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INTRODUCTION 

 

It is clear that nowadays the technology has become a part of our lives. Since the first 

semiconductor material was developed, the evolution of electronics has lead a revolution that nobody 

knows how far can go. Not only our quality of life has been improved; safer activities in factories, the 

ability of producing better and faster, travelling to unknown places, or even exploring the space. These 

are some examples in which the humanity has taken advantage of the electronic and automotive 

devices. 

One of the most important achievements of humanity in this field was to create a machine called 

robot. It is well known that this machine could have many definitions, but the one accepted all over the 

world could be: 

“A robot is a mechanical or virtual artificial agent, usually an electro-mechanical machine that is 

guided by a computer program or electronic circuitry. Robots can be autonomous or semi-autonomous 

and range from humanoids to industrial robots, collectively programmed 'swarm' robots, and even 

microscopic nano-robots” [1]. 

In fact there are now so many kinds and types of robots that given a generic description for all of 

them may be not descriptive enough. But there is one kind of robot that in the recent twenty years has 

increased its popularity. It is not other than the autonomous robot: 

“An autonomous robot is a robot that performs behaviors or tasks with a high degree of autonomy, 

which is particularly desirable in fields such as space exploration, cleaning floors, mowing 

lawns, waste water treatment and delivering goods and services.” [2]. 

The first prototypes made have a common fact, which is that the designer tried to imitate the nature, 

either animals or human being. Although many animals in nature have legs for locomotion, the very 

first vehicles developed by human have been with wheels. Following the invention of the steam engine 

and widespread use of the railways, and then the development of the combustion engines, wheeled 

locomotion has become the most widespread technology of transportation. Despite its success on 

predetermined and plane surfaces, wheeled locomotion is not proper for unknown and rough terrains. 

The tracked (palette) locomotion is developed in order to cope with this problem. However, tracked 

locomotion is also problematic, since it destroys the terrain on which the vehicle is moving. As an 

alternative to both wheeled and tracked forms, legged locomotion is developed by imitating the legged 

animals in nature [3]. 

The aim of this final thesis is to study the stability of a hexapod robot. A discussion about the 

parameters and different methods of measuring the stability is firstly proposed. Then a discussion 

about the best body configuration and leg disposition is shown, always trying to develop the maximum 

stable design. Finally, the best prototype is proposed to be constructed. 

 

 

 

http://en.wiktionary.org/wiki/agent
http://en.wikipedia.org/wiki/Electromechanics
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Autonomous_robot
http://en.wikipedia.org/wiki/Industrial_robot
http://en.wikipedia.org/wiki/Swarm_robotics
http://en.wikipedia.org/wiki/Nanorobotics
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Autonomy
http://en.wikipedia.org/wiki/Space_exploration
http://en.wikipedia.org/wiki/Waste_water_treatment
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Legged locomotion 

From what was seen, it is possible to conclude that legged locomotion vehicles present a superior 

mobility in natural terrains, since these vehicles may use discrete footholds for each foot, in opposition 

to wheeled vehicles, that need a continuous support surface. Therefore, these vehicles may move in 

irregular terrains, by varying their legs configuration in order to adapt themselves to surface 

irregularities and, on the other way, the feet may establish contact with the ground in selected points in 

accordance with the terrain conditions. For these reasons, legs are inherently adequate systems for 

locomotion in irregular ground [4]. The use of multiple degrees of freedom in the leg joints, allows 

legged vehicles to change their heading without slippage. It is also possible to vary the body height, 

introducing a damping a decoupling effect between terrain irregularities and the vehicle body [5]. 

Another advantage that is recently being investigated, concerns failure tolerance during static stable 

locomotion. The consequence of a failure in one of the wheels of a wheeled vehicle is a severe loss of 

mobility, since all wheels of these kinds of vehicles should be in permanent contact with the ground 

during locomotion. However, legged vehicles may present a redundant number of legs and, therefore, 

can maintain static balance and continue its locomotion even with one or more of its legs damaged [6]. 

Last, it should be mentioned that legs can be used not only for locomotion purposes, but also with 

the vehicle in static position. For instance, the body can be actively actuated while feet are fixed to the 

ground, working as an active support base for helping the motion of a manipulator mounted on the 

body [7]. As an alternative to the assembly of a manipulator on the robot body, multilegged robots can 

use one or more of its legs to manipulate objects, as it is possible to see in some animals (several 

animals use their legs to hold, manipulate and transport objects).  

 

 

Applications of legged vehicles 

Mobile robots, independently of its locomotion principle, are adequate for 3-D environments (Dirty, 

Doll, Dangerous). These vehicles are able to replace human beings, in order to avoid danger to their 

lives, in all kinds of dangerous works that require heavy safety measures or in areas to which the 

humans cannot easily access. 

In case of legged locomotion robots, examples of these situations are [8]: 

 Remote locations exploration: 

o In volcanoes (“Dante II”, by the Carnegie Mellon team, led by Dr. William L. 

Whittaker and Dr. John E. Bares). 

o In space or other planets (“ATHLETE (All-Terrain Hex-Legged Extra-

Terrestrial Explorer)” by the Jet Propulsion Laboratory (JPL) at California 

Institute of Technology). 

o In the bottom of the sea (“Crabster CR2000b”, by the Korean Institute of Ocean 

Science and Technology (KIOST)). 

 

http://en.wikipedia.org/wiki/Jet_Propulsion_Laboratory
http://eng.kiost.ac/kordi_eng/main/
http://eng.kiost.ac/kordi_eng/main/
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 Hostile or dangerous environments: 

o In nuclear power plants or in places with high radiation levels (“Quadruped 

walking robot” by Toshiba, used in Fukushima Daiichi nuclear power plant). 

o In disaster areas or catastrophe situations (“COMET-I” by Chiba University, 

Japan). 

o In search and rescue operations (“Cheetah-cub robot”, by the Swiss Federal 

Institute of Technology (EPFL)). 

o In military operations (“BigDog”, by DARPA). 

 

Besides these applications, legged robots can also be used in a large variety of tasks such as: 

o In excavation and construction works ("MELMALEC”, by Mechanical Engineering 

Laboratory, AIST, MITI, Japan). 

o In helping humans during payload transport operations (“QU 1120”, by HTR). 

o In services, especially for maintenance of pipes and narrow spaces (“RHex”, by 

BostonDynamics). 

 

It is obvious that this type of robots can suit in a wide range of applications. Generally speaking, 

however, walking robots have many shortcomings that bar them from wider use in industry and 

services. For instance, legged robots are still heavy, bulky, very slow and inefficient from the energy 

expenditure point of view, which is a fundamental issue in autonomous robots. In other words, 

although legged robots have already demonstrated their capability to perform many tasks wheeled or 

tracked vehicles cannot handle, some features must still be improved before legged robots can meet 

present requirements in industry and services. In this work it will be shown a method to improve the 

stability of a six legged robot, which main aim is not commercial, only to understand its behavior. 

 

 

Objective 

 

―Develop a body configuration for a hexapod robot maximizing its stability‖ 
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1. ANALYTICAL PART 

 

 

When we start from zero a new project, we should have in mind every possibility of design and try 

to get rid of the designs that are not suitable for our goal. Nowadays is difficult to find a configuration 

that has not been tested already. Research on legged locomotion has a long history. Biologists and 

other scientists have long studied the structure and motion of animals. Basically, every project of 

legged robot started from the same idea of imitating the nature of animals and human being and the 

biomechanics implicated.  

In the next picture we can see a basic scheme of the possibilities of configurations for hexapods [9]:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Type setting of hexapod legs’ design [9]. 
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1.1. Robot Body Architecture 

 

There are two basic architectures of hexapod robots: rectangular and hexagonal. The first one has 

six legs distributed symmetrically along two sides, each side having three legs. The second has legs 

distributed axi-symmetrically around the body, in a hexagonal or circular shape. Many references can 

be found in the literature on rectangular six-legged robots. In paper [10], Lee et al. describe the 

longitudinal stability margin for rectangular hexapods. Also, the feasible walking gaits have been 

widely investigated and tested. Bilateral symmetry may be better suited than radial symmetry to move 

along a straight line. Rectangular architectures require a special gait for turning action; generally, they 

need four steps in order to realize a turning action [11]. Hexagonal hexapod robots demonstrate better 

performances than rectangular robots for some aspects. As example hexagonal robots can have many 

kinds of gaits and can easily change direction—in fact true radial symmetry implies that all legs are 

equal and the body has no ―front‖ or ―rear‖—there is thus no preferential direction for the motion. In 

paper [12], Preumont et al., proved that hexagonal hexapods can easily steer in all directions and that 

they have a longer stability margin. In paper [13], Takahashi et al., found that hexagonal robots rotate 

and move in all directions at the same time, better than rectangular ones, by comparing stability margin 

and stroke in wave gait. Chu and Pang in paper [14] proved theoretically that hexagonal hexapod 

robots have superior stability margin, stride and turning ability compared to rectangular robots. 

In the next picture we can see the the advantages of the hexagonal body against the rectangular in 

the turning task depending on the Q/P ratio [15]: 

  

Figure 2. On the left the conparasion between the G/P ratio of the Hexagonal mode against the 

Rectangular mode. On the right a detail of the parameters of the hexapod robot [35]. 
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As a way of summarize, we would say that the hexagonal architecture has advantages in turning 

gait while rectangular has advantages in straight forward gait. It is clear that assuming the same leg 

design and robot size, the hexagonal model shows better turning ability, higher stability margin and 

greater stride length in certain conditions.  

Nevertheless, as our intention is to take advance of the old robot and all its software developed, we 

will take the design of the rectangular hexapod. The next step in the improvement of the design will be 

the understanding of all the parameters involved on the movement of the robot and a deep search on 

the methods that could set a better stability for the robot. 

 

 

1.2. Design of the legs 

 

1.2.1. Architectures of Legs 

 

Kinematics architecture depends on the factors related to the application in which the hexapod robot 

is required for, as for example the terrain’s form, the workspace, and the payload. Literature shows that 

there is a number of different leg types currently employed for hexapod walking robots. All have 

advantages and disadvantages. Fig. 1(a) shows a schematic classification of hexapod legs types. 

At the first stage, one can choose between bio inspired and non-zoomorphic legs. Bio inspired leg 

configuration is motivated primarily by animal gait, such as reptiles, mammals or arachnid. The first 

one has legs and bodies for moving over rough and uneven terrains [17]. The principal characteristic of 

the Reptilian type is that the legs are placed on both ends of the protruding body and knees to the side 

of the base. Mammals’ bodies are above the legs, which gives less support to the base and lower power 

consumption is needed to support the body, but it requires more stability than other types of animals 

[18]. In arachnid configuration, leg’s extremities are situated on both sides, sticking the knees at the 

top of the spider’s body. The orientation of the legs in respect to the body of the hexapod robot can be 

done with three configurations (Fig. 1(b)): frontal, sagittal or circular. In the first one, the directions 

are perpendicular to the advancement of the legs’ position, unlike the sagittal, which moves parallel to 

the robot legs, while in the circular arrangement the legs are positioned radially to the body of the 

system allowing the mechanism to move in any direction [19]. In the mammalian configuration, the 

legs are below the body and can place the knees in different positions depending on the application it 

requires (Fig. 1(c)). Non zoomorphic legs can be hybrids such as in paper [20], telescopic such as in 

paper [22], or under-actuated such as in paper [23]. In paper [21], a solution named Roller-Walker is 

presented. The principle through which the robot propels itself during wheeled locomotion is the same 

as that of the skaters.  
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1.2.2. Leg frame and notations 

 
The coordinate frames for the robot legs are assigned as shown in Fig. 3. The assignment of link 

frames follows the Denavit-Hartenberg notation. The robot leg is made of links and joints; different 

links of robot leg are called Coxa or Hip, Femur and Tarsus. Those names are given by the bones of 

human leg. The robot leg frame starts with link 0 which is the point where the leg is attached to the 

body, link 1 is Coxa, link 2 is the Femur and link 3 is Tibia. The joints are located at the inner end of 

their respective link frames are attached to outer end of their respective links.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Different parts of the hexapod’s leg [36]. 

 
 

1.2.3. Robot Leg Parameters 

 

The kinematic model here is derived by defining the reference frames according to the Denavit-

Hartenberg convention. In Fig. 3 graphical representation of a three joint robot leg is given, with the 

attached reference frames and corresponding joint variables. In order to obtain the position of the 

robot’s foot knowing the angles of the three joints, and the other way around, which is the angles of 

the joints knowing the foot position, we will use the well-known algorithm of Denavit-Hartenberg in 

Forward kinematics and in Inverse kinematics respectively. 
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1.2.4. Forward kinematics 

 

Forward kinematics refers to the use of the kinematic equations of a robot to compute the position 

of the end-effector from specified values for the joint parameters. In this case, the end effector is 

considered to be the end of the robot’s leg. 

From leg kinematic layout showed in Fig. 4, Denavit-Hartenberg solution gives the following three 

equations: 

 

 

 

These equations provide a relation between the positions of robot’s feet and the angle of the servos 

used as actuators. As it can be observed, they provide the foot position when these angles are known, 

which means forward kinematics. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Similar scheme of the Denavit-Hartenberg axis and lengths [37]. 

 

1.2.5. Inverse Kinematics 

In order to get inverse kinematics expressions, it is necessary to express   ,    and    over x, y and 

z. Such task could be very complex or even unsolvable. 

                                                       
                                                      

                                       
(1) 

http://en.wikipedia.org/wiki/Kinematic
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Robot_end_effector


Darío Delgado Esteban   Final Project
  

Page 16 of 58 
 

 

Less complex way of dealing with robot’s inverse kinematics is geometric inverse kinematics 

method. The following figures demonstrate kinematic layout of one leg for geometric inverse 

kinematics (Fig. 5) [24]. 

The following expressions are derived using this method: 

           
 

    
, 

        , 

          
  
    

   

     
, 

   √        , 

  √           , 

          
 

 
, 

          
  
    

   

    
 

(2) 

 

Where   ,    and    are leg actuator angles that must be calculated in order to position robot’s foot 

into position with coordinates x, y and z. 

 

 

 

 
1.3. Actuators arrangements 

 

Typically, specific actuator arrangements are developed in order to obtain maximum leg workspace 

with a minimal kinematic structure. The design consists of links connected through knee joints. The 

walking motion is accomplished by controlling the angle of the links to position the feet. There is a 

number of different ways in which the joints can be actuated, which are referenced in [25]. 

Options include mounting the motor at the joint itself, or using a pulley and belt (Fig. 6b) or lead 

screw (Fig. 6c) to set the angle of the knee using an actuator mounted near the base of the leg [32]. 

Figure 5. Leg projection onto XZ and XY planes [37]. 
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The major drawback of last design is the necessity to actuate remote joints. On the other hand, 

latching the actuator at the knee joint adds various dynamic effects to the leg which have to be 

compensated by the controller. This adds complexity to the control algorithms needed to move the leg. 

It also requires more powerful motors at the hip joint to move the added mass of the leg. Remote 

actuation, in which the actuators are located at the base of the leg, eliminates some of these problems, 

at the cost of increasing the complexity of the mechanism. The coupling of the motion of the end 

effector relative to the actuators is another undesirable characteristic of this leg design. 

 
Figure 6. Diferent types of actuators [9]. 

 

 

Another potential leg design is modeled according to a typical mammalian leg with a four-bar 

linkage structure. The major drawback of this design is that the motions are highly coupled and the 

effective workspace is somewhat limited. Moreover, the entire weight of the robot is supported by the 

hip joint and they necessitate a powerful and expensive motor. 

 

 

 

1.3.1. Servos 

The actuators used for the hexapod are Dynamixel AX-12 servos. These actuators have been 

selected because of the good results given by the previous prototype, which used them for leg 

movement. A total number of 18 servos are necessary to obtain 3 degrees of freedom in each leg, so 

three of those actuators will be placed in each leg. The main characteristics and properties of the servos 

are showed below. For further details, the developer of this product provides a datasheet. 
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 AX-12 

Weight (g) 55 

Gear Reduction Ratio 1/254 

Input Voltage (V) At 7V At 10V 

Final Max Holding Torque (kgf.cm) 12 16.5 

Sec/60degree 0.269 0.196 

 

 

Table 2. Servo characteristics [38]. 

  Resolution 0.35° 

Operating Angle Turn 300°, Endless 

Voltage 7V~10V (Recommended voltage: 9.6V) 

Max. Current 900mA 

Operate Temperature -5 ˚C ~ +85 ˚C 

Command Signal Digital Packet 

Protocol Type 
Half duplex Asynchronous Serial 

Communication (8bit, 1stop, No Parity) 

Link (Physical) 
TTL Level Multi Drop (daisy chain type 

Connector) 

ID 254 ID (0~253) 

Communication Speed 7343bps ~ 1 Mbps 

Feedback 
Position, Temperature, Load, Input 

Voltage, etc. 

Material Engineering Plastic 

 

 

 

 

Table 1. Servo properties [38]. 
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Figure 7. Front and back of actuators [38]. 

 

 

1.4. Movement of the robot. Gaits 

 

Fundamental to the locomotion of animals is that they move by lifting their legs and placing them at 

new positions. While walking, the legs should be coordinated with respect to stability, propulsion and 

energy efficiency. The coordinated manner of lifting and placing the legs is called a gait. A gait is 

characterized by the sequence in which the legs are lifted and placed. The lifting or placing of a leg is 

called an event of the gait, and the sequence in which the legs are lifted and placed is called a gait 

event sequence. For a mobile robot with k legs, the total number of possible events N for a walking 

machine is N = (2k – 1)!= 39916800 for a hexapod robot, but only a very small portion of them are 

suitable as gaits and used by animals [26]. Most people are familiar with the names of some of these 

gaits, for instance, a horse will switch between different gaits when increasing speed, first walk, then 

trot, then canter, and finally gallop. Animals switch gaits depending on speed in order to be more 

energy efficient, and the speed at which animals switch gait is dependent on the size of the animal. It 

has been noted that animals of different species use similar gaits for certain types of motion. A 

possible conclusion is that under some conditions of motion, a certain gait is optimum, for reasons that 

are related to stability, speed, energy efficiency, terrain properties, mobility or structure of the animal 

[27]. 

A gait is usually cyclic in the sense that the same sequence of lifting and placing the legs is 

repeated. A complete cycle of leg movements, where all the legs have been lifted and placed exactly 

once, is called a stride, and the time duration of one stride is called the cycle time. McGhee and Frank 

(1968) proposed a system, which is widely used today, where gaits are described in terms of duty 

factor and relative phase. The duty factor      for leg i is the fraction of the cycle time for which the 

foot is in ground contact, so the duty factor is a number between 0 and 1. The relative phase of leg i is 

the time elapsed from the setting down of an arbitrarily chosen reference foot until the foot of leg i is 

set down, given as the fraction of the cycle time. Thus the reference foot will be assigned the number 

1, and has the relative phase      . The relative phases of the other legs are then: 
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         , (3) 

 Where     is the time elapsed since the reference foot was set down, and T is the cycle time. The 

gait event sequence can now be specified using the duty factors and the relative phases, where the first 

event, and the start of the stride, is chosen as the event when the reference leg is set down. The time, at 

which the following events of the gait will occur, are given as fractions of the cycle time at which the 

feet are set down or lifted. The timing of the events when the feet are set down is consequently equal 

to the relative phase   . The timing of the events when the feet are lifted will be denoted   , and 

happens a fraction    of the cycle time after that the foot is set down. Alternatively, a foot has been 

lifted a fraction 1-   of the cycle time before it is set down again. However, as the events should be 

expressed within the duration of the stride, the events should be a number between 0 and 1. The event 

of lifting the leg i is given by: 

 

   {
                  

            
 (4) 

For example, if the relative phase and the duty factor are     = 0.5 and   = 0.8, respectively, then 

the event when leg i is lifted is    = 0.3. A gait is called singular if there is a simultaneous lifting or 

placing of two or more legs during the stride. A singular gait would correspond to that   =  ,    =  , 

or   =  , for any legs i and j where i≠j. Any singular gait can be obtained as a limit of a non-singular 

gait [16]. 

Many walking algorithms have been developed for hexapod robots with limbs arranged 

symmetrically on either side of a longitudinal body axis, similar to an insect. Gaits for bodies with 

limbs arranged axially symmetric, have been defined by Song and Waldron [27], as: 

 

Periodic 

 Wave gait: seeping motions run from the rear to the front and legs on opposite sides of 

the body are 180 degrees out of phase 

 Equal phase gait: all leg movements are ordered so that power consumption is 

consistent, like the wave gait motions run from rear to front 

 Backward wave gait: similar to the wave gait except that motions run from front to 

rear 

 Backward equal phase gait: similar to the equal phase gait except that motions run 

from front to rear 

 Dexterous periodic gait: a follow the leader gait with the ability to adjust the 

placement of the two front feet 

 Continuous follow-the-leader gait: feet are placed in the foot print of the foot ahead 

 

Non-Periodic 

 Discontinuous follow-the-leader gait: feet are placed in the foot print of the foot 

ahead, only one foot at a time is moved for greater stability 
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 Large obstacle gait: leg and body motions coordinate to traverse large obstacles while 

maintaining stability 

 Precision footing gait: the operator either controls an individual leg with 3 DOF or 

controls the body with 6 DOF 

 Free gait: used for avoidance of areas not suitable for weight bearing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Detail of the tripod gait [39]. 

 

Periodic gaits are generally preferable because they are easily implemented and can provide 

smother motion. 

Various periodic wave gaits have been used for hexapedal robots, combined with biologically 

inspired coordination mechanisms found in stick insects [28].  

While many walking algorithms [5, 10] would be suitable for such planar hexapedal locomotion, 

developing one sufficiently general enough to handle all navigable terrain and to utilize the kinematic 

structure of the robot adds complexity to the problem. The adaptable gait-planning algorithms under 

development are basic in the sense that they are currently only capable of planar locomotion, but 

general in that they could be used as the foundations for a more sophisticated algorithm capable of 

navigating complex terrain such as the surface of a spacecraft. It is also desirable that the basic 

elements of a walking algorithm be applicable in using the limbs to manipulate tools. 

For these reasons, suitable base walking algorithms, while currently only capable of planar 

locomotion, must be capable of precise, pre-determined limb tip positioning. Also, the kinematic 

structure of the robot allows for body translation in any 3-space direction, as well as for pitch, yaw, 

and roll, while walking. Therefore, in order not to exclude mechanical capabilities, the base algorithm 
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will be capable of instantaneously and simultaneously executing any combination of translations and 

change of orientation of the body while walking. 

 

 

 

 

 

1.5. What is stability? 

In order to put walking vehicles into practical use for the above application, they must manage to 

keep walking slowly but as stably as possible, even if they traverse rough terrain including slopes. 

From this point of view, it is indispensable to define the most reasonable stability criterion for walking 

vehicles and to design a gait maximizing its margin. Needless to say, several stability criteria have 

been proposed up to now. They can be divided in two groups, static and dynamic stability margins, but 

as we will see later, the dynamic effect is added to the each static stability margin [31]. 

 

1) ―Stability Margin‖: It evaluates the distance between the projection of the center of gravity on 

the ground and the border of the polygon formed by the supporting feet of the walking vehicle on the 

plane. 

Figure 8. On/off states of the servos during a stride in different types of gaits [40]. 



Darío Delgado Esteban   Final Project
  

Page 23 of 58 
 

 

 

 

 

 

 

 

 

 

 

 

 

2) ―Tumble Stability Margin‖: When the walking vehicle tumbles around the line connecting two 

support feet, it evaluates the absolute value of the moment divided by its weight which generates 

around the line to avoid tumbling. It corresponds to the ―Stability Margin‖ ignoring the dynamic effect 

when the walking vehicle is on the level ground. 

 

3) ―Gradient Stability Margin‖: It evaluates the inclination of the walking vehicle at which it 

starts tumbling owing to gravity, when it gets inclined little by little from the level ground. 

 

4) ―Tipover Stability Margin‖: It is similar to the criterion of the ―Gradient Stability Margin,‖ but 

all the external forces including gravity are considered to work on the center of gravity of the walking 

vehicle. 

 

5) ―Energy Stability Margin‖: In the process of tumbling, the center of gravity passes over the 

point at which it possesses the maximum potential energy under the field of gravity. This criterion 

evaluates the stability by the magnitude of the difference between its maximum potential energy and 

its initial one. 

 

6) ―Dynamic Energy Stability Margin‖: It is similar to the criterion of the ―Energy Stability 

Margin,‖ but all the external forces including gravity are considered to work on the center of gravity of 

the walking vehicle. 

 

The criteria of 2), 4), and 6) add the dynamic effect to the criteria of 1), 3), and 5) respectively. The 

best way to evaluate the behavior and results of each stability criteria is to put the robot under hard 

conditions of the terrain, for example a sloped ground. In the next figures we will see how the different 

stability margins determine different positions of the CG in order to improve stability. 

Figure 9. a)Static stability margin, b) longitudinal stability margin [41]. 
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The criterion 1) was proposed on the assumption that walking vehicles were on the level ground, 

but it is contradictory on the rugged slope shown in Fig. 11(1), where the walking vehicle touches the 

ground by its two feet in 2D. Then let’s consider the most stable point for the center of gravity on the 

line at the constant height from the ground. According to the ―Stability Margin,‖ the most stable 

posture is the one shown in Fig. 11(2), where the center of gravity is situated just in the middle. It is 

true that this posture can maximize the minimum moment (Mg) by gravity around each foot which 

works to stabilize the body. However, once the body is affected by a disturbance force from the 

horizontal direction, the moment around the downhill foot (Md2) becomes larger than that around the 

uphill one (Md1) and it is easier for the walking vehicle to tumble down the slope, even if the sizes of 

the disturbance force are kept equal. Consequently, the ―Stability Margin‖ doesn’t give us a right 

result, when all the support feet are not on the same level plane. Considering the fact that the moments 

(M’d1, M'd2) caused by the horizontal disturbance forces differ in each support foot, the posture should 

be changed so that M’d1, and M'd2 generates in proportion to M'g1 and M'g2 respectively. Such a posture 

is expressed by Fig. 11(3) at which the resultant vector of both gravity and the horizontal force vectors 

pass over each support foot. As a result, it corresponds to the posture maximizing the ―Gradient 

Stability Margin,‖ which evaluates the inclination of the waling vehicle on rough terrain when it starts 

tumbling by the instant disturbance force. From these points of view, another consideration comes up 

to our mind, which regards the cause of the tumble as not the instant force but as the energy working 

on the body. More specifically, the center of gravity won’t reach its highest position in the process of 

its rotating around the support foot, if its kinematic energy by the disturbance is completely consumed 

by increasing its potential energy. In other words, a large difference between the potential energy at the 

Figure 10. The relationship between the posture and stability criterion. (1) The walking vehicle under 

consideration. (2) Posture maximizing the Stability Margin. (3) Posture maximizing the Gradient 

Stability Margin.(4) Posture maximizing the Energy Stability Margin [31]. 
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initial position of the center of gravity and one at its highest position can evaluate the stability of 

walking vehicles from the energy point of view. This difference was proposed as the ―Energy Stability 

Margin.‖ 

This criterion shows us that the posture in Fig. 11(2) is easier to tumble down the slope because the 

lifted distance of the center of gravity for the downhill side is less than that for the uphill side, while 

the posture in Fig. 11(3) is easier to tumble to the uphill side. As a result, the most stable posture 

maximizing the Energy Stability Margin is one in Fig. 11(4) which divides it equally into both sides. 

Eventually, these criteria lead to a different optimal position of the center of gravity respectively, as 

shown in Fig. 11(1), but which one is the most reasonable for the practical use? 

 

 

1.5.1. Energy stability margin, ESM 

 

Several authors conclude that it is better to evaluate the stability by means of the ―Energy Stability 

Margin‖. However, some inconvenient aspects remained in this criterion when it is used without any 

modification. According to the definition of ―Energy Stability Margin‖, walking vehicles would 

become more stable in proportion to its weight, even though their posture doesn't change at all. But at 

the same time, the disturbance acting on the center of gravity also becomes large with the increase of 

weight; therefore, the increase of weight does not necessarily leads to the increase of stability. On 

account of this reason, the static stability criterion should be expressed by the dimension of length 

without including weight, that is, it should be defined as just the vertical distance between the initial 

position of the center of gravity and its highest position in the process of tumbling. Also ESM still 

does not consider any dynamic effects that might disturb vehicle stability. 

 

 

1.5.2. Normalized Energy Stability Margin, NESM 

 

―Normalized Energy Stability Margin‖ or ―NE Stability Margin‖ for short, as expressed in the 

following equation: 

 

       
    

  
     

       (5) 

   

Although ―NE Stability Margin‖ doesn’t change essentially from ―Energy Stability Margin‖, it has 

a few advantages as follows. 

 

i) Stability can be evaluated in proper way when such a disturbance as mentioned before 

occurs.  

ii) As it is expressed by not the unit of [J] but the unit of [mm], it is convenient to derive a 

gain by means of the geometric way. 



Darío Delgado Esteban   Final Project
  

Page 26 of 58 
 

 

iii) When walking vehicles are on the ground, ―NE Stability Margin‖ corresponds to 

―Stability Margin‖ in the case where the center of gravity touches to the ground, which has the 

continuous relationship and is easier to understand intuitively. 

 

However, when dynamic effects arise during walking, machine stability cannot be judged precisely. 

Such situations exist in real walking robot applications, and therefore dynamic stability margins are 

more suitable. 

 

 

1.5.3. Dynamic stability margin, DSM 

 

To solve the unusefulness of static stability margins when robot dynamics are relevant some 

momentum-based stability criteria have been defined. Lin and Song [17] defined the Dynamic Stability 

Margin, DSM, as the smallest of all moments Mi around the edges of the support polygon caused by 

robot/ground interaction forces, normalized by the weight of the system, that is: 

 

 
         (

  

  
)      (

             

  
) (6) 

 

Where Pi is the position vector from the CG to the i-th support foot, FR and MR are the resultant 

force and moment of robot/ground interaction, and ei is a unit vector that revolves around the support 

polygon in the clockwise sense. If all moments are positive (if they have the same direction and sense 

as ei), then the system is stable. 

 

 

1.5.4. Force-Angle Stability Margin, FASM 

 

A different criterion was proposed by Papadopoulos and Rey 18. The Force-Angle stability criterion 

finds the angle i between the resultant force acting from the CG on the ground (the opposite to the 

reaction force FR) and the vector Ri, normal to the rotation axis from the CG. The system becomes 

unstable when this angle becomes zero. The stability margin is the product of the angle times the 

resultant force FR, that is: 

 
                ‖  ‖ (7) 

These are the main stability criteria used for comparison with the herein proposed one. Recent 

research has demonstrated that none of the static stability margins are suitable for measuring robot 

stability when robot dynamics are relevant. The FASM seems to be the best of the existing margins, 

because it accurately judges stability on flat terrain in the presence of inertial effects.  However, it 

loses accuracy when manipulation effects arise or when the robot walks over uneven terrain. 
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Furthermore, it shows that none of the dynamic stability margins accurately measure stability when 

there are manipulation forces and moments or dynamic effects during the transfer of the legs. 

 

 

1.5.5. Normalized Dynamic Stability Margin, NDSM 

 

The optimum stability margin from the energy viewpoint is the one that quantifies the maximum 

impact energy that the machine can absorb without losing stability. Following this definition, the ESM 

is optimum under static conditions, e.g. when the only significant force acting on the robot is gravity. 

The ESM is computed from the increase of potential energy that the machine’s CG experiences when 

pivoting around the edges of the support polygon. Therefore, the extension of the ESM to the presence 

of other robot dynamics, like inertial forces or manipulation effects, must compute the increase of 

mechanical energy that the CG experiences during the tumble. This idea was proposed by Ghasempoor 

and Sepehri 24 to measure robot stability in the application to wheel-based mobile manipulators. In 

this paper, Ghasempoor and Sepehri’s idea has been extended to walking machines, considering leg 

dynamics as a destabilizing effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us consider a walking robot during its motion, where gravitational, inertial and manipulation 

forces and moments become significant. At a given instant an external impact causes the robot to 

tumble around one edge of its support polygon. The impact is caused by a force that interacts with the 

robot during an infinitesimal interval of time. Therefore, any joint motion during this interval is 

negligible and thus the robot will be considered as a rigid body.  

Figure 11. Geometric outline for the computation of the NDESM [31]. 
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Figure 12 depicts the CG of a robot during the tumble around the edge of its support polygon, given 

by the line connecting footprints i and i + 1. This edge is inclined at an angle   from the horizontal 

plane due to terrain inclination. If the moment around this rotational axis caused by the resultant forces 

and moments of robot/ground interaction, FR and MR, is able to compensate for the destabilizing effect, 

the robot could maintain stability. If, on the contrary, the effect cannot be compensated for, the robot 

will lose stability. Therefore, the instant of critical stability occurs when the moment of robot/ground 

interaction forces and moments around the rotation axis vanishes. At that time the CG is located inside 

a critical plane that forms an angle   with the vertical plane (see position (2) in Figure 12).  

At the initial position (1) before the tumble, the CG is subject to inertial forces and moments (FI and 

MI), gravitational forces and moments (FG and MG), and manipulation forces and moments (FM and 

MM). The perturbing effects of a leg in transfer phase can be also considered as manipulation terms. 

Assuming that the dynamics of the legs in the support phase is negligible relative to the body 

dynamics, the resultant force and moment of robot/ground interaction are given by: 

 

 
            

            
(8) 

 

During the tumble from position (1) to position (2), the gravitational force, FG, remains constant, 

while the rest of forces and moments rotate with the robot reference frame. Therefore let us divide the 

resultant robot/ground interaction forces, FR, into two components: one gravitational and the other 

non-gravitational. Let us name the non-gravitational component FRI, that is: 

 

           (9) 

 

The mechanical energy increase experienced by the CG during the tumble from position (1) to 

position (2) is given by the following energy balance: 

 

 
               (10) 

 

Where V1 and K1 are the potential and kinetic energies of the CG respectively before the tumble (1), 

and V2 and K2 are the potential and kinetic energy of the CG at the critical plane. Inside the critical 

plane the resultant moment around the rotation axis vanishes, thus the rotational speed of the CG is 

zero at this time, therefore: 

 

             (11) 

 

The increase of potential energy, V2 − V1, is the sum of potential energy due to gravity, FG, and the 

rest of forces and moments, FRI and MR, that is: 
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(11) 

 
         (14) 

 

    ∫          

  

  

   (15) 

 
    ∫        

  

  

   (16) 

 

To compute the kinetic energy of the system before the tumble the following equation must be 

solved: 

 

    
 

 
    

  (17) 

   

Where    is the moment of inertia around the rotation axis, which is known, and    is the angular 

speed of the robot before the tumble, which is obtained from: 

 

    
  

  
 (18) 

   

Let us consider the speed of the CG before the tumble (1)    . Then, the angular momentum    is 

computed from: 

 
               (19) 

 
Where m is the total mass of the robot and its manipulator system. Then the kinetic energy of the 

system before the tumble can be obtained by substituting equations (18) and (19) in (17). Thus the 

term Ei in equation (10) is the increase of mechanical energy of the CG when pivoting around the edge 

i of the support polygon. It is also the increase of the machine’s stability level when the machine is 

rotating around that axis due to an impulsive perturbation. Therefore let us propose the following 

definition: 

We would say that a walking machine is dynamically stable if every moment Mi around the i-edge 

of the support polygon due to robot/ground forces and moments is positive, with the vector that goes 

around the support polygon in the clockwise direction being positive, that is: 

 

               (20) 
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Where i is the edge of the support polygon, and n is the number of supporting feet.    is the 

moment around the axis i and comes from: 

 

                       (21) 

 

If equation (20) is true the robot is stable, and then the Normalized Dynamic Energy Stability 

Margin is defined as: 

Normalized Dynamic Energy Stability Margin is the smallest of the stability levels required to 

tumble the robot around the support polygon, normalized to the robot mass, that is: 

 

 
       

       

  
 (22) 

 

Where    is the stability level, given by (10). 

For the validation of this method, a simulation and a quadruped robot were used in [31]. The results 

show that for static conditions, the NDESM and the NESM coincide, proved both to be optimum. 

Moreover, while NDESM is subject to inertial and manipulation effects, NDESM is able to predict 

robot stability precisely for different ground profiles and different dynamic effects perturbing motion, 

including robot inertia and manipulation dynamics. 

 

 

1.6. Analysis of relationship between stability margin and dexterity 
 

In the process of design, the structure parameters are optimized to improve the dexterity at utmost 

[33]. However, when robot is walking, the support positions of stance legs and the gait pattern have 

great influence on dexterity as well as the stability margin. It is desired that the robot has a better 

dexterity while satisfying the utmost stability margin. The analysis is as follows. As shown in Fig. 13, 

robot is assumed to stand on a flat terrain, the vertical projection of CG is taken as the origin of the 

reference, X, Y, Z are coordinate axis, the locations of each stance foot are shown as the points P1 to P6. 

The stability margin Rsm is defined as the shortest perpendicular distance from the vertical projection 

of CG to each side of SP. The value of stability margin is relevant to the position of CG relative to the 

support points of the stance-legs. The dexterity is indicated by the workspace of the trunk. The 

workspaces of trunk for different number of stance legs and different support positions of stance-legs 

are calculated using MATLAB. 

Fig. 13(a) is the comparison of dexterity of trunk with three stance-legs and six stance-legs while 

the homologous legs have the same support positions. It can be inferred that dexterity decreases with 

the increase in the number of stance legs, and the stability margin increases.  

Fig. 13(b) is the comparison of dexterity of trunk with different support positions of homologous 

legs for the same number of stance legs. It can be deduced that the dexterity increases with the 

decrease in the support polygon, and the stability margin decreases simultaneously. Through above 
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analysis, it is realized that the stability margin and dexterity of the hexapod robot are a couple of 

incompatible factors that fail to reach their optimal values at the same time. Accordingly, when the 

robot is at rest, more care to the dexterity should be taken to prepare the following movement. When 

the robot is walking on unstructured terrain, the posture control must be employed for improving the 

stability margin on-line [45]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 Comparison of dexterity of trunk: (a) different number of stance-legs while homologous 

support points are same; (b) different support points while the number of stance-legs is same [45]. 
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1.7. Terminology 

 

The definitions are in alphabetical order, and based on Alexander (1984), Kumar, and Waldron 

(1989), Song, and Waldron (1989), and Wadden (1998) [16]. 

 Duty factor (β): The fraction of the duration of the stride for which a foot is on the ground (in 

the support phase). Duty factor can be used to make the distinction between walks and runs, 

since we have β ≥ 0.5 for walking and β < 0.5 for running. 

 

 
  

              

          
 (23) 

 

 Cycle time (T): Time duration of one stride, i.e. the time to complete one cycle of leg 

movements. 

 Events of the gait: The placing or lifting of any of the feet during locomotion. For an n-legged 

machine, there are 2n events in one stride. 

 Relative phase (  ): The time elapsed from the setting down of a chosen reference foot until 

the foot of leg i is set down, given as the fraction of the cycle time.  

 Stability margin: The shortest distance from the vertical projection of the center of gravity of 

the robot onto a horizontal plane, to the boundary of the support area. 

 Stride: The complete cycle of leg movements, for example, from the setting down of a 

particular foot to the next setting down of the same foot, where all the legs have been lifted and 

placed exactly once. 

 Stride length: The distance travelled by the center of gravity of the walker in one stride. 

 Leg Stroke (  ): The distance that foot i translates relative to the hip during the support phase. 

 Stroke pitch (  ): Is the distance between the centers of the workspaces of adjacent legs on 

one side. Depends on the geometry of the walking robot. 

 Support area/polygon: The minimum convex polygon in a horizontal plane, with its vertices 

formed by the vertical projection of the feet being in support. 

 Support phase: The phase when a foot is in contact with the ground and able to support and 

propel the body. Also called stance or retraction phase. 

 Swing phase: The phase when a foot is in the air and repositioned for the next support phase. 

Also called air or protraction phase. 
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2. DEVELOPMENT OF THE ROBOT 

 

2.1. Design Considerations 
 

Designing hexapod legged robots is far from trivial. A very numerous and a wide range of 

possibilities exist to design a hexapod as also described in the previous section. Designers must take 

several decisions which influence the operation and technical features. Some of the most important 

design issues and constraints according to [25] can be outlined as: 

 

 The mechanical structure of robot body; 

 Leg architecture; 

 Maximum sizes; 

 Actuators and drive mechanisms; 

 Control architecture; 

 Power supply; 

 Walking gaits and speed; 

 Obstacle avoidance capability; 

 Payload; 

 Autonomy; 

 Operation features; 

 Cost. 

 

The above mentioned design issues and constraints can be classified as design input (or key 

features) and design output (or main design characteristics) as shown in the scheme of Fig. 14. 

 

Figure 13. A scheme for preliminary layout design of hexapod walking robots [9]. 

 

A survey on the state of the art shows that each hexapod walking robot design is almost unique. 

Hexapod can be developed in several configurations and every solution has its design criteria, 

specifications, shapes, advantages and disadvantages, but the literature is lacking a systematic design 

procedure for hexapod robots as referring to specific functional requirements. 
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2.2. Modeling 

 

The development of the body for the new hexapod robot starts from defining some parameters that 

will determine other variables of the robot, such as, for example, the size of the legs is crucial for the 

step length. Some of them can be easily changed, because they have not been built yet. On the other 

hand, the structure of the leg for example, cannot be modified, as we will use the ones already 

constructed from the old prototype. 

 

 

2.2.1. Leg structure 

 

First, the properties of the legs. Each of the six legs will have three servos AX-12, which will 

provide three degrees of freedom.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14. Real leg of the hexapod 

For the static position of the legs, we will select 0º of femur articulation, 0º of tibia articulation and 

90º of tarsus articulation, which has a projection on the plane XY of L=13.4 cm. This is a first 

approach, because the projection of the leg is needed to optimize the body configuration. Later when 

the step length is discussed, the configuration of the leg may change. Moreover, a step length of 5cm is 

set as default (30º of femur articulation). 

 
 

2.2.2. Design of the body 

 

Based on the premise that the body is thought to be rectangular, we should decide its dimensions. It 

should be considered the size of the body to be the smallest as possible, because we will reduce the 

weight of the whole prototype. However, there are parts of the robot, as the microprocessor, the 

batteries or the sensors that will be placed over the body. Those parts will determine the size. With the 
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information provided in the datasheet of the microprocessor and the servos as well as the feedback 

from the old prototype, we set an initial dimension for the body: 

Large=25 cm; Width=15 cm 

We check that placing the microprocessor in the center of the body, everything fits inside. We will 

place the leg so that the axis of the femur articulation matches with the boundaries of the body: 

 Part of the leg inside the body=38.5 mm (owning to the femur servo) 

 Width of microprocessor board=70 mm 

 

 
Figure 15. Dimensions of the servo and the microprocessor [38] 

 

                    
 

The microprocessor and sensors will be placed over the body in the center of it. This will provide 

equilibrium and will keep the center of gravity as centered as possible. It will become a rule in the 

design, because the symmetric bodies possess the highest stability. The front and rear legs will be 

placed in the corners, while the middle legs will be place at equal distance from the corner legs of each 

side. Every leg will lay attached to the body, trying to match the coxa axis with the boundaries of the 

body. 
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2.2.3. Displacement of the middle legs 

 

Walking robots are intrinsically slow machines, and machine speed is well known to depend 

theoretically on the number of legs the machine has [34]. Although stability is no optimum when using 

alternating tripods, tripod gait is the most widely used by hexapods. ―Alternating tripods‖ means those 

two non-adjacent legs on one side and the middle leg on the opposite side alternate in supporting the 

robot. 

To analyze the leg forces that a hexapod must exert, we will consider an insect leg configuration as 

in Fig. 17 where all leg workspaces lie in the same relative position with respect to the longitudinal 

axis of the body. The equilibrium equations that balance forces and moments, in the support phase are 

given by: 
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(24) 

Where    is the vertical ground-reaction force in foot i, (        are the position components of foot 

i in the robot’s reference frame (X, Y, Z) and W is the robot’s weight. 

The robot is assumed to describe a continuous alternating tripod gait that consists in two main 

phases. In the first phase, legs 1, 4 and 5 are in support and moving backwards at a constant speed 

(continuous gait), while legs 2, 3 and 6 are in support. Each supporting leg follows a straight-line 

trajectory on the ground parallel to the trajectory of the other supporting legs. 

It will be consider as ―leg stroke‖,  , the distance through which the foot is translated relative to 

the body during the support phase. The ―stroke pitch‖,  , is the distance between the centers of the 

workspaces of the adjacent legs on one side. The body length   , the distance from the foot trajectory 

to the origin of the leg reference frame L, and the distance between the leg reference frames of non-

collateral adjacent legs, D. 

The components of the position of the foot at any time will be: 
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Where k is the sample period, i is the leg number and G is the gait vector function defined by: 

 

Where 2N is the number of samples in a locomotion cycle, H is the height of the body and h is the 

step height over the ground. Function      defines the displacement of the body attachment of leg i 

with respect to the center of the body reference frame (X, Y, and Z) and is given by: 

 
 

    {

                 
                  
                 

 (29) 

 

 

 

 

 

 

Function      is the function fix, which rounds the element x to the nearest integers towards zero 

and mod represents the function module. 

Figure 16. Geometric model of normal 

walking robot [34]. 

Figure 18. Geometric model of modified 

walking robot [34]. 
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It is needed to mention that the leg trajectory for the component z could be defined as a polynomial 

function, trigonometric function and so on. The sine function has been chosen, although it does not 

affect to the final result as we will see later. 

With these foot positions, the foot forces along a whole locomotion cycle can be computed as: 

 

        (30) 

 

Having an expression for the whole locomotion cycle: 
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(31) 

When a legged robot is supported by a tripod, the middle leg in its support phase, for a given foot 

position, is carrying about half the robot’s weight, while the two collateral legs in their support phase 

are carrying about one-fourth of the robot’s weight.  

Satisfactory force distribution and system homogenization can be achieved by shifting the middle 

legs’ foot positions slightly from the body’s longitudinal axis so that the middle legs support less 

weight and the corner legs increase their contribution to supporting the body. By displacing the middle 

leg attachment points the support polygon increases, therefore, the static stability margins also 

increases.  

If we only considered the geometric distribution of the legs, we can reach an optimum point for the 

distance between the longitudinal axis and the new position of the middle leg that is the double of the 

distance between that longitudinal axis and the attachment point of one corner leg. Nevertheless this 

study should be performed along a whole locomotion cycle, and the central leg-attachment point 

should be moved such that the maximum foot force in any middle leg equals the maximum foot force 

in any lateral leg. 

For that is necessary to recalculate the foot forces for every foot position along a locomotion cycle. 

Then the middle leg displacement can be calculated so that it will eliminate the difference between a 

middle leg maximum force and a lateral leg’s maximum force. 

From the equations described before, we will only modify the component x and y. The component x 

will be added a new parameter OffsetX, which will represent the displacement of the rear and front 

legs along x axis if we set a default offset for those legs. How this will affect to stability will be 

discussed later. The parameter d will be the displacement of a middle leg with respect to a lateral leg 

along the direction of the Y-axis. 
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(32) 

 

 

Then the problem is reduced to finding the parameter d that yields: 

 

        (33) 

 

Where  

          (       )      (       ) (34) 

 

In other words, we move the point where the middle legs (3,4) are attached until the maximum foot 

force in the middle legs equals the maximum foot force in the lateral legs (1,2,5 and 6) [34]. 

 

 

2.2.4. Offset in the coxa angle in front and rear legs 

 

Less investigation has been made in the offset for the coxa angle of corner legs. It is clear that the 

biggest offset angle in the corner legs the robot has, the more similar behavior to a circular body robot 

will have. This is a better turning ability, higher stability margin and greater stride length in certain 

conditions. However, the rectangular configuration has also its advantages, as we discussed in section 

1.1. This angle also affects to the step length of the robot, as a greater distance between each leg from 

the same size will provide robot with a bigger step length, and therefore higher speed. So the 

simulation will have to look for an angle that will provide equilibrium between high speed, great step 

length and static stability margin. 

 

 

2.2.5. Models 

 

Now it is time to work on the model of the robot and try to improve it. First we will modify the 

offset of the coxa angle. Second, we will program a code in Mathematica to get the displacement of 

the middle legs in each configuration. This code will be based on the explanation given on section 2.2. 

Later a set of three different leg configuration are proposed. With this tree configuration we will get 
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each maximum step length. Once every parameter is analyzed, we will decide the final design and 

draw it using Autodesk Inventor. The final result will be shown below. 

As we said, we will start by analyzing the robot’s static stability by modifying the offset of the coxa 

angle. All the data will be displayed in the International Unit System (mm). 

The first results are reflected in Table 3. From this table it is easy to observe that the bigger the 

offset angle is, the bigger the stability margin and longitudinal stability margin become. Nevertheless, 

for a big offset angle we will require a leg able to extend a bigger distance for the same step length. 

For example, with a steplenght of 5cm and an offset angle of 30º, the extension required for the leg to 

place the foot in the next point (remember the foot always moves in a straight line for an straight 

walking) is 134+45.5=179.5mm, while for an offset of 0º is 134+9=143mm. This will reduce our 

possible options. 

Now we will use the algorithm for optimizing the placement of the middle leg. The algorithm is 

included in Annex I. We will change the width of the body because if we move the middle legs, we 

have more space in the body for the microprocessor. Another thing to be considered is the static 

position of the corner legs. This algorithm is designed so that every leg of each side is placed in the 

same distance to the longitudinal axis of the body, so we will extend the corner legs in the 

configurations with angle offset so that we reach the straight line defined by the middle leg. Once 

calculated the distance to separate the middle legs from the longitudinal axis, the middle leg will be 

placed a distance equal to corner legs plus the new distance d. Moreover, the width of the body is 

changed to 100mm. This is because, as we will see later, the algorithm gives us a d  big enough to 

place in the middle of the body the microprocessor with enough space. See Table 4. 

The results show an improvement for both stability margins if we move the placement of the middle 

legs. However, the algorithm gives us results that change our design considerably for both widths. This 

is, for example, that for an angle of 30º we will have a body that transforms in a new one which has a 

bigger width than the length. A priori the best design is the one which offset in the corner legs is 

45º with a width of 100mm. 

 

 

2.2.6. Design of the leg disposition and step length 

 

As we have seen before, if we design the body in order to have an offset angle in the corner legs, we 

will need that the leg could be able to extend the distance necessary to place the foot in the next 

footstep. Different design of leg configuration have been discussed by different authors, but the most 

common configuration set in legged robots is the spider-like configuration (Fig. 19). This disposition 

gives the robot a sufficient walking speed, low CG height, enough walking speed and high obstacle 

avoidance. Those are the reason why we will set another two spider-like configuration in order to 

figure out which of this three suits better for the prototype to be built. 

We will run again the algorithm for another 2 designs of legs in which the projection changes to 

100mm and 120mm. In Table 5 and 6 we can see how does this affect to the stability margins and to 

the displacement of the middle legs. The distance d is reduced, while the stability margins are also 
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reduced. We will keep in mind those new designs of legs to see which is the best once every parameter 

is studied. 

 

 

 

 

The next step will be setting the step length. We will have to consider a maximum angle between 

the tarsus articulation and the floor in order to avoid slippage. This will be set as 75 degrees, as we 

don’t know the conditions of the terrain and the friction coefficient. The configuration of the leg 

placed in the ground with this angle will be called safety configuration of the leg. 

We will calculate the maximum step length possible for each configuration, run the code again and 

see which of the design gives a high stability margins and a coherent geometric dimensions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The maximum step length will be defined by the parameter Px, what we already know that is the 

distance between the centers of workspaces of the adjacent legs in one side. This is derivated from the 

Figure 18. Reachable area of each leg [44]. 

Figure 17. Aracnid type leg [43]. 
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geometry of the robot, in which each leg has a reachable area in the form of a sector of an annulus (see 

Fig. 20). Since overlapping reachable areas raise interference problems, one way to solve it is to avoid 

it altogether by eliminating all overlapping reachable areas so that each leg has a distinct region that 

can be accessed only by it and not by any other leg. Moreover, for simplicity of analysis, we define a 

rectangular region as a reachable region of each leg. As we said before, the length of this rectangle will 

be determined by Px. Nevertheless, we will set a length for the rectangle of each leg 19 mm smaller 

than Px, having a dimension of 90mm (Px=109mm) for safety. 

We will also have to consider that if this distance is bigger than the safety configuration of the leg, 

the maximum step length will be given by the distance that the foot is able to be positioned without 

being beyond the safety position of the leg. Knowing the safety configuration of the leg (the maximum 

angle with the floor) it is easy to get the projection of the leg in the plane XY by trigonometry: 

 For the leg 1 (134mm), the safety configuration has a projection of ….160 mm. 

 For the leg 2 (120mm), the safety configuration has a projection of ….146 mm. 

 For the leg 3 (100mm), the safety configuration has a projection of ….146 mm. 

Now that the maximum step length is known, we will run again the code for each configuration. 

The width of the body is changed again due to a small distance between the middle legs to place the 

microprocessor. The results are shown in Table 7, 8, 9, 10, 11 and 12. 

 

 

 
Table 3. Stability margins 

Lb=250; Dw=150; L=134; Rx=50 

Coxa Offset Angle 0º 10º 15º 20º 30º 40º 45º 

Stability margin 62.91 77.45 84.45 91.2 103.79 114.88 119.78 

Longitudinal Stability margin 64.33 79.85 87.45 94.88 109 121.76 127.5 

 
 

Table 4. Stability margins and d 

Lb=250; Dw=100; L=134; Rx=50 

Coxa Offset Angle 0º 10º 15º 20º 30º 40º 45º 

Stability margin 62.51 76.79 83.63 90.22 102.42 113.09 117.79 

Longitudinal Stability margin 64.33 79.84 87.45 94.87 109 121.76 127.5 

d optimum 81.01 96.25 102.19 107.26 115.34 121.31 123.67 
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Table 5. Stability margins and d 

Lb=250; Dw=100; L=100; Rx=50 

Coxa Offset Angle 0º 10º 15º 20º 30º 40º 45º 

Stability margin 61.65 71.95 76.88 81.62 90.40 98.08 101.46 

Longitudinal Stability margin 64.33 75.91 81.59 87.13 97.67 107.18 111.47 

d optimum 66.04 75.67 79.63 83.11 88.86 93.26 95.04 

 

 

 

Table 6. Stability margins and d 

Lb=250; Dw=100; L=120; Rx=50 

Coxa Offset Angle 0º 10º 15º 20º 30º 40º 45º 

Stability margin 62.22 74.85 80.91 86.73 97.51 106.95 111.11 

Longitudinal Stability margin 64.33 78.22 85.04 91.69 104.33 115.75 120.9 

d optimum 74.85 87.66 92.75 97.16 104.28 109.61 111.74 

 

 

 
Table 7. Stability margins, d and maximum step length 

Dw=150; L=100 

Coxa Offset 

Angle 
0º 5º 10º 15º 20º 25º 30º 35º 40º 45º 

Stability 

margin 
55.34 59.1 62.76 66.27 69.63 73.52 80.68 87.49 93.89 99.84 

Longitudinal 

Stability 

margin 

57.67 62.02 66.35 70.61 74.76 79.46 87.21 94.56 101.48 107.91 

d optimum 21.59 19.9 18.46 17.24 16.19 18.71 37.57 55.51 72.38 88.06 

Maximum step 

length (Rx) 
90 98.71 107.365 115.88 124.2 128.23 112.75 98.03 84.19 71.33 
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Table 8. Stability margins, d and maximum step length 

Dw=100; L=100 

Coxa Offset 

Angle 
0º 5º 10º 15º 20º 25º 30º 35º 40º 45º 

Stability margin 54.56 58.15 61.6 64.9 68.02 71.68 78.66 85.3 91.54 97.34 

Longitudinal 

Stability margin 
57.67 62.02 66.35 70.6 74.77 79.46 87.2 94.56 101.49 107.91 

d optimum 18.51 17.05 15.83 14.78 13.88 16.04 32.21 47.58 62.04 75.48 

Maximum step 

length (Rx) 
90 98.71 107.36 115.88 124.2 128.23 112.75 98.04 84.19 71.33 

 

 

Table 9. Stability margins, d and maximum step length 

Dw=150; L=100 

Coxa Offset 

Angle 
0º 5º 10º 15º 20º 25º 30º 35º 40º 45º 

Stability margin 55.76 60.41 64.91 72.21 81.69 90.88 99.70 108.09 115.98 -- 

Longitudinal 

Stability margin 
57.67 62.86 68.08 76.01 85.98 95.66 104.95 113.77 122.08 -- 

d optimum 24.05 21.83 19.99 36.37 66.77 96.22 124.48 151.36 176.65 -- 

Maximum step 

length (Rx) 
90 100.46 110.84 104.21 84.24 64.89 46.32 28.66 12.05 0 

 

 

Table 10. Stability margins, d and maximum step length 

Dw=100; L=120 

Coxa Offset Angle 0º 5º 10º 15º 20º 25º 30º 35º 40º 45º 

Stability margin 55.2 59.68 68.09 71.12 80.46 89.52 98.21 106.47 114.24 -- 

Longitudinal 

Stability margin 
57.67 62.89 68.08 76.01 85.98 95.66 104.95 113.77 122.08 -- 

d optimum 20.97 19.03 17.43 31.71 58.21 83.88 108.52 131.95 154 -- 

Maximum step 

length (Rx) 
90 100.46 110.84 104.21 84.24 64.9 46.32 28.66 12.05 0 
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Table 11. Stability margins, d and maximum step length 

Dw=150; L=134 

Coxa Offset 

Angle 
0º 5º 10º 15º 20º 25º 30º 35º 40º 45º 

Stability margin 56.01 61.26 66.36 74.62 85.27 95.58 105.47 114.88 123.73 -- 

Longitudinal 

Stability margin 
57.67 63.51 69.3 78.21 89.35 100.15 110.52 120.38 129.66 -- 

d optimum 25.78 23.15 21.02 40.63 76.21 110.69 143.78 175.26 204.86 -- 

Maximum step 

length (Rx) 
90 101.68 113.27 105.49 83.19 61.59 40.86 21.14 2.59 0 

 

 

Table 12. Stability margins, d and maximum step length 

Dw=100; L=134 

Coxa Offset Angle 0º 5º 10º 15º 20º 25º 30º 35º 40º 45º 

Stability margin 55.45 60.64 65.56 73.68 84.18 94.36 104.12 113.41 122.15 -- 

Longitudinal 

Stability margin 
57.67 63.51 69.3 78.21 89.35 100.15 110.52 120.38 129.66 -- 

d optimum 22.7 20.38 18.5 35.77 67.1 97.45 126.58 154.29 180.35 -- 

Maximum step 

length (Rx) 
90 101.68 113.27 105.49 83.19 61.59 40.86 21.14 2.59 0 

 

 

2.3. Check static stability in transfer phase 

 
In order to know whether the design is statically stable or not we will have to check that the 

projection of the center of gravity of the robot falls into the support polygon, as we already explained. 

In a straight line movement, the distance that the projection of the CG can be moved from the static 

position will be given by the Longitudinal Stability Margin. We know the maximum step length of 

each design, so we can say that:  

 

 
  

 
     the design is Statically Unstable. 

 
  

 
    the design is Statically Stable. 

Checking every configuration previously done in Tables 7, 8, 9, 10, 11 and 12 we check that every 

design reflected is Statically Stable. 
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However, this is set for a straight line movement. If we wanted to be sure that in every movement 

the robot does this rule is confirmed, we will use the static stability checking procedure. 

 

2.3.1. Static Stability Checking Procedure 

Static stability checking procedure is implemented to preserve balance and avoid unexpected falls. 

There is a number of stability criteria for legged robots e.g. stability margin, tumble stability margin, 

gradient, stability margin, energy stability margin, etc. (Hirose et al. (2001)). There is also a criterion 

which takes into account the friction coefficient between robot’s feet and the ground (Bretl and Lall 

(2008)). Although it allows to precisely define the support polygon it can’t be used for motion 

planning. The procedure is iterative and the computation cost is high. Because of that a fast, basic 

stability criterion defined by McGhee and Iswandhi (1979) is used in the presented motion planning 

system to check the balance for every planned posture of the robot.  

 

 

 

 

 

 

 

 

 

 

The stability checking procedure is shown in the picture attached. At the beginning the centers of 

mass of all the robot’s joints are computed. To compute the center of mass (COM) of the robot the 

instantaneous configuration of the legs and the trunk is used. The robot posture is taken into account 

during COM computation because a significant part of the robot’s mass is allocated in the legs. Thus, a 

modification of the position of the legs significantly changes the COM position. Then a projection of 

the COM on the plane (SM) is computed. If the robot is statically stable, the SM point is located inside 

the convex hull formed by the contact points of the legs being in the stance phase. To check if the SM 

point is located inside the support polygon with L2, L4, L6 vertexes (an example for the tri-pod gait, 

cf. Fig. 3) the areas of the component triangles (4L2L4SM, 4L4L6SM, 4L6L2SM,) are computed. If 

the sum of areas equals the area of the support polygon, the SM point is inside the support polygon, 

and the robot is statically stable. If the sum of the areas is bigger than the area of the support polygon 

the SM point is outside the support polygon and the robot is not statically stable. This static stability 

Figure 21. Projection of the CG in the support polygon [42]. 
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checking procedure is fast but approximate. In practice, to avoid risky postures, the area of the support 

polygon is reduced by relocating the leg contact points towards the center of the support polygon. 

 

 

2.4. Model to be constructed 

 
After analyzing all the valid models, we will have to get rid of those designs that don’t reach the 

requirements specified. Those designs that have less that 100 mm of maximum steplengnth are 

eliminated because have a short range of mobility. Then, we set that the robot will have a normal step 

length of 50mm. However, as it is an experimental robot, we will modify this parameter very often, so 

the Rx set to get the stability margins and the optimum d, will be the average between the normal step 

length and the maximum step length previously acquired. Having all these facts in mind, we will have 

to choose a model that tries to maximize the stability and that gives us the maximum Rx range 

possible. The model to be constructed, the one bold in green in Table 8, will have the following 

specifications: 

 
Table 13. Model to be constructed  

Length 

(Lb) 

Width 

(Dw) 

d Rx 

typical 

Rx 

optimum 

Rx 

max 

Offset 

Coxa 

Angle 

Px Leg 

Projection 

Stability 

Margin 

Longitudinal 

Stability 

Margin 

250 mm 
100 

mm 

45 

mm 
50 mm 87.1 mm 124.2 20º 

109 

mm 
100mm 74.76 80.95 
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Figure 22. Static stability margin and Longitudinal Stability margin 



Darío Delgado Esteban   Final Project
  

Page 49 of 58 
 

 

 

 
2.5. Dynamic stability 

 
2.5.1. Improving dynamic stability with body tilt, y-sway and e-sway 

 

It is clear that dynamic stability is directly related to the implementation of the gait used to move 

the robot. Many researches have been done in order to improve the stability margins and the behavior 

of the robot in different terrain conditions. For example, Tsukagoshi et al. (1996) proposed to use the 

intermittent crawl gait, which intermittently drives the body, to maintain the center of gravity always at 

the central part of the supporting-legs’ triangle. Due to the discontinuous nature of this gait, the speed 

of the vehicle will be relatively slow. Chen (1996) also proposed to include a lateral motion into gait 

planning to deal with the deformation problem of vehicle body mechanical structure.  

When we observe a crocodile walking, a body sway motion is combined with the forward motion 

such that greater stability is achieved. In [29], a similar gait, including body sway motion into motion 

planning without reducing the forward speed of the vehicle, is proposed to increase the stability 

Figure 23. Dimensions of the prototype to be constructed. 
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margin. This sway motion can be included into motion planning for walking on level terrain or 

climbing a sloped surface, to increase the stability margin. In order to effectively and fairly evaluate 

the capabilities for increasing the stability margin of various body sway motions, definitions of various 

stability margins are surveyed. The Longitudinal Stability Margin (LSM) (Song and Waldron, 1987) 

and Stability Margin (SM) (Song and Waldron, 1987) are very useful for evaluating the stability of 

legged locomotion over relatively level terrain. However, because LSM and SM cannot provide a 

quantitative measure of stability when a multilegged vehicle walks on sloped terrain, Messuri and 

Klein (1985) proposed the definition of the Energy Stability Margin (ESM). ESM gives a quantitative 

measure of the impact energy that can be sustained by the vehicle without overturn.  

 

 

Body-tilt compensation (Lee and Orin, 1988), for improving the stability margin when walking on 

sloped terrain, is also studied in this research. Further, two body sway motions: Y-Sway and E-Sway 

are proposed. The Y-Sway motion simply drives the y-component of the center of gravity (CG) of the 

vehicle to reach the y-component of the geometric center of the contact points of the supporting legs. 

The ESway motion, on the other hand, drives the y-component of the CG to reach the locus of the 

desired CG loci for considering equal Energy Stability Levels, defined in (Messuri and Klein, 1985).  

In this article [29], there is a detailed demonstration on how the Energy Stability Margin is 

calculated. We will skip this for simplicity. There is also a demonstration on how does the body tilt, Y-

sway and E-sway affect to the stability margin. The conclusions are very interesting and should be 

borne in mind for the future gait planning of our hexapod robot. 
 

 

2.5.2. Body tilt 

There are three possible cases to be distinguished in terms of body tilt. First, the robot is on a level 

terrain, the robot is on a sloped terrain with an inclination in the y axis, and the robot is on a sloped 

terrain with an inclination in both y and x axis. 

In the three different cases we will have to move the body of the robot so that the projection of the 

center of gravity will coincide with the center of the support pattern. The body should be moved 

Figure 24. On the left robot on even terrain, on the right robot on slopped terrain [29]. 
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parallel to the surface in order to maintain the original height. By doing this, we will maximize the 

stability margin. 

This body motion for tilt compensation shall be considered in the initialization phase. The body 

only adjusts once to the slope before the robot starts walking. 

 

 

2.5.3. Y-Sway Motion 

 

In order to maintain the stability of the body, we simply drive the y-component of the CG to be 

equal to the y-component of the geometric center of the triangle formed by the contact points of the 

support pattern, which is the projection of the support boundary. However, for a hexapod robot moving 

in a straight line with tripod gait, the component y of the CG and the one of the geometric center will 

be the same. 

 

 

 

 

 

2.5.4. E-Sway Motion 

 

The way of further improve stability is by the implementation of E-Sway motion, which considers 

the CG locus for equal Energy Stability Levels.  

This CG locus is the curve line which represents the location of the CG which has the maximum 

energy stability margin. This is defined as the geometric place for the CG where the Energy Stability 

Level of every edge of the Support Boundary is the same. And last, the Energy stability Level 

associated with a particular edge of the Support Boundary is equal to the work required to rotate the 

body CG, about that edge, to the position where the vertical projection of the body CG lies along the 

edge of the Support Boundary. 

Figure 25. Robot on general slopped terrain [29]. 
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In this article we previously mention [29], a simulation with a quadruped robot is exposed. There 

are three cases, varying the sloped terrain as we saw for the body tilt compensation (Fig. 24 and 25). 

The simulation evaluates every three cases with and without Body tilt compensation, y-sway motion 

and e-sway motion. The results show that the stability improves with the Body tilt compensation, and 

we can conclude that Y-Sway is easy to implement and can obtain reasonably stable results, while E-

sway is slightly involved but can obtain the best stability results. Nevertheless, both computational 

algorithms are simple enough so that they can be included into motion planning on real time.  

 

 

 

 

 Without body-tilt compensation With body-tilt compensation (25 cm max) 

No-sway 4º 22º 

Y-sway 15º 32º 

E-sway 24º 36º 

(Without considering the foot-tip contact friction constraints.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 14. Maximum inclination angle with certified stability without slippage [29]. 
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3. CONCLUSIONS 

 

1. In this work the stability of the hexapod robot was observed. Results clearly show that the 

stability of the robot depends on the design of the body, legs distribution around the body, leg 

disposition, offset if coxa angle in corner legs, step length and the gaits.  

2. The optimum leg disposition for maximizing static stability is arachnid type with a projection 

of 100mm on X-Y plane. 

3. The optimum coxa angle for maximizing stability and step length is 20º in corner legs. 

4. The maximum step length for maximizing stability and step length with safety conditions is 

124.2 mm, with a typical step length of 87.1mm. 

5. The optimum distance of displacement middle legs for maximizing stability and energy 

consumption for that leg disposition, coxa angle and step length is 45 mm. 
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ANNEX I 
 

 

 
Code implemented in Mathematica to set the displacement of the middle legs: 
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Example of results for the previous parameters: 

 

 

 


