
 

 

 

Dynamic model of a ball bearing, 
vibration analysis 

 
 
 

 

Final Project 

Université de Picardie Jules Verne, Amiens, France 

 

Martín Torrego, Marcos 

Tutor: Henao, Humberto 

July 2015 



2 
 

  



3 
 

Abstract 

 

This paper presents a simulation model for a ball bearing test rig, where different 

ways of operating can be implemented. This has been done using a time-varying, 

non-linear bearing model obtained in the bibliography. The present model is 

explained carefully so the misunderstood questions in the present bibliography can 

be solve and facilitate future works. 

The model presented is part of a bigger project which objective is simulating faults in 

ball bearings and gears to support an electric motor. Additionally, the results of this 

analyse would be available to see their effects over this motor, as the most important 

part of the electromechanical complex system.  

The numerical and graphic results showed here give an explanation of the 

performance of the dynamic and kinematic of a 2 d.o.f. ball bearing model for three 

and nine balls.  
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1. INTRODUCTION 

Frame of the project 

In the field of the engineering, when a device or machine is designed, it is conceived 

to be as durable and robust as possible. However, that life is limited and in medium 

complexity machines their behaviour during their lives is unclear. Maintenance of 

machines is a well-known activity in the industry and, since the Second Industrial 

Revolution in the beginning of the 19th century, it has undergone thanks to different 

methods. 

Maintenance has a big relevance for ball bearings due to the different problems 

associated to their spoilage. Ball bearings are used to hold big rotate loads and the 

problems that we can detect are noise, vibrations, which can finish in a fault of 

stability, a reduction of the efficiency of the whole system or the deterioration of the 

machine held or the typically used gearbox. Definitely, the worst problem that can 

occur is a breakdown of the machine that, in ball bearings usually mean also a 

breakdown or a big damage of the main machine.  

As Marín [1] consider, detect a trouble in a machine before it happens and causes a 

breakdown in a higher system have always been a worry for the maintenance 

managers. So, historically, different strategies of maintenance have been followed. 

Depending on the sort of execution, the maintenance can be classified by: 

• Corrective maintenance, which develops activities to detect, isolates and rectify 

a fault so that the failed machine can be restored to its normal operable state. 

This sometimes means doing an emergency stop. In Figure 1.1 we can see how 

the costs are increased punctually when a fault occurs as it is shown in Keith 

Mobley [2] 



14  INTRODUCTION 
 

 

Figure 1. 1 Typical cost of a deterioration in plant condition 

 

• Preventive maintenance, where the substitution of pieces that can cause 

failures are changed with certain periodicity. These periods are based on 

statistical criteria. The possibility to choose when this maintenance will be 

made is the biggest advantage of the preventive maintenance. The 

disadvantage is the replacement of pieces that can still work for some time or 

the fail of pieces that have not reach the useful life expected. Figure 2 shows 

the temporary evolution of an example plant which mainly uses this preventive 

maintenance. 

 

 

Figure 1. 2 Typical cost of a preventive maintenance strategy 



15  INTRODUCTION 
 

• Predictive maintenance could be defined as the organized surveillance with 

periodic or continuous measures of system state variables and its comparison 

with established patterns, to determine the instant when a maintenance 

intervention must be done.  

 

Figure 1. 3 Typical overall cash flow from an investment in predictive 
maintenance.  

There are several applying technics of surveillance and diagnostic for the predictive 

maintenance: thermic analysis, study of lubricant composition, vibration analysis, 

ultrasonic examination… After all, the most used technic to do rotating machines 

diagnostics is vibration analysis, due to the possibility of obtaining information of the 

energy flow through the supporting elements and elemental torques of the machine, 

which can show the fault level. 

According to Ballesteros [3], when a predictive strategy of maintenance is applied, the 

useful life of an asset is up to five times longer than applying a preventive strategy. 

The corrective (reactive) strategy is the maintenance strategy that takes the most 

advantage of these assets duration. However, it ignores the risks of waiting until the 

breakdown of the machine. This effect is shown in Figure 1.4. 
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Figure 1. 4 Time comparison between the three main maintenance strategies 

A necessity for creating simulation models for rolling elements bearings has appeared 

in order to get a prediction about the evolution of the defects with a high reduction of 

costs in maintenance and risks. These models allow implement a width range of 

faults under different operating conditions and a prediction of when and how 

problems would appear can be made.  

 

Aim of the investigations 

This project has its framework in the investigations of the “Laboratoire des 

Technologies Innovantes” (LTI), group EESA of the University Picardie <<Jules 

Verne>> with the direction of Mr Humberto Henao. It is conceived as a part of a 

bigger investigation about vibration in a complex electro-mechanical system. The ball 

bearings studied in this project are the points where the rotating movement of the 

system is hold by fixed supports: ball bearings. The item of the project is, in fact, the 

modelling and experimental study of faults inside the ball bearings of an electric 

machine for the surveillance and diagnosis of an electromechanical complex system. 

The aim of the project of internship is, mainly, take interest over the ball bearings 



17  INTRODUCTION 
 

associated to an asynchronous machine, for the utilisation of a numeric model that 

might be found in the existing literature. This machine will be adapted itself from the 

electromagnetic torque transmission to the other parts of the kinematic chain. This 

model will have to incorporate a minimum of characteristics associated to the inner 

and outer races as well as to the rolling elements and their cage. This model has been 

thought to be incorporated to an existing electrical machine model developed in the 

laboratory itself.  The numeric model proposed will be experimentally validated in a 

test bench that belongs to the laboratory and which is instrumented with several sorts 

of sensors (mechanic and electromagnetic), under normal conditions and with faults 

too. The different obtained results will be justified through waveform of the studied 

signals and their respective frequency spectrum. 

General approach and outlines 

The non-linearity of ball bearings behaviour makes that the response different from 

what we can expect and, also, they became very sensitive to the changes on initial 

conditions. When we try to understand the physical phenomena generated in ball 

bearings we resort to empirical models (which arise from statistical processes) or 

mathematical models. Last years, the most used models are those that consider the 

dynamic effects of the ball bearing, going further from the quasi-static technics 

widely used around 1960s. 

 

Figure 1. 5 Ball bearing basic elements description 
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Many kind of models have been developed from those years. Some of them are an 

analytical model of the bearing with elastohydrodynamic contact considering the 

parameters of stiffness and damping in the ideal conditions of lubrication presented 

by Sarabgi [4] or, also, the simplification of the model done by Kennel and Bupara [5] 

where the cage is only moved in the diameter plane. 

Other very relevant works for this project was Darlow et al.[6] and D’Amato et al.[7]. 

Using the technic of demodulation, the analized the vibrations to diagnostic defects in 

ball bearings, with more hopeful results than previous studies. Later, McFadden et 

al.[8] stablished a vibrating model considering the load distribution in the bearing 

and the presence of a localised fault. 

Martin and Honarvar [9] used statistical parameters like skewness and kurtosis to 

analyze the vibrating signal. Mori et al. [10] applies the Wavelet transformations to 

predict the spalling fault in bearings.  

Danthez et al. [11] introducez a new technic of spectral estimation, based in Fourier 

Transform, the autocoherent spectrum, which allows an accurate estimation and 

cancellation of pure tones. 

Later, an evolution of diagnostic models that use simultaneously more than one 

technic at the same time, like Lou et al.(2004), who use both, the wavelet transform 

and the fuzzy control systems to the diagnosis of bearing faults. 

 

The organisation of this paper is the following: 

In the first chapter an introduction around the project is shown with a required 

description of the importance of the control of bearings in the area of maintenance. 

An explanation of the aims of the project is given; beginning by the statement of the 

stage. It finishes with a summary of the articles and people who have already studied 

around this topic or similar. A little description of this document is shown too. 
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The second chapter shows a part of the theories that have been used to analyse ball 

bearings previously. Some of the commonly methods for vibration analyses are listed 

and explained. 

In the third chapter it is explained the performance of a ball bearing with a detailed 

description of the forces and movements that belongs to a ball bearing. 

The fourth chapter shows the equations that represent the model descripted in the 

previous chapter. The differential equations can be used to create a model. 

The numerical method followed is carefully explained in the fifth chapter, with the 

aim of allowing its future reproduction with the minimum of problems. 

In the sixth chapter a conclusion is given after all the explanations. 

The references of the seventh chapter list all the projects, thesis and books that have 

been a source to develop this project. 

The eighth chapter owns the annexes that complete the information given during the 

project. They try to make easier the comprehension the model presented. 
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2. THEORETICAL FRAMEWORK 

Vibration phenomena in machines 

We commonly use vibration to see if a machine is “running right” and our own 

experience sometimes allow us to realise if a machine have a problem. It is natural to 

associate the condition of a machine with its level of vibration, as we can read in 

Dennis (1994). Of course, it's natural for machines to vibrate. Even machines in the 

best of operating condition will have some vibration because of small, minor defects. 

Therefore, each machine will have a level of vibration that may be regarded as normal 

or inherent. However, when machinery vibration increases or becomes excessive, 

some mechanical trouble is usually the reason. Vibration does not increase or become 

excessive for no reason at all. Something causes it - unbalance, misalignment, worn 

gears or bearings, looseness, etc. 

Human perception of touch and feel is somewhat limited, and there are many 

common problems such as the early stages of bearing and gear failure that are 

generally out of the range of human perception. Thus, modern instrumentation for 

measuring vibration on rotating and reciprocating machinery not only minimizes the 

need for extensive experience, but makes it possible to detect developing problems 

that are outside the range of human senses of touch and hearing. 

Vibration can be defined as simply the cyclic or oscillating motion of a machine or 

machine component from its position of rest or balance. It is supposed also that these 

displacements are relatively small and suitable with elastic deformations that 

generate tensions much quite smaller-to the elastic limit of the materials. Forces 

generated within the machine cause vibration. These forces may: 

1. Change in direction with time, such as the force generated by a rotating 

unbalance. 
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2. Change in amplitude or intensity with time, such as the unbalanced magnetic 

forces generated in an induction motor due to unequal air gap between the 

motor armature and stator (field). 

3. Result in friction between rotating and stationary machine components in 

much the same way that friction from a rosined bow causes a violin string to 

vibrate. 

4. Cause impacts, such as gear tooth contacts or the impacts generated by the 

rolling elements of a bearing passing over flaws in the bearing raceways. 

5. Cause randomly generated forces such as flow turbulence in fluid-handling 

devices such as fans, blowers and pumps; or combustion turbulence in gas 

turbines or boilers. 

Some of the most common machinery problems that cause vibration include: 

1. Misalignment of couplings, bearings and gears 

2. Unbalance of rotating components 

3. Looseness 

4. Deterioration of rolling-element bearings 

5. Gear wear 

6. Rubbing 

7. Aerodynamic/hydraulic problems in fans, blowers and pumps 

8. Electrical problems (unbalance magnetic forces) in motors 

9. Resonance 

10. Eccentricity of rotating components such as "V" belt pulleys or gears 

 

The vibrant system model has to represent with the highest exactitude the real 

vibrating element, characterized by the main mass or inertia matrix, the stiffness or 
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the stiffness matrix and the damping or the damping matrix and de degrees of 

freedom (d.o.f.) of the system.  

The vibrating analysis measures, from the external parts of the machine, the vibrating 

signal caused by internal anomalies. The analysis of these signals allows obtaining 

information of the slow degradation problems. Each kind of fault is associated to 

certain vibrations, which allow their identification. 

With the aim of study vibration components, two domains have been used: temporal 

domain and frequency domain, which show the amplitude faced with time and 

frequency respectively. While time domain shows a physical idea of the vibration, it is 

the frequency domain that is going to allow identifying easily the characteristic 

frequency components of the vibration. 

Velocity and acceleration are the most common parameters of amplitude compared, 

rather than displacement. Not only the amplitude of the wave is relevant, but also the 

energy of the fault. In most applications, spike energy alone doesn’t sufficiently 

monitor machine conditions. Concurrently observing it with other vibration 

parameters (such as acceleration, velocity, or temperature) is helpful to establish 

useful correlations. 

When spike energy increases, it usually means that bearing, gear, or other component 

problems are developing. It also means that acceleration and velocity trends should 

be more closely observed for changes; if acceleration readings exceed their allowable 

vibration limits but velocity readings are still acceptable, vibration spectrum analysis 

should be performed to confirm the problem. Repairs should be scheduled for a 

convenient future time. 

When velocity, acceleration, and spike energy readings all exceed allowable levels, the 

observed machine is approaching the end of its useful life. Sometimes, spike energy 

readings may decrease and, just prior to failure, increase again to excessive values; if 
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this happens and is seen in time, the machine should be shut down to prevent more 

avoidable damage. 

Generally, the vibrating cause is around mechanical problems like rotating elements 

imbalance, coupling misalignment, damaged and worn gears, worn bearings, 

aerodynamic or hydraulic forces, etc. 

The vibrating signals can have different frequencies as we can see in the figure 2.1. 

For example, the diapason has one only frequency, while the combustion engine has 

two. However, when we see the vibration of more complex systems, the amplitude-

time study tends to be insufficient to know how many components and their 

frequencies the signal have.  

 

Figure 2. 1 Temporal and frequency representation of the vibration of: a) a 
diapason, b) a combustion engine and c) a complex machine. 

The frequency spectrum of a vibrating signal allows doing an analysis complete 

without losing any information. The aim of this kind of analysis is decompose a 

complex signal into more elemental components which let doing an easier study. 
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Hence, as mechanical rotating systems are associated to cyclic mechanical processes, 

Fourier Series Method is the tool use to breakdown the signal. 

First industrial applications of frequency domain analysis were the analogic spectra 

analyzers (frequency tuning through bandpass filters), but the algorithm FFT (Fast 

Transfer Function) is the most extended analyze after digital analyzers became using 

this FFT algorithm. 

In this section will be summarize some of the most important technics and other 

interesting concepts related with this kind of analysis and that will be applied in this 

project. 

 

Vibration Signal processing 

After measuring a signal or after running a model on the computer, the vibration 

signal is obtain in amplitude-time mode, and different mathematical methods are 

used to extract information from them. Some of the methods commonly used in 

engineer are listed below: 

• Fourier Transformation. Fast Fourier Transform (FFT) is the method used 

here. 

• Power Spectral Density (PSD) 

• Spectral Envelope 

• Spike-Energy 

• Wavelet analysis 
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3. DYNAMIC MODEL OF THE BALL BEARING 

Kinematic and Dynamic of the ball bearing 

Ball bearings are mainly design to support rotatory parts of a machine, reduce its 

friction and facilitate smooth rotation of an axis. The ball bearing that we study is 

going to principally support a radial strength, in the direction of the weight of the 

machine. Their common components are shown in Figure 3.1. Its basic behavior is an 

inner race (or ring) that rolls in conjunction with the shaft of the machine, another 

outer race that is fixed and some rolling elements placed between them. The cage 

(separator) is an auxiliary component that maintains a constant distance between 

each ball. 

 

Figure 3. 1 Ball bearing components 

To simplify the kinematic study, the movement will be considered the plane 

perpendicular to the axis of the shaft. The rolling movement of the shaft and the inner 

race will generate the movement of the balls and their cage. The rolling elements have 
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two movements, rotatory velocity of the ball upon itself, and the rotatory velocity 

around the shaft, which can be seen as follows.  

 

Figure 3. 2 Kinematic of the ball bearing 

For this model it is consider that there is no slippage, that is to say there are rolling 

movements between the balls and the races. Therefore, kinematic equations can be 

obtained directly from its geometry. 

Likewise, a dynamic in the model can be shown as follows. The only load applied is in 

radial direction, and here it is shown only the main load, in the vertical axis. 

 

Figure 3. 3 Dynamic of the ball bearing 

The generic relative displacement-load relation in a ball bearing can be expressed like 

this equation: 
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𝛿𝑛 =  𝐾𝑛 ∙ 𝑄𝑇 ( 3. 1) 

 

Where: 

• Q is the total load applied on the ball bearing. 

• T is a coefficient which value is 2/3 in the cases of ball bearings where the 

contact point between different parts is a point. 

• Kn is a coefficient that depends on the kind of bearing. 

 

The total deformation in the direction of the most loaded element shown in Figure 

3.3, is given by: 

δ =  δin + δout (3. 2) 
 

Where: 

• 𝛿𝑖𝑛   is the deformation between the rolling element and the inner race. 

• 𝛿𝑜𝑜𝑜 is the deformation between the rolling element and the outer race. 

It is useful to say that this deformation will be named also displacement of the 

position of the centre of the inner race. This is normal because its displacement 

appears in the same direction and quantity of the deformation, the sum of all the 

deformations. 

In this project, the parameters used are the ones proposed in the thesis [1], which 

make reference to a ball bearing SKF 6206. So, through a method explained there, 

stiffness constants can be calculated with the geometrical parameters of the ball 

bearing used. The results achieved and used in this model for the stiffness constants 

are: 

𝐶𝑖𝑛 = 905890  
𝑁

𝑚𝑚3
2�
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𝐶𝑜𝑜𝑜 = 937318  
𝑁

𝑚𝑚3
2�
 

The contact ball-inner race and ball-outer race are produced simultaneously. 

Therefore, we can calculate an equivalent stiffness constant value, 𝐶𝑒𝑒 , considering 

that the angle of the forces of both contacts are near to zero, β = 0. Then, 

deformations will be calculated in the direction of the vector 𝑟𝚤��⃑ , considering the 

previous analogy. It is shown in Figure 3.4. 

 

Figure 3. 4 Contact ball with inner and outer races 

In this way, both springs are in series connection and the equivalent stiffness 

constant can be calculated as follows: 

1

Ceq
2
3�

=
1

Cin
2
3�

+
1

Cout
2
3�

 ( 3. 3) 

Replacing in this equation the previous values of Cin and  Cout, we obtain a value for 

this ball bearing of: 

𝐶𝑒𝑒 = 325757 
𝑁

𝑚𝑚3
2�
 

The force that appears between the ball and both inner and outer races can be 

calculated with this relation: 

Fi = Ceq. δi
3
2�

  ( 3. 4) 
It is important to see that here there is a little difference with the source of 

information [1] of this equation. In the model analysed here, this equation that 

represents the forces. In this model 𝐶𝑒𝑒 will be the only value of the stiffness value. 
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Therefore, the force that we will see is the result of both, the inner race and the outer 

race contact with the ball. 

Model of 2 d.o.f. 

Cartesian equations 

The model under study considers that the radial distance from the centre of the balls 

to the centre of the outer race is constant. The outer race is locked and without 

movement, while the inner race is settled to the shaft of the motor rolling with a 

constant angular velocity 𝜔𝑠.  The centre of the outer race will be the origin of polar 

coordinates.  

In order to guess the vibratory characteristics, the model can be considered as a 

damping-spring-mass-mounted system. The elastic deformation between the races 

and the rolling elements, in this model, presents a relation force - non-linear 

deformation that can be obtained through Hertzian theory. It will be then described 

by the constants of damping coefficient (D), stiffness constant (Ceq) and the mass of 

the shaft ( ms), inner race ( min) and balls (mb). 

 

Figure 3. 5 Spring-mass model of the ball bearing 



30 DYNAMIC MODEL OF THE BALL BEARING 
 

 

In the centre of the outer race will be the reference system origin. The positions of the 

centre of the inner race and the centre of the balls will be named as 𝐿𝚤𝑛�����⃑  and 𝑟𝚤��⃑ , 

respectively. The position of the ball from the centre of the inner race would be 𝜌𝚤���⃑ . 

Some hypotheses have been considered in this simplified model: 

• Deformations follow the Hertzian theory. 

• Balls and rotor movements are in the same plane. 

• Angular velocity of the cage is constant. 

• Balls do not have angular rotatory velocity. 

• All components are rigid. 

• There is no slippage between the balls and the surfaces where the movement is 

produced. 

• The cage keeps all balls at equal intervals, so there is no interaction between 

balls. 

• The distance between the centres of the balls to the centre of the outer race is 

constant (27mm in this model). 

• Despite the deformation ball – inner race has the direction of the line Ob −

 O𝑖𝑛, as the angle β is very little, we can consider that this deformation is in the 

line O −  O𝑏. Because of the same reaction, we will consider that the reaction 

F𝑖of the ball to the inner race has the same direction O −  O𝑏, and their 

components are calculated through the angle αi of each ball. 
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Figure 3. 6 Proposed Ball bearing model    

 

In a model of two degrees of freedom (2dof) the movement equations are obtained 

from the application of Newton equations to the diagram of the ensemble rotor – 

inner ring. The following figure: 

• Weight of the inner ring and weight of the rotor, ((m𝑖𝑛 + 𝑚𝑟𝑜𝑜𝑜𝑟) · 𝑔 

• An extern force, Fe𝑥, Fe𝑦 

• A radial force due to unbalance in the rotor, 𝐹𝐹 

• The forces due to the elasticity of the contact, 𝐹𝐹𝐹𝑥𝑖 , 𝐹𝐹𝐹𝑦𝑖 . 
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Figure 3. 7 Diagram of forces of the ball bearing 

 

The Newtown’s Second Law, in normal coordinates, is as follows: 

(min + mrotor) ·  ẍ = � Fx       ;             (min + mrotor) ·  ÿ = � Fy (3.5) 

 

Simplifying the value of the angle β ≈ 0, we can get the equations for both axes: 

 In the x direction: 

(min + mrotor) ·  ẍ = Fex + Fu · cos(αi) −� Fini · cos (αi)
nb

i=1

       
(3.6) 

In the y direction: 

(min + mrotor) · ÿ = Fey + Fu · sin(αi) −� Fini · sin(αi)
nb

i=1

−  (min + mrotor) · g    
(3.7) 

The forces of the balls are calculated through the Herztian theory shown in the 

equation 3.4, where the value of the deformation is calculated as the displacement of 

the inner race: 
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δi = xin · cos(αi) + yin · sin(αi)   if δi  ≥ 0   
                            δi = 0                        if δi < 0 

 

(3.8)    

Differential equations of the movement with 2 d.o.f. model 

The equations 3.9 and 3.10 represent the differential equations of the movement of 

the rotor, applying the Newton’s Second Law, when the ball bearing has 3 or 9 balls. 

So, the value of 𝐹𝑏is changed by these values for each one of the models. In the x 

direction: 

(min + mrotor) ·  ẍ = Fex + Fu · cos(αi) −� Fini · cos (αi)
nb

i=1

       
(3.9) 

And in the y direction: 

(min + mrotor) · ÿ = Fey + Fu · sin(αi) −� Fini · sin(αi)
nb

i=1

−  (min + mrotor) · g    
(3.10) 

It is important to say that the system of unities used is the international system. 

Therefore, each terminus have the same unites which, in this case, they are 𝒌𝒌 ∙ 𝒎/𝒔𝟐, 

or, which is the same, 𝑵(newtons).  

Model of 2+Z d.o.f. 

In this section the equations of a model of 2+Z d.o.f will be shown, for the same ball 

bearing that was introduced above. The Z d.o.f. added to the model belongs to the 

number of balls included in the ball bearing model. Hence, the ball bearing model 

with 3 ball presents 5 d.o.f and the model with 9 ball 11 d.o.f.  

Each d.o.f. added comes from the the equation that represent the balance of forces of 

each ball. The 2+Z equations are, as is explained in [1], the same as in the 2 d.o.f plus 

the equations of the balls. So, the equations that are added to the model are, for 3 

balls, as follows: 
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(mbo) · r1̈ = Cin ∙ δin1
3
2� − Cout ∙ δout1

3
2� − Din ∙ ṙ1 ∙ Γin − Dout ∙ ṙ1 ∙ Γout +… 

… + mbo ∙ r1 ∙ α̇in2 − mbo · g ·  sin(α1) 

(3.11) 

(mbo) · r2̈ = Cin ∙ δin2
3
2� − Cout ∙ δout2

3
2� − Din ∙ ṙ2 ∙ Γin − Dout ∙ ṙ2 ∙ Γout +… 

… + mbo ∙ r2 ∙ α̇in2 − mbo · g ·  sin(α2) 

(3.12) 

(mbo) · r3̈ = Cin ∙ δin3
3
2� − Cout ∙ δout3

3
2� − Din ∙ ṙ3 ∙ Γin − Dout ∙ ṙ3 ∙ Γout +… 

… + mbo ∙ r3 ∙ α̇in2 − mbo · g ·  sin(α3) 

(3.13) 

 

Where: 

Γin = 0    if δin < 0          ;      Γin = 1    if δin  ≥ 0   
Γout = 0    if δout  ≥ 0    ;       Γout = 1    if δout  ≥ 0 

(3.14)    

 

Figure 3. 8 Diagram of forces (2+Z d.o.f.) 

The diagram of forces is the same as the one used before, as well as the 

approximations. The force 𝐹𝑖𝑛 that appears in each ball can be considered to be 

applied in the  𝑟𝑖 axis due to the approach β ≈ 0.  
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4. NUMERICAL SIMULATION METHODOLOGY 

In this section the equations of the model that have been explained before will be 

implemented. The values for the constants will be taken from [1] so the results can be 

compared. The ball bearing study is SKF 6206 which geometry and physical 

properties are described in the following pages. 

The program used for doing these calculations is Matlab and Simulink. As they are 

differential equations, the first idea was working in a sheet o Matlab and solving the 

model using the method ode45. Despite the difficulty of the model due to its non-

linearity, a mathematical method was applied to solve it. However, it was very slow 

and complicated to develop later so the model was implemented in Simulink. Here, 

all the blocks will be shown and explained, so there are not further mistakes applying 

this model. 

These simulations tools have been frequently used for the vibration analysis, and 

even more for simulate mechanical systems like ball bearings. They are also used to 

simulate under different kind of working conditions. 

Simulink is a tool that works with blocks, which simplifies the edition of the 

equations as well as its comprehension. The values of the constants introduced in 

Simulink can be defined. These values have been written in a sheet called 

“Data_bearing_2dof.m”, that can be found in the annexes. Its execution is required 

before running Simulink. The results can also be sent to the Workspace through the 

block “simout” so they can receive a better analyse.  

Any kind of graphic, like temporary or frequency domain graphics can be shown in 

both places. Here, usually, the temporary graphics will be in a Scope while the 

frequency domain ones will be shown through Matlab, where the FFT is applied. 
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Model of 2 d.o.f. with 3 balls 

In this section the integration of (3.9) and (3.10) differential equations into Simulink 
is explained. The values of the constants that will not change and are defined in 
Data_bearing_2dof.m are: 

Damping coefficient (experimental [1])  D = 0.0158 N ∙ s mm�  

Equivalent stiffness constant:   Ceq = 325757 N
mm3

2�
�  

Geometry:  Ball diameter:  Db = 9.5 mm 

  Cage diameter:  Dc = 46 mm 

The structure of the Simulink model is as follows:  

 

Figure 4. 1 Structure of the Simulink model 

 

This figure is a representation of the real model implemented in Simulink which 

blocks are shown below as they are seen in the program:  
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We can see in figure 4.1 the blocks that are required to define the model. Their 

characteristics and functions are explained below: 

1. Movement block. Inside this block all the parameters as angles as velocities are 

defined.  

 

Figure 4. 3 Movement block of 3 balls model 

Figure 4. 2 Blocks 
of 3 balls model in 
Simulink 
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Inside this job, angles are defined as follows: 

 

Figure 4. 4 Inside of movement block of 3 balls model 

The frequencies of the block, f_shaft and f_cage are defined in the file 

Data_bearing_2dof.m. 

The angles 2*pi/3 represent the gap between each consecutive ball. 

The sub block that has the letters “a-->a 0-2pi” change the angle into a value between 

0 and 2 π rad, but does not affect the result. Its interior is this: 

 

Figure 4. 5 Transformation to 0-2pi rad block 
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2. Ball block. Each one of these block define one terminus of the sum term of the 

equations (3.9) and (3.10). We can see them below: 

 

Figure 4. 6 Ball blocks of 3 balls model in Simulink 

The interior of each block is exactly the same and it is as follows: 

 

Figure 4. 7 Inside of ball blocks 

 

Here, the terminus 1000 is different from the original model of [1], so an explanation 

is required:   

This ball block represents the terminus Fini · cos (αi)  and Fini · sin  (αi)  of the 

differential equations (3.9) and (3.10). As it was said in the previous section, the 

unities of each terminus are newton.  

In the one hand, the constant 𝐶𝑒𝑒 is expressed in 𝑁/𝑚𝑚3/2, so the value of δi
3
2�  has to 

be expressed in 𝑚𝑚3/2. Or, in the same way, δi is expressed in  𝑚𝑚. If we want to 
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express δi in  𝑚𝑚, from the equation (3.8), the unities of the position of the inner ring 

(𝑥𝑖𝑛,𝑦𝑖𝑛) have to be introduced in 𝑚𝑚 too. 

On the other hand, the values of the position of the inner race (𝑥𝑖𝑛,𝑦𝑖𝑛) are calculated 

in the block of the inner ring, and its output is in 𝑚, because the terminus of the 

aceleration in the equation have to be in 𝑚/𝑠2. 

After this explanation, the model presented here probably has this difference from 

the models shown in the previous bibliography. The results are compared in the 

following section and they are quite similar though. 

 

3. Inner ring block, 𝑥𝑖𝑛 and 𝑦𝑖𝑛. These two blocks are quite similar and the only 

difference is in the terminus added to the equation in y axis because of the 

gravity. They are seen in Simulink as it is shown in figures 4.8 and 4.9. 

 

Figure 4. 8 Inner ring blocks of 3 balls model in Simulink 

According to the inputs of the figure 4.8 , the three forces (six values) come from the 

ball blocks, and the inner race angle, a_in, comes from the movement block. Then, 

the outputs are the signals that we want to measure. Only the position, x_in and y_in 

are used again in the ball blocks. 
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Looking inside the inner ring blocks, we can see these distributions: 

 In the X axis: 

 

Figure 4. 9 Inside Inner ring blocks of 3 balls model in Simulink - X axis 

 

In the Y axis 

 

Figure 4. 10 Inside Inner ring blocks of 3 balls model in Simulink - Y axis 

 

Here there are important things that could create confusion. Firstly, the terminus of 

the damping coefficient 𝐷 doesn’t appear in the differential equations of motion. This 
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terminus would go with a first derivate and the mathematical problem become more 

difficult and long. However, in iterative process programs like Simulink this is not a 

problem.  

Secondly, as the terminus doesn’t come in the equations, its sign has been taken 

negative because it works as a damper, trying to reduce the variations of velocity of 

the inner ring.  

Thirdly, a factor of 1000 has been incorporated to the model. It has been required 

after an analysis similar to the one done previously in the ball block with the value of 

the position. As the factor D is expressed in  𝑁 ∙ 𝑠/𝑚𝑚, the value of the velocity has to 

be introduced in 𝑚𝑚/𝑠. And the output of the sinal of the velocity is in 𝑚/𝑠, so a 

factor of 1000 is required. 

 

4. Graphics block. In spite of considering this as a block, in the model they have 

been drawn separately. Here most relevant values have been represented.  

 

Figure 4. 11 Graphics block 
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For the analysis of the model, the vertical axis has been the most represented because 

it supports the weight of the motor. The outputs in the values of the position 

coordinates allow having the results as a vector in the workspace. Then, a Fast 

Fourier Transformation is made to show an analysis in frequency.  

 

Figure 4. 12 Example of graphic results. ForcesY(N),deltas(m),Ay (m/s2) 
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Model of 2 d.o.f with 9 balls 

The simulation model for 9 balls is very similar for the one of 3 balls. Only some 

changes are necessaries. The equations represented are the same, (3.9) and (3.10), 

with the value 𝐹𝑏 = 9. The blocks of diagram in Simulink are as follows: 

 

Figure 4. 13 Blocks of 9 balls model in Simulink 
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1. Movement block. The angles defined here have smaller gaps between then, but 

the performance is just the same. The diagram within this block is as follows:  

The angle gap between each consecutive ball is 2𝜋
9

= 40˚. 

 

 

Figure 4. 14 Inside of movement block of 9 balls model 

 

2. Ball block. Here the block is completely the same. It is not required to make any 

change because it works only with the angle of the ball and the position of the 

inner ring, the same as in 3 balls model.  
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3. Inner ring block, 𝑥𝑖𝑛 and 𝑦𝑖𝑛. Within these blocks the size of the diagram is bigger 

because it has to add each one of the 9 terms of the balls in the equations, but the 

performance is the same. It is as follows:  

Equation in X axis: 

 
Figure 4. 15  Inside Inner ring blocks of 9 balls model in Simulink - X axis 

Equation in Y axis: 

 

Figure 4. 16 Inside Inner ring blocks of 9 balls model in Simulink - Y axis  
 

4.  Graphics block. The graphics showed here are equivalents to those of 3 balls 

model.  
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5. NUMERIC MODEL RESULTS 

In this section, results from the models of 3 and 9 balls are showed and explanations 

about their coherence with normal results are given. Those graphics will be also 

compared with the experimental results given in [1] so this model has been able to be 

validated. 

The simulations have been done with a fixed step size of 10^-5 with solver method 

ode3 (Bogacki-Shampine) in both cases. This size of the step allowed having a reliable 

response and the executing time is not too long. The alternative of variable-step gave 

wrong results or even divergent.  

Despite both models have consistent results, 9 balls model will be more used because 

it is more representative of the real ball bearing. 

Model of 2 d.o.f. with 3 balls 

In the simulations of this model we can see a transitional period of around 0.1-1s 

which depends on the original conditions. The steady state is not very clear though, 

and that is because of the high frequency noise that comes from the model.  

º  

Figure 5. 1 Transitional period of time for forces in the 3 ball model.  
Graphic of Y axis Forces (N) – time (s) 
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Each one of the forces represented in the figure 5.1 is represented by one colour, so its 

cyclic performance can be seen. The figure 5.2 shows the most important signals that 

we can obtain in the model. As it was said before, here are represented the Y axis 

results, but X axis results have similar shapes with different values depending 

especially on the value of the extern force applied. The five graphics shown in this 

figure represents: the angle of the balls and the shaft, the forces that appears over the 

balls (that is why it is negative), the deformation or the displacement (delta) of the 

balls generated by the forces, the acceleration of the inner race and its velocity. The 

two last results that appear here appear to have too big amplitudes, but they are not 

representative of the reality. The reason is the high amplitude that appears at high 

frequencies is bigger than the amplitude of the main vibration, so it is impossible to 

see anything. 
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3 balls model with load of ms=5kg, Fex_y=2000N, Fex_x=0; Fu=0 and a 

frequency fs=20 Hz. 

 

Figure 5. 2 Temporal response of Angles(rad), Forces(N), delta(mm), 
Acceleration (m/s^2), velocity (m/s) for Y axis 

 

Figure 5. 3 Temporal response of Forces (N), Acceleration (m/s^2), velocity for 
X axis 
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In order to obtain some information from the vibration signal (acceleration), a filter 

was set before the scope of the acceleration for the figure 5.4. In spite of the fact that 

the verification of this result has not been checked, it is useful to say that the 

amplitude of the low frequencies of the signals is not as shows the previous figure. 

Here is presented a signal after a filter of Simulink, which filter for frequencies higher 

than 30Hz.. 

 

Figure 5. 4 Temporal response for acceleration (m/s^2)- t(s) in axes: a) X; b) Y 
 

 

 

Figure 5. 5 Temporal signal of the vibration of the ball bearing wiithout faults, 
Load = 1500 N, rotational speed fs = 20 Hz and ms=5 kg. 

 

Here, it is interesting to make a comparison with the model presented in [1], due to a 

lack of explanation of the main frequency that appears in the temporal signal of the 
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figure 5.5. Both models are presented under the same conditions, and the main 

frequency is quite different though.  

The explanation for the graphic of this project is that the frequency that appears is 

three times the frequency of the cage, because there are three balls that roll once per 

revolution of the cage. The frequency of the cage, in this case, is fc=7.9348 Hz, so, the 

frequency of the main vibration will be 23.804 Hz, as it is shown if figure 5.4.  

𝑓𝑓 = �1 −
𝐷𝑏𝑏𝑏𝑏
𝐷𝑐𝑏𝑐𝑒

� ∙
𝑓𝑠
2

 
5.1 

 

The other interesting graphic that is presented in this project, and that becomes very 

useful for the analysis of vibration signals, is the frequency analysis after the Fast 

Fourier Transform. After applying this FFT to the previous temporal situation of the 

20 Hz and 1500 N, the results are shown in these graphics: 

 

Figure 5. 6 FTT of the ball bearing with Load = 1500 N. and rotational speed fs = 
20 Hz and ms = 5 kg 
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Figure 5. 7 FTT of the ball bearing with Load = 1500 N. and rotational speed fs = 
20 Hz and ms = 5 kg 

These both graphics above are the same. They show different ranges of frequencies.  

 

Model of 2 d.o.f with 9 balls 

For make a general comparison of both models, in figure 5.8 is presented the 

transitional part of the signal modelled. It is not usual have two different transitional 

times within the same model, and here the acceleration reaches the steady state in 

seven seconds while the forces seem to reach it in two. 
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Figure 5. 8 Transitional period of time in the 3 balls model.  
Graphic in Y axis of Acceleration (m/s^2) and Forces (N) – time (s) 

 

For this model, more results are presented so a detailed explanation of its 

performance can be done.   

First of all, as the number of the balls is too high to have clear graphics, only four 

balls are represented each time. Also, in order to make comparisons between 

different situations, a main model will be shown, figure 5.9, and then some changes 

will be done for the others situations. Only Y_axis will be compared in order to avoid 

having a too long rapport. 

As it was said in the 3 balls model, the acceleration in the 9 balls model has 

components of higher frequency that are very relevant. However, in this one their 

importance is much less in steady state, as it is shown in figure 5.9 d) and e).  

From the temporal response, it is also shown the FFT, where the acceleration signal 

can be analysed. Figure 5.10 and 5.11 show this frequency analysis where only steady 

state has been taken, avoiding the error introduced by transitional time. Within this 

figures, the main frequency can be read, and match which the frequency of 71.413 Hz 

obtained through the equation 4.1. This is the frequency at which all rolling elements 

are doing their forces as a result of passing by the 180 to 360º, that is to say the lower 

part of the ball bearing where the balls have to make force.  
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9 balls model with load of ms=5kg, Fex_y=1500N, Fex_x=0; Fu=0 and a 

frequency fs=20 Hz. 

 

Figure 5. 9 Temporal response of: a) angles (rad), b) Forces_X(N), c) 
Forces_Y(N), d) delta (mm); e) Aceleration_X (m/s^2);  f) Aceleration_Y 
(m/s^2) 
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Figure 5. 10 FFT of 9 balls model 

 

Figure 5. 11 FFT of 9 balls model zoom 

As can be seen in figure 5.10, there are important high frequency components that 

can also be seen in acceleration signals of figure 5.9. From now, only the low 

frequencies graphics will be shown in the FFT analysis. There, the main frequency 

and their principal harmonics can be seen well. More examples of this model are 

shown below: 
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9 balls model with load of ms=5kg, Fex_y=1500N, Fex_x=0; Fu=0 and a 

frequency fs=28 Hz. 

 

Figure 5. 12 Temporal response of 9 ball 28 hz -1500Ny: a) Forces_Y(N), b) 
delta (mm); c) Aceleration_Y (m/s^2) 

 

Figure 5. 13 FFT of 9 balls model, 28 Hz 

The effect of increase the speed of the shaft until 28 Hz can be seen in the Figure 5.12, 

where both accelerations have nearly doubled the amplitude of the main frequency. 

Also, it is possible to verify that the amplitude of the forces have not changed, only its 

frequency. The main that we look for is 99.978 Hz. 
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9 balls model with load of ms=5kg, Fex_y=1500N, Fex_x=1000; Fu=0 and a 

frequency fs=20 Hz. 

 

Figure 5. 14 Temporal response of 9 ball 20 Hz -1500Ny and 1000Nx: a) 
Forces_X(N), b) Forces_Y(N), c) delta (mm); d) Aceleration_Y (m/s^2) 

 

Figure 5. 15 FFT of 9 balls model, 20 Hz 1000Nx 
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Comparing this result with the figure 5.9, we can see the reaction of the force in X 

axis. This force can be applied in both senses changing the minus sign of the force.  

 

In order to validate the model, it is necessary to see the values of the ball bearing 

in a certain moment. Then, they can be checked through the equation (3.9) and 

(3.10). An enough brief time is shown in the following figure.  

 

Figure 5. 16 Temporal response of 9 ball 20 Hz, punctual analysis.  
a) Angles (rad), b) Forces_X(N), c) Forces_Y(N), d) delta (mm); e) Aceleration_Y 
(m/s^2) 
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At the time 𝑡 =  9.66𝑠: 

a)  𝛼1 = 4.082 𝑟𝑟𝑟;  𝛼2 = 4.781 𝑟𝑟𝑟;   𝛼3 = 5.48 𝑟𝑟𝑟;     𝛼4 = 6.178 𝑟𝑟𝑟;  
  𝛼1 = 233.9˚;         𝛼2 = 273.9˚;          𝛼3 = 314˚;              𝛼4 = 354˚;            
b)   𝐹𝑥1 = −108.5 𝑁;  𝐹𝑥2 = 35.1 𝑁;      𝐹 𝑥3 = 361.4 𝑁 ;     𝐹𝑥4 = 212.3 𝑁 ; 
c)  𝐹𝑦1 = −149.3 𝑁;  𝐹𝑦2 = −503.4 𝑁;𝐹𝑦3 = −374.2 𝑁 ;  𝐹𝑦4 = −22.3 𝑁 ;  

 f)  The low frequency acceleration component at this time is 3 ∗ 10−5𝑚/𝑠2, which 

is approximately zero despite it is not possible to be seen in the picture above. 

Finally, adding up the forces supported by the balls in Y axis, the result 

is 1049.2 𝑁. On the other side, the forces to be supported are: 

𝐹𝐹𝑥𝑦 = −1000 𝑁 

𝑚 ∙ 𝑔 = 5.035 𝑘𝑔 ∙ 9.81 
𝑚
𝑠2

=  49.39 𝑁 

We can see that both sides of the equation (3.10) have the same value, so the units of 

the model are checked and a first validation can be made. 
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6. CONCLUSIONS AND FUTURE WORK 

The project has focused, on the one hand, on the understanding of the current 

practices and methodologies of the teachers and researchers that have developed this 

topic before. Therefore, some books, theses and projects have been examined and 

accomplish to know what the current state of the technique is. Then, some models 

have been tried. 

On the other hand, a model of ball bearing had to be chosen from the bibliography in 

order to implement it into Matlab and Simulink.  Different models were found in 

other project and thesis and, after the lack of information and reliable explanations, 

the model developed has been a 2 d.o.f. model that allows understanding the basic 

dynamics of a ball bearing.  

The performance of this project has allowed finding some possible mistakes in the 

main source of information, [1], so some changes have been proposed. These 

improvements will try to help into the understanding of a ball bearing as well as 

giving the possibility of applying these changes into more in-depth models like the 5 

d.o.f. presented in the previous bibliography.  

Finally, as future works, the main task would be improving the 5 d.o.f. that has given 

divergent results that should be fixed. It is probable that the analyses done here help 

into the implementations of this work. 

As a continuation of the modelling of the defaults into a ball bearing, it would be 

interesting to implement a model like the one proposed in [13], despite is not 

explained well enough in that bibliography. However, this model would allow 

simulating the slippage as well as a gear besides the ball bearing. 
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The last model that could be done as the aim of an electric laboratory would be 

implementing within a model the effect of the vibrations over the currents and other 

parameters of a motor. This model would be useful because it could detect the kind of 

the defaults through just measuring the currents of the motor as a complement of the 

measuring with accelerometers. 
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8. ANNEXES 

Annex 1: File “Data_bearing.m” 

 
ms=5.0+0.0350;  % Mass [=] Kg (motor + inner race) 
g=9.81;         % Gravitational acceleration [=] m/s^2 
  
% Stiffness constant: 
    Cin=805140;        % [=] N/mm^1.5 
    Cout=872780;       % [=] N/mm^1.5 
    Ceq=(Cin^(2/3)+Cout^(2/3))^(3/2); 
    %Ceq=Cin; 
  
% Damping coeficient (experimental):  
    D=0.01582;         % [=] Ns/mm  
  
% Geometry % [=] mm; 
    %Ball diameter 
    Db=9.5;               % [=] mm;        
    % Cage diameter (Ring center, ball center) 
    Dc=(55.507+36.493)/2; % [=] mm;    
  
% Rolling velocity 
    % Shaft Frequency 
    fs=20;             % [=] Hz 
    ws=2*pi*fs;        % [=] rad/s 
    % Cage Frequency 
    wc=(1-Db/Dc)*ws/2; % [=] rad/s 
    fc=wc/(2*pi);      % [=] Hz 
  
% Forces  
    % Disequilibrium force (radial). Cause more waviness. 
    Fu=00;             % [=] N 
    % External Forces on the ball bearing in X&Y axes 
    Fex=-00;         % [=] N 
    Fey=-200;         % [=] N 
  
% Frequencies at which the ball passes the defect on the race 
    Nb=3;       % Number of balls 
    alpha=0;    % Contact angle 
    % Ball Pass Freuency of the Outer race 
    BPFO=Nb*fs/2*(1-Db*cos(alpha)/Dc);         % [Hz] 
    % Ball Pass Freuency of the Inner race  
    BPFI=Nb*fs/2*(1+Db*cos(alpha)/Dc);         % [Hz] 
    % Ball Spin Frequecy  
    BSF=Dc*fs/(2*Db)*(1-(Db*cos(alpha)/Dc)^2); % [Hz] 
  



65  ANNEXES 
 

Annex 2: File “FFT_fromSimulink.m” 

 
Inicio=length(simout.Time)/3; %Transitional period time 
  
for Grafico=1:1  
if Grafico ==1      %***Aceleración*** 
tx=simout.Time(Inicio:end);                
Fsx=100/(tx(101)-tx(1)); % Sample frequency 
ty=simout1.Time(Inicio:end);                
Fsy=100/(ty(101)-ty(1)); 
Ax=simout.data(Inicio:end); 
Ay=simout1.data(Inicio:end); a=.3;b=10*a;h=a; 
end 
if Grafico==2      %***Velocity*** 
tx=simout4.Time(Inicio:end);                
Fsx=100/(tx(101)-tx(1));  
ty=simout5.Time(Inicio:end);                
Fsy=100/(ty(101)-ty(1)); 
Ax=simout4.data(Inicio:end); 
Ay=simout5.data(Inicio:end); a=0.002*h;b=1.2*a; 
end 
if Grafico==3      %***Posición*** 
tx=simout2.Time(Inicio:end);                
Fsx=100/(tx(101)-tx(1));  
ty=simout3.Time(Inicio:end);                
Fsy=100/(ty(101)-ty(1)); 
Ax=simout2.data(Inicio:end); 
Ay=simout3.data(Inicio:end); a=0.000001*h;b=a; 
end 
  
Lx=length(Ax); 
Ly=length(Ay); 
  
NFFTx = 2^nextpow2(Lx); % Next power of 2 from length of y 
Xs = fft(Ax,NFFTx)/Lx; 
fx = Fsx/2*linspace(0,1,NFFTx/2+1); 
  
NFFTy = 2^nextpow2(Lx); % Next power of 2 from length of y 
Ys = fft(Ay,NFFTy)/Lx; 
fy = Fsx/2*linspace(0,1,NFFTy/2+1); 
  
% Plot single-sided amplitude spectrum. 
  
figure(-1+2*Grafico) 
subplot(2,1,1);  plot(fx,2*abs(Xs(1:NFFTx/2+1)))    
    title('Amplitude Spectrum of A-V-P Xs(t) ') 
    xlabel('Frequency (Hz)') 
    ylabel('|A_Xs(t)|') 
    axis([0,200,-a/100,a]) 
subplot(2,1,2);  plot(fy,2*abs(Ys(1:NFFTy/2+1)))    
    title('Amplitude Spectrum of A-V-P Ys(t) ') 
    xlabel('Frequency (Hz)') 
    ylabel('|A_Ys(t)|') 
    axis([0,200,-a/100,a]) 
     
figure(2*Grafico) 
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subplot(2,1,1);  plot(fx,2*abs(Xs(1:NFFTx/2+1)))    
    title('Amplitude Spectrum of A-V-P Xs(t) ') 
    xlabel('Frequency (Hz)') 
    ylabel('|A_Xs(t)|') 
    axis([0,2000,-b/100,b]) 
subplot(2,1,2);  plot(fy,2*abs(Ys(1:NFFTy/2+1)))    
    title('Amplitude Spectrum of A-V-P Ys(t) ') 
    xlabel('Frequency (Hz)') 
    ylabel('|A_Ys(t)|') 
    axis([0,2000,-b/100,b])    
end 
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