainable management of Chilimo dry afro-montane forest in 

particular and other dry afro-montane forests in general. Similar studies should be continued for 

Chilimo dry afro-montane forest in particular and other natural and man-made plantation forest in 

general.  
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Abstract 

Chilimo forest is one of the few remaining dry afro-montane mixed forests and is composed 

of both broad-leaf and the more dominant coniferous species. However, information’s regarding 

carbon concentration and wood density for the existed tree species, its parts and stem position are 

lacking, thus the study was conducted with the objective to estimate carbon concentration and wood 

density for: Allophyllus abyssinicus, Olea europaea ssp. cuspidiata, Olinia rochetiana, Rhus gluti-

nosa and Scolopia theifolia in a tropical mixed forest, Ethiopia. A total of 105 wood samples 30-50 

mm thickness were collected based on diameter distribution. Fresh weight of wood and leaves sam-

ples were taken in the field and oven dried at 102 ºC and 67 ºC to constant weight, respectively. The 

oven dried wood and leave samples were weighed, splatted into pieces, chopped and finally grinded 

into 0.2 mm with a grinding mill. Carbon concentration was analysed using ash method while, vol-

ume for wood density was estimated using water displacement method. The data was analysed us-

ing SAS PROC GLM and PROC logistic model. The results revealed that both carbon concentra-

tion and wood density were highly significant among and within a species, plant parts and stem po-

sition. The highest carbon concentration (57.12 %) was found for O. rochetiana, however, the low-

est carbon concentration (56.43 % %) was found for A. abyssinicus. Stem parts had higher carbon 

concentration (56.98 %) than branch (56.74 %) and leaves parts (54.53 %). The maximum carbon 

concentration was also found at stump height (57.10 %) than commercial height (54.53 %). The 

wood density was also varied among and within a species and stem position. O. europaea ssp. cus-

pidiata exhibited the highest wood density (0.67 g cm
-3

) than others.  

Keywords: native trees species, Chilimo forest, stem position, plant parts and logistic model. 
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Introduction 

Carbon dioxide (CO2) is contributing the dominant figure to the greenhouse effect. The in-

creasing carbon emission due to anthropogenic effects is a major concern for all over the world. It 

has been well addressed in Kyoto protocol (Ravindranath et al., 1997; Charan and Rasal, 2010). 

Carbon sequestration is a natural method for the removal of carbon from the atmosphere and stor-

ing it (Dhruba, 2008; Charan and Rasal, 2010). The atmospheric CO2 is captured and stored in 

plants, soil, ocean or atmosphere in the form of biomass through photosynthesis. Wood production 

has a positive environmental effect by fixing large amounts of carbon dioxide (CO2) (Herrero et al., 

2011). Carbon constituents approximately 50 % of the dry weight of wood (Robinson and Kile, 

2007) however, different plant tissues contain different amounts of carbon, for e.g. a carbon con-

centration of 42 % for leaves and 47 % to 52 % for roots was reported by Lamlom and Savidge 

(2006). The amount of carbon sequestered by a particular tree species is increasing substantially 

over the time and age of a tree until it matures (Jone et al., 2009). Accurate estimation of forest bi-

omass is important for commercial uses (e.g. fuel wood and fiber, national development planning, 

scientific studies of ecosystem productivity of carbon cycle), nutrient flows and assessing the con-

tribution of changes in forest lands to the global carbon cycle (Basuki et al.,  2009). The estimation 

of the above-ground biomass with a sufficient accuracy to assess the variations in C stored in the 

forest is becoming increasingly important (Ketterings et al., 2001; Chave et al., 2004). Variability 

of biomass is due to differences in climate, topography, soil fertility, water supply, wood density, 

tree functional types and forest disturbance (Fearnside, 1997; Luizáo et al., 2004; Sicard et al., 

2006). For a particular tree, tree mass is influenced by the size of a tree, its architecture, form, 

health condition and soil fertility (Fearnside, 1997; Patino et al., 2009).  

The biomass of tropical forests has been measured for a few sites scattered around the tropi-

cal world but the area represented by these studies is extremely low (approximately 30 ha) com-

pared with the total area of tropical forest (about 18 million km
2
) (Brown and Lugo, 1982). Fur-

thermore, there is strong evidence that the selection of these few sites was biased towards high bi-

omass forest (Brown and Lugo, 1984). 

 Past experiences revealed that, 50 % of the dry biomass of wood was considered as carbon; 

however, recent findings indicated, this assumption is not always true. Because, the amount of car-

bon concentration was varied among and within a species, individual tree, stem position and plant 
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tissue (Herrero et al., 2011; Thomas and Martin, 2012). Thus, species and site specific research in-

vestigations should be made. 

According to Perera et al. (2012) wood density is a function of the proportion of cell wall 

materials versus cellular voids. Accordingly wood density is a key wood property it affects yield 

and quality of both fibrous and solid wood products (Haslett and Young, 1990). Wood density is a 

measure of wood quality (Zobele and van Buitjenen, 1989; Woodcock and Shier, 2002). It is also 

one of the most important biological traits in plants. It has both ecological and economical im-

portance for a particular tree and or species. Wood density is directly related to tree growth because 

of the volume of wood produced for a given unit biomass is inversely proportional to its density 

(King et al., 2005). Light demanding tree species growing in the tropics have low wood density 

than shade-tolerant tree species (Muller-Landov, 2004; King et al., 2006; van Gelder et al., 2006; 

Poorter, 2008). Wood density varies within and among a species, provenances and individual tree, 

stem position, tissue type and plant parts (Chave, 2006; Grabner and Wimmer, 2006; Chave et al., 

2009; Beck, 2010).  

Wood density is used to estimate forest biomass, carbon flux and greenhouse gas emissions 

from a particular forests (Brown et al., 1989; Fearnside, 1997; Nogueira, 2007; Preece et al., 2012). 

Species and site specific wood density and carbon concentration assessments are required to reduce 

uncertainities regarding biomass and carbon estimation (Zhang et al., 2009). However, the wood 

densities of majority of tree species grown in the tropics are unknown (Slik, 2008). Consequently, 

little information exists on wood density for native tree species grown in Ethiopia and other sub-

Saharan African countries. 

Located in the central highland plateau of Ethiopia, the Chilimo forest is one of the few re-

maining dry afro-montane mixed forests and is composed of both broad-leaf and the more dominant 

coniferous species. The main species (based on density) include: Juniperus procera, Podocarpus 

falcatus, Olea europaea ssp. cuspidiata, Scolopia theifolia, Rhus glutinosa, Olinia rochetiana and 

Allophylus abyssinicus (Kelbessa and Soromessa, 2004; Kassa et al., 2008). The forest represents a 

vital ecological space for birds, mammals and water supply. It is also the source of several large 

rivers, including the Awash River. However, the Chilimo forest has been subjected to human im-

pact for over 2,000 years. The current rate of deforestation is extremely high due to clearing for fuel 

wood, agricultural land, lumber and farm implements. Chilimo forest cover has shrunk from 22,000 

ha in 1982 to 6,000 ha at present (Shumi, 2009). The Ethiopian government has proclaimed this 
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forest as a National Priority Protection Forest area. As information’s regarding % C and wood den-

sity at species level, plant parts and stem position are lacking for the majority of Ethiopian species 

in general and Chilimo dry afro-montane forest native tree species in particular, the main aim of 

this study was to estimate carbon concentration and wood density for five most commonly native 

species: Allophyllus abyssinicus (Hochst.) Radlk. Olea europaea L. ssp. cuspidiata (Wall. ex G. 

Don) Cif, Olinia rochetiana A. Juss, Rhus glutinosa Hochst. Ex A. Rich. and Scolopia theifolia 

(Gilg.) along plant parts and stem position in a tropical dry afro-montane forest. 

Although the coniferous J. procera and the broadleaf P. falcatus are the most abundant and 

dominant trees in the forest, cutting them down is prohibited by law and it was therefore not possi-

ble to take samples for carbon concentration and wood density determination for these endangered 

species. Consequently, the species included in this study are under increased pressure from the local 

human population in search of wood for fuel, construction wood, farm implements and charcoal 

(Kassa et al., 2008; Teshome and Ensermu, 2013). 

Material and Methods 

Study site location 

The experimental site was located in the Chilimo dry afro-montane forest of the Western 

Shewa zone, in the Dendi district of the central highlands of Ethiopia (38° 07′ E to 38° 10′ E longi-

tude and   9° 30′ N to 9° 50′ N’ latitude), at an altitude of 2,170-3,054 m above sea level (Figure 1, 

study II). The mean annual temperature ranges between 15 ºC and 20 ºC and average annual precip-

itation is 1,264 mm (Shumi, 2009). Köppen’s typology classifies the Chilimo forest as a temperate 

highland climate with dry winters (CWB) (EMA, 1988).  

Forest inventory 

A total of thirty-five 20 x 20m square sample plots were marked. Sampling and data collec-

tion were done in the measured plots of the mixed natural forest. Individual species were catego-

rized into trees (≥ 5 cm diameter at breast height), shrubs, saplings (height ≥1.3 m and dbh 2.5-5 

cm) and seedlings (height 0.30-1.3 m and dbh ≤ 2.5 cm) following Lamprecht’s classification 

(1989). All trees and saplings found in the plots were then numbered and marked. Tree diameter 

(cm) was measured to the nearest two digits using a metallic calliper. Crown height and total height 
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(meter) were measured using Vertex III digital electronics tree height measurement instrument. 

Then the inventory data was summarized using descriptive statistics. Five dominant and abundant 

tree species were selected for further study. These species namely, A. abyssinicus (4 %), O. euro-

paea ssp. cuspidiata (8 %), O. rochetiana (5 %), R. glutinosa (3 %) and S. theifolia (5 %) account-

ed for 25 % of the total native tree population (in number of trees ha
-1

) and 23 % (5.04 m
2
 ha

-1
) of 

total basal area in the overall population. These tree species were selected for % OC in the plant 

sample and wood density study using destructive sampling. 

Wood sampling and analytical procedures 

A total of 15 trees (3 trees spp
-1

) were selected and cut based on diameter classes at 5-cm in-

tervals obtained from inventory data. Prior to felling: diameter at breast height (dbh =1.30 m), di-

ameter at ground base (db), crown diameter (cd) and crown length (cl) were measured for each tree 

using metallic calliper and Vertex digital height measurement instrument. Then, trees were felled 

using local axes and cross cut saw and cut as close to the ground as possible. A total of 105 discs, 

six cross-sectional discs (5 discs from stem and one disc from large branches) having a size of 30-

50 mm thickness, were collected per single tree. Discs were taken from each section, starting from 

stump height to every one meter along the stem up to the end of commercial height (≤ 7cm) and 

large branches (≥ 7cm diameter). Leaves samples were also taken from each tree for the same pur-

pose. Fresh weights of each wood and leaves samples were taken in the field and leaves were oven 

dried at 67 ºC for 24 hours and wood samples were oven dried at 102 ºC for 48 hours to constant 

weight, then samples were weighed, splatted into pieces, chopped and finally grinded into 0.2 mm 

using a grinding mill. 

Carbon % was estimated coversion of ground plant samples into ash using ignition method 

described by (Ben-Dar and Banin, 1989; Allen et al., 1986; Negi et al., 2003; Jone et al., 2009). 

Five to 10 gram of ground plant sample was placed in the ashing vessel at 105 ºC temperature for 

four hours. Oven dried samples were removed, cooled, air dried and weighed and again placed in a 

muffle furnace at 400 ºC  and oven dried for four hours. Then, the carbon concentration was calcu-

lated using the following formula: 

Ash %  X 100                                              (1) 

)58.0%(% AshC                                                 (2) 
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Where, C: the organic carbon concentration, w105: weight of dry ground plant sample at 105 ºC, 

w400: weight of ground plant sample at 400 ºC and 0.58 is the carbon concentration in the organic 

matter of wood. 

Similarly, volume (cm
-3

) for wood density estimation was estimated using water 

displacement method. Wood density was the ratio of oven dry weight of wood (g) and volume (cm
-

3
) (McDonalds et al., 1995). The carbon concentration and wood density analysis were performed at 

Holetta research centre, Ethiopia (www.eiar.gov.et/index.php). 

The carbon mass in the above ground biomass of each stem section was estimated using 

volume of a particular section calculated using Smalians method (Henry et al., 2010) multiplied 

with wood density of each section.  

Statistical methods 

The wood density and carbon concentration among and within a species were analysed us-

ing three way of analysis of variance (α=0.05). Tree species, plant parts and hrel considered as fixed 

factors and each tree was considered as random factor. The analysis was performed using 

SAS/STAT
®

 GLM procedure (SAS Institute Inc., 2012). The general model can be expressed as: 

          (3)        

Where ,Y is the % C and wood density of the sample, μ is the mean value, αi is the species effect, βj 

is the plant parts effect, γk is the stem position effect, (αβ)ij is the interaction effect of between spe-

cies and plant parts, (αγ)ik is the interaction effect of between species and stem postion , αβγ)jk is the 

interaction effect of between species, plant parts and stem position and (δ*(αβγ)ijk) is the random 

effect of each tree on the fixed factors, and ε is the error.  

A Pearson correlation analysis was performed using SAS/STAT
®
 CORR procedure (SAS 

Institute Inc., 2012) for carbon concentration and wood density along tree species and dendrometric 

variables. Similarly, a logistic model analysis was performed using SAS/STAT
®
 LOGISTIC proce-

dure (SAS Institute Inc., 2012) to see wether the carbon concentration and wood density difference 

among the tree species, plant parts and tree height. 

The logistic model was performed with the following structure: 

                                                    (4) 

In which  is the probability that there will be organic carbon difference at a specified height and  

is a linear function, expressed as follows: 

http://www.eiar.gov.et/index.php
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                                                            (5)       

Where h is the hrel of the sample, DBH is the tree diameter of the sample disc. 

Results 

General description 

The mean, maximum, minimum and standard deviation for the major tree datas and above 

ground biomass for the cut sampled trees were summarized in table 1. The values were varied 

among the species. The mean d was ranged from 12.62 cm to 14.7 cm for R. glutinosa and S 

.theifolia, respectively. The db was ranged from with a maximum value of 28.10 cm to a minimum 

value of 6.35 cm for O. europaea ssp. cuspidiata. Similarly, the mean ba was ranged from 0.018 m
2   

to 0.037 m
2 

tree
-1 

for R. glutinosa and O. europaea, respectively. The total height was ranged from 

with a maximum value of 14.37 m for O. europaea to a minimum value of 7.80 m for S. theifolia. 

The above ground biomass was varied from with a maximum value of 189.16 kg tree
-1

 for S. theifo-

lia to a minimum value of 26.78 Kg tree
-1

 for A. abyssinicus. 
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Table 1: Mean growth characteristics of sampled trees for % OC and wood density for five studied tree spe-
cies. 

Tree 

spp 

Spp d 

(cm) 

db 

(cm) 

h (m) hc 

(m) 

hb 

(m) 

ba 

(m
2
) 

Dry biomass (kg) 

Stem Br27 Br2 Above 

A
. 

a
b
ys

-

si
n
ic

u
s Mean 

Std dev 

Minimum  

Maximum 

N 

13.08 

3.79 

7.40 

21.25 

3 

18.17 

7.99 

12.25 

27.25 

3 

12.63 

4.76 

10.20 

17.00 

3 

7.53 

4.76 

4.30 

13 

3 

4.53 

2.64 

2.20 

7.40 

3 

0.029 

0.025 

0.012 

0.058 

3 

52.10 

67.92 

8.45 

130.36 

3 

14.66 

2.46 

12.60 

17.38 

3 

9.87 

3.80 

5.73 

13.20 

3 

76.63 

70.71 

26.78 

157.36 

3 

O
. 
eu

ro
p
a
ea

 Mean 

Std dev 

Minimum  

Maximum 

N 

16.18 

5.48 

10.80 

21.75 

3 

21.08 

6.35 

15.75 

28.10 

3 

10.63 

1.10 

10.00 

11.90 

3 

6.80 

1.82 

5.70 

8.90 

3 

2.70 

1.48 

1.70 

4.40 

3 

0.037 

0.022 

0.020 

0.062 

3 

108.16 

95.51 

22.96 

211.40 

3 

20.44 

5.46 

16.56 

26.68 

3 

22.53 

15.28 

6.57 

37.03 

3 

151.14 

115.68 

46.09 

275.11 

3 

O
. 

ro
ch

et
ia

n
a

 Mean 

Std dev 

Minimum  

Maximum 

N 

13.32 

6.40 

8.60 

20.60 

3 

16.43 

6.45 

10.35 

23.20 

3 

14.37 

4.41 

11.20 

19.40 

3 

8.50 

5.17 

3.90 

14.10 

3 

4.97 

2.12 

3.50 

7.40 

3 

0.023 

0.017 

0.008 

0.042 

3 

95.99 

118.31 

11.77 

231.25 

3 

41.86 

41.24 

13.42 

89.15 

3 

20.48 

17.55 

10.08 

40.75 

3 

158.33 

176.91 

35.81 

361.15 

3 

R
. 
g
lu

ti
n
o
sa

 Mean 

Std dev 

Minimum  

Maximum 

N 

12.62 

0.98 

12.00 

13.75 

3 

15.33 

0.83 

14.45 

16.10 

3 

12.57 

4.19 

9.90 

17.40 

3 

5.13 

1.01 

4.00 

5.90 

3 

3.30 

1.82 

2.20 

5.40 

3 

0.018 

0.002 

0.016 

0.020 

3 

34.14 

1.97 

32.01 

35.90 

3 

21.62 

9.14 

11.21 

28.29 

3 

8.22 

3.61 

4.29 

11.38 

3 

63.99 

11.68 

52.22 

75.57 

3 

S
. 

th
ei

fo
li

a
 

Mean 

Std dev 

Minimum  

Maximum 

N 

14.07 

1.50 

9.70 

16.50 

3 

16.92 

4.23 

12.25 

20.50 

3 

9.37 

2.36 

7.80 

10.80 

3 

5.80 

2.36 

3.10 

7.50 

3 

3.53 

1.54 

2.50 

5.30 

3 

0.024 

0.011 

0.012 

0.033 

3 

62.07 

52.37 

13.92 

117.82 

3 

27.71 

15.77 

10.84 

42.09 

3 

25.43 

4.68 

20.21 

29.25 

3 

115.21 

72.17 

44.97 

189.16 

3 

Where; N: number of trees, d: dbh, db: diameter at the stump height, h: total height, hc: commercial height, hb: 

branching height, ba: basal area, br27: biomass of thick branches (2-7 cm), br2: biomas of thin branches (≤ 2 cm) plus 

leaves, above: total above ground dry biomass. 

Correlation of dendrometric variables to dry biomass fractions 

 The Pearson correlation coefficient value was summarized in table 2. The results revealed 

carbon concentration, wood density and carbon mass along tree volume were non-correlated to 

most tree variables. However, wood density was moderately to highly correlate to commercial 
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height, basal area and stem biomass for A. abyssinicus and total height, branch biomass and above 

ground biomass for S. theifolia. The carbon concentration was correlated to total height, commer-

cial height and stem biomass in A. abyssinicus, to thick branches in O. europaea ssp. cuspidiata and 

to diamater at breast height, total height, basal area, stem biomass, small branches plus leaves and 

total above ground biomass in R. glutinosa. 

Table 2: Pearson coorelation values for different dendrometric variables. 

Spp Properties Tree variables 

dbh h hc ba stem Br27 Br2 above Volume 

A
. 

a
b

ys
si

n
-

ic
u

s 

WD -0.21
ns

 -0.05
ns

 0.99
*

 0.99
*

 0.99
**

 -0.9
ns

 -0.64
ns

 -0.12
ns

 -0.04
ns

 

C (%) -0.99
ns

 -0.95
ns

 -0.96
ns

 -0.97
ns

 -0.95
ns

 -0.2
ns

 -0.95
ns

 -0.97
ns

 -0.95
ns

 

Cmass  0.99
ns

 0.99
*

 0.99
*

 0.99
ns

 0.99
*

 -0.2
ns

 0.79
ns

 0.99
ns

 0.04
ns

 

O
. 

eu
ro

p
a
ea

 WD 0.56
ns

 0.89
ns

 0.90
ns

 0.64
ns

 0.67
ns

 0.82
ns

 0.52
ns

 0.32
ns

 0.76
ns

 

C (%) 0.42
ns

 -0.06
ns

 -0.09
ns

 0.33
ns

 0.30
ns

 0.08
ns

 0.52
ns

 0.32
ns

 0.17
ns

 

Cmass  0.96
ns

 0.98
ns

 0.97
ns

 0.98
ns

 0.99
ns

 0.99
*

 0.92
ns

 0.99
ns

 0.99
*

 

O
. 

ro
ch

et
ia

-

n
a
 

WD -0.77
ns

 -0.78
ns

 -0.64
ns

 -0.81
ns

 -0.79
ns

 -0.8
ns

 -0.87
ns

 -0.80
ns

 -0.82
ns

 

C (%) 0.48
ns

 0.46
ns

 0.64
ns

 0.43
ns

 0.46
ns

 0.44
ns

 0.31
ns

 0.44
ns

 0.41
ns

 

Cmass  0.99
*

 0.99
*

 0.97
ns

 0.99
**

 0.99
**

 0.99
ns

 0.99
*

 0.99
**

 -0.81
ns

 

R
. 

g
lu

ti
n
o
sa

 WD 0.44
ns

 0.34
ns

 -0.74
ns

 0.44
ns

 -0.28
ns

 -0.5
ns

 0.89
ns

 0.12
ns

 0.41
ns

 

C (%) 0.41
ns

 0.31
ns

 -0.77
ns

 0.41
ns

 -0.31
ns

 -0.5
ns

 0.88
ns

 -0.16
ns

 0.01
ns

 

Cmass  0.95
ns

 0.98
ns

 0.56
ns

 0.95
ns

 0.92
ns

 0.82
ns

 0.55
ns

 0.99
ns

 0.13
ns

 

S
. 
th

ei
fo

li
a
 WD -0.95

ns

 -0.99
*

 -0.86
ns

 -0.95
ns

 -0.97
ns

 -1.0
**

 -0.99
ns

 -0.98
ns

 -0.91
ns

 

C (%) 0.02
ns

 -0.36
ns

 0.23
ns

 -0.00
ns

 -0.54
ns

 -0.3
ns

 -0.18
ns

 -0.47
ns

 0.12
ns

 

Cmass  0.99
ns

 0.86
ns

 0.99
*

 0.99
ns

 0.74
ns

 0.89
ns

 0.93
ns

 0.79
ns

 0.99
*

 

Note: Above: stem+thick branches (2-7) + (thin branches+ leaves),* = p ≤ 0.05, **= p ≤ 0.01, ***= p ≤ 0.001, Hc: 

commercial height, h: total height, dbh: diameter at breast height, db: tree basal diameter, WD: wood density, C % 

carbon content, Cmass; carbon mass 

Variation in carbon concentration and wood density 

The carbon concentration and wood density data was analyzed using sas proc glm and the 

result was presented in table 3. The carbon concentration was significantly varied among and within 

a species, plant parts and interaction of tree species with plant parts. Similarly, the wood density 
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was significantly varied among the species, plant parts and stem position and interaction tree spe-

cies with plant parts. Carbon mass along volume of a tree was significantly varied among plant 

parts and tree height. However, interaction of tree species with stem position was non-significant. 

      Table 3: Main results of the GLM procedure for % C (n=105, R2 =0.68) and WD (n=105, R2=0.61). 
 

Sources DF Type III SS Mean square F value Pr >F 

Carbon content 

Species 

Parts 

Height 

Spp* parts 

Spp*height 

 

4 

2 

4 

8 

16 

 

8.76496642 

75.27960206 

1.17057333 

6.15808061 

1.05554667 

 

2.19124161 

37.63980103 

0.29264333 

0.76976008 

0.06597167 

 

11.07 

190.14 

1.48 

3.89 

0.33 

 

<.0001 

<.0001 

0.2181 

0.0008 

0.9915 

Wood density 

Species 

Parts 

Height 

Spp* parts 

Spp*height 

 

4 

2 

4 

8 

16 

 

0.31047130 

4.41151200 

0.111800800 

0.17576990 

0.01060533 

 

0.07761783 

2.2057560 

0.02950200 

0.02197124 

0.00066282 

 

75.74 

2152.46 

27.29 

21.44 

0.65 

 

<0.0001 

<0.0001 

<0.0001 

<0.0001 

0.8342 

C mass 

Species 

Parts 

Height 

Spp* parts 

Spp*height 

 

4 

2 

4 

8 

16 

 

0.30199450 

5.03748760 

1.28663912 

0.39690706 

0.54423355 

 

0.07549863 

2.51874380 

0.32165978 

0.04961338 

0.03401460 

 

0.66 

22.15 

2.83 

0.44 

0.30 

 

0.6191 

<0.0001 

0.0310 

0.8952 

0.9953 

Where, Spp: species, C: carbon, DF: degree of freedom, ss: sum of squares. 

The carbon concentration, wood density and carbon mass under tree species, plant parts, 

tree height and its interaction was evaluated using a single logistic model analysis and the results 

were presented in table 4 and 5. The evaluated paramater revealed that the carbon concentration and 

wood density were highly significant (p < 0.001). However, the Wald analyzed results of carbon 

mass was revealed that non-significant (p = 0.8111). The maximum livelihood estimated for these 

parameters were highly significant along plant parts (stem, branch and leave), tree height and inter-



Forest management options for carbon stock and soil rehabilitation in Chilimo dry afro-montane forest, Ethiopia 
 

257 
 

action of plant parts with tree height (p ≤ 0.0001). However, the carbon concentration among tree 

species, interaction of tree species with plant parts and trees with tree height were non-significant. 

The evaluated results for the presence and absence of wood density and carbon mass concentration 

among, tree species, plant parts and tree height and its interaction were non-significant (Table 5). 

Table 4: Logistic model analysis results. 

Carbon content (%) Wood density Carbon  mass content 

Parameter χ
2
 DF   Pr > χ

2
         χ

2
 DF Pr > χ

2
    χ

2
 DF Pr > χ

2
 

Likelihood ratio 

Score 

Wald 

217.60 

83.9907 

84.1350 

34 

34 

34 

<.0001 

<.0001 

<.0001 

310.45 

97.09 

81.92 

34 

34 

34 

<.0001 

<.0001 

<.0001 

152.69 

77.30 

26.65 

34 

34 

34 

<.0001 

<.0001 

0.8111 

 

Table 5: Anlaysis of maximum likelihood estimates with logistic model. 

 

 

Carbon content (%) Wood density          C mass content 

Parameter D

F 

Esti

mate 

SE Wald 

value 

Pr 

> χ
2
 

Estima

te 

SE Wald 

value 

Pr> 

χ
2
 

Estim

ate 

SE Wald 

value 

Pr> 

χ
2
 

Spp 

Parts 

Height 

Spp*parts 

Spp*height 

Parts*height 

1 

1 

1 

1 

1 

1 

-0.2 

-19.1 

-3.3 

-0.2 

0.1 

3.3 

0.3 

5.7 

0.9 

0.3 

0.1 

0.9 

0.5 

11.3 

12.9 

0.6 

1.1 

14.1 

0.5 

0.0 

0.0 

0.5 

0.3 

0.0 

0.10 

-48.55 

-6.98 

0.27 

-0.11 

8.05 

0.43 

83.64 

13.94 

0.46 

0.10 

13.93 

0.05 

0.34 

0.25 

0.34 

1.27 

0.33 

0.82 

0.56 

0.62 

0.56 

0.26 

0.56 

-0.02 

62.89 

8.39 

0.01 

-0.00 

-7.92 

5.69 

140.6 

20.38 

5.69 

0.10 

20.38 

0.00 

0.20 

0.17 

0.00 

0.00 

0.15 

1.00 

0.66 

0.68 

1.00 

1.00 

0.70 
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Carbon concentration and wood density along tree species 

The carbon concentration was statistically significant with O. rochetiana with all other test-

ed species. But, it was statistically non significant among the other four studied species (A. abyssin-

icus, O. europaea ssp. cuspidiata, R. glutinosa and S. theifolia), although, numerical difference was 

observed. Neverthless, wood density was statistically significant among all the five studied species. 

The carbon concentration was ranged from with a maximum value (57.12 %) for O. rochetiana to 

the minimum value for (56.43 %) for A. abyssinicus (Figure 2). Similarly, the wood density was 

ranged from with a maximum value 0.67 g cm
-3

 for O. europaea ssp. cuspidiata to the minimum 

value 0.42 g cm
-3

 for the same species of carbon concentration (Figure 3). O. europaea ssp. cus-

pidiata and R. glutinosa had intermediate carbon concentration while O. rochetiana, R. glutinosa 

and S. theifolia had intermediate wood density (Figure 3). 

 

Fig. 2:  Carbon concentration (%) by species. 

Where,   AA: Allophyllus abyssinicus, OE: Olea europea ssp. cuspidiata, OR: Olinia rochetiana, RG: Ruth glutinosa, 

ST: Scolopia theifolia. 
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Fig. 3: Wood density (g cm-3) along the five studied species. 

 Where, AA:  A. abyssinicus, OE: O. europaea, OR: O. rochetiana, RG:  R. glutinosa, ST:  S. theifolia. 

Carbon concentration along plant parts 

A carbon concentration and wood density was statistically significant along plant parts with-

in and among a species. The carbon concentration and wood density for stem parts was always 

higher than branch and leaves parts. The carbon concentration in the plant parts was ranged from 

with a maximum value (56.98 %) for stem parts to the minimum value (54.53 %) for leaves parts 

(Figure 4). The wood density in the plant parts was also ranged from with a maximum value (0.59 g 

cm
-3

) for the stem parts to the minimum value (0.47g cm
-3

) for branch parts (Figure 5). O. rochetia-

na and O. europaea stem, branch and leaves parts had the highest carbon concentration and wood 

density values than A. abyssinicus, R. glutinosa and S. theifolia stem, branch amd leaves parts, re-

spectively. On the contrary A. abyssinicus stem, branch and leaves parts had the lowest carbon con-

centration and wood density values than O. rochetiana. 
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Fig. 4: Carbon concentration (%) species with plant parts. 

Where, AA: A. abyssinicus, OE: O. europaea, OR: O. rochetiana, RG: R. glutinosa, ST: S. theifo-

lia. Capital letters represent carbon concentration (%) differences among species where as small 

letters represent differences in carbon concentration (%) among plant parts within a species. 

 

Fig. 5: Wood density (g cm
-3

) species interaction*parts. 

Where, AA: A. abyssinicus, OE: O. europaea, OR: O. rochetiana, RG: R. glutinosa, ST: S. theifo-

lia. Capital letters represent wood density differences among species where as small letters repre-

sent wood density difference among plant parts within a species. 
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Carbon concentration and wood density along stem position 

The carbon concentration and wood density along stem position within and among a species 

were statistically significant. In addition, the carbon concentration and wood density was showed a 

decreasing trend along with increasing in stem position for all the species (Figure 6 and 7). The 

carbon concentration in the stem position was ranged from with a maximum value (57.10 %) for 

stump position to the minimum value (54.53 %) for top height position. Similarly, the wood density 

in the stem position was ranged from with a maximum value (0.62 g cm
-3

) for stump height (posi-

tion) to the minimum value (0.4 g cm
-3

) for commercial height (≤ 7 cm). O. rochetiana and O. eu-

ropea ssp. cuspidiata stem positions had higher value of both carbon concentration and wood den-

sity as compared to other tested species (Figure 6 and 7). 

 

 

Fig. 6: Carbon concentration (%) along plant height (spp*height). 

Where, AA: A. abyssinicus, OE: O. europaea, OR: O. rochetiana, RG: R. glutinosa, ST: S. theifo-

lia, h1: stump height, h2: stem height at 1m, h3: stem height at 2 m, h4: stem height at 3 m, h5: 

stem height at 4 m, h6: stem height at 5m, h7: stem at commercial height. Capital letters represent 

carbon concentration (%) differences among species where as small letters represent carbon con-

centration differences among stem height within a species. 
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Fig. 7: wood density (g cm-3) along species with plant height (species *different tree height).Where, 

AA: A. abyssinicus, OE: O. europaea, OR: O. rochetiana, RG: R. glutinosa, ST: S. theifolia, h1: 

wood density at stump height, h2: wood density at 1 m, h3: wood density at 2 m, h4: wood density 

at 3 m, h5: wood density at 4 m, h6: wood density at 5m. Capital letters represent wood density (g 

cm
-3

) difference among species where as small letters represent wood density differences among 

stem height within a species. 

Discussion 

Estimation of carbon concentration and wood density for tropical forests is important to 

have a better understanding and better information about these species in their forests and to show 

their importance in global carbon cycle budgeting and commercial use of wood (Brown, 2002; 

Woodcock and Shier, 2002; Nogueira et al., 2005). Destructive sampling methods are better in car-

bon concentration estimation than non distructive sampling methods. Wood density is the second 

most important parameter after tree diameter for above ground biomass estimation (Chave et al., 

2005). 

The carbon concentration and wood density for five native species: A. abyssinicus, O. euro-

paea ssp. cuspidiata, O. rochetiana, R. glutinosa and S. theifolia were estimated at laboratory con-

dition for plant parts: stem, branch, leaves and seven stem position: from stump height to commer-

cial height. The results revealed that the carbon concentration and wood density were varied among 
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and within the species, plant parts and stem position. This was might be due to differences in physi-

cal and chemical properties of wood, elevation gradient and growth habit of the species. The 

amount of carbon concentration found in this study was also in line with other findings (Herrero et 

al., 2011; Chavan and Rasal, 2012). Thomas and Martin (2012) reported a wood carbon concentra-

tion from 41.9 % to 51.6 % for tropical species, 45.7 % to 60 % for subtropical/Mediterranean spe-

cies and 43.5 % to 55.6 % for temperate/boreal species. In this study, stem part had higher carbon 

concentration than branch and leaves parts. Thomas and Martin (2012) reported a stem C concen-

tration was varied from 37 %, 76 %, 81 % and 63 % for bark, branch, twig, coarse root and fine 

root, respectively. 

The wood density our studied species was ranged from with a maximum value 0.67 g cm
-3

 

to the minimum value 0.44 g cm
-3

, this result was also in line with a wood density reported by sev-

eral authors for tropical tree species: (0.69 g cm
-3

) (Brown et al., 1989; Brown, 1997; Houghton et 

al., 2001), (0.58 g cm
-3

) (Nogueira et al., 2007), (0.65 g cm) (Chave, 2006), (0.35 to 0.87 g cm
-3

) 

(Parolin and Worbes, 2000) and (0.27 to 0.76 g cm
-3

) (Yeboah et al., 2013). 

The wood density for our studied species was also varied among and within a species plant 

parts and stem postion. This was might be due to differences in physical and chemical properties of 

wood and the presence of late wood and early wood and difference in heart wood and sapwood as 

well and stem morphology and growth habit. O. europaea ssp. Cuspidiata had the highest wood 

density as compared other studied species, this was might be due to its slow growing nature, higher 

wood strength and chemical composition of wood. However, A. abyssinicus had the lowest wood 

density as compared to others studied species, this was might be due to its fast growing nature and 

lower wood strength. Several findings reported variation in wood density among and within a spe-

cies for tree species grown in the tropics (Thomas, 1996; Henry et al., 2010; Redondo-Brenes and 

Montagnini, 2006; Weber and Sotelo Montes, 2005 and 2008).  

Wood density was significantly different among the stem position and generally increased 

from top to bottom. The difference in wood density was might be due to differences in structural 

variations at the molecular, cellular and organ levels. Higher values were found at stump height and 

showed a decreasing trend along with increasing in stem position (height). Daniel et al. (2013) 

found an increasing trend of wood density from top to bottom parts of a tree for different tree spe-

cies grown in the tropics and similar studies elsewhere (Espinoza, 2004; Nogueira et al., 2005; We-

ber and Sotelo-Montes, 2005 and 2008). Nogueira et al. (2005) found decreasing trends in wood 
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density from breast height to the top parts of the bole for trees grown in Amazone forest. This de-

creasing in wood density was might be due to increasing proportions of juvenile wood (Zobel and 

van Buijtene, 1989), 

The other reason for the difference in wood density and carbon concentration was might be 

due to differences in heart wood and sap wood within and among a species. Several researchers are 

also reported higher values of wood density and carbon concentration in the bottom parts of a tree 

than top parts of a tree (Desatro et al., 1993; Higuchi and de Carravalho, 1994; Barahona, 2005).  

Fearnside (1997) found difference in wood densities along heartwood, sapwood and bark. Herrero 

et al. (2011) reported higher wood density and carbon concentration in heart wood than sap wood 

and bark for three Mediterranean Pinus species grown in Spain. Castaño-Sanramaría and Bravo 

(2012) reported significant difference in carbon concentration between tree species along stems of 

sessile oak (Quercus petraea) (Matt.) Leibl.) and Pyrenean oak (Quercus pyrenica Willd.) in the 

Cantabrian Range (NW Spain). 

Generally the carbon concentration and wood density in the five studied species mentioned 

above showed similar trends along plant parts and stem position, although, variation was observed 

among and within a species. In addition, this carbon concentration and wood density for these stud-

ied species can be serving as a source of information for similar dry afromontane forests found in 

the country.  

 Conclusions 

The carbon concentration and wood density varied among and within a species, plant parts 

and stem position where wood was sampled. The carbon concentration and wood density for O. 

rochetiana and O. europaea ssp. cuspidiata were higher as compared to other studied species. 

Higher carbon concentration and wood density were found at the stump height (stem position) than 

other tree parts. Similarly, stem parts of the wood had higher carbon concentration and wood densi-

ty than other parts. Estimation of carbon concentration in the plant sample and wood density at spe-

cies level is very important to show the important of these species for climate change mitigation and 

adaptation, we suggest the application of the species and site specific carbon content estimation and 

wood density models in similar mixed forests of Ethiopia in particular and other tropical montane 

forest in general.  
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Photo 1: Partial view of Gallessa forest patch. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
 

 
 

Photo 2: Partial view of Chilimo forest patch. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
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Photo 3: Partial view of Gaji forest patch. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
 

 

Photo 4: Big trees of Juniperus procera in the natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, 
Ethiopia). 
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Photo 5:  Diamater measurement using diameter tape for big trees of Podocarpus falcatus. 
 Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
 

 

Photo 6: Different stratification of the natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethio-
pia). 
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Photo 7: Eucalyptus saligna plantation adjacent to Chilimo natural forest where soil sampled. Photo by: 
Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
 

 

Photo 8: Cupressus lusitanica plantation adjacent to Chilimo natural forest where soil sampled. 
Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
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Photo 9: Pinus patula plantation adjacent to Chilimo natural forest where soil sampled. Photo by: Mehari A. 
Tesfaye (2012) (Chilimo, Ethiopia). 
 

 

Photo 10: Degraded land adjacent to Chilimo natural forest where soil sampled. Photo by: Mehari A. 
Tesfaye (2012) (Chilimo, Ethiopia). 
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Photo 11:  Crop land with teff cultivation adjacent to Chilimo natural forest where soil sampled. 
Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
 

 

Photo 12: Different fractions of biomass components of a particular tree in the natural forest. 
Photo by: Mehari A. Tesfaye (2013) (Chilimo, Ethiopia). 
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Photo 13:  Leave plus small branches (≤ 2 cm) of the biomass fractions. Photo by: Mehari A. Tesfaye (2013) 
(Chilimo, Ethiopia). 
 

 

Photo 14: Thick branches biomass (2-7 cm) fraction. Photo by: Mehari A. Tesfaye (2013) (Chilimo, Ethiopia). 



Tesfaye (2015) 

280 
 

 

 

Photo 15: Soil sampling in the natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethiopia). 
 

 

Photo 16:  Bulk density sampling using metallic cylinder in the natural forest. Photo by: Mehari A. Tesfaye 
(2012) (Chilimo, Ethiopia). 
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Photo 17: Forest floor sampling in the natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethio-
pia). 
 

 

Photo 18: Big dead wood samples had fallen in the natural forest. Photo by: Mehari A. Tesfaye (2012) 
(Chilimo, Ethiopia). 
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Photo 19:  Illegally cut stumps found in the natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, 
Ethiopia). 

 

Photo 20: Litter fall of Eucalyptus saligna plantation. Photo by: Mehari A. Tesfaye (2012) (Chilimo, Ethio-
pia). 
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Photo 21:  Wood sampled in different stem of Allophyllus abyssinicus. Photo by: Mehari A. Tesfaye (2013) 
(Chilimo, Ethiopia). 
 

 

Photo 22:  Wood sampled for Olinia rochetiana. Photo by: Mehari A. Tesfaye (2013) (Chilimo, Ethiopia). 
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Photo 23: Shrubs grown inside the Chilimo natural forest. Photo by: Mehari A. Tesfaye (2012) (Chilimo, 
Ethiopia). 


