

VISION-BASED GUIDANCE SYSTEM FOR A 6-DOF

ROBOT

Bachelor’s thesis

Automation Engineering

Valkeakoski, spring, 2014

Ignacio Torroba Balmori

 BACHELOR’S THESIS

Title Visual-based Guidance System for a 6-DOF Robot

Author Ignacio Torroba Balmori

Supervised by Raine Lehto

Approved on _____._____.20_____

Approved by

 1

 ABSTRACT

Valkeakoski

Bachelor in Automation Engineering

Author Ignacio Torroba Balmori Year 2014

Subject of Bachelor’s thesis Visual-based Guidance System for a 6-DOF Robot

ABSTRACT

The idea of this bachelor’s thesis is to develop a position-based visual servoing system with

two webcams that allows an anthropomorphic robot ABB IRB 120 with six degrees of

freedom (DOF) to be guided in real time by an operator, by triangulating a specific target

moved within the field of view (FOV) of a machine vision system. For this kind of motion

control based on visual data input, termed visual servoing control, we need a stereo vision

system to acquire the images of the target since three-dimensional information is required

to perform object tracking with six DOF. These images are processed by a MATLAB ap-

plication running in a remote PC. The current coordinates of the target referred to the left

camera reference frame are extracted from the images and sent through an Ethernet connec-

tion to the robot controller, which is programmed to receive the vectors and move its tool

centre point (TCP) to the demanded position within its workspace.

The image acquisition and processing algorithm have been developed entirely in MATLAB

instead of in other programming languages (such as C/C++), mainly because of the large

amount of available toolboxes and MATLAB's elegant vector/matrix operations. These

MATLAB’s features have greatly reduced the time involved from the idea to the final code.

The communication link between the PC and the IRC5 controller has been implemented via

a NFS server-client and the use of binary semaphores for the multi-process synchronization

in the implemented producer-consumer structure. And RobotStudio has been used to pro-

gram the RAPID application and to create the new reference frame for the robot system,

since the robot is an ABB model and has its own high-level programming language.

As a result of the project, the robot’s end-effector can be guided by the user, who controls

its current location by moving the target in the overlapped FOV of the cameras, which

models the robot workspace. This is a simple and intuitive method for the operator of the

robot to perform specific 3D movements with its tool in real-time.

Keywords Camera calibration, stereo triangulation, Network File System, RAPID lan-

guage.

Pages 78 pp. + appendices 2 pp.

 2

ACKNOWLEDGMENTS

This Bachelor’s thesis, with all the previous years of learning and work that have led me to

finish it today, is dedicated to all those who let me make it possible, since the very

beginning.

 3

CONTENTS

ABSTRACT .. I

ACKNOWLEDGMENTS .. II

1 INTRODUCTION ... 6

1.1 OBJETIVES OF THE PROJECT ... 6

1.2 STRUCTURE OF THE PROJECT ... 7

2 MACHINE VISION SYSTEM ... 8

2.1 INTRODUCTION ... 8

2.2 CAMERA MODEL .. 8

2.2.1 Perspective projective .. 8

2.2.2 Projection through the camera pinhole model ... 9

2.2.3 Defining the model of the camera ... 10

2.2.4 Matrix of complete projection ... 13

2.2.5 Lens distortion ... 14

2.3 CALIBRATION PROCESS ... 16

2.3.1 Introduction ... 16

2.3.2 Calibration methods ... 16

2.3.3 Obtaining the projection matrix ... 17

2.4 CAMERA CALIBRATION WITH MATLAB TOOLBOX 20

2.4.1 Patterns for calibration .. 20

2.4.2 Calibration with planar pattern .. 21

2.4.3 Camera calibration toolbox in MATLAB ... 22

2.5 BINOCULAR VISION ... 23

2.6 STEREO VISION ... 24

2.6.1 One camera systems .. 24

2.6.2 Two cameras systems .. 25

2.6.3 Triangulation ... 25

2.7 PARAMETERS OF THE STEREOVISION SYSTEM 30

2.7.1 The Logitech HD Webcam C270 .. 30

2.7.2 The location of the cameras ... 32

2.7.3 Illumination ... 35

2.7.4 Structure of the system .. 36

2.8 ALGORITHM DEVELOPMENT .. 38

2.8.1 Introduction ... 38

2.8.2 Steps in the development ... 39

2.8.3 Diagram of the algorithm .. 48

 4

3 COMMUNICATION INTERFACE ... 50

3.1 INTRODUCTION ... 50

3.2 APPROACH TO THE PROBLEM .. 50

3.3 PARALLEL COMPUTING .. 50

3.3.1 Producer-Consumer problem ... 51

3.4 PROCESSES SYNCHRONIZATION .. 51

3.4.1 Flow control problems ... 51

3.4.2 Mutual exclusion ... 53

3.5 REAL IMPLEMENTATION .. 55

3.5.1 The IRC5 Compact controller ... 55

3.5.2 The remote PC ... 57

3.6 SOFTWARE ... 57

3.6.1 Network communications .. 57

3.6.2 The Network File Sytem ... 59

3.7 FINAL IMPLEMENTATION .. 59

3.7.1 The NFS server .. 59

3.7.2 The NFS client ... 60

3.7.3 Semaphores in NFS ... 62

3.7.4 Common buffer in NFS ... 62

3.7.5 Data frame ... 62

4 PROGRAMMING THE ROBOT ... 63

4.1 INTRODUCTION ... 63

4.2 MANIPULATING ROBOTS ... 63

4.2.1 Industrial robot definition .. 63

4.2.2 Morphology of the robot ... 64

4.3 ABB IRB 120 .. 67

4.3.1 Description .. 67

4.3.2 Technical specifications .. 67

4.4 IRC 5 COMPACT CONTROLLER ... 68

4.5 PATH GENERATION IN ROBOTICS .. 69

4.5.1 Kinematic control .. 69

4.5.2 Kinematic control inputs ... 70

4.6 ROBOTSTUDIO AND RAPID LANGUAGE ... 71

4.6.1 RobotStudio ... 71

4.6.2 RAPID language .. 71

4.7 RAPID PROGRAM .. 72

4.7.1 Critical section ... 72

4.7.2 Non-critical section ... 73

4.7.3 Diagram of the program .. 75

5 CONCLUSIONS ... 76

SOURCES .. 77

 5

Appendix A IMAGE PROCESSING ALGORITHM IN MATLAB

Appendix B RAPID PROGRAM FOR THE ABB IRB 120

 6

1 INTRODUCTION

1.1 OBJETIVES OF THE PROJECT

The main objective of this project is the design and implementation of a navi-

gation system for six DOF robots that lets the user to perform both the posi-

tion and the speed of the robot tool centre point (TCP) in a simple and com-

fortable way, so no previous experience is needed to operate the robot and a

secure distance can be kept between it and the rest of the system. The com-

plete system is shown in Figure 1 and each component is described in the fol-

lowing sections.

This system can be adapted to any other model of anthropomorphic robot

since the only parameters that need to be modified are the height of the cam-

eras (their field of view for the robot workspace) so the workspace and the de-

tection of singularities in the trajectories can be adjusted to the new model.

Vision Guided Robots (VGR) have been widely implemented in various in-

dustries. Mostly in the manufacturing environment where conditions can be

controlled and object position is deterministic. When the object is stationary,

its pose can be easily determined and robotic picking can be readily executed.

However, for specific tasks in which the control must be taken by an operator,

programming the motion is not an option so the robot must be always led by a

human, which represents more challenges. For this kind of situations, the de-

signed system can be an interesting option.

Figure 1.1 Vision guided robot system

 7

1.2 STRUCTURE OF THE PROJECT

In order to carry out the whole project, it has been divided in three different

parts, which can be read in chapters 2, 3 and 4 of this report. The conclusions

and results can be found in chapter 5.

Chapter 2: The design and construction of the machine vision system

The stereovision system, consisting of two cameras fixed over an arc, takes

images of the target moved by the operator and tracks its position while it is

being moved within the overlapped FOV of the cameras. A PC running the

MATLAB programme processes the images and triangulates the position, and

if it belongs to the robot’s workspace, the vectors referred to the left camera’s

reference frame are stored to be sent.

Chapter 3: The search and implementation of the most suitable data transfer

method

A communication application via a Network File System is implemented to

enable the PC that processes the acquired images to share data with the robot

controller. Proceeding in this way, the vectors for the movement can be sent

through a common .txt file located in the hard disk of the computer, which

can be accessed by the robot as a local disk.

Chapter 4: Development of the RAPID program to be executed by the robot

The robot is programmed in RAPID language to read the vectors from the

common file and execute the necessary movements toward the desired

equivalent point in its own reference frame, which has been defined as a work

object in RobotStudio. Once these three parts have been reached separately,

several tests have been performed in order to assemble them and make the

whole system work properly.

Chapter 5: Conclusions and future works

The last chapter contains some conclusions about the whole thesis perfor-

mance as well as a discussion about the main ideas implemented and alterna-

tive ways to carry out the development with some other resources.

 8

2 MACHINE VISION SYSTEM

2.1 INTRODUCTION

Throughout this chapter, the developed machine vision system is presented.

Starting with an introduction of the mathematical camera model used and the

process of image formation, the next points describe the steps taken during

the calibration of the stereo vision system and the challenges and solutions

presented in the design of the whole acquisition system. After this, the image

processing algorithm developed in MATLAB, which can be found in the ap-

pendix A, is explained.

2.2 CAMERA MODEL

A camera is a mapping between the 3D world (object space) and a 2D image,

which can be represented by matrices with particular properties, called cam-

era models. In the point, we are going to introduce the basis of this idea and

the camera model we have used throughout the project.

2.2.1 Perspective projective

As known, a dimension is lost when we project the real world on an image

through the image formation process using a camera. The complexity of this

process relies on the large quantity of elements that takes part on it. Among

them, the lens utilized has a special role.

In this project, the pinhole model (Figure 2) is going to be assumed for our

camera as far as it simplifies the analysis by disregarding the diffraction and

reflection effects of the lens. This means that we can apply the principle of

collinearity to the analysis, where each point in the object space is projected

by a straight line through the projection centre into the image plane (Hartley

& Zisserman, 2000).

 Figure 2.1 Pinhole camera geometry

 9

The perspective model of the camera, that maps the real 3D coordinates of the

object (X, Y, Z) on the image plane coordinates (x,y) is given by the equation

(2.1), ignoring the final image coordinate (z=f)

 (2.1)

This is a non-linear relation given by the effective focal length of the camera,

where the negative sign in each equation means that the projected images are

inverted on the sensor plane (real screen). However, from now on we are go-

ing to use the virtual screen model (without signs) because it is more comfort-

able, with the coordinate system showed in Figure 2.2. In this system, the im-

age plane has been moved behind the optical centre but the z-axis of the cam-

era frame is still perpendicular to the image plane.

 Figure 2.2 Coordinate system applied

2.2.2 Projection through the camera pinhole model

The mathematical model of the camera is used to express the relationship be-

tween a 3D point P=[X, Y, Z]T in normalized coordinates and its image pro-

jection p=[u, v]T in pixel coordinates, each ones in their reference frame, mak-

ing use of the pinhole model of the camera introduced before.

The equation of the projection is given as follows (Zhang, 1998)

 (2.2)

Where s is an arbitrary scale factor, M is the matrix of the complete projec-

tion, which we need to obtain and T, T are the co-

ordinates’ vectors of the point in 2D and 3D in homogeneous coordinates.

The reason of the use of homogeneous coordinates will be explained below.

 10

2.2.3 Defining the model of the camera

Some changes in the reference system both in the plane and in the space are

going to be necessary to establish a precise mapping between the 3D points

(P) referred to a fixed global reference frame and their projections in the im-

age (p), referred to an image’s local reference frame (Hartley & Zisserman,

2000). These are the three involved transformations:

2.2.3.1 Projection of the space coordinates to the plane coordinates

Once the virtual screen model of the pinhole model of the camera has been

chosen, the collinear relation between the real 2D coordinates of the object

and the image normalized coordinates, as said, is given by the conical projec-

tion equation (1.1). In order to project the space coordinates to the image co-

ordinates we need to solve the whole process of image formation and coordi-

nates transformation. This can be done by using dot matrices and homogene-

ous coordinates, so the equations of the conical projection become linear and

can be resolved easily.

So the equation of projection can be expressed compactly as follows:

 (2.3)

2.2.3.2 Transformation of the reference frame in the image plane itself

Within the image plane we consider the existence of two related reference

frames that can be seen in Figure 2.3:

- The first one, used to express the image coordinates (u,v), is given in pixel

coordinates and its location in the image planes is arbitrary. Here, as usual in

computer vision literature, the origin of the image coordinate system is in the

upper left corner of the image array, but this is a common agreement and can

be changed by the user.

- The second one is an ortonormal system whose origin is in the principal

point of the image and with one of its vectors parallel to the other system. Its

coordinates are called normalized coordinates (x,y).

The relationship between the coordinates in both systems must be obtained as

the next step of the transformation.

 11

Figure 2.3 Image (u,v) and camera (x,y) coordinate systems

Given the vectorial relation represented in Figure 2.3

 (2.4)

Where (are the coordinates of the centre of the second frame in pixel

units (the principal point from now on), the relationship between the vectors

extracted from (2.4) can be set as

 (2.5)

Being and are the dimensions of the vector and in and vec-

tors’ units (scale factors) and θ the angle between them (skewness).

Replacing (2.5) in (2.4) and finding the value of u and v

Which can be expressed in dot-matrix following the patron of a normal affine

transformation =A +

 (2.6)

Applying homogeneous coordinates to (2.6) as follows we obtain the expres-

sion of the applied affine transformation:

 12

Which represents (2.6) as follows:

 (2.7)

This is the transformation between the coordinates in both reference frames in

the image plane, so if we add (2.7) to the conical projection expression (2.1),

we get the matrix that relates the 3D normalized coordinates of a real point

(referred to the camera reference frame) to the pixel coordinates of the pro-

jected point in the image plane, whose expression is given by (2.8)

 (2.8)

- The intrinsic parameters

The elements contained in the K matrix in (2.8) let us relate the coordinates in

the camera reference frame (normalized) with those in the image frame (in

pixel). They are called intrinsic parameters of the camera, and K the intrinsic

matrix, that can be written as follows

Where αu= f/mu and αv= f/mv express the relation between the focal length

and the coefficients mu and mv used to change the metric units to pixels.

2.2.3.3 Change of basis from the camera reference frame to the real object reference

frame

Generally, the 3D points are referred to a reference frame different from the

camera frame, the world reference frame. Both systems are related through a

Euclidean transformation (translation and rotation) as represented in Figure

2.4.

 13

Figure 2.4 Transformation between the camera and the world reference

frames

Therefore, knowing the coordinates of the point in the world reference frame

 and the coordinates of the same point referred to the camera reference

frame , the relationship between them can be expressed as

 where the vector contains the coordinates of the optical

centre of the camera in the world reference frame and the matrix R represents

the rotation of the camera coordinate system with respect to the world system.

Once again, expressing this equation in homogeneous coordinates we obtain

 (2.9)

-The extrinsic parameters

The Euclidean transformation between frames is defined by the matrix He in

(2.9), which contains R and t, called the extrinsic parameters of the camera.

2.2.4 Matrix of complete projection

Once the process of formation of the image is completed, the equation that

models the mapping between the real point in the world reference frame and

its projection in the image reference frame is given by the complete projective

matrix showed in (2.10)

 (2.10)

This matrix contains all the information concerning the conical projection and

the intrinsic and extrinsic parameters of the camera and let us solve (2.2) as

follows

 (2.11)

 14

2.2.5 Lens distortion

In the last step we have worked with the assumption that the linear pinhole

model of the camera is accurate enough for the process of formation of the

image. The 3D points, the image points and the optical centre were collinear

so the lines in the real world were projected as lines in the image plane. How-

ever, a real lens (especially low quality lens) cannot be considered as perfect

since they introduce systematic deviations in the linear model that must be

taken into consideration. The corrections for these distortions in the image

coordinates given by (2.13) and (2.15) can be added to the pinhole model giv-

en in (2.11) in order to reach a better accuracy and keep working with the lin-

ear model (Heikkila & Silvén, 1997). These corrections must be applied in the

right step of the image formation process, during the initial projection of the

object in the image plane, which means that they will be performed in normal-

ized coordinates, as can be seen in the appendix A.7.

The most common distortion types, and the ones applied in this project, are

radial and tangential distortion, whose consequences are showed in Figure

2.5. These both components are going to be added to the pinhole model in or-

der to obtain an accurate calibration and are usually expressed as (2.12)

 (2.12)

Where are the distorted coordinates, (x,y) the ideal (distortion-free)

coordinates and , are the components of the radial and tangential distor-

tion.

Figure 2.5 Consequences of the lens distortion

2.2.5.1 Radial distortion

The radial distortion causes the actual image point to be displaced radially in

the image plane, and it is modelled in (Hartley & Zisserman, 2000) as follows

 (2.13)

 15

Where and is a Taylor se-

ries expansion around the centre (r=0), whose coefficients ki are obtained as

part of the calibration process to correct the distortion. They are considered as

a part of the intrinsic parameters of the camera. If the impair coefficients of

 are eliminated, the polynomial is differentiable in the origin, which is a

better approximation for a real world description, although this depends on

the authors.

In this project, k2, k4 and k6 are used to compensate the radial distortion

(Bouguet, 2009), so (2.13) turns into

Assuming that the centre of the radial distortion does not coincide with the

principal point, which is our case, the model (2.13) would be modified to

(2.14)

 (2.14)

 And r would be calculated consequently as

This is due to the fact that centres of curvature of lens surfaces are not always

strictly collinear, which causes decentering distortion and creates the second

component of distortion, the tangential.

-Kinds of radial distortion

The most frequent kinds of radial distortion are barrel and pincushion. In the

Figure 2.6 two examples of them modelled by a polynomial of three coeffi-

cients with centre in the principal point are showed.

Figure 2.6 Barrel and pincushion distortion examples

 16

2.2.5.2 Tangential distortion

This second component of the distortion, as explained before, is caused by

physical elements in a lens not being perfectly aligned.

The expression for the tangential distortion component is written in the fol-

lowing form by (Hekkilä & Silvén, 1997)

 (2.15)

Where p1 and p2 are the coefficients for tangential distortion.

2.3 CALIBRATION PROCESS

2.3.1 Introduction

The camera calibration process is a necessary step in order to obtain three-

dimensional information from 2D images of the scene. Several different tech-

niques based on photogrammetry and auto-calibration exists, and as the result

of them, we obtain the intrinsic and extrinsic parameters of the camera model,

that describe the mapping between 3-D reference coordinates and 2-D image

coordinates. The overall performance of our machine vision system will

strongly rely on the accuracy of the calibration. This is why the process must

be carried out with the guarantee that the results are as similar to the real pa-

rameters as possible, which means that both the calibration method and the

way it is applied must be chosen regarding our application and the resources

we have in order to be optimum.

2.3.2 Calibration methods

2.3.2.1 Explicit camera calibration

The explicit methods are those where the camera model is based on physical

parameters, like focal length and principal point. Physical camera parameters

are commonly divided here, as explained, into extrinsic and intrinsic. As a re-

sult of the explicit calibration methods, the components of the model have a

physical meaning and can be easily related to real camera parameters.

2.3.2.2 Implicit camera calibration

In general is not possible to estimate the physical parameters separately so the

components of the projective matrix generally have no physical meaning,

which is our case. The parameters obtained during the calibration process,

their meaning and the notation utilised will be explained in the next point.

 17

2.3.3 Obtaining the projection matrix

Given a known set of 3D points Pi and a corresponding set of points in the

image pi, we have to calculate the projection matrix M of the equation (2.2).

Taking into consideration the existence of noise in the images, this equation

cannot be exactly resolved, so the matrix M will be searched in order to adjust

the projections of Pi to the points pi as accurate as possible.

A two-step method, in which the initial parameter values are computed linear-

ly and the final values are obtained with nonlinear minimization, is going to

be applied to resolve the process. (Viala & Salmerón, 2008)

2.3.3.1 First step: Linear parameter estimation

The direct linear transformation (DLT) method (Abdel-Aziz, & Karara, 1871)

is based on the pinhole camera model, and it ignores the nonlinear radial and

tangential distortion components.

The coordinates of the projected point in the image are obtained through the

intersection of three planes as showed in Figure 2.7

Figure 2.7 Linear projection in the image plane

The three planes are the image plane π1 and two others, π2 and π3, which are

defined by the point P and the optical centre and whose mutual intersection

defines the line that contains p. The intersection of this line with the image

plane is the projection pi of the point Pi in the image.

Since two points are not enough to define the planes π2 and π3 the number of

possible planes is infinite. If we take those two whose intersection with π1 is a

parallel line with one of the vectors of the image coordinate system , as

shown in the figure, the position of both intersections in the image will give

us the row and the column of the projected point p(u,v).

 18

The projection in 2.8 can be represented as follows

 (2.16)

The image projection process can be generally formulated as a calculus of a

homography but in different dimensions making use of the projection matrix

M

 (2.17)

Now the components of M, as explained, do not have any physical meaning.

In order to obtain the parameters of the matrix M, (2.17) can be reformulated

and expressed as dot matrices

 (2.18)

During this first step of the implicit camera calibration, a set of N points will

be acquired from the images of the pattern, which will result in a system of

2N equations Am=0

 19

This system must be resolved in order to get the set of parameters mi for

(2.16). The set of images points pi are obtained as observed values (not ideal)

in the images acquired for the calibration, and are used to solve the system by

a least-squares method.

Considering the presence of noise in the set of points pi, there is not vector m

that verifies Am=0 but Am=ε being ε the error vector. The norm of this error

vector must be minimized to optimize the solution

Now the system Am=ε can be seen as an eigenvalues problem for B=ATA,

where the eigenvector related to the smallest eigenvalue must be found in B in

order to obtain mi.

2.3.3.2 Second step: Nonlinear parameter estimation

The main disadvantages that the direct methods involve produce that the ob-

tained calibration results are not accurate enough for real applications in the

presence of noise (Hartley & Zisserman, 2000). These problems are the lack

of the lens distortion effects correction in the process, and the fact that the

constraint in the intermediate parameters of the algorithm is not consider

since the aim is creating a non-iterative algorithm. The geometric error in an

image can be defined as (2.19)

 (2.19)

Which is the error between the points in the image (real) and the points pro-

jected as MPi. If we assume that the error in (2.19) is white Gaussian noise,

then the best estimated matrix M is the one that minimizes the residual be-

tween the set of N observed points and the expected points

 (2.20)

The least-squares estimation technique can be used to minimize (2.20). Due to

the nonlinear nature of the camera model, simultaneous estimation of the pa-

rameters involves applying an iterative algorithm. For this problem the Le-

venberg-Marquardt optimization in (Levenberg, 1944) and (Marquardt, 1963)

has been shown to provide the fastest convergence. However, without proper

initial parameter values the optimization may stick in a local minimum and

thereby cause the calibration to fail. This can be avoided by using the parame-

ters from the DLT method as the initial values for the optimization.

 20

2.4 CAMERA CALIBRATION WITH MATLAB TOOLBOX

2.4.1 Patterns for calibration

Currently there are many methods that make use of different kinds of planar

patterns since any characterized object can be used as a calibration target, as

long as the 3-D world coordinates of the target are known in reference to the

camera. Furthermore, there are some other techniques that perform the cali-

bration without them. Here we focus on the two basic ones, Tsai’s and

Zhang’s methods.

2.4.1.1 Tsai’s calibration method

Tsai’s method (Tsai, 1987) is a classic example of calibration based on the

measures of the coordinates of the 3D pattern’s points (Figure 2.8a) referred

to a fixed reference point. This method has been widely implemented in the

past century, and has been proved to supply the best results provided that the

income data have been taken with a very high level of accuracy and low

noise, conditions unreachable in this project.

2.4.1.2 Zhang’s calibration method

This technique, explained in (Zhang, 1998), unlike the other one, uses the co-

ordinates of the points situated on a 2D planar pattern as the one in Figure

2.8b. In this way, the calibration is more flexible due to the fact that the cam-

era and the pattern can be freely moved and as many images as desired can be

taken, without needing neither to measure the planar pattern again nor to

know the motion. Furthermore, with Zhang’s method the pattern does not re-

quire a special design and can be hand-made.

 Figure 2.8 3D and 2D patterns for calibration

 21

2.4.2 Calibration with planar pattern

As explained, planar checkerboard patterns are the easiest to calibrate with,

because they do not require very high level of accuracy and low noise in the

inputs, and the initial estimation of the homography between the pattern and

the image plane can be solved easily as explained in (Zhang, 1998).

Knowing the relationship between the 3D points and its image projection

through M, expressed in (2.2)

Without loss of generality the assumption that the plane pattern is situated in

Z=0 in the world coordinate system, as showed in Figure 2.9, is made.

Figure 2.9 Location of the world coordinate system in the 2D pattern

If the matrix M is factorized in (2.2) separating the intrinsic and extrinsic ma-

trices

 (2.20)

And the columns of the rotation matrix are denoted as ri, (2.20) is expressed

as follows

Since Z is always equal to 0, a point Pi and its image pi is related by a homog-

raphy H

 with H=

 22

2.4.3 Camera calibration toolbox in MATLAB

With this last assumption, the 3D coordinates of the corners in our planar pat-

tern can be easily obtained from the set of images acquired with our cameras,

so the utilized MATLAB toolbox has all the inputs needed to solve the rota-

tion and translation vectors that relate the left and right cameras as well as the

intrinsic camera parameters. The calibration method implemented in this

toolbox is partially inspired in Zhang’s method, with differences in the esti-

mation of the internal parameters, and makes use of the Heikkila and Silven

distortion model including two extra distortion coefficients for tangential dis-

tortion.

The toolbox has been developed for MATLAB 9 (Bouguet, 2009) and is

based on the OpenCV implementation developed in the C programming lan-

guage. The MATLAB version was chosen based on the ease of use and better

performance; the OpenCV implementation utilizes an automatic corner finder

without any user input, which was found to be unpredictable at finding cor-

ners, with performance dropping drastically as the camera was moved further

from the calibration target. This method appeared to be tailored for close

range calibration, which is not our case.

2.4.3.1 Calibration procedure

The steps in the calibration procedure based on a plane calibration target with

the MATLAB toolbox are the detailed in (Viala & Salmerón, 2008):

- Creation of a 1x1m chessboard of 10x10 squares. It can be seen in the

Figure 2.10. Only the 8x8 internal squares have been used for the calibra-

tion, being a high enough number.

- Acquisition of 30 images of the pattern with both cameras at the same

time from multiple views. The images have been acquired trying to make

the chessboard occupy the most of the images, with its centre in the centre

of the images. After several trials, a number of images between 25 and 30

has demonstrated to be the optimal with this toolbox.

- Automatic detection of the corners by the system once the perimeter of the

board has been selected manually, with an initial guess at radial distortion

if needed.

These steps provide the necessary inputs to the toolbox for the stereo calibra-

tion performance. During this procedure, the estimation of the skew has been

added to the algorithm, three images with a high lens distortion have been re-

moved from the set of 30 and the estimation of the sixth order polynomial for

the correction of the distortion has been set in the search of the best results

achievable with the two webcams.

 23

 Figure 2.10 2D pattern for the calibration

2.5 BINOCULAR VISION

The binocular human vision takes 2D images from two different points of

view (as showed in Figure 2.11) and makes use of the information contained

on them (disparity) to develop a three-dimensional picture in which the depth

of the objects can be resolved by stereopsis (Howard & Rogers, 1995).

This impression of depth extracted from the binocular disparity depends on

the distance between the eyes. A greater distance involves a bigger disparity

so the depth perception is better for distant objects, and the equivalent for a

smaller distance and closer objects. The equivalent to this distance in our pro-

ject is the baseline between the cameras.

 Figure 2.11 Human vision system

The machine vision system designed in this project has used the human vision

system basis as reference although there are other methods to extract infor-

mation of the depth range with just one camera, via structured light or time of

flight techniques, that are not the matter of this project.

 24

2.6 STEREO VISION

2.6.1 One camera systems

The stereo vision is a technique aimed at inferring depth from two or more

cameras which is nowadays a wide research topic in computer vision. Since

we need to calculate the exact 3D location of the target in our visual servoing

system, the solution unavoidably passes through a stereo vision system.

With one single camera we are able to get the projected point of a real one in

our image can be seen in Figure 2.12.

 Figure 2.12 Linear projection in one camera

But since both real points (P and Q) project into the same image point (p ≡ q)

in 2.13, for each collinear point along the same line of sight, we cannot differ-

entiate between those that are located closer or further from our optical centre.

As a result of this, optical illusions like the one in Figure 2.13 are created that

prevents us from being able to work out real distances and geometries.

 Figure 2.13 Optical illusion in one camera systems

 25

2.6.2 Two cameras systems

With two (or more) cameras we can infer depth, by means of triangulation

since a second camera adds the needed equations to solve the system in (2.18)

without any assumption about the situation of the world reference frame.

As said, the bases of the use of two cameras are the human vision system and

its design.

 Figure 2.14 Linear projection in two cameras systems

2.6.3 Triangulation

The triangulation consists in finding the position of a 3D point Pi given its

homologous projections in two images pi and p’i and the projection matrices

of both cameras M and M’ (Hartley & Sturm, 1997). However, the existence

of noise in the image coordinates, as shown in the Figure 2.15, difficulties the

process since the reprojected lines will not intersect in the space, which makes

necessary an approximation.

 Figure 2.15 Triangulation with pixel noise

2.6.3.1 Linear triangulation

The process here would be equivalent to the one developed to obtain the pro-

jection matrix in the calibration. Given the homology between the two pro-

jected coordinates of the point in both images we obtain the relationship be-

tween the 3D coordinates and the projected ones through the equation (2.16).

 26

But now, since we have two cameras, the system has four equations with

three unknown factors (X, Y, Z), so it can be resolved and the 3D coordinates

of the point found, following the same procedure based on the eigenvalues

problem.

2.6.3.1.1 Uncertainty

The reconstruction of the 3D points will be more reliable with a wider angle

between the projected lines through the projections of the same point in both

images, as it can be seen in the Figure 2.16. The dark zone in the figure repre-

sents the zone of uncertainty, which depends on the angle between the lines.

 Figure 2.16 Uncertainty in the reprojection

In our system, this factor will have to be kept in mind during the calculus of

the baseline between our two cameras. However, the limit for the baseline

will be the overlap in the field of view of the cameras required to model the

robot workspace, as it will be explained in the next points.

2.6.3.2 Correspondence problem

The correspondence problem refers to finding the homologous point in one

image once we have the first point in the other image. The differences be-

tween both images can be due to the movement of the camera or the fact that

the images of the same object have been acquired with two different cameras,

which is our case. Here, the steps in the resolution of the stereo correspond-

ence problem are introduced in order to be implemented in the algorithm de-

veloped in MATLAB for our application.

 27

2.6.3.2.1 Estimation of the homography

A 2D homography between a couple of images describes the projective trans-

formation that takes each point pi(u,v) from one image to its correspondent

point pi’(u’,v’) in the other as explained in 2.4.2

The matrix H3x3 is the matrix of the 2D homography.

The process of obtaining the matrix H shares many characteristics with the

described in the estimation of the projective matrix (which can be seen as a

homography 3D-2D), so it is not going to be repeated here.

2.6.3.2.2 Matching

Since in our project the number of pairs of points to relate is going to be one,

which is the centre of gravity of the target to track, a technique must be found

in order to find without doubt the correspondence between the points in both

images as fast as possible, due to the fact that it is an on-line step of the algo-

rithm. This problem is known as matching, and consists in finding the corre-

spondent points in both images via segmentation techniques, in which similar-

ities between both images are searched or via edges’ correlation, among other

ways. These techniques look for areas with a small difference in both pictures,

assuming that the one with the minimum correlation error must contain the

homologous point.

The Figure 2.17 contains two images that show a typical problematic situation

in which feature detection does not guarantee a correct result.

Figure 2.17 Challenges in matching process by segmentation

But regardless the technique used, this process is heavy and time consuming

since it should be carried out in the whole image, as well as not accurate

enough due to the fact that depends strongly on the features of the objects in

the images acquired.

 28

2.6.3.2.3 Epipolar constraint

The solution to the matching problem goes through the use of the epipolar.

The epipolar constraint states that the homologous point (p’) of the projection

of P over the first image plane (p) must be in the projection of the line that

contains the optical centre of the first camera and P over the second image

plane, which is the epipolar line of p (e2).

 Figure 2.18 Epipolar geomatry

The Figure 2.18 shows the explanation given below. Basically, the epipolar

constraint avoids needing to use 2D search domain of the images during the

matching procedure, saving time and processing capacity. Now the search of

the smallest correlation error between the two images can be carried out

through the 1D domain, as showed in the example in Figure 2.19

 Figure 2.19 Matching through the epipolar line

Notwithstanding, the presence of noise in the coordinates prevents us from

applying a search only through the epipolar line. Assuming that the projected

coordinates can contain an error, the field of search in our application has

been widened enough to ensure that the homologous points are found.

 29

2.6.3.2.4 Order constraint in the epipolar

A detail about the epipolar geometry is that the projected points usually re-

spect the order of the real points in the space, as showed in Figure 2.20. This

characteristic could be used to be able to infer depth differences between

points with no calibrated cameras, only obtaining the homography between a

set of known points (at least four).

 Figure 2.20 3D pattern for Tsai’s calibration method

2.6.3.3 Rectification

Now that the epipolar and homologous points terms have been introduce it

makes sense to explain the rectification procedure. Rectification of a stereo

image pair is the process of transforming (warping) the two images so that

corresponding points lay on the same image rows. This step in a stereo vision

system algorithm basically uses the intrinsic parameters obtained in the cali-

bration process to removed lens distortions as explained and turns the stereo

pair in standard form. This means that transformation causes epipolar lines to

become collinear, as showed in Figure 2.21, which improves processing

speed.

Figure 2.21 Differences between the standard and a random form

 30

The cameras’ standard form imposes the cameras to be aligned and with the

same focal length. In our system the cameras have been placed like this so we

can avoid carrying out the rectification in order to save processing time.

2.6.3.4 Summary of the chapter

Following the described steps, the desired homologous projected points of the

centre of gravity of our target in both acquired images are obtained. Then,

they are used to calculate the vector that defines the position of the target in

the left camera reference frame, assumed as our world coordinate system, by

means of triangulation. In order to do so, an algorithm has been developed in

MATLAB that has as inputs the results of the stereo calibration performed

and the two acquired images and as outputs the relative vectors of the position

that will guide the movements of the TCP of the robot in its equivalent refer-

ence frame. It follows that there must be an overlap in the two images so that

a point in the left image also exists in the right image and a correspondence

can be found. To guarantee this, the baseline between our cameras, their situa-

tion in the space and the illumination system has been worked out carefully

considering the robot workspace.

2.7 PARAMETERS OF THE STEREOVISION SYSTEM

The next steps in the design of the machine vision system, used to track and

extract the position of the target in the Cartesian space, have been carried out

taking into consideration these main points:

- The quality and features of the cameras utilized.

- The kind of robot that is going to be controlled, its morphology, size, the

model and its motion features.

- The processing hardware available.

- The illumination resources.

- The environment of the system as a source of electrical noise.

2.7.1 The Logitech HD Webcam C270

The cameras that we have been given for this project are two webcams C270

HD of Logitech with USB 2.0 connectivity interface, showed in Figure 2.21.

Its relevant features for the application can be found in its datasheet

Focal distance 4mm

Field of view (FOV) 60 degrees

Frames per second (max) 30fps

Optical resolution 1280 x 960 1,2MP

Length of the connection cable 1,5m

 31

 Figure 2.21 Logitech HD webcam

The size of the sensor in the camera can be obtained from its parameters

through the equation 2.21, obtained from the Figure 2.22

 Figure 2.22 Calculus of the size of the camera sensor

 (2.21)

This formula must be applied for each side of the sensor with the respective

angle of the field of view since our sensors are rectangular.

These cameras are not designed for this kind of use, therefore they present a

poor quality concerning their lens and resolution (that can be seen in terms of

the high distortion) and the focal distance cannot be changed. These facts will

play an important role in the design of the structure of the system and will

greatly influence the results of the triangulation.

Another important matter is that the cameras must be returned to the laborato-

ry once the project is finished, so they cannot be fixed permanently to the arc,

which will result on an important lack of robustness in the system since a

small relative movement between them will involve the whole repetition of

the calibration process.

 32

2.7.2 The location of the cameras

The cameras must be placed in order to model the workspace of the robot in

their overlapped field of view. In this way, we guarantee that all the equiva-

lent points within the robot workspace can be reached by the user with the

target in FOV, so we do not limit the movements of the robot. Keeping this in

mind, the best location for the cameras seems to be over an arc pointing to the

floor.

A vertical configuration lets us specify the available depth range as well as

keep under control the objects in the cameras field of view easily. Further-

more, it is known that the biggest errors during the target tracking are going to

be in the triangulation of the Z coordinates. By placing the cameras in an arc,

we choose the Z coordinate in the camera reference frame to be the same than

in the original robot coordinate system (but inverted), which means that the

movements of the robot in the X and Y axis will be more accurate than in the

Z axis. Finally, in order to correct this inversion between the reference

frames of the left camera and the robot, we have defined a new coordinate

system for the robot equivalent to the camera’s one in situation and orienta-

tion, so the output vectors of the machine vision system do not need to be

transformed before being sent to the robot. This point will be explained more

deeply in the fourth chapter.

2.7.2.1 Dimensions of the arc

The problem of obtaining the best arc measures and cameras baseline has as

inputs

- The workspace of the model of robot we are going to work with. It can be

seen in the Figure 2.23.

- The angle of the FOV of the cameras, which cannot be modified since the

focal length is fixed in this model.

- The condition that the cameras must be placed in a standard form. The

reasons for this condition are two:

+We want to avoid the rectification step during the processing to

make the algorithm faster.

+We are not allowed to fix the cameras permanently to the arc,

which makes more difficult to find a different configuration for

them and keep it.

The IRB 120 robot of ABB has as maximum height 982 mm and a diame-

ter of 1160mm around the centre of its base. These are the measures we

need for the design.

 33

 Figure 2.23 IRB 120 workspace

The cameras have an angle of the FOV equal to 60 degrees, which means

that in a standard configuration the overlapped FOV will also have an an-

gle of 60 degrees and the same shape. Let’s assume that the robot’s work-

space is a sphere with diameter D= 1.3m tangential to the floor in the cen-

tre of the robot base, and that the overlapped field of view can be seen as a

pyramid, that must involve the sphere as showed in Figure 2.25

Figure 2.24 Assumptions for the calculus of the overlapped zone

The rectangular base of the pyramid has a long side given by

And its height depends on both the height of the arc and the baseline

between the cameras. During the resolution we have kept in mind that a

wide baseline could facilitate the triangulation as explained, but the limit

here is set by the volume of the sphere, that cannot be modified.

 34

The best solution achieved for the problem is showed in the scheme in

Figure 2.25 (in mm)

Figure 2.25 Measures of the arc for the cameras

The arc will have a height of 2000 mm and the baseline of the cameras

will be 70 mm in order to cover the sphere that models the workspace of

the robot.

The Figures 2.26 and 2.27 show the final configuration of the real arc and

the cameras once installed.

Figure 2.26 Configuration of the cameras for stereo vision

 35

Figure 2.27 View of the final design for the arc with the cameras

2.7.2.2 Range resolution

With the chosen baseline and the current focal length of the cameras we

are able to obtain the resolution in the depth measures taken by the system

for our depth range (2-1.1m) through the next equation. We just need to

know the pixel increment (Δd) for a depth increment (ΔZ) in the image

2.7.3 Illumination

Although the illumination can play an important role in the success of a

machine vision system in general, since we have not resources to provide

the system a proper illumination, the best available option has been

placing the arc with the cameras directly under the illumination field of

one of the lamps in the laboratory. Proceeding this way, we simulate a

bright-field illumination system, in which the white light transmitted from

below the cameras will increase the contrast between the target and the

environment, making the detection easier.

 Figure 2.28 Bright field illumination scheme

 36

The source of light is an incandescent lamp with planar geometry. It is

characterized by a low luminous flux but provides a good luminous

intensity with a strong diffused component and a weak specular

component. The lamp as well as its position with respect to the cameras

can be seen in the Figure 2.29.

Figure 2.29 View of the final illumination configuration

2.7.4 Structure of the system

The scheme of the tasks performed by the machine vision system

involves, as explained, the acquisition of the images, their processing by

the developed algorithm and the communication of the extracted

information.

 Figure 2.30 Scheme of the tasks in our MVS

In this description, showed in Figure 2.30 we do not consider the software

tools or hardware devices that carry out these tasks. However, in function

of their hardware components, a system that implements the scheme

showed above can be classified as follows (Xu, 1981).

 37

a) PC-based vision system

In a PC-based vision system the image processing is implemented in the

CPU of a computer, which will provide the memory space we need and

the I/O modules for communications as well as the power supply for the

whole system. A general scheme of this kind of MVS is showed in Figure

2.31.

 Figure 2.31 PC-based vision system

b) Embedded vision system

An embedded system as the one in Figure 2.32, would provide image

sensing, processing and features extraction and outputs image features

directly integrated in a processor, which makes this kind of systems

lighter than the other one but with a weaker computing capability.

 Figure 2.32 Embedded vision system

2.7.4.1 Hardware components of the PC-based system

The images obtained by our webcams are transferred to the computer via

the USB 2.0 interface supported by the cameras. The computer processes

the images and stores the outputs in a common file that can be accessed by

the IRC5 robot controller through an Ethernet connection. This kind of

system is large and heavy but provides more storage and processing

capacity than the embedded systems. A basic scheme of the PC-based

system can be seen in Figure 2.33.

 38

 Figure 2.33 Scheme of our PC-based MVS

Since the transmission of the images is made through two 1.5m wire, it

has been considered as a possible noise receptor in the system due to the

fact that the environment in which the system is installed is an electrical

devices laboratory. Although some ideas related to shield the cables have

been thought, the idea was finally discounted.

The PC is a DELL model with an intel i5 processor and works with

Windows 7, which is a requirement of the webcams, with the version

Ultimate.

The robot controller, the compact version of an IRC5 for small robots,

belongs to the fifth generation of ABB’s robot controllers and its features

and applications will be explained in the fourth chapter.

2.8 ALGORITHM DEVELOPMENT

2.8.1 Introduction

The configuration of the cameras’ settings, the capture and image processing

algorithm, and the store of the process’ outputs in the memory to be sent to

the robot have been all performed in MATLAB 2014.a making use of the

Image Processing and the Image Acquisition toolboxes (Marques, 2011).

Tracking the target in the acquired images, analyze and pre-processing of the

images (filtering, segmentation, feature extraction, matching, etc)

triangulation and post-processing of the coordinates (filtering and correction)

are done by the MATLAB algorithm. The development of it has been carried

out focusing on low time consumption, as far as the faster the system is able

to extract suitable coordinates, the more real will be the control over the

robot. In order to do so, the design of the target and the environment in the

field of view, as well as the cameras collocation and configuration has been

thought trying to find the most suitable balance between robustness and speed

in our application.

 39

2.8.2 Steps in the development

The following points contain the steps taken during the development of the

algorithm once the MVS has been completely designed. Despite the final re-

sults presented here, this process has been longer and iterative and other ideas

and steps were considered until the best results were achieved.

2.8.2.1 Design of the target

In view of the ideas that are leading the development of the algorithm, instead

of choosing a specific shape or concrete features for the target to be detected,

the final analysis will just involve color detection. This technique is faster and

does not require computationally intensive tasks, although it is also less robust

as far as it will need other white objects to be removed from the field of view.

However, the possibility to specify the minimum pixel size of the target that

the system is trying to track will prevent us from confusing the target with

smaller objects.

 Figure 2.34 Model of white target used for tests

Therefore the target is going to be a white object, which can be chosen by the

user, with a specific size. In Figure 2.34, the target used for the tests is

showed.

2.8.2.2 Configuration of the cameras

The Image Acquisition toolbox provides the way to access automatically

detected hardware devices from MATLAB. The toolbox contains an adaptor

that provides a transparent interface between MATLAB and any frame

grabber or camera and also a Software Installer Pack, used to set up the

drivers needed to access our USB-based webcams through the adaptor. The

scheme of the connection can be seen in Figure 2.35.

 40

Figure 2.35 3D Scheme of the the Image Acquisition toolbox

As it has been said above, the cameras have been configured to ease the target

tracking. The brightness, contrast and the parameters that define the camera

properties in general have been customized in both cameras making use of the

Image Acquisition toolbox of MATLAB showed in Figure 2.36. This toolbox

has also helped us establish the acquisition mode to be done in gray scale and

with the desired resolution.

 Figure 2.36 Image Acquisition toolbox panel for Acquisition parameters

 41

This configuration joined to the design of the white target (without specific

shape but size) has made possible to remove non-white objects from the

image avoiding that step in the pre-processing and the need of a specific

background. This lets the user of the system move the arms with the target

within the field of view of the cameras and place the whole structure

anywhere (except over white backgrounds).

Figure 2.37 Images from one camera before and after the configuration

The differences between the images given by the left camera in the arc before

and after the configuration can be appreciated in Figure 2.37.

The function 2 in appendix A encapsulates the cameras connections as two

objects that provides an interface for the acquisition performance in

MATLAB and configures them as explained to be used in the next functions

throughout the algorithm.

2.8.2.3 Capture and pre-processing of the images

Through the function 3 in appendix A, MATLAB is able to acquire images as

fast as the devices and the PC can support it. In our application, the acquisi-

tion time is 0.071 seconds in each camera. In order to enable this, the trigger

settings have been configured to use the system object generated by the func-

tion imaq.VideoDevice(). This function allows single-frame image acquisition

at a time from a video device (function step()). The system objects created by

the previous function are video input objects that represent the connection be-

tween MATLAB and a particular acquisition device. We work with this func-

tion instead of using videoinput() since it is more suitable for our application

work with discrete images than process video inputs. Furthermore, the

imaq.VideoDevice function offers different functions and properties more

proper for our aims that will be shown below.

Despite the low acquisition time required, the distance the target covers be-

tween the left and the right acquisition will be a source of errors during the

triangulation due to the fact that it will produce a wrong disparity.

 42

This fact will automatically set a limit in the maximum speed the user can

move the target at, in order to avoid great errors. The produced error will also

depend on the distance between the camera and the position where the target

is being moved, since a longer distance will cause a smaller error in the dis-

parity.

The pre-processing performed over both images after the acquisition has been

reduced as much as possible in order to save time. After a binarization of the

gray scale images with a high threshold, the white objects that have passed

this step and are smaller than the specified size of the target are removed, re-

maining only the target if has been detected, or a black image in other case.

This method is also used to filter noise in the image.

In case there are white big objects within the field of view of the cameras,

they will cause an error during the next steps that can result in the loss of the

robot control, so this situation must be prevented. This is one of the weakest

points in the developed machine vision system, which can be solved by apply-

ing more robust and time consuming algorithms for detection, as explained.

2.8.2.4 Detection of the target

To locate the target in the input pre-processed images, the white areas in the

image are measured. If there is one bigger than the target’s size, is taken as

the target and the detection is considered as positive. In order to detect if oth-

er white, big objects are within the FOV and can result in a bad triangulation,

the number of white target-sized objects in the pictured is extracted, so if it is

greater than one, an error message is sent to the user and the triangulation is

not performed, otherwise, the process continues.

2.8.2.5 Extraction of the variables for the triangulation

Once the target has been detected, its zero and first moments of area are cal-

culated, in the function in appendix A.4, in order to extract the centre of

gravity of the object in both images through the equation (2.22):

Zero moment of area:

Working with binary images, this moment coincides with the area of the ob-

ject.

 43

First moments of area:

Where c means columns in the picture and r means rows.

Known the relationship between the first order moments and the pixel coordi-

nates of the centre of gravity, these can be obtained as follows:

 (2.22)

All the coordinates used in this procedure are given in pixels and are referred

to the image local reference frame located in the left upper corner as usual.

These are the inputs for the triangulation functions besides the intrinsic, ex-

trinsic and distortions parameters obtained in the stereo calibration.

2.8.2.6 Triangulation

This step computes the 3D position of the centre of gravity of the target given

the left and right image projections obtained in the last step. It makes use of

the outputs of the stereo calibration carried out before, proceeding this way:

a) Normalization of the coordinates

The normalized coordinates of the CofG are computed from the pixel coordi-

nates. The principal point coordinates, obtained during the calibration are di-

vided by the focal lenght and the skew is undone. After, if the lens distortion

has been taken into consideration during the calibration, which is our case, it

must be compensated. This task is implemented in the function 7 of the ap-

pendix A.

b) Correction of the lens distortions

The radial and tangential distortions are compensated through an iterative

method based on the distortion model from Oulu University. The two distort-

ed points in normalized coordinates are corrected making use of the constants

obtained during the calibration. The functions that perform the corrections are

8 and 9 in the appendix A.

 44

c) Triangulation of the point in 3D space

With the projected coordinates of the target corrected and normalized, the tri-

angulation is resolved as explained and the real 3D coordinates referred to the

left camera reference frame are extracted with the function 6 of appendix A.

The relationship between the coordinates P in the left and right camera refer-

ence frames is given by (2.23)

 (2.23)

Where T is a translation vector and R a rotation matrix that defines the trans-

formation between both systems.

In a perfect standard configuration of our cameras, the translation vector in

(2.23) would contain only the baseline and the rotation would be given by an

identity matrix as follows (mm)

However, the results from the stereo calibration are barely different due to the

fact that it was not possible to fix the cameras properly to the arc.

2.8.2.7 Post-processing

Taking into consideration that the process presented before is not perfect, the

generation of little systematic errors as well as greater random errors must be

considered too. In order to detect and correct or remove the wrong outputs ob-

tained from the stereo triangulation, three filters have been added to the algo-

rithm with the idea of preventing the robot from receiving wrong coordinates

that can destabilize the trajectories or result in unpredictable movements.

1) Filter of outliers points

This is the simplest filter, whose mission is check that the triangulated coor-

dinates belong to the workspace defined for the robot. If they are not within it,

they are removed. The workspace of the robot can be defined by the user to

adapt the programme to the placement of the robot.

This filter basically aims to detect and eliminate the outlier points caused by

random errors. The absolute coordinate’s vector referred to the left camera

reference frame that passes this filter is subtracted from the old absolute

vector which contains the current position of the robot.

 45

As a result we obtain a new vector that contains the change in location or dis-

placement from the old point to the new one, specified by its magnitude and

direction .

Figure 2.38 Vector from current point A to next position B

2) Low-pass filter

This second filter works once the outliers have been removed. Its function is

to detect the maximum of the three components of the new displacement vec-

tor and compare it with the maximum advance per step allowed by the

user with the parameter R (mm). If this increment is bigger than R, the new

vector will be scaled down by multiplying it by a gain which will be inversely

proportional to the difference between R and the increment. However, if the

maximum increment in the coordinates is lower that R the gain factor (Kp)

will be equal one so the coordinates will not be modified.

 Figure 2.39 Scheme of the low-pass filter

The aims of this filter are two:

- Reduce big unwanted changes in trajectories and instabilities that can be

caused by sporadic errors as well as by the pulse of the user and other

facts. This filter will not prevent these mistakes but will scale them down

so the loss of stability will be lower and the trajectories followed by the

robot will be smoother.

 46

Figure 2.40 Example of a target trajectoy before and after filtering

In the symbolic cases in Figure 2.40, the first target trajectory would be

the ideal one, without neither human nor triangulation errors. This path is

in practice very difficult to get. The second path is the real one. Any kind

of possible errors after the first filter in the 3D coordinates have been add-

ed to the first model. The result of this is a steep trajectory which produc-

es an instable movement in the robot arm. The third trajectory is obtained

after applying the low-pass filter to the real one. The big changes in the

direction have been smoothed out so the result is closer to the ideal one.

- By limiting the maximum advance of the robot per new coordinates trian-

gulated, the user will keep a more real control over its movement even if

he is moving the target at a too high speed for the acquisition capacities.

As showed in the Figure 2.41, the system is going to divide the displace-

ment A to B into an n number of points Ai (where n=1, 2, 3,...i depends on

R), and at the end of each step (once the robot has reached the new posi-

tion given by) it will check if the final trajectory of the target has

been changed by the user (from B to B’, i.e.) during the displacement

 and it will act consequently. Therefore, the system will be able to

react to this change faster () than if it had to wait for the robot to fin-

ish the trajectory and after performed .

 47

 Figure 2.41 Second function of the low-pass filter

The output of the filter is the displacement vector , whose origin is the

current position of the robot and which is limited to a sphere with centre

and with radius R (constant of the filter).

3) Moving-average filter

The last method, applied to smooth out the short-term fluctuations in trajecto-

ries, consist of a filter that creates series of averages with a subset of the last

processed positions of the target and the new one, considered as the output of

the last filter added to the current absolute position of the robot. The average

and standard deviation obtained from these points are used to predict where

the next X, Y and Z coordinates are going to be. If one of them does not be-

long to its expected region, it is corrected to be within the region and if it be-

longs, it remains equally. Before this, the original new coordinates (without

correction) are stored in the subset for the prediction and the oldest ones are

removed.

 48

The size of the subset (S) must be fixed according to our application, keeping

in mind that we want to avoid short-term fluctuation (related to triangulation

errors) but we do not want to lose or excessively delay long-term trends’

changes, which are real variations in the trajectory of the target made by the

user.

In order to initialize the filter, the first S triangulated points are not sent to the

robot but stored in the filter when the application is being started.

2.8.2.8 Communication

The architecture of the communication system, as well as the solution imple-

mented and the functions utilised in the robot controller will be more widely

explained in the third chapter. However, what must be detailed in this point is

the role that the communication function plays in the algorithm. The

MATLAB function can be seen in the point 5 of the appendix A.

The handshaking between the MATLAB algorithm in the computer and the

RAPID programme running in parallel in the robot is performed by the com-

munication application developed between both of them. In this synchronized

activity, the MATLAB algorithm acts as a producer, updating in the common

file the relative vector obtained as the output of the filters only when

the robot (the consumer) has acquired the last vector. This means that the

MATLAB process and the image acquisition system will only process a new

vector once the last one has been sent to the robot, which is the bottleneck of

the system, the element that will set the maximum speed of it.

2.8.3 Diagram of the algorithm

In Figure 2.42 the flow control diagram of the MATLAB algorithm is pre-

sented. The stages in the diagram represent the functions explained before in a

way that eases the understanding of the work flow followed by the algorithm.

 49

 Figure 2.42 Flow diagram of the MATLAB algorithm

 50

3 COMMUNICATION INTERFACE

3.1 INTRODUCTION

This chapter contains the steps taken during the search and implementation of

a suitable communication interface between our MATLAB application in the

PC and the ABB robot controller. The problems we have faced during the

process, the implemented solution and its features and the reason for this

choice are explained in the next points.

It is convenient to remember here that the development of this communication

application has been parallel to the creation of the MATLAB algorithm,

concretely the communication function in appendix A.5, and the RAPID

application for the robot.

3.2 APPROACH TO THE PROBLEM

The idea in this part of the project is to set up a unidirectional data transfer

system able to send the vectors from the MATLAB application to the RAPID

program executed in the controller of the robot, respecting the timing and

with reasonable good features.

The factors that define the problem are listed below:

- The characteristics of the whole system: we have to define the sequence of

actions to perform and the flow control between the two hosts in the

system.

- The export possibilities in MATLAB 2014a: since the program developed

in MATLAB produces the vectors, we need to find the best way to work

with its outputs in other applications.

- The import possibilities in RAPID: the RAPID programming language for

applications in ABB robots has a set of instructions that can be used for

communications with the controller.

- The physical channels available for the transfer: the features of the robot

controller and the PC will set the possibilities for the connection between

source and receiver.

- The synchronization: since we have two tasks running in parallel we have

to find the most suitable way to make them join up.

3.3 PARALLEL COMPUTING

A parallel system is that in which more than one task is being carried out

simultaneously (Barney, 2007). Our system can be classified as a task-parallel

computer system since our applications in MATLAB and RAPID are running

at the same time in two different processors.

 51

In any kind of computer system, a process is cooperative if it can affect or be

affected by the execution of another process, otherwise it is independent. In

our system, since we have two parallel applications executing and they have

to share resources in order to transfer data, they can be classified as

cooperative processes.

3.3.1 Producer-Consumer problem

The paradigm of cooperative process is the consumer-producer problem. It

describes two processes, the producer and the consumer, who share a

common fixed-size buffer used as a queue. The producer's job is to generate a

piece of data, put it into the buffer and start again. At the same time, the

consumer is consuming the data one piece at a time. This problem states

perfectly the situation in our system, in which the machine vision system can

be seen as the producer, that generates the vectors with the target position,

and the robot is the consumer that collects and applies those vectors in its

movements.

The scheme of this paradigm applied to our model can be seen in Figure 3.1.

Figure 3.1 Producer-consumer problem in our system

However, the paradigm specifies neither a real implementation of the

common buffer nor the size of it, which is what we must define in the next

steps of the chapter.

3.4 PROCESSES SYNCHRONIZATION

Concurrency in programming introduces some challenges that are not

considered in sequential programming, as managing common resources or

guarantying data integrity. They must be identified and solved here to

implement the producer-consumer paradigm.

3.4.1 Flow control problems

As our cooperative processes have to read and write shared data in a limited

common buffer, and the final result of the system (the robot’s movements)

will depend on the order they proceed, this situation produce race conditions.

 52

There are two kinds of flow control errors that can be a result of the race

condition and that, therefore, must be prevented during the data transfer:

1) A same datagram is read twice by the robot. Although this kind of

situation would not cause any new movement in the robot, it could

involve a loss of time for the next actualization by the MVS and a slower

next movement.

2) A datagram is overwritten before being read by the robot. If a datagram is

lost, the robot trajectory losses the next point and will be less similar to

the real path of the target.

Both kinds of errors can be seen in the next images in Figure 3.2, where the

vertical lines represent the time of access to the buffer by both programs.

Figure 3.2 Flow control error while using a common buffer

The flow control problems could be avoided with an unlimited buffer, but this

would involve some other problems that will be explained in the next points.

In the context of race conditions two ideas must be kept in mind:

- Guarantee that both programs do not interfere in each other’s actions

when they are accessing the common resource

- Respect the handshaking between both process to prevent the flow control

problems

For implementing both requirements, a mechanism of mutual exclusion must

be established. This mechanism must control that when one of the process

accesses the common buffer, the other is not allowed to do it and must wait.

The section of code in which a programme accesses the common resources is

called critical section, which basically means that the race conditions can be

avoided if we control the entrance of the programmes in their critical sections.

 53

3.4.2 Mutual exclusion

Considering the last ideas, both MATLAB and RAPID programs’ codes can

be divided into a critical section and another one in which they do not make

use of common resources, being always executed within an infinite loop, as

showed in Figure 3.3

 Figure 3.3 Division of a program’s code for mutual exclusion mechanisms

Therefore, the mutual exclusion mechanism must be implemented in both

Entrance and Exit sections.

3.4.2.1 Strict alternation

The general rules for a common implementation of mutual exclusion

mechanisms in the producer-consumer problem are the following

- The consumer must wait for the producer to produce something if the

buffer is empty.

- The producer must wait for the consumer to consume something if the

buffer is full.

Since the tasks executed by the robot involve physical movements, it will

block the machine vision system execution until it finished its movements,

which makes it be the bottleneck of the system.

Owing to the last facts, the chosen algorithm for the mutual exclusion is a

strict alternation between the two processes. This is based on the state of a

common variable that determines what process is allowed to enter the critical

section. The process that is waiting for the permission is programmed to

repeatedly check the state of the variable, which is called busy-waiting.

Furthermore, with this algorithm, if one of the processes fails the other one

will be indefinitely blocked. This, which could be an inconvenience, turns

into an advantage here because in the presence of a failure the whole system

must stop for security to keep the robot arm under control.

 54

3.4.2.2 Buffer size

Setting the size of the buffer to unlimited with two different program counters

would have avoided the control flow problems presented because any data

could have been overwritten or doubly read. However, the size of the buffer

has been set to one vector. The reason for this is that the possibility to store

more vectors in memory would have introduced a great delay between the

current movements of the target and the robot’s due to the big difference in

the speeds of both processes. Therefore, implementing an unlimited buffer

would have involved a loss of the real time control over the movements of the

robot. Furthermore, it entails memory space problems.

3.4.2.3 Semaphores

The chosen mutual exclusion mechanism for our implementation is the

semaphore. A semaphore is a common variable that is used for controlling

access, by multiple processes, to a common resource in a parallel

programming system. The binary type has two restricted values 0 and 1,

which means that the common resource only can be unavailable or available.

Here, the semaphores implemented are binaries, because the size of the buffer

has been set to 1.

The semaphores are equipped with two instructions to increase or decrease

their value that we situate in the Entrance and Exit sections in both programs.

These instructions must be atomic due to the fact that, otherwise, they could

be interrupted during the updating of the semaphores and the mutual

exclusion mechanism would fail.

The next is a pseudocode example of the algorithm implemented for the

producer-consumer problem in both sides of the line following the scheme in

Figure 3.3

process MATLAB() process RAPID ()

{ {

 while (true) { while (true) {

 XYZ = VectorExtraction(); decrement(semaphoreA);

 decrement(semaphoreB); Target = ReadBuffer();

 UpdateBuffer(XYZ); increment(semaphoreB);

 increment(semaphoreA); Movement(Target);

 } }

} }

The critical sections here are named UpdateBuffer() and ReadBuffer(), and

the rest of the code in each program contains the extraction of the target

position and the movement of the robot.

 55

3.5 REAL IMPLEMENTATION

At this point, we have established the theoretical structure of our

communication system, the data flow, the paradigm and the mutual exclusion

mechanism. Now, the implementation must be solved. The possible

implementations of the system depend on the communication features that

both the PC and the robot controller have, so they must be deeply studied

here.

3.5.1 The IRC5 Compact controller

This ABB robot controller is analyzed here from the point of view of its

communication characteristics. A more comprehensive analysis can be found

in the fourth chapter.

The IRC5 supports the state-of-the-art field busses for I/O, sensor interface

functionality, remote disk access and socket messaging among others

networking features.

3.5.1.1 Machine interfaces

The machine interface options offered by this model of controller are listed in

the Table 3.1

Table 3.1 Avaible connections in the IRC5 compact controller

Inputs/Outputs Standard 16/16 (up to 2200)

Digital 24 DC or relay signals

Analogue 2x 0-10V, 3x 10V, 1x4-20mA

Serial channel 1x RS232 (RS422 with adaptor)

Network

Two channels

Ethernet (10/100 Mbits per second)

Service and LAN

Fieldbus Master DeviceNet

PROFIBUS DP

Ethernet/IP

Fieldbus Slave PROFINET

PROFIBUS DP

Ethernet/IP

Allen-Brandley Remote I/O

CC-link

Up to 6 channels

The distribution of the physical ports of the detailed communication features

in the controller console are showed in Figure 3.4

 56

 Figure 3.4 Frontal panel of the IRC5 compact

The existence of an installed Ethernet network in the laboratory makes us go

deeper, among the showed options, in the network capabilities of the

controller. Two Ethernet channels enable optimum separation of

communication tasks in the controller. The service port is dedicated for local

PC connectivity while the LAN channel is used for permanent connection to a

network for tasks such as program transfer monitoring, data collection,

operator communication, and field bus communication.

Table 3.2 Network capabilities in the IRC5 compact controller

Service and LAN Separate built in Ethernet channels

Fast communication 10 or 100 Mbit/s

Network file access The robot controller can host NFS (Network File Sys-

tem) or FTP (File Transfer Protocol) client software.

IRC5 file access The FTP server in IRC5 allows the controller to respond

to a request from an FTP client on a remote computer.

DNS Domain Name Server

Correlates device names to associated network IP ad-

dresses through a DNS server.

Allows the robot to access a network computer via a

DNS server to determine the network IP addresses of

other devices on the network.

DHCP Dynamic Host Configuration Protocol enables quick

connection to the network and IP addresses are obtained

automatically.

LAN channel (DHCP client software): The channel has

either a fixed IP address or it can be obtained from a

DCHP server on the network.

Service channel (DHCP server software): The channel

has a fixed IP address and can assign the connected PC

an IP address.

SNMP Simple Network Management Protocol Enables quick

access to control system network information.

 57

The Table 3.2 contains the characteristics of the network capabilities in the

IRC5 Compact model.

Between the two available Ethernet channels, the LAN channel is chosen to

connect our PC and the controller, instead of creating a point-to-point

connection between our PC and the robot through the Service port. The

reasons are two:

- The MATLAB program that is being used here needs a network license

belonging to a different network in the university. To solve this problem, a

Virtual Private Network has been set up in our PC with a Citrix Receiver.

Due to the fact that the VPN works through public network, we need our

PC to be connected to Internet.

- Since this is the first time the utilized robot is connected to the network,

the communication system implemented in this project also aimed to

allow new communication applications in future projects for the robot

users. Focusing on this, it made sense to connect the robot not to one PC

but to the whole network.

In the view of these arguments, both the PC and the controller have been

connected to the Fast Ethernet network in the laboratory through two RJ45

connectors and the DHCP server in the network has automatically assigned

their IP addresses.

3.5.2 The remote PC

From the point of view of the computer, the only required feature is to have

installed the Internet protocol suite (TCP/IP) in order to be connected to the

network.

3.6 SOFTWARE

3.6.1 Network communications

At this point, an explanation about the kind of communication implemented

must be done. At the beginning of this project, the model of the robot we were

supposed to work with was the IRB 140, and its controller the S4Cplus. This

is an old model with a more limited set of communication features, and was

considering this model when the choice of the network configuration was

taken. Once we were offered to work with the IRB 120 and its IRC5

controller, the development of the idea was already started so we kept it.

Among its features, the SC4plus controller offered network file system

accesses using FTP/NFS client and FTP server.

 58

Due to its simplicity, the Network File System (NFS) client software was

chosen to implement a remote mounted disk in the PC through our Ethernet

network, making use of the TCP/IP protocols as showed in the next diagram.

 Figure 3.5 Second function of the low-pass filter

The protocols for to stablishment of the Network File System utilized by the

controller as showed in the Figure 3.5 are:

- IP: Internet Protocol provides a packet delivery service for TCP, UDP and

ICMP.

- ICMP: Internet Control Message Protocol handles errors and control

information between gateways and hosts in the network. These messages

are normally generated and handled within the TCP/IP networking

software.

- TCP: Transmission Control Protocol is a connection-oriented protocol that

provides a reliable full-duplex stream. TCP guarantees that the messages

reach their intended destination.

- UDP: A connectionless protocol. UDP does not guarantee that the

messages reach the indented destination. This has instead to be handled by

the overlaying protocols

- RPC/XDR: Remote Procedure Call/External Data Representation.

RPC is a protocol for invoking a procedure on a remote machine. For the

user of the RPC calls it appears like they are executed on the local

machine, i.e. the network is transparent.

XDR provides a standardized form for transmission of data between

different computers.

 59

3.6.2 The Network File Sytem

NFS is a distributed file system protocol originally developed by Sun

Microsystems in 1984, allowing a user on a client host to access files over a

network through the IP protocol much like local storage is accessed.

In our system, the remote mounted disk installed allows the robot to access

the files stored on the PC hard disk C:\ making use of the NFS protocol.

These files will be used as the common buffer for the producer-consumer

problem implementation.

3.7 FINAL IMPLEMENTATION

3.7.1 The NFS server

A NFS server, haneWIN NFS server, has been installed in the external PC.

The haneWIN NFS software provides a simple and intuitive interface (in

Figure 3.5) to establish the characteristics of the server and set up the

exported directories in the mounted disk which will be accessible for the

robot.

 Figure 3.6 haneWIN NFS server interface

 60

The following are the tasks performed by the server during a normal NFS

execution:

- The server administrator determines what to make available, sharing the

names and parameters of directories.

- The server security-administration ensures that it can recognize and

approve validated clients throught their IP address.

- The server network configuration ensures that appropriate clients can

negotiate with it through any firewall system. This step was particularly

long as the firewall needed to be turned off from the register of the

operative system due to the settings of the network.

- The client machine requests access to exported data, typically by issuing a

mount command. The client asks the server which port the NFS server is

using, the client connects to the NFS server. The server has been

configured to not use the well-known ports in the computer and work over

the 8000.

- If all goes well, users on the client machine can then view and interact

with mounted file systems on the server within the parameters permitted.

3.7.2 The NFS client

In this point we explain the steps taken through the RobotWare option NFS

Client (scheme in Figure 3.6) in order to configure the controller parameters

that let it read and write to the remote PC in the same way as with its internal

hard disk:

- The application protocol must be configured to point out a directory on

the remote PC.

- The transmission protocol utilized must be specified.

- The physical channel that supports the transfer has to be chosen

Figure 3.6 Steps to stablish the NFS client in RobotWare

 61

1) Defining the application protocol

This is a brief description of the system parameters used to configure the

application protocol.

Table 3.3 Parameters for the NFS application protocol establishment

Parameter Description

Name Name of the application protocol: “NFS client”

Type NFS

Transmission protocol For NFS is TCP/IP

Server address The IP address of the remote PC

Trusted This flag decides if this computer should be trust-

ed, i.e. if losing the connection should make the

program stop. In our application this is set to

“YES”.

Local path Defines what the shared unit will be called on the

robot. "pc1:” in our application.

Server path The name given to the exported folder on the re-

mote PC.

User ID Used by the NFS protocol as a way of authorizing

the user to access a specific server.

This parameter is not used here, so it has been set

to the default value 0

Group ID Used by the NFS protocol as a way of authorizing

the user to access a specific server.

This parameter is not used here, so it has been set

to the default value 0

2) Defining the transmission protocol

There is a configured transmission protocol called TCP/IP and no changes can

be made to it in the controller. It will make use of the IP address given by the

network DHCP server and its subnet mask. This is used by the NFS

application protocol, as explained in the last scheme.

3) Defining the physical channel

As explained, the physical channel utilized is one of the LAN connection in

the IRC5 controller. The available physical channels in the controller can be

found under the topic “Communication”, within the Type “Physical

channels”, where they can be given a name or new ones can be defined and

configured. Being an Ethernet port, no other features but the name have to be

established.

 62

3.7.3 Semaphores in NFS

The binary semaphores implementation in the common file system has been

developed making used of .txt files as they were the shared variables. Two

primitives have been created both in MATLAB and RAPID programs to

create and delete two .txt files called “semaphoreA” and “semaphoreB” that

can be seen as the normal increase-decrease instructions for semaphores. Both

applications check the existence of their specified semaphore as if it was a 0-1

value in a common variable (here, delete=0, created=1), and depending on

this they create/delete the semaphore and proceed.

The programs created can be seen in appendix A.5 and B, and the

implementation in RAPID will be deeper explained in the next chapter.

3.7.4 Common buffer in NFS

The common buffer for storing the vectors is a .txt file called “Coordinates”,

so the instruction for the communication are simple write/read instructions in

MATLAB and RAPID, which is how the export/import problems in both

applications are solved.

3.7.5 Data frame

The only data transferred through the NFS application is a frame containing

the three components (X, Y, Z) of the output vector from the machine vision

system as follows

X:Y:Z

For future works, other control information can be added to the frame and be

shared through this file with only a few changes in the programming. Also a

feedback for the robot position could be implemented through this

communication system in order to set up a real control between the theoretical

position of the end-effector in MATLAB and the real one in the robot

controller. To do so, bidirectional transfer would be required, which would

involve higher time consumption and a decrease of the real time features of

the whole system. That is the reason why it has not been programmed in this

project.

 63

4 PROGRAMMING THE ROBOT

4.1 INTRODUCTION

As it was said in the main introduction of this report, the final aim of this

project is the creation of an easy-to-use control system for the end-effector of

an anthropomorphic robot with six DOF.

In order to understand more deeply what the kind of element to be controlled

is and its characteristics, in this chapter a short introduction of the industrial

robots and manipulators, and their current definition is going to be presented.

The model of robot utilized as well as its controller is showed, with a small

presentation of the ABB programming language RAPID and the advantages

provided by RobotStudio. Furthermore, a very short explanation of the

process the robot follows to work out trajectories can be found. And finally,

the RAPID program developed in RobotStudio for the application is showed

in appendix B.

4.2 MANIPULATING ROBOTS

4.2.1 Industrial robot definition

The accepted definitions of the terms industrial robot and manipulator can

change depending on if they are used in the Euro-American market or in the

Japanese. For Japanese manufacturers, an industrial robot is any mechanical

articulated device aimed to manipulating tasks, while in the western market

the term involves higher complexity, especially concerning the control

(Barrientos et al. 1997).

The most widely accepted definition of industrial robot in the western market

is the given by the Robotic Industries Association (RIA) that states

“A robot is a reprogrammable, multifunctional manipulator designed to move

material, parts, tools or specialized devices through variable programmed

motions for the performance of a variety of tasks”.

This characterization, slightly modified, has been adopted by the International

Standards Organization (ISO) as

“An automatically controlled, reprogrammable, multipurpose manipulator

programmable in three or more axes, which may be either fixed in place or

mobile for use in industrial automation applications”.

In this description, the need for the industrial robot to have several degrees of

freedom is included.

 64

Finally, one of the most complete definitions of the terms have been created

by the Association French Normalization Organization and Regulation

(AFNOR):

- Manipulator: “A manipulator is a mechanism generally composed of a

series of links, jointed between them, which aims to grasp and move

objects. It is multifunctional and it can be governed directly by a human

operator or through a logic device”.

- Robot: “An automatic servo controlled manipulator, reprogrammable and

polyvalent capable of positioning and orientating material, parts, or

special devices through variable reprogrammable motions/trajectories for

the performance of a variety of tasks.”

In view of these two last definitions, the industrial robot used in our system

should be now classified as a manipulator since we have stripped it of its

autonomy and now it is governed by a human, instead of automatically.

4.2.2 Morphology of the robot

Robots can be also classified attending their mechanical structure,

transmissions, sensors and actuators, control systems and end-effectors. Here,

we are especially interested in introducing the classification based on the

mechanical structure since it is the most relevant part while designing our

vision-based guidance system.

4.2.2.1 Mechanical structure

A robot is made up of a number of links joined by joints that enable relative

movements between consecutive links. The kind of joint will establish the

movement between links, existing six kinds of joints (Figure 4.1) with their

number of DOF

 Figure 4.1 Kinds of joints in robotics

 65

A degree of freedom in a joint is defined as the number of independent

movements that a link can do referred to the other link in the joint. The

number of DOF in a robot is set by the sum of the DOF of all the joints in it.

The most widely applied joints are prismatic and revolute, which means that

normally the number of DOF in a robot matches with its total number of

joints.

The different mechanical structures in a robot are a result of the different

joints configuration. The most common mechanical configuration in industrial

robots are showed in Figure 4.2.

Figure 4.2 Most common configurations in industrial robots

Taking into consideration that in order to completely specify position and

orientation in the space, six parameters are required (three for the position and

three for the orientation) if we want a robot to locate its TCP, we will

normally need six degrees of freedom.

4.2.2.2 Other characteristics

The quality of the robots regarding their performance can be measured not

only with their configuration and dimensions, but also with some features that

define the goodness on control of the motion and general behaviour while

moving.

- Payload capacity: weight of the load the robot is able to manipulate,

including the weight of the tool. This parameter depends on the size,

configuration and actuators of the robot. In some application the inertia

moments must be considered too while working out the payload capacity.

Generally, the payload capacity in robotics is given in diagrams like the

one in Figure 4.3, which expresses the distance from the TCP zero.

 66

Figure 4.3 Payload in the IRB 120

- Resolution: minimum increment in the movement performable by the

robot controller. It is limited by the resolution of the encoders and the

A/D, D/A converters, the size of a word in the CPU and the actuators.

- Precision: average value after several cycles among the programmed

theoretical point and the reached one by the TCP. This precision is set by

the calibration errors, deformations and singularities in the calculus.

- Repeatability: radius of the sphere that contains the reached points by the

TCP after sending it to the same programmed point in equal work

conditions. Precision and repeatability are not related since a good

repeatability does not mean high precision and vice versa.

- Velocity: in the robot movements, it can be seen as link velocity or linear

average speed in the TCP. The velocity is related to other parameters due

to the fact that a high speed entails less precision and a lower payload.

 67

4.3 ABB IRB 120

4.3.1 Description

The IRB 120 model (in Figure 4.4 the actual unit utilized) is an

anthropomorphic robot with six degrees of freedom and it is the smallest

multipurpose industrial robot by ABB manufacturer. It provides a high

precision and dexterity in its movements and good performance abilities

combined with a trim size and low weight.

 Figure 4.4 IRB 120 utilized

4.3.2 Technical specifications

Table 4.1 Technical specifications of the IRB 120

Physical Dimension robot base 180x180 mm

Dimension robot height 700 mm

Weight 25 kg

Variants Reach 580 mm

Payload 3 kg (4kg with vertical wrist)

Armload 0.3kg

Features Position repeatability 0.01 mm

Robot mounting Any angle

Acceleration time 0-1 m/s 0.07 s

 68

The Table 4.1 contains the relevant IRB 120 features for this application

The workspace of this model, defined by its maximum reach (without tool),

the configuration of its joints, its physical measures and its axis movements

(in Table 4.2), is showed in the images in Figure 4.5.

Table 4.2 Functional workspace of the IRB 120

Axis movements Working range Maximum speed

Axis 1 Rotation +165º to -165º 250 º/s

Axis 2 Arm +110º to -110º 250 º/s

Axis 3 Arm +70º to -110º 250 º/s 250 º/s

Axis 4 Wrist +160º to -160º 320 º/s

Axis 5 Bend +120º to -120º 320 º/s

Axis 6 Turn +400º to -400º 420 º/s

As explained, the volume that the robot can work in has been used to set the

measures of the overlapped FOV of the machine vision system.

Figure 4.5 Workspace of the IRB 120

4.4 IRC 5 COMPACT CONTROLLER

The IRB 120 is controlled by the 5th generation IRC5 compact (in Figure

4.5). This controller combines motion control, flexibility, usability, and safety

into a multi-robot controller with PC tool support. The IRC5 optimizes the

robot performance for short cycle times and precise movements.

Figure 4.5 IRC5 Compact controller

 69

The IRC5 features the FlexPendant, which provides an intuitive interface

through a colour touch screen and a 3D joystick. The RAPID programming

language is used to communicate with the controller and create process appli-

cations to be performed by the robot. Remote robot monitoring is available

through standard communication networks, as explained before.

Among its other features, what interest here are the provided motion control

features. Based on advanced dynamic modelling, the IRC5 optimizes the per-

formance of the robot for the shortest possible cycle time (QuickMove) and

precise path accuracy (TrueMove). Together with a speed independent path,

predictable and high performance behaviour is delivered automatically, with

no tuning required by the programmer.

4.5 PATH GENERATION IN ROBOTICS

A shallow introduction is presented here of the robot kinematic control and

the procedure it carries out with the vectors the MVS sends in order to gener-

ate the trajectories that performs. For a deeper explanation about the direct

and inverse kinematics models and the dynamic model of a robot and kine-

matic and dynamic control, the lector is referred to (Barrientos et al. 1997).

4.5.1 Kinematic control

The kinematic control of a robot establishes the trajectories for each joint of

the robot while performing the user requests (final point, kind of trajectory for

the TCP, time, etc), regarding the robot dynamic limitations and kinematic

model and guaranteeing the goodness of the motion expressed by the parame-

ters explained.

Figure 4.6 Generic kinematic control diagram in a robot controller

 70

The functions developed by the kinematic control are:

1) Create an analytic trajectory in the Cartesian space (evolution of each co-

ordinate as a time function) from the user program specifications.

2) Sample this continuous trajectory in N discrete points given by their posi-

tion and orientation (x, y, z, α, β, γ).

3) By means of the homogeneous inverse transformation, convert each given

point to joint coordinates (qi) where i is the number of joints. Here, the

presence of singular points and the possible absence of a solution must be

considered.

4) Interpolate the points obtained in the joint space, generating a trajectory

qi(t) for each joint as closer to the theoretical one as possible but per-

formable by the actuators.

5) Sample the joints trajectories to provide references qi(kT) to the dynamic

control.

4.5.2 Kinematic control inputs

In order to let the robot calculate the trajectories we demand, we have to pro-

vide the information the kinematic control needs:

- In the point dedicated to our user program, the instructions that set the

motion parameters (target, kind of trajectory, speed, precision, etc) and the

reason for these choices are explained.

- The kinematic model of the IRB 120 robot is obtained applying the De-

navit-Hartenberg algorithm (Denavit & Hartenberg, 1955) in order to ob-

tain the D-H parameters (in Table 4.3) that define the direct kinematic

model of the robot. The kinematic model is already implemented in the

controller.

Table 4.3 D-H parameters of the IRB 120

Joint i θ d a α

1 θ1 d1 0 α1

2 θ2 0 a2 0

3 θ3 0 a3 α3

4 θ4 d4 0 α4

5 θ5 0 0 α5

6 θ6 d6 a6 0

- And the motion limits for this model can be found in tables 4.1 and 4.2.

 71

4.6 ROBOTSTUDIO AND RAPID LANGUAGE

4.6.1 RobotStudio

ABB's simulation and offline programming software, RobotStudio, allows ro-

bot programming to be done on a PC, providing the tools to increase the prof-

itability of the robot system by letting you perform tasks such as training,

programming, and optimization completely off-line. RobotStudio is built on

the ABB VirtualController, an exact copy of the real software that runs the

robots in production. This allows very realistic simulations to be performed,

using real robot programs and configuration files identical to those used on

the shop floor. The RAPID editor offered by this software, together with the

FlexPendant capacities, has been used to develop and optimize the RAPID

application that the controller executes during the process of reception and

motion in our system. Also, the creation of the global variables in the main

module of the program has been carried out making use of RobotStudio.

4.6.2 RAPID language

RAPID is a high-level programming language used to control ABB industrial

robots introduced along with S4 Control System in 1994 by ABB manufac-

turer. It contains its own syntax rules, data types, instructions and functions

that the user must be familiar with in order to program the robot.

A RAPID program consists of a joint of modules (system and program) stored

in the controller memory, with the routines to be executed when the controller

is running the program, as showed in Figure 4.7.

Figure 4.7 Distribution of the controller internal program memory

 72

The routines can be procedures, functions and TRAP routines, and contain the

instructions that describe the activity of the robot. Therefore, specific instruc-

tions for each command exist, and they need to be given their own arguments

to detail the complete instruction. Owing to the last, the program files with all

the modules (.mod) must be created according to specific rules and the pro-

gram modules must be created following the given syntax

declaration> ::=

MODULE <module name> [<module attribute list>]

<type definition list>

<data declaration list>

<routine declaration list>

ENDMODULE

4.7 RAPID PROGRAM

The program developed in RAPID language to perform the reception of the

coordinates through the NFS connection and the motion of the robot arm has

been inspired in (Hovland et al.), and can be found in the appendix B. How-

ever, a deeper analysis of the instructions utilized and the reasons for their use

is given in this point. As explained in the chapter three, the code of the main

process (PROC main) can be divided in two sections in order to ease its anal-

ysis, the critical one involving all the instructions related to the communica-

tion, and the rest, which meanly contains the motion instructions.

4.7.1 Critical section

All the instructions that access the common folder in the PC are contain in the

second loop controlled by the variable UPDATE, whose value (0, 1) indicates

if the robot is in its busy-waiting or the coordinates have already been re-

ceived. The process within the loop is analogous to the function Communica-

tion.m in MATLAB (appendix A.5) but here the implementation changes to

be adjusted to the RAPID instructions and capacities.

IsFile function: this function is normally used to check if the specified folder

or file given as input is of the specified kind. However, if none kind is given

as argument, the instruction only checks the existence of the file or folder

(TRUE/FALSE) which is what we do to check the semaphores.

Instruction Open: opens a file or serial channel to read/write from the begin-

ning. It creates an object IOdevice that refers the file in the next instructions.

Instruction Close: the IOdevice must be closed once it has been read in order

to let MATLAB use it.

 73

Instruction CopyFile: since RAPID does not have instructions to create new

original files the solution passed through the creation of a new file as a copy

of an empty existent one, called Copy.txt.

4.7.2 Non-critical section

The instructions in the non-critical section execute to different tasks

4.7.2.1 Task 1

The first one is moving the TCP to the initial point defined for the beginning

of the whole process. Once the robot is located in the initial point, it will start

to read vectors and the machine vision system could start to work. In order to

establish the initial equivalence between the positions of the target and the ro-

bot, the MATLAB algorithm will start to send vectors only once the target has

been situated by the user in the equivalent point to the robot’s initial one.

4.7.2.2 Task 2

The second one consists in performing the movements expressed in the re-

ceived vectors. Since we are not extracting the orientation of the real target,

we should not be able to specify the orientation of the TCP in the robot. To

solve this problem, the three variables (α, β, γ) that define orientation in the

space are got through the instruction CrobT.

Instruction CrobT: extracts the current position and orientation of the robot

TCP (which coincides with the VabsOld coordinates in the MATLAB algo-

rithm) referred to the defined work object Wobj_camera.

Instruction MoveJ: executes a straight trajectory from the current point to

the next one given by the vector (X, Y, Z).

ToPoint (robtarget): the target point is defined here through the function

offs(). This function enables the instruction to perform movements referred to

the current position of the TCP obtained with CrobT. Thanks to this combina-

tion, the whole system is able to work with relative vectors, with the ad-

vantages that this involves.

v100 (speeddata) this argument sets the speed of the TCP during the motion.

It expresses the maximum velocity that the end-effector can achieve during

linear movement. However, in small movement like the ones performed here,

the speeds during the change of direction in the proximities of two consecu-

tive points are more important and recommended to be considered than the

linear speed since they involve higher accelerations that can destabilize the

motions.

 74

Figure 4.8 a: TCP movement in one axis. b: variations in velocity during the

movement. c: changes in the acceleration involved

The Figure 4.8 can represent the changes in the speed and acceleration that

the movement of the TCP in one axis produce in the proximities of two con-

secutive points during the trajectory.

z5 (zonedata): the accuracy is specified by this argument. The zone data is

used to specify when to terminate a movement, how close to the programmed

end point the TCP must be before moving towards the next position. z5 speci-

fies a maximum distance of 5mm to the end point, and other examples of this

parameter can be seen in Figure 4.9.

Figure 4.9 Trajectory of the TCP in function of the zone data

 75

The other reason for the choice of this zone data instead of complete accuracy

(fine) is based on the way the instruction MoveJ acts depending of this argu-

ment. If the argument \Conc is omitted and the data zone is not fine, the CPU

of the controller begins to execute the next instruction of the program some

time before ending the movement. This makes the general execution faster

since the next vector can be received while finishing the previous movement.

4.7.3 Diagram of the program

The description of the RAPID program given below can be summarized

through its flow diagram, in which the main tasks are showed.

Figure 4.10 Work flow diagram of the RAPID program

 76

5 CONCLUSIONS AND FUTURE WORKS

During the development of the present project, many challenges have been

presented in the three different fields of the engineering (computer vision,

communications and robotics) that this topic involves. Solving them and

keeping advancing has helped the author go deeper into his shallow previous

knowledge about machine vision systems and visual servoing as well as get a

wider point of view of interdisciplinary projects as a full completeness, not

just separated pieces.

The result of the steps contained in this report has been the creation of a tool

that enables the user to guide the robot’s end-effector and control its current

location in real-time by moving the target in the overlapped FOV of the cam-

eras fixed in the arc. The functionality of the whole system becomes com-

pletely transparent for the operator, who just needs to start both the robot and

the MATLAB applications and follow the instructions given by this last pro-

gram.

As expected, the greatest errors in the triangulation, which cause differences

between the target and the robot movements, occur when the user is moving

the target in the image zone with highest lens distortions or at a too high

speed for the acquisition system. These errors are specially located in the

depth measures and result in instabilities in the performance, despite the de-

signed filters. These uncertainties could be avoided using higher-quality cam-

eras and increasing the angle between their projected lines by modifying their

standard configuration and widening the baseline.

A more elegant solution for the communication link between the PC running

MATLAB and the IRC5 robot controller could be implemented via ActiveX

components for example. The utilization of ActiveX technologies could allow

the use of the RobComm interface in MATLAB applications in a similar fash-

ion to Visual Basic or Visual C++. Other tools as the PC Software Develop-

ment Kit (SDK), which makes use of the .NET libraries or the PC interface

option in the IRC5 that could let us work with Socket Messaging in RAPID,

were discounted due to its incompatibility with MATLAB.

Finally, a next step in the project could be to implement a pose-recognition

algorithm instead of the colour detection-based utilized. Not only the position

but also the orientation of the TCP could be specified following the same pro-

cedure, which would entail a more real control of the robot tool.

 77

SOURCES

A. Barrientos, L.F. Peñín, C. Balaguer & R. Aracil

Fundamentos de Robótica

Universidad Politécnica de Madrid, 1997

B. Barney,

Introduction to Parallel Computing,

Lawrence Livermore National Laboratory, 2007

C.R. Viala & A.J.S. Salmerón

Procedimiento Completo para el Calibrado de Cámaras Utilizando una

Plantilla Plana

Universidad Politécnica de Valencia, 2008

D. Marquardt,

An algorithm for least-squares estimation of nonlinear parameters,

SIAM J. Appl. Math., 1963, Vol. 11, pp. 431–441

D. Xu,

Embedded Visual Systems and its applications on robots,

Institute of Automation, Chinese Academy of Sciences, P.R China, 1981

G.E. Hovland, S. Hansen, OJ. Sordalen, T. Brogardh, S. Moberg & M.

Isaksoon

Automatic Model Identification of ABB Industrial Robots

ABB Corporate Research, Norway

I. P. Howard & B. J. Rogers,

Binocular Vision and Stereopsis.

Oxford University Press, New York, 1995

J. Denavit, R.S. Hartenberg,

A kinematic notation for lower-pair mechanisms based on matrices,

Trans ASME J. Appl. Mech 23: 215–221, 1955.

J. Heikkilä & O.Silvén,

A Four-step Camera Calibration Procedure with Implicit Image Correction

University of Oulu, 1997

J.Y Bouguet,

Camera Calibration Toolbox for Matlab, 2009
http://www.vision.caltech.edu/bouguetj/calib_doc/

K. Levenberg,

A method for the solution of certain problems in least squares,

Quart. Appl. Math., 1944, Vol. 2, pp. 164–168.

 78

MATLAB R2014a Data Import and Export

Mathworks, 2014

O. Marques,

Practical Image and Video Processing using Matlab,

Florida Atlantic University, 2011

R.I. Hartley & A.Zisserman,

Multiple View Geometry in Computer Vision

Cambridge University Press, 2000.

R. I. Hartley & P. Sturm,

Triangulation,

Comput. Vision Image Understand, 1997

R.Y. Tsai,

A Versatile Camera Calibration Technique for High-Accuracy 3D Machine

Vision Metrology Using Off-the-Shelf TV Cameras and Lenses

IEEE Journal of Robotics and Automation, 1987

Y. I. Abdel-Aziz, & H. M. Karara,

Direct linear transformation into object space coordinates in close-range

photogrammetry.

Proc. Symposium on Close-Range Photogrammetry, Urbana, Illinois, (1971)

Z. Zhang,

A Flexible New Technique for Camera Calibration

Microsoft Corporation, Redmond, WA 98052, 1998- 2009

 79

 Appendix A

IMAGE PROCESSING ALGORITHM IN MATLAB

This appendix contains the functions developed by the author in MATLAB for the stereovi-

sion system as well as some others by other authors that have been found and adapted to the

algorithm.

In order to understand the steps given during the application of the intrinsic and extrinsic

camera parameters from the implicit stereo calibration, it must be said that the intrinsic

camera model notation utilized in those function is the given by

And the distortion model applied during the corrections is from Oulu University.

The file Calib_stereo_Results.mat must be stored in the same folder than the MATLAB

programs as well as the .txt files used as flags and common files in the communication pro-

cedure with the robot controller.

A.1 MAIN PROGRAMME

%==
% THESIS: "Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: VisualServoing.m
% HISTORIAL:
% +Date of creation: 20/03/2013
% +Author: Ignacio Torroba Balmori
%__

function []=VisualServoing()

 %CONFIGURATION AND CREATION OF THE CAMERAS OBJECTS
 [vidLeft, vidRight]=CamerasInicialitation();

 %DOWNLOAD OF THE PARAMETERS FROM THE STEREOCALIBRATION
 load('Calib_stereo_Results.mat');

 %GLOBAL VARIABLES
 %Variables for the beginning
 VabsOld=[-220;175;1500]; %Initial point coordinates
 Empezar=0; %Start of the movement
 RS=200; %Radius for the initial point detection
 %Aux. variables
 a=1; %Main loop variable
 Area=4000; %Area of the target tracked
 %Filters variables
 cont=1; %Size of the set of points
 num=1;
 r=80; %Maximum advance per movement

 80

 %MAIN LOOP
 while(a==1)

 %ACQUISITION AND PREPROCESSING
 [I1b,I2b]=Acquisition(vidLeft,vidRight);

 %2D TARGET LOCATION: LEFT CAMERA
 [XLeft,mo]=CofG(1,I1b);

 %OTHER OBJECTS DETECTION
 [~,N]=bwlabel(I1b);

 %TARGET DETECTION CONDITION
 if(mo>Area && N==1)

 %2D TARGET LOCATION: RIGHT CAMERA
 [XRight,~]=CofG(XLeft(2,1),I2b);

%TARGET TRIANGULATION

[VabsNew]=stereo_triangulation(XLeft,XRight,om,T,fc_left,cc_l

eft,kc_left,alpha_c_left,fc_right,cc_right,kc_right,alpha_c_r

ight);

 %MOVEMENT START CONDITION
 if ((VabsNew(1,1)-VabsOld(1,1))^2+(VabsNew(2,1)-

VabsOld(2,1))^2+(VabsNew(3,1)-VabsOld(3,1))^2<=RS^2 && Empezar==0)
 Empezar=1;
 disp('Movement starts');
 elseif (Empezar==0)
 disp('Take target to the initial point');
 end

 %MOVEMENT PROCESSING
 if(Empezar>=1)

 %OUTLIERS FILTER
 if((VabsNew(3,1)>=2000 || VabsNew(3,1)<0)||

abs(VabsNew(2,1))>=650 || abs(VabsNew(1,1))>=750)
 VabsNew(:,1)=VabsOld(:,1);
 end

 %LOW-PASS FILTER
 Paso=VabsNew-VabsOld;
 [C,i] = max(abs(Paso));
 if(C>r)
 Kp=abs(r/(VabsOld(i,1)-VabsNew(i,1)));
 else
 Kp=1;
 end
 PasoCorr=Kp*Paso;

 %MOVING-AVERAGE FILTER
 FILTER(1,cont)=VabsOld(1,1)+PasoCorr(1,1);
 FILTER(2,cont)=VabsOld(2,1)+PasoCorr(2,1);
 FILTER(3,cont)=VabsOld(3,1)+PasoCorr(3,1);

 81

 %IF THE FILTER IS INITIALIZED
 [~, col]=size(FILTER);
 if(col>=6)

 %MOVING-AVERAGE FILTER (FOR X)
 %Mean and standar deviation of the set of points
 Xmedia=mean(FILTER(1,:));
 Xdesv=std(FILTER(1,:));
 %Correction of the point in function of its
 %position with respect to the mean
 if(FILTER(1,cont)<Xmedia-Xdesv/2)
 XCorr=Xmedia-Xdesv-VabsOld(1,1);
 elseif(FILTER(1,cont)>Xmedia+Xdesv/2)
 XCorr=Xmedia+Xdesv-VabsOld(1,1);
 else
 XCorr=0;
 end

 %MOVING-AVERAGE FILTER (FOR Y)
 %Mean and standar deviation of the set of points
 Ymedia=mean(FILTER(2,:));
 Ydesv=std(FILTER(2,:));
 %Correction of the point in function of its
 %position with respect to the mean
 if(FILTER(2,cont)<Ymedia-Ydesv/2)
 YCorr=Ymedia-Ydesv-VabsOld(2,1);
 elseif(FILTER(2,cont)>Ymedia+Ydesv/2)
 YCorr=Ymedia+Ydesv-VabsOld(2,1);
 else
 YCorr=0;
 end

 %MOVING-AVERAGE FILTER (FOR Z)
 %Mean and standar deviation of the set of points
 Zmedia=mean(FILTER(3,:));
 Zdesv=std(FILTER(3,:));
 %Correction of the point in function of its
 %position with respect to the mean
 if(FILTER(3,cont)<Zmedia-Zdesv/2)
 ZCorr=Zmedia-Zdesv/2-VabsOld(3,1);
 elseif(FILTER(3,cont)>Zmedia+Zdesv/2)
 ZCorr=Zmedia+Zdesv/2-VabsOld(3,1);
 else
 ZCorr=0;
 end

 %Vector of relative coordinates after filtering
 Vrel=[XCorr;YCorr;ZCorr];
 else

 %Vector of relative coordinates during initialization
 Vrel=[0;0;0];

 end

 82

 %Upload of the set of points
 if(cont==6)
 cont=1;
 else
 cont=cont+1;
 end %END OF THE FILTERING

 %CHECK IF THE NEW ABSOLUTE POSITION BELONGS TO THE ROBOT
 %WORKSPACE
 VabsCorrect=VabsOld+Vrel;

 if(VabsCorrect(1,1)<=280 && VabsCorrect(2,1)>-380 &&

VabsCorrect(2,1)<380 && VabsCorrect(3,1)>=1100 && Empezar>6)
 %TARGET WITHIN THE WORSPACE
 %Creation and send of the data units
 FRAME=[Vrel(1,1) Vrel(2,1) Vrel(3,1)];
 Communication(FRAME);
 disp('Triangulating');

 elseif(VabsCorrect(1,1)<=235 && VabsCorrect(2,1)>-380 &&

VabsCorrect(2,1)<380 && VabsCorrect(3,1)>=1100 && Empezar<=6)
 %INITIALIZATION OF MOVING-AVERAGE FILTER IN PROCESS
 %Creation and send of the data units
 FRAME=[0 0 0];
 Communication(FRAME);
 disp('Initialization');

 else
 %TARGET OUT OF THE WORKSPACE
 %Creation and send of the data units
 FRAME=[0 0 0];
 Communication(FRAME);
 disp('Target out of workspace');
 end

 %Upload of the coordinates and aux. variables
 VabsOld=VabsNew;
 Empezar=Empezar+1;
 num=num+1;

 end %END MOVEMENT PROCESSING

 else
 %TARGET NOT DETECTED
 %Creation and send of the data units
 FRAME =[0 0 0];
 Communication(FRAME);
 disp('Target not detected');

 end %END OF TARGET DETECTION CONDITION

 end %END OF MAIN LOOP

end %END OF FUNCTION

 83

A.2 FUNCTION: CONFIGURATION OF THE CAMERAS
%==
% THESIS: "Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: CamerasInitialization.m
% HISTORIAL:
% +Date of creation: 25/03/2013
% +Author: Ignacio Torroba Balmori
%
% PARAMETERS
% +Inputs:
% -None
% +Outputs:
% -vidLeft: left camera device connection as an object
% -vidRight: right camera device connection as an object
%__

function [vidLeft, vidRight]=CamerasInicialitation()

%LEFT CAMERA OBJECT CREATION
vidLeft = imaq.VideoDevice('winvideo', 1, 'RGB24_1280x960');

%LEFT CAMERA CONFIGURATION
set(vidLeft, 'ReturnedColorSpace', 'grayscale');
set(vidLeft.DeviceProperties, 'Brightness', 53);
set(vidLeft.DeviceProperties, 'Contrast', 57);

%RIGHT CAMERA OBJECT CREATION
vidRight = imaq.VideoDevice('winvideo', 2, 'RGB24_1280x960');

%RIGHT CAMERA CONFIGURATION
set(vidRight, 'ReturnedColorSpace', 'grayscale');
set(vidRight.DeviceProperties, 'Brightness', 53);
set(vidRight.DeviceProperties, 'Contrast', 57);

end

 84

A.3 FUNCTION: ACQUISITION AND PRE-PROCESSING

%==
% THESIS: "Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: Acquisition.m
% HISTORIAL:
% +Date of creation: 26/03/2013
% +Author: Ignacio Torroba Balmori
%
% PARAMETERS:
% +Inputs:
% -vidLeft: left camera device connection as an object
% -vidRight: right camera device connection as an object
% +Outputs:
% -I1b: left camera image after binarization and small white
% objects filtering
% -I2b: right camera image after binarization and small white
% objects filtering
%__

function [I1b,I2b]=Acquisition(vidLeft,vidRight)

 %ONE ACQUISITION PER CAMERA THROUGH THE CAMERAS OBJECT'S INTERFACE
 ILeft=step(vidLeft);
 IRight=step(vidRight);

 %BINARIZATION AND PRE-FILTERING OF THE ACQUIRED IMAGES
 I1b=im2bw(ILeft,0.6);
 I2b=im2bw(IRight,0.6);
 I1b=bwareaopen(I1b,2000);
 I2b=bwareaopen(I2b,2000);

end

 85

A.4 FUNCTION: EXTRACTION OF THE TARGET’S CENTER OF GRAVITY
%==
% THESIS: "Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: CofG.m
% HISTORIAL:
% +Date of creation: 28/03/2013
% +Author: Ignacio Torroba Balmori
%
% PARAMETERS:
% +Inputs:
% -Ib: image binarized and pre-processed
% -Xmatching: variable for matching process in the right image.
% If Xmatching equal to 1 the left camera images is being
% processed
% +Outputs:
% -XYpixel: X,Y pixel coordinates of the Centre of Gravity of

% the target
% -mo: zero moment of area of the target in the image
%__

function [XYpixel,mo]=CofG(Xmatching,Ib)

 %CofG EXTRACTION BY MEANS OF MOMENTS OF AREA CALCULUS

 %Variables
 [fil,col]=size(Ib);
 mo=0;
 mc=0;
 mf=0;

 %In the left camera image
 if(Xmatching==1)
 for i=Xmatching:fil
 for j=Xmatching:col
 if Ib(i,j)==1
 mo=mo+1;
 mc=j*Ib(i,j)+mc;
 mf=i*Ib(i,j)+mf;
 end
 end
 end

 %In the right camera image: matching through the epipolar line with a
margin (to avoid projection coordinates errors)
 else
 for i=Xmatching-4:Xmatching+4
 for j=1:col
 if Ib(i,j)==1
 mo=mo+1;
 mc=j*Ib(i,j)+mc;
 mf=i*Ib(i,j)+mf;
 end
 end
 end

 86

 end

 %X,Y pixel coordinates
 XYpixel(1,1)=round(mc/mo);
 XYpixel(2,1)=round(mf/mo);

end

A.5 FUNCTION: COMMUNICATION

%==
% THESIS: "Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: Communication.m
% HISTORIAL:
% +Date of creation: 14/04/2013
% +Author: Ignacio Torroba Balmori
%
% PARAMETERS:
% +Inputs:
% -TRAMA: communication data unit that contains the vector
% +Outputs:
% -None
%__

function []=Communication(TRAMA)

 %CHECK FLAG B AND WAIT FOR IT TO BE CREATED
 semB=fopen('semaphoreB.txt', 'r');
 while(semB==-1)
 pause(0.1);
 semB=fopen('semaphoreB.txt','r');
 end
 fclose(semB);

 %DELETE FLAG B
 delete('semaphoreB.txt');

 %UPLOAD THE VECTOR IN THE COMMON FILE
 dlmwrite('Coordenadas.txt', TRAMA, ':');

 %CREATE THE FLAG A
 semA=fopen('semaphoreA.txt','w');
 fclose(semA);

end

 87

A.6 FUNCTION: TRIANGULATION

%==
% THESIS: ""Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: stereo_triangulation.m
% HISTORIAL:
% +Date of creation: 9/4/2003
% +Author: Jean-Yves Bouguet - Intel Corporation
% Adapted for the application by Ignacio Torroba Balmori
%
% PARAMETERS:
% +Inputs:
% xL: 2xN matrix of pixel coordinates in the left image
% xR: 2xN matrix of pixel coordinates in the right image
% om,T: rotation vector and translation vector between right

% and left cameras (output of stereo calibration)
% fc_left,cc_left,...: intrinsic parameters of the left camera

% (output of stereo calibration)
% fc_right,cc_right,...: intrinsic parameters of the right

% camera (output of stereo calibration)
%
% +Outputs:
%
% XL: 3xN matrix of coordinates of the points in the left

% camera reference frame
% XR: 3xN matrix of coordinates of the points in the right

% camera reference frame
%__

function [XL] = stereo_triangulation(xL,xR,om,T,fc_left,cc_left,kc_left,

alpha_c_left,fc_right,cc_right,kc_right,alpha_c_right)

 %NORMALIZE THE IMAGE PROJECTION ACCORDING TO THE INTRINSIC PARAMETERS

%OF EACH CAMERA AND EXTEND THEM IN HOMOGENEOUS COORDINATES

 xt = normalize_pixel(xL,fc_left,cc_left,kc_left,alpha_c_left);
 xtt = normalize_pixel(xR,fc_right,cc_right,kc_right,alpha_c_right);

 xt = [xt;ones(1,size(xt,2))];
 xtt = [xtt;ones(1,size(xtt,2))];

 %Rotation matrix corresponding to the rigid motion between left and

right cameras
 R = rodrigues(om);

 88

 %TRIANGULATION OF THE RAYS IN 3D SPACE
 u = R * xt;

 n_xt2 = dot(xt,xt);
 n_xtt2 = dot(xtt,xtt);

 DD = n_xt2 .* n_xtt2 - dot(u,xtt).^2;

 dot_uT = dot(u,T);
 dot_xttT = dot(xtt,T);
 dot_xttu = dot(u,xtt);

 NN1 = dot_xttu.*dot_xttT - n_xtt2 .* dot_uT;
 NN2 = n_xt2.*dot_xttT - dot_uT.*dot_xttu;

 Zt = NN1./DD;
 Ztt = NN2./DD;

 X1 = xt .* repmat(Zt,[3 1]);
 X2 = R'*(xtt.*repmat(Ztt,[3,1]) - T);

 %3D COORDINATES REFERRED TO LEFT CAMERA REFERENCE FRAME
 XL = 1/2 * (X1 + X2);

end

 89

A.7 FUNCTION: NORMALIZATION OF THE PIXEL COORDINATES
%==
% THESIS: "Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: normalize_pixel.m
% HISTORIAL:
% +Date of creation:
% +Author:
%
% PARAMETERS:
% +Inputs:
% x_kk: target location on the image in pixel coordinates
% -fc: Camera focal length
% -cc: Principal point coordinates
% -kc: Distortion coefficients
% -alpha_c: Skew coefficient
% +Outputs:
% xn: Normalized coordinates of the target on the image plane
%__

function [xn] = normalize_pixel(x_kk,fc,cc,kc,alpha_c)

 %CHECK THE ARGUMENTS OF THE FUNCTION (INTRINSIC PARAMETERS):

 %Notation applied given in the first page of this appendix

 if nargin < 5,
 alpha_c = 0; %Skew estimation
 if nargin < 4;
 kc = [0;0;0;0;0]; %Lens distortions correction coefficients
 if nargin < 3;
 cc = [0;0]; %Principal point estimation
 if nargin < 2,
 fc = [1;1]; %Focal length estimation
 end
 end
 end
 end

 %APPLICATION OF THE INTRINSIC PARAMETERS MATRIX

 % First: Subtract principal point, and divide by the focal length
 x_distort = [(x_kk(1,1) - cc(1))/fc(1);(x_kk(2,1) - cc(2))/fc(2)];

 % Second: undo skew

 x_distort(1,1) = x_distort(1,1) - alpha_c * x_distort(2,1);

 %Third: if we chose lens distortion correction during the calibration
 if norm(kc) ~= 0,
 xn = comp_distortion_oulu(x_distort,kc);
 else %Without lens distortion correction
 xn = x_distort;
 end
end

 90

A.8 FUNCTION: CORRECTION OF THE COMPLETE LENS DISTORTION

%==
% THESIS: ""Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: comp_distortion_oulu.m
% HISTORIAL:
% +Date of creation:
% +Author:
%
% PARAMETERS:
% +Inputs:
% -xd: distorted (normalized) point coordinates in the image

% plane (2xN matrix)
% -k: Distortion coefficients (radial and tangential) (4x1

% vector)
%
% +Outputs:
% -x: undistorted (normalized) point coordinates in the image

% plane (2xN matrix)
%__

function [x] = comp_distortion_oulu(xd,k)

 %IF THERE IS ONLY COEFFICIENTS FOR RADIAL DISTORTION CORRECTION

 if length(k) == 1,
 [x] = comp_distortion(xd,k);

 %IF THE TANGENTIAL DISTORTION IS INCLUDED
 else

 k1 = k(1);
 k2 = k(2);
 k3 = k(5);
 p1 = k(3);
 p2 = k(4);
 % The initial guess are the points from the LDT process
 x = xd;

 %20 iteration for the optimization
 for kk=1:20,

 %Distance to the centre of distortion
 r_2 = sum(x.^2);

 %Radial and tangential distortion (Oulu University models)
 k_radial = 1 + k1 * r_2 + k2 * r_2.^2 + k3 * r_2.^3;
 delta_x = [2*p1*x(1,1).*x(2,1) + p2*(r_2 + 2*x(1,1).^2);
 p1 * (r_2 + 2*x(2,1).^2)+2*p2*x(1,1).*x(2,1)];

 %Correction of the coordinates
 x = (xd - delta_x)./(ones(2,1)*k_radial);
 end

 end
end

 91

A.9 FUNCTION: CORRECTION OF THE RADIAL LENS DISTORTION

%==
% THESIS: ""Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==
%__
% NAME OF THE FILE: comp_distortion.m
% HISTORIAL:
% +Date of creation:
% +Author:
%
% PARAMETERS:
% +Inputs:
% -x_dist : the image points got without considering the radial
% distortion.
% -k2: radial distortion correction coefficients
%
% +Outputs:
% x_comp : The image plane points after correction for the dis-

tortion
%__

function [x_comp] = comp_distortion(x_dist,k2)

if length(k2) > 1,

 [x_comp] = comp_distortion_oulu(x_dist,k2);

else

 %CORRECTION OF THE RADIAL DISTORTION
 radius_2= x_dist(1,1).^2 + x_dist(2,1).^2;

 radial_distortion = 1 + ones(2,1)*(k2 * radius_2);

 radius_2_comp = (x_dist(1,1).^2 + x_dist(2,1).^2) ./ radi-

al_distortion(1,1);
 radial_distortion = 1 + ones(2,1)*(k2 * radius_2_comp);

 x_comp = x_dist ./ radial_distortion;

end

 92

A.10 FUNCTION: RODRIGUS TRANSFORMATION OF ROTATION MATRIX INTO

ROTATION VECTOR AND VICEVERSA

%==
% THESIS: "Visual-based Guidance System for a 6-DOF Robot"
% HAMK University of Applied Sciences
%==

%__

%
% Sintax: [OUT]=RODRIGUES(IN)
% If IN is a 3x3 rotation matrix then OUT is the corresponding 3x1
% rotation vector if IN is a rotation 3-vector then OUT is the
% corresponding 3x3 rotation matrix
%

% Copyright (c) March 1993 -- Pietro Perona
% California Institute of Technology

%__

function [out,dout]=rodrigues(in)

[m,n] = size(in);
%bigeps = 10e+4*eps;
bigeps = 10e+20*eps;

if ((m==1) & (n==3)) | ((m==3) & (n==1)) % it is a rotation vector
 theta = norm(in);
 if theta < eps
 R = eye(3);

 %if nargout > 1,

 dRdin = [0 0 0;
 0 0 1;
 0 -1 0;
 0 0 -1;
 0 0 0;
 1 0 0;
 0 1 0;
 -1 0 0;
 0 0 0];

 %end;

 else
 if n==length(in) in=in'; end; %% make it a column vec. if

necess.

 %m3 = [in,theta]

 dm3din = [eye(3);in'/theta];

 omega = in/theta;

 %m2 = [omega;theta]

 93

 dm2dm3 = [eye(3)/theta -in/theta^2; zeros(1,3) 1];

 alpha = cos(theta);
 beta = sin(theta);
 gamma = 1-cos(theta);
 omegav=[[0 -omega(3) omega(2)];[omega(3) 0 -omega(1)];[-omega(2)

omega(1) 0]];
 A = omega*omega';

 %m1 = [alpha;beta;gamma;omegav;A];

 dm1dm2 = zeros(21,4);
 dm1dm2(1,4) = -sin(theta);
 dm1dm2(2,4) = cos(theta);
 dm1dm2(3,4) = sin(theta);
 dm1dm2(4:12,1:3) = [0 0 0 0 0 1 0 -1 0;
 0 0 -1 0 0 0 1 0 0;
 0 1 0 -1 0 0 0 0 0]';

 w1 = omega(1);
 w2 = omega(2);
 w3 = omega(3);

 dm1dm2(13:21,1) = [2*w1;w2;w3;w2;0;0;w3;0;0];
 dm1dm2(13: 21,2) = [0;w1;0;w1;2*w2;w3;0;w3;0];
 dm1dm2(13:21,3) = [0;0;w1;0;0;w2;w1;w2;2*w3];

 R = eye(3)*alpha + omegav*beta + A*gamma;

 dRdm1 = zeros(9,21);

 dRdm1([1 5 9],1) = ones(3,1);
 dRdm1(:,2) = omegav(:);
 dRdm1(:,4:12) = beta*eye(9);
 dRdm1(:,3) = A(:);
 dRdm1(:,13:21) = gamma*eye(9);

 dRdin = dRdm1 * dm1dm2 * dm2dm3 * dm3din;

 end;
 out = R;
 dout = dRdin;

 %% it is prob. a rot matr.
elseif ((m==n) & (m==3) & (norm(in' * in - eye(3)) < bigeps)...
 & (abs(det(in)-1) < bigeps))
 R = in;

 % project the rotation matrix to SO(3);
 [U,S,V] = svd(R);
 R = U*V';

 94

 tr = (trace(R)-1)/2;
 dtrdR = [1 0 0 0 1 0 0 0 1]/2;
 theta = real(acos(tr));

 if sin(theta) >= 1e-4,

 dthetadtr = -1/sqrt(1-tr^2);

 dthetadR = dthetadtr * dtrdR;
 % var1 = [vth;theta];
 vth = 1/(2*sin(theta));
 dvthdtheta = -vth*cos(theta)/sin(theta);
 dvar1dtheta = [dvthdtheta;1];

 dvar1dR = dvar1dtheta * dthetadR;

 om1 = [R(3,2)-R(2,3), R(1,3)-R(3,1), R(2,1)-R(1,2)]';

 dom1dR = [0 0 0 0 0 1 0 -1 0;
 0 0 -1 0 0 0 1 0 0;
 0 1 0 -1 0 0 0 0 0];

 % var = [om1;vth;theta];
 dvardR = [dom1dR;dvar1dR];

 % var2 = [om;theta];
 om = vth*om1;
 domdvar = [vth*eye(3) om1 zeros(3,1)];
 dthetadvar = [0 0 0 0 1];
 dvar2dvar = [domdvar;dthetadvar];

 out = om*theta;
 domegadvar2 = [theta*eye(3) om];

 dout = domegadvar2 * dvar2dvar * dvardR;

 else
 if tr > 0; % case norm(om)=0;

 out = [0 0 0]';

 dout = [0 0 0 0 0 1/2 0 -1/2 0;
 0 0 -1/2 0 0 0 1/2 0 0;
 0 1/2 0 -1/2 0 0 0 0 0];

 else

 % case norm(om)=pi;
 if(0)

 95

 %% fixed April 6th by Bouguet -- not working in all cas-

es!
 out = theta * (sqrt((diag(R)+1)/2).*[1;2*(R(1,2:3)>=0)'-

1]);
 %keyboard;

 else

 % Solution by Mike Burl on Feb 27, 2007
 % This is a better way to determine the signs of the
 % entries of the rotation vector using a hash table on

all
 % the combinations of signs of a pairs of products (in

the
 % rotation matrix)

 % Define hashvec and Smat
 hashvec = [0; -1; -3; -9; 9; 3; 1; 13; 5; -7; -11];
 Smat = [1,1,1; 1,0,-1; 0,1,-1; 1,-1,0; 1,1,0; 0,1,1;

1,0,1; 1,1,1; 1,1,-1;
 1,-1,-1; 1,-1,1];

 M = (R+eye(3,3))/2;
 uabs = sqrt(M(1,1));
 vabs = sqrt(M(2,2));
 wabs = sqrt(M(3,3));

 mvec = [M(1,2), M(2,3), M(1,3)];
 syn = ((mvec > 1e-4) - (mvec < -1e-4));

 hash = syn * [9; 3; 1];
 idx = find(hash == hashvec);
 svec = Smat(idx,:)';

 out = theta * [uabs; vabs; wabs] .* svec;

 end;

 if nargout > 1,
 fprintf(1,'WARNING!!!! Jacobian domdR undefined!!!\n');
 dout = NaN*ones(3,9);
 end;
 end;
 end;

else
 error('Neither a rotation matrix nor a rotation vector were provid-

ed');
end;

return;
%% test of the Jacobians:

%%%% TEST OF dRdom:
om = randn(3,1);
dom = randn(3,1)/1000000;

 96

[R1,dR1] = rodrigues(om);
R2 = rodrigues(om+dom);

R2a = R1 + reshape(dR1 * dom,3,3);

gain = norm(R2 - R1)/norm(R2 - R2a)

%%% TEST OF dOmdR:
om = randn(3,1);
R = rodrigues(om);
dom = randn(3,1)/10000;
dR = rodrigues(om+dom) - R;

[omc,domdR] = rodrigues(R);
[om2] = rodrigues(R+dR);

om_app = omc + domdR*dR(:);

gain = norm(om2 - omc)/norm(om2 - om_app)

%%% OTHER BUG: (FIXED NOW!!!)

omu = randn(3,1);
omu = omu/norm(omu)
om = pi*omu;
[R,dR]= rodrigues(om);
[om2] = rodrigues(R);
[om om2]

%%% NORMAL OPERATION

om = randn(3,1);
[R,dR]= rodrigues(om);
[om2] = rodrigues(R);
[om om2]

return

% Test: norm(om) = pi
u = randn(3,1);
u = u / sqrt(sum(u.^2));
om = pi*u;
R = rodrigues(om);

R2 = rodrigues(rodrigues(R));
norm(R - R2)

 97

 Appendix B

RAPID PROGRAM FOR THE ABB IRB 120

!==
! THESIS: ""Visual-based Guidance System for a 6-DOF Robot"
! HAMK University of Applied Sciences
!==

MODULE MainModule

 !GLOBAL VARIABLES

 !Work object equivalent to the left camera one

 TASK PERS wobjdata

Wobj_camera:=[FALSE,TRUE,"",[[0,0,0],[1,0,0,0]],[[0,0,2000],

[0,0.707106781,0.707106781,0]]];

 !Initial point for the program

 CONST robtarget pHome:=[[-277.49,158.75,1495.41],[0.978243,-

0.000442788,-0.00037621, 0.207462],[-1,0,0,0],

[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

!MAIN PROCESS

PROC main()

 !PROCESS VARIABLES

 !Variables for NFS communication handling

 VAR iodev file;

 VAR iodev semaphoreA;

 VAR iodev semaphoreB;

 !Variables for received coordinates managing

 VAR num X;

 VAR num Y;

 VAR num Z;

 VAR string str1;

 VAR string str2;

 VAR string str3;

 VAR bool ok1;

 VAR bool ok2;

 VAR bool ok3;

 !Targets for the robot

 VAR robtarget pCurrent;

 !Variables for the semaphores

 VAR num semA;

 VAR num semB;

 !Auxiliar variable for the reception loop

 VAR num UPDATE;

 !MOVEMENT TO THE INITIAL POINT

 MoveL pHome, v100, fine, tool0\WObj:=Wobj_camera;

 98

 !MAIN LOOP

 WHILE TRUE DO

 !Reinitialize reception loop

 UPDATE:=0;

 !LOOP FOR NFS RECEPTION

 WHILE UPDATE=0 DO

 !CHECK SEMAPHORE A

 IF IsFile

("pc1:/Users/Ignacio/Documents/MATLAB/semaphoreA.txt")= FALSE THEN

 WaitTime 0.01;

 UPDATE:=0;

 ELSE

 !DELETE SEMAPHORE A

 RemoveFile

"pc1:/Users/Ignacio/Documents/MATLAB/semaphoreA.txt";

 !COORDINATES RECEPTION

 Open

"pc1:"\File:="Users/Ignacio/Documents/MATLAB/Coordinates.txt", file\Read;

 str1:=ReadStr(File, \delim:=":");

 str2:=ReadStr(File, \delim:=":");

 str3:=ReadStr(File, \delim:=":");

 ok1:=StrToVal(str1, X);

 ok2:=StrToVal(str2, Y);

 ok3:=StrToVal(str3, Z);

 Close file;

 !CREATE SEMAPHORE B

 CopyFile "pc1:/Users/Ignacio/Documents/MATLAB/Copy.txt",

"pc1:/Users/Ignacio/Documents/MATLAB/semaphoreB.txt";

 UPDATE:=1;

 ENDIF

 ENDWHILE !END NFS RECEPTION LOOP

 !MOVEMET TO THE RECEIVED TARGET POINT

 pActual := CRobT(\Tool:=tool0 \WObj:=Wobj_camera);

 MoveJ Offs(pCurrent, X, Y, Z), v100, z5, tool0\WObj:=Wobj_camera;

 ENDWHILE !END MAIN LOOP

ENDPROC !END MAIN PROCESS

ENDMODULE !END MODULE

