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ABSTRACT 

Nanotechnology is one of the science fields with a great development in the last 

years, with an imperative necessity to produce systems with specific functionalities at 

nanometric scale. Nanotechnology has provided sophisticated tools that have 

revolutionized many areas of knowledge, such as biomedical science, where enables 

improving efficiency and accuracy of current diagnostic techniques, and developing safer 

and more effective therapeutics
1
. 

In many cases, these systems are inspired by nature, trying to mimic nanometric 

structures formed by proteins and or other macromolecules in the living tissues and cells. 

Elastin-Like-Recombinamers (ELRs) are excellent candidates to develop systems that 

mimic the extracellular matrix structure due to their smart behavior and their recombinant 

nature. And they could be applied for instance, to develop treatments for connective tissue 

diseases as arthrosis. 

The recombinant nature is one of the most important features of these polymers, 

that allows to produce them by recombinant expression in Escherichia coli from pre-

designed genes. So we are able to design new materials with enormous potential that 

integrate new properties incorporated by genetic engineering for specific applications in 

nanomedicine. 

The study shown here is focused on the development of new systems intended 

for injectable hydrogels in regenerative medicine, and for spherical nanocarriers in drug 

delivery. Based on the ability of self-organization into nanostructures demonstrated by 

previous amphiphilic tetrablock ELR
2
, three new copolymers have been developed varying 

the individual blocks size, of the original tetrablock ELR. Thus, the aim of this 

investigation is to shed light about the influence of the block sizes on the physicochemical 

properties and on the structuration of the nanoparticles and of the hydrogels, with the final 

goal of setting the basis to perform a rational design from the sequence level. 
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RESUMEN 

La nanotecnología es uno de los campos de la ciencia que mayor desarrollo ha 

experimentado en los últimos años, gracias a la necesidad imperiosa de producir nuevos 

sistemas con funciones específicas a escala nanométrica. La nanotecnología ha 

proporcionado sofisticadas herramienta, que han revolucionado múltiples áreas del 

conocimiento, como es el caso de la ciencia biomédica, donde ha permitido mejorar la 

eficiencia y la precisión de las técnicas diagnósticas actuales, y el desarrollo de terapias 

más efectivas y seguras
1
. 

Estos sistemas, en muchos casos, están inspirados en la naturaleza, intentan 

imitar las nanoestructuras formadas por proteínas u otras macomoléculas en tejidos y 

células vivas. Los Recombinámeros del tipo Elastina (ELRs) son unos excelentes 

candidatos para el desarrollo de sistemas que mimetizen la matriz extracelular debido a su 

comportamiento inteligente y a su naturaleza recombinante. Pudiendo ser empleados por 

ejemplo, para el desarrollo de tratamientos contra enfermedades del tejido conectivo, como 

la artrosis. 

Su naturaleza recombinante es una de las principales características de estos 

polímeros, ya que permite su producción mediante expresión recombinante en Escherichia 

coli a partir de los genes pre-diseñados. Así, vamos a ser capaces de diseñar nuevos 

materiales con un potencial enorme que integre nuevas propiedades incorporadas a través 

de ingeniería genética para aplicaciones específicas en nanomedicina. 

El estudio expuesto se centra en el desarrollo de nuevos sistemas pensados para 

su aplicación como hidrogeles inyectables en medicina regenerativa, y para su aplicación 

como nanotransportadores esféricos para liberación de fármaco. Basándonos en la 

capacidad de auto-organización en nanoestructuras demostrada por ELR tetrabloques 

anfifílicos previos, tres nuevos copolímeros han sido desarrollados variando el tamaño de 

los bloques individuales  del ELR tetrabloque original. De este modo, el objetivo de esta 

investigación es arrojar luz sobre la influencia del tamaño de los bloques en las 

propiedades físico-químicas y en la estructuración de las nanopartículas y de los 

hidrogeles, con la finalidad de sentar las bases que permitan llevar a cabo un diseño 

racional a partir de la secuencia. 
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1 INTRODUCTION 

1.1 Introduction to nanoscience and nanotechnology 

Nanoscience is the study of the properties of matter at the nanoscale. Many 

research fields study these phenomena, like physics (e.g. quantum effects), chemistry (e.g. 

supramolecular chemistry; colloids, micelles, or polymer molecules) or biology and 

biochemistry (e.g. interactions in cell signaling, nanomachines)
3
. 

Nanotechnology arises from the knowledge derivate 

from Nanoscience, and is commonly defined as the 

understanding, control, and restructuring of matter on the order 

of nanometers to develop new materials with new or superior 

properties or functions
4
. 

Nanotechnology encompasses two main approaches:  

 The “top-down” approach (physics) in 

which larger structures are reduced in size to 

the nanoscale while maintaining their original 

properties without atomic-level control (e.g., 

miniaturization in the domain of electronics) or 

deconstructed from larger structures into their 

smaller parts. 

 The “bottom-up” approach (chemistry), 

in which materials are engineered from atoms 

or molecular components through a process of 

assembly or self-assembly. In this work, this approach has been used to 

get hydrogels based on cross-linked nanoparticles from individual 

protein chains.  

1.2 Protein based materials: ELASTIN-LIKE RECOMBINAMERS (ELRs) 

Protein based-materials have drawn attention of numerous researchers in recent 

Figure 1 Illustration of the top-down and 
bottom-up approaches. 
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years as promising advanced biomaterials for use in the field of biomedicine, especially as 

a result of recent improvements in recombinant DNA technology, which allow us to design 

and manufacture materials by exploiting the abilities of natural proteins
5
. Some of the most 

widely studied protein-derived materials are the so-called elastin like recombinamers 

(ELRs), taking into account its recombinant nature this new nomenclature was proposed
6
 

in replacement of the more conventional terminology elastin- like polymers (ELPs)
7-9

, 

which include those first chemically synthesized materials.  

1.2.1 Elastin-like recombinamers (ELRs) 

Elastin is an elastic, insoluble protein that is widely distributed in vertebrate 

tissues, such as lung, skin, major vascular vessels, or tendon
10

, where elasticity and 

resilience are a key requirement
11

. It is well-known for its extreme durability and ability to 

deform reversibly
12,13

. The origin of these properties reside in the structure of the recurrent 

sequences (VPGVG, VPGG, VGVAPG) found in the soluble elastin precursor 

tropoelastin
14

. 

ELRs are a family of repetitive artificial biopolymers all exhibiting a smart 

behavior. These polymers are a genetically engineered biomaterials inspired by natural 

elastin and the majority of its members are based on repeats of the pentapeptide sequence 

Val-Pro-Gly-Xaa-Gly, where Xaa is any natural amino acid except proline
15

. 

ELRs are a highly interesting biomaterials because their relevant characteristics. 

The natural elastin‟s mechanical properties are combined with other properties such as 

biocompatibility, stimuli-responsive behavior and the ability to self-assemble
16,17

. This 

class of smart polymers exhibits an inverse temperature transition (ITT) which allows them 

to undergo a reversible phase transition from a soluble to an insoluble state upon 

increasing or lowering the temperature above a specific threshold, the transition 

temperature (Tt)
15,18,19

. Below the Tt the polymer chains remain disordered in a relatively 

extended state with a random coil conformation, and fully hydrated
10

. This hydrophobic 

hydration is characterized by an ordered clathrate-like water structure surrounding the 

apolar moieties of the polymer (Figure 2). This structure is somewhat similar to that 

described for crystalline gas hydrates, although more heterogeneous and of varying 

perfection and stability
11,20

. When temperature surpasses the Tt, and according to Urry‟s 

model, the polymer chains hydrophobically fold and undergo a conformational transition 
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that leads to phase separation. That “coacervate” is composed of about of 63% water and 

37% polymer
21

. In the folded state, the polymer chain adopts a dynamic, regular, non-

random structure called β spiral, which involves one type II β turn per pentamer stabilized 

by intra-spiral inter-turn and inter-spiral hydrophobic contacts
6
 (Figure 2). 

 

Figure 2: Schematic representation of the thermal transition of ELRs from an extended state (low temperatures, 
hydrophobic moieties surrounded by clathrate water structures) to a folded state (type II β-turn in VPGVG 
pentapeptides) 

The process begins with the formation of filaments composed of three-stranded 

dynamic polypeptide β-spirals, which grow up to various hundred nanometers before 

settling into a visible separated state
6,14

.(Figure 3) 

 

Figure 3 Mechanism of the ELRs’ ITT. From left to right: β-spiral formation, formation of twisted filaments or β-
spiral supercoil and their aggregation into microaggregates. Reproduced from reference

22
. 

Any modification in the composition of the polymer chain, intrinsic (sequence) 
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or extrinsic (adding a substance), will alter the clathrate structure and consequently will 

modify the Tt
23

. The ELP concentration and intrinsic factors like the modification of the 

guest residue, Xaa, and to a certain extent, the length of the polypeptide chain are factors 

that affect the transition temperature. The transition temperature can also be modulated by 

other physiological changes, such as changes in the pH, addition of extrinsic factors as salt, 

organic solutes or changing pressure
24

. 

Generally, Tt increases as the mean polarity increases and vice-versa. 

Additionally, if a chemical group that can be present in two different states of polarity 

exists in the polymer chain, and these states are reversibly interconvertible by appliance of 

an external stimulus, the polymer will exhibit two different Tt values
25,26

. This change in 

the Tt, opens a working temperature window in which the polymer isothermally and 

reversibly switches between the folded and unfolded states in response to environmental 

changes. This effect of changing the Tt is the basis of the Δ Tt mechanism and has been 

exploited to obtain pH, electric potential, light, chemical and other responsive 

interconvertible energy processes
25

. The hydrophobic paradigm, involving the ITT and the 

Δ Tt mechanism, for protein folding and function and the intrinsic capability of performing 

several energy interconversions allows new strategies for the development of ELP 

derivatives and working temperatures. Experimental studies on the ITT exhibited by ELPs 

and based on the factors that control hydrophobic folding and assembly of model proteins 

resulted in a set of five phenomenological axioms for the protein engineering of PBPs 

capable of inverse temperature transitions
27,28

: 

 Axiom 1: The temperature intervals for the hydrophobic folding and 

assembly transition of a host protein or protein-based polymer with 

different guest substituents becomes a functional measure of their 

relative hydrophobicity. 

 Axiom 2: Heating to raise the temperature from below, to above, the 

temperature interval for hydrophobic folding and assembly of 

macromolecules can drive contraction with the performance of 

mechanical work. 

 Axiom 3: At constant temperature, an energy input that changes the 

temperature interval for thermally-driven folding and assembly in a 
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macromolecule can itself, drive hydrophobic folding and self-assembly 

at constant temperature. 

 Axiom 4: Two or more different functional groups of a macromolecule, 

each of which can be acted upon by a different energy input that changes 

the temperature interval for hydrophobic folding and assembly, become 

coupled one to another by being part of the same hydrophobic folding 

and self-assembling domain, that is, the energy input acting on one 

functional constituent alters the property of another functional 

constituent as an energy output.  

 Axiom 5: More hydrophobic domains make more efficient the energy 

conversions involving constituents undergoing conversion between more 

and less hydrophobic states. 

1.2.2 Block Copolymers 

Block copolymers have been the subject of numerous studies due to their ability 

to undergo self-assembled phase separation resulting in different complex morphologies. 

Self-assembly procedures have drawn attention over a number of years, with the self-

assembly of nanoparticles being a particularly active field. Self-assembled polymer 

nanoparticles and hydrogels tend to be obtained from amphiphilic macromolecules. 

Generally speaking, a solution of these amphiphilic molecules in a solvent that only 

specifically solvates one part of the molecule will result in aggregation due to interaction 

of the solvent with the solvophobic blocks of the molecule. The hydrophobic parts tend to 

form aggregates as this collapse is more entropically favorable than the ordination of water 

molecules around each hydrophobic segment. On the other hand, hydrophilic parts are 

dissolve in water as the formation of hydrogen bonds with water molecules is higher 

enthalpic compensated than the interaction between hydrophilic parts.  

1.2.2.1 Physical properties of Block Copolymers 

Block copolymers are polymers composed of two or more covalently linked 

chemically distinct sequences (blocks).Thus, block copolymers can be designed as a 

hydrophobic block and a hydrophilic block, which can self-assemble into many different 
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structures
29

.  

The degree of order and morphology of those aggregates are dependent on 

concentration and volume ratio between the hydrophobic blocks and the hydrophilic 

blocks, known as insoluble soluble ratio (ISR). Below a certain concentration, critical 

aggregation concentration (CAC), the hydrophobic blocks are capable of maintaining the 

molecules dissolved. On the contrary, once above the CAC block copolymers begins to 

self- assembly resulting from the separation from the solvent of the hydrophobic block. 

The CAC decreases as the ISR and the molecular mass increases
30

. 

The dimensionless packing parameter (p) is the ratio between the molecular 

volumes of the solvent-phobic chain and the volume occupied by the copolymer in the 

assembly, defined as
29

:  

 

Where a0 is the optimal surface area of the solvent-phobic segment at the 

interface of between both blocks resulting from the balance between solvophilic 

solvophobic interactions, v is the volume and d is the length of the solvophobic block. 

Generally speaking, if p ≤ 1/3 the self-assembled structure result in spherical micelles, 

while 1/3 < p ≤ ½ correspond to cylindrical micelles and a p values between ½ and 1 are 

related to polymer membranes (Figure 4). 

Theoretically speaking, the most stable assembly would be an infinity large 

membrane and an infinity long cylinder. Nevertheless, it goes without saying that the 

system is force to finite dimensions, thus a certain level of curvature (molecular 

frustration) is required in order to avoid the contact between the solvent and the insoluble 

parts
31

. 

Wormlike structures will come as a result of the stabilization by end-caps of 

cylindrical micelles if the molecular frustration is restricted to a specific part of the 

assembly. In the same way, under these local confinement of the molecular frustration, 

stabilization of membranes will consist on the curvature of the edges giving rise to disk-

like micelles
32

. 
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Figure 4 Different geometries formed by block copolymers in selective solvent conditions. 

On the other hand, if all the molecules share the molecular frustration then 

stabilization of cylinders and membranes will result in the formation of toroidal micelles 

(as cylinders bend) and vesicles (membranes closure)  

Energetically speaking, the formation of vesicles and worm-like micelles is more 

favorable than disk-like and toroidal micelles. But, it has been demonstrated that those less 

likely structures can be stabilized by the increase of the molecular mass of the 

copolymer
33,34

, which will make the local frustration unfavorable, or by introducing extra 

interaction between block copolymers
35

. 

1.2.2.2 Protein-based block copolymers 

Protein-based block copolymers consist of a type block copolymer in which 

some or all of the building blocks are composed by protein inspired materials, peptide 

sequences. Throughout the careful and specific selection and positioning of amino acid 

residues it is possible the production of polymers with an absolute control over the 

hydrophobicity patterns or secondary structures, which give rise to a wide selection of 

tailor-made materials
36

. 

As it has been previously described, see 1.2.2.1, the microstructure formation of 

synthetic block copolymer is highly influence by the ISR, but the phase separation 

parameters are not the only factors influencing the structure formation when it comes to 
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protein-based block copolymers. When dealing with protein inspired materials, intra and 

inter-molecular bonding, together with chain conformation, are to be taken also into 

account in the process of structures formation. Thus, a different phase behavior from that 

of synthetic block copolymers should be expected, mainly due to normally occurring 

interactions in protein, such as electrostatic interactions, peptide backbone rotational 

restrictions, high hydrogen bonding or hydrophobic interactions, are usually absent from 

the synthetic block copolymer systems. The supramolecular organization in proteins is 

mostly directed by two structural elements, α-helix and β-sheet. All in all, the conditions 

under which structures (microphase separation) self-assemble and subsequence phase 

diagram relationships is yet to be determine for most of protein-based copolymers. Protein-

based block copolymer can be divided into two main groups; synthetic polymer-peptide 

block copolymer (hybrids) and protein/peptide block copolymers.  

1.2.2.3 Elastin-Like block co-Recombinamers (ELbcRs) 

Recent advances in recombinant DNA techniques have provided the tools needed 

to produce block corecombinamers with the desired sequence, depending on the 

application, from simple amino acids with an absolute degree of control and complexity 

superior to those of synthetic polymers. 

Amphiphilic elastin-like block co-recombinamers (ELbcRs) can form nano- or 

micro-sized structures
37,38

 To this end, ELR-based amphiphilic tetrablock copolymers have 

been synthesized in which the amphiphilicity of the component blocks is achieved by 

substituting the amino acid (X) in the guest position of the pentamer VPGXG by a 

hydrophilic (glutamic acid), or hydrophobic (isoleucine) amino acids. Nanoparticle 

formation occurs when the elastin-like block co-recombinamer (ELbcRs) solution is heated 

above the characteristic Tt of the hydrophobic block, at which point the co-recombinamer 

chains organize themselves by hiding the hydrophobic blocks from the aqueous 

environment, thus reaching a minimum free energy situation. 

Mean polarity, molecular weight, amino-acid sequence and molecular 

architecture are parameters influencing the final morphology and size of the final nano-

assemblies, which have been demonstrated to assemble into micelles or hollow vesicles
39

.  
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Figure 5 Schematic representation of the formation of a physical hydrogel through the micellation of a tetra-
block ELR. Below Tt the monomers are extended, once above Tt the hydrophobic block (black) aggregates 
forming nanoparticles. If the concentration is increased that aggregation leads to the formation of a water 

swollen network resulting in the hydrogel formation. 

ELbcRs have also been reported as materials capable of forming physical 

hydrogels at a sufficiently high concentration. In this sense, tetrablocks (polar-apolar-

polar-apolar) has been reported to self-assemble into a physical hydrogel once above the 

Tt. These materials are designed to be injectable self-gelation systems with high 

applicability in biomedical applications, such as tissue repair or as drug delivery systems 

for local therapies. In order to fulfill the requirement of injectability the material is 

required to be a low viscosity liquid below the physiological temperature. In this sense, the 

monomers are completely unassociated in aqueous solution below the Tt and once above 

the Tt the hydrophobic elastin domains undergo a phase separation associating into 

micellar aggregates acting as virtual cross-links (Figure 5). 
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2 MATERIALS AND METHODS 

2.1 MATERIALS 

2.1.1 Chemical Reagents 
All the reagents employed on this work are listed on Table 1 

Reactive Brand 

Acrylamide/Bis-acrylamide Amresco 

Agarose Seakem. Cambrex 

Ammonium persulphate (APS). Sigma-Aldrich 

Ampicillin Apollo Scientific 

Bromophenol blue Sigma-Aldrich 

Chloridric acid Merck 

Copper chloride Sigma-Aldrich 

Dimethyl sulfoxide (DMSO) Carlo Erba 

Ethanol Merck 

Glycerol Sigma-Aldrich 

Glycine Sigma-Aldrich 

Mineral oil Sigma Aldrich 

Phenylmethylsulfonyl fluoride (PMSF). Apollo Scientific 

Phosphate buffered saline (PBS) Gibco 

Sodium chloride (NaCl)- Sigma-Aldrich 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich 

Sodium hydroxide Sigma-Aldrich 
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Tetramethylethylenediamine (TEMED). Sigma-Aldrich 

Ultrapure water Millipore 

β-Mercaptoethanol. Sigma-Aldrich 

Table 1 Reagents employed and suppliers. 

2.1.2 Other materials 

During the realization of this work light scattering techniques have been 

employed, where glass test tubes were used. The contamination of such tubes with organic 

residues, dust or grease may interfere with the results obtained, being necessary to pay 

special attention to the cleaning of the tubes employed. An optimum cleaning is achieved 

by rinsing the tubes out with distilled water followed by a wash with a mixture soap-water 

(Hellmanex ®II special for optical cleaning). To remove soap traces the tubes are 

extensively washed with water. Finally, the tubes are rinsed with water type I and allowed 

to dry in an oven at 60°C for at least 4 hours.  

Other glass materials after washing and rinsing several times with distilled water 

were sterilized on an autoclave (Autotester E-75). Other laboratory materials like tips, 

conical tubes, Eppendorf tubes, falcon tubes, etc. are bought sterile or are sterilized when 

needed on an autoclave (Autotester E-75, 20 minutes 120°C one atmosphere). 

2.1.3 Molecular biology materials 

2.1.3.1 Restriction enzymes 

The restriction enzymes used in this work are listed below: 

DpnI, EarI, EcoRI, SapI, XbaI, XhoI (Thermo Fisher). 

All enzymes are used according to the manufacturer instructions. 

2.1.3.2 Other enzymes 

The following enzymes have been employed, being all of them purchased to 

Thermo Fisher and used under the suggested conditions:  
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T4 DNA Ligase, Shrimp Alkaline Phosphatase (SAP), FastAP phosphatase. 

2.1.3.3 Cloning and expression vectors 

The DNA fragments employed were cloned in pDrive cloning vector (Qiagen), 

Figure 6. 

 

Figure 6 pDrive cloning vector (Qiagen). 

 

For the expression of the different recombinant polimers a p7 expression vector 

has been employed Figure 7. The p7 expression vector was constructed in our laboratory 

from Novagen‟s pET-25b (+) vector, by Dr. A. Girotti. 
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Figure 7 Scheme of p7expression vector based on Navagen’s pET-25b(+) vector 

2.1.3.4 Other reagents 

Two kits were used for the plasmid and DNA purification either from an 

Escherichia coli (E.coli) culture: NucleoSpin Plasmid (Macherey-Nagel) and Quantum 

Prep Plasmid Midiprep Kit (Bio-Rad); or from an agarose gel: PureLink Quick Gel 

Extraction Kit (Life Technologies). 

2.1.4 Bacterial strain 

The E. coli strains used on this work have the following genotypes:  

a) XL1-Blue Competent Grade/Subcloning Grade (Stratagene): endA1 supE44 

hsdR17 thi1 recA1 gyrA96 relA1 lac [F‟ proAB lacIq ZΔM15 Tn (Tetr)]. 

b) BL21 (DE3) Star (Novagen): F- ompT hsdSB (rB- mB-) gal dcm (DE3) 127. 
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c) BLR (DE3) (Novagen): F- ompT hsdSB (rB- mB-) gal dcm Δ (srl-recA) 306::Tn10 

(Tetr) (DE3). 

2.1.5 Culture media 

The culture media used for bacteria growth and transformation are listed below: 

a) Luria-Broth (LB) (Pronadisa): Concentration 25g/L. 

b) Terrific Broth (TB) (Formedium): 55.85 g/L + 8mL/L Glycerol. 

c) LB-Agar: LB 25 g/l + 1.5 % (p/v). Agar (Fluka). 

d) SOC Broth. (Sigma Aldrich). 

2.1.6 Buffers  

During the performance of the work presented on this thesis different buffers 

were employed: 

a) PBS (pH=7,4): 5mM, NaCl 137 mM, KCl 2.7 mM, 10mM Na2 HPO4 , KH2PO4 

1.8 mM 

b) TAE: 40 mM Tris-acetate, 1mM pH=8 EDTA. 

c) TE (sonication buffer): 10 mM pH 8 Tris-base, 1 mM pH=8 EDTA, 1mM PMSF. 

d) TBS (washing buffer):20 mM pH 8 Tris-base, 140 mM NaCl. 

e) Running buffer: Tris-base 25 mM pH=8,3, glicina 192 mM y SDS 0,1% (w/v). 

f) DNA loading buffer: 30% (v/v) glycerol, 0.1% (w/v) SDS, 0.05% (w/v) 

bromophenol blue (BPB), 50mM Tris pH 8, 0.05mM EDTA. 

g) Protein loading buffer: Tris 1MpH 6.5 312.5 mM, SDS 10%(w/v), Glycerol ( 

v/v), β-Mercaptoethanol 25%(v/v), bromophenol blue (BPB) 2% (v/v). 

All the solutions were prepared using ultrapure type I water (Millipore). 
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2.1.7 Elastin-like recombinamers (ELRs) 

All the elastin-like recombinamers (ELRs) employed in the development of this 

work have been designed and produced in our laboratory (G.I.R. Bioforge) by recombinant 

DNA techniques. Those recombinamers have been specifically designed for the realization 

of this work, and these have been produced by E. Coli fermentation and purified taking 

advantage of both the smart nature and the reversible thermo-dependent segregation 

showed by this kind of materials, by inverse transition cycling (ITC)
8
. 

DNA corresponding the individual blocks E50, I40 and I60 were cloned by Dr. 

García-Arévalo, while the gene of the amphiphilic tetrablock (E50I60)2 was constructed 

by the Dr. Martín Maroto. Despite that, I reconstructed this tetrablock to verify the 

sequence. Also three new amphiphilic tetrablocks were constructed. Table 2 shows all the 

tetrablocks employed, the abbreviation, molecular weight (Mw), and amino acid sequence. 

Elastin-like 
recombinamer (ELR) 

abbreviation 
Amino acid sequence 

Molecular 
weight (Mw) 

(E50I60)2 

MESLLP 

[[(VPGVG)2-VPGEG-(VPGVG)2]10 

(VGIPG)60] 

V 

93157.7 Da 
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E100I60E50I60 

MESLLP 

[(VPGVG)2-VPGEG-(VPGVG)2]20 

(VGIPG)60 

[(VPGVG)2-VPGEG-(VPGVG)2]10 

(VGIPG)60 

V 

113931.8 Da 

E50I60E50I100 

MESLLP 

[(VPGVG)2-VPGEG-(VPGVG)2]10 

(VGIPG)60 

[(VPGVG)2-VPGEG-(VPGVG)2]10 

(VGIPG)100 

V 

110098.20 Da 

(E50I100)2 

MESLLP 

[[(VPGVG)2-VPGEG-(VPGVG)2]20 

(VGIPG)100]2 

V 

127038.7 Da 

Table 2 Amino acid composition and molecular weight of the elastin-like recombinamers used. 

  



 
 

23 

2.2 METHODS 

2.2.1 DNA agarose gel electrophoresis 

DNA agarose gel electrophoresis are used to separate and check the appearance 

and size of DNA fragments form either a plasmid or from an enzymatic digestion with 

endonucleases. Different concentrations (in 1x TAE), are applied according the sizes of the 

DNA fragments and the kind of gel, analytical or preparative, being the first one used to 

assess the rightness of a purified plasmid and the second one to obtain DNA for further 

use. The different agarose concentrations and their resolution capability are listed in the 

Table 3. 

Fragment size (bp) 

Agarose final concentration 

(% 1x TAE) 

800-10000 
0.8 

400-8000 
1 

300-7000 1.2 

200-4000 1.5 

100-2000 2 

Table 3 Resolution for linear DNA in electrophoresis of different agarose gel concentrations. 

The gels are prepared adding in a glass-made Erlenmeyer flask the quantity of 

agarose and a volume of buffer according to the gel concentration and size. The agarose is 

melted on the microwave, after weight and hydration, until the formation of a gel. Once 

melted, the flask with the gel is weighted again and ultrapure deionized water is added 

until reach the initial weight, maintaining the initial concentration and gel uniformity. 
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After cooling down to 60ºC the gel is casted in a horizontal tray with the desired comb.  

The samples are applied adding 0.2 volumes of 5x loading buffer. A fixed 

voltage, between 2 and 7 V/cm – according to each sample, is then applied. The 

electrophoresis is run having as references the color markers (Table 4). Last, the gel is 

stained for 10 to 30 minutes in a 1x GelRed™ solution, and the DNA bands are visualized 

by exposition to UV light in a Viber Lourmat, TFX-20M transilluminator. 

TAE 1x –BPB % Agarose 

2900 0.30 

1650 0.50 

1000 0.75 

500 1 

370 1.25 

200 1.75 

150 2 

Table 4 Relation between linear DNA migration and bromophenil blue (BPB). 

2.2.2 Plasmid purification 

The plasmids employed in this work were purified, using the commercial systems 

listed above, following the manufacturer‟s instructions. DNA was eluted with ultrapure 

water or Elution buffer from the kits. For applications where higher DNA concentration is 

required only half of the recommended elution volume is used, the elution water is used at 

65°C and the time incubation was increased up to 10 minutes to enhance the purification 

yield. The eluted DNA is stored under -20ºC. 

2.2.3 DNA digestion with restriction enzymes 

Reaction conditions (temperature, concentration, time of reaction, buffer) for the 

digestion are supplied by the enzyme manufacturer. The rate of digestion is controlled by 

DNA agarose gel electrophoresis. 
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2.2.4 DNA dephosphorylation 

Dephosphorylation reaction conditions (temperature, time of reaction, buffer) are 

supplied by the phosphatase manufacturer. For the p7 expression vector two different 

consecutive phosphatases were used and the incubation time was enlarged until one hour.  

2.2.5 DNA fragments purification from an agarose gel 

The target DNA band is first separated and visualized in an analytic agarose gel 

of an appropriated concentration and stained with GelRed™Nucleic Acid (as indicated in 

2.2.1), secondly, the band is extracted from the gel with the help of a scalpel. Minimum 

quantity of agarose should be cut during band extraction. 

The purification of the fragment is carried out using the commercial system 

“PureLink Quick Gel Extraction Kit” (Life Technologies), following the protocol indicated 

by the manufacturer. 

2.2.6 Ligation reaction 

The reaction ligation is carried out in a final volume of 15μL by mixing the insert 

with the vector, in a molar relation from 1:1 to 5:1, and T4 DNA ligase as enzyme with its 

corresponding buffer following the specifications indicated by the supplier. The reaction is 

conducted during 1 hour at room temperature or during 24 hours at 4°C. 

2.2.7 Cloning on the pDrive/ p7 vector 

The ligation reaction is interrupted by the inactivation of the T4 DNA ligase 

by incubation during 10 minutes at 70°C. Once the ligation reaction is concluded, a 

certain quantity of it is used to transform competent cell as specified below. 

2.2.8 Transformation of competent cells 

2.2.8.1 Transformation of XL1 blue subcloning grade competent cells 

This bacterial strain has an efficiency ≥ 10
6
 transformants per μg of DNA. 

Plasmid DNA to be amplified by cloning is transformed in this bacterial strain following 

the protocol specified by the supplier. 
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2.2.8.2 Transformation of XL1 blue competent cells 

This bacterial strain has an efficiency ≥ 10
8
 transformants per μg of DNA. 

Ligation products were transformed into this bacterial strain following the protocol 

specified by the supplier.  

2.2.8.3 Transformation of BLR (DE3) competent cells 

This bacterial strain is transformed with the expression plasmid p7 following the 

method TSS reagent (“Transformation and Storage Solution”)
40

. This method is a 

combination of two steps from the transformation procedure, first we obtained competent 

cells and second the cells are stored at -80ºC or transformed resulting in transformation 

efficiency that goes up to the 10
7
 cfus (colony forming units) per microgram of DNA. 

A single colony, isolated and grown in a LB-agar plate, is used to inoculate 100 

mL of LB medium (plus antibiotic) and is grown at 37ºC with shaking (250rpm), until 

reach a OD600=0.3-0.4. At this point the metabolism and cell growth is stopped by 

incubation on ice for 5 minutes. The cell suspension is centrifuged at 3000rpm (1100Gx) 

for 10minutes at 4ºC. The supernatant is discarded and the pellet is re-suspended in 10mL 

of cold 1xTSS solution, and is mixed gently (TSS1x is LB broth containing 10% (wt/vol, 

Mw 8000) polyethylene glycol, 5% (vol/vol) dimethyl sulfoxide, and 50 mM Mg
2+

 at pH 

6.5) Now the competent cells are ready to be transformed. 150 μL competent cells are 

aliquoted to 1.5 mL Eppendorf tubes and are storage at -80ºC (pre-treated with liquid 

nitrogen). 

At the moment of the transformation, an aliquot is defrosted in ice, and about 1-

10 ng of plasmid in final volume of 1-10μL are added to the mix. The cellular suspension 

plus the plasmidic DNA are kept on ice thirty minutes. A 0.85 ml of pre-warmed LB is 

added and the suspension is incubated one hour at 37ºC with shaking (250rpm). And 

finally, 50-200 μL of the transformation mix is plated in LB-agar plus the antibiotic plates 

that are incubated for 16-20 hours at 37ºC. 

2.2.9 Glycerol stock preparation 

To maintain and store the clones with interest, glycerol stocks were made. The 

selected colonies (by SDS-PAGE electrophoresis) are grown at 37°C with shacking 
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(250rpm.) on LB or LB with 0.5% of glucose (for the expression strains) plus antibiotic, 

until reaching an OD600= 0.6-0.8. At this point 0.1 volumes of 80% sterile glycerol are 

added and the cells are added to a cryovial and are stored at -80°C. 

2.2.10 DNA Sequencing  

The automatic DNA sequencing was made at Cenit Support Systems S.L.L.- 

Scientific park of Salamanca (Villamayor, Salamanca). 

2.2.11 Production and purification of recombinant polymers 

2.2.11.1 Recombinant polymer’s expression 

During the biosynthesis of the four different tetrablocks employed in this work 

the expression vector p7 has been employed. p7 has been obtained in our laboratory by 

mutagenesis of pET25b (+) by Dr. Alessandra Girotti. The final constructions were 

transformed on the bacterial strain BLR (DE3) following the above mentioned protocol 

(see 2.2.8.3).  

ELRs expression starts inoculating the desired colony in liquid LB medium plus 

antibiotic and 1% of glucose at 37 °C with orbital shaking (250 rpm.) during 

approximately 6 hours. This culture is used as inoculum for a fresh TB medium (plus 

antibiotic), in a volume ratio of 1:500, not exceeding the 25% of the capacity of the 

Erlenmeyer used. This culture is grown for 14-16 hours at 37 ° C with orbital shaking 

(250rpm.). 

For large batches production, as this case, a 15L Bioreactor is used (Applikon 

Biotechnology), allowing the full control of variables like temperature, pH, OD600 and 

oxygen concentration, regulating all of them if needed, improving the yield of the 

bioproduction process. It is inoculated with 1L of the pre-incubated cell suspension to a 

final volume of 15L of TB medium and fermentation time varies from 14 to 16h, setting 

temperature at 37ºC, pH at 7, oxygen control at 50% of the initial oxygen concentration 

and stirring at 499rpm. 

2.2.11.2 Bacteria disruption 

Once the induction is finished, the bacteria‟s metabolism and growth are stopped 
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by cooling it down to 4ºC and cells are centrifugated and washes with Washing buffer (see 

2.1.6) until having a clear supernatant. Then the pellet is re-suspended in a volume VTE of 

TE per liter of culture (see 2.1.6): 

VTE=5*Vculture*OD600 

Cell suspension is kept at 4ºC and 10μg/mL of PMSF protease inhibitor is added. 

Bacteria are disrupted (lysated) by changing pressure disruption employing a 

Constant Cell Disruption System (Model TS 0.75KW, Constant System). Finally, the 

lysate is centrifuged at 4ºC for 60 minutes at 15000xg. The supernatant contains the 

recombinant polymer biosynthesized.  

2.2.11.3 Purification of the recombinant protein-based polymer 

The purification of ELRs starts from the supernatant obtained at the end of the 

lysis process (see 2.2.11.2), taking advantage of the ELRs‟ smart nature and inverse 

temperature transition (ITT). Therefore, the purification process is based on successive 

cycles of precipitation (heating) and resuspension (cooling) of the supernatant, named 

Inverse Transition Cycling (ITC). 

The ELRs biosynthesized in this work had glutamic acid residues in their 

sequence (see Table 2), which at a pH above its pKa are depronated and therefore 

negatively charged what increase significantly their Tt
41

. In order to reduce the Tt and in 

this sense, facilitate the precipitation of the ELRs, NaCl is added during the purification 

process until a 2M concentration is achieved. 

Finally, after the last purification cycle, the re-suspended polymer is dialyzed 

against cold ultrapure type I water. The suspension is then adjusted to pH 7, passed 

through a 0.2 μm PES (Polyethersulphone) filter, and lyophilized and stored at -20°C. 

Purification steps, as well as the final product, are checked by polyacrylamide gel 

electrophoresis. 

2.2.12 Denaturing polyacrylamide gel electrophoresis 

The protein polyacrylamide gel electrophoresis in the presence of sodium 

dodecyl sulfate – SDS-PAGE – is made following the protocol for discontinuous systems 
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described by Laemmli
42

 to accomplish the separation of a proteins mixture by their 

molecular weight, being the gel composed of two different sub-gels: stacking and 

resolving. 

There are almost no differences between the proteins‟ effective charge because 

the SDS strongly interacts with proteins providing them with approximately one negative 

charge per each amino acid residue. The denaturing conditions are obtained because the 

SDS denatures the quaternary and tertiary structure of the proteins by breaking the non-

covalent interactions. Besides, β-mercaptoethanol (a reducing agent) is added to the 

samples in order to break the disulfide bonds that might exist. This process is facilitated 

with the heating of the samples during 5 minutes at 95ºC.  

A “MiniVE vertical electrophoresis system” from Hoefer (Amersham Pharmacia 

Biotech, Pittsburg, USA) electrophoretic system was employed to perform the 

polyacrylamide electrophoresis. The total percentage of acrylamide (%T) in the resolving 

gel varies according to the molecular weight of the polypeptide we want to separate. The 

optimal %T for a determined size range is presented in Table 5. 

Target size range  
(kDa) 

%T in resolving gel 

24-205 7.5% 

14-205 7.5% 

14-66 12.5% 

14-45 15% 

Table 5 Optimal %T according to the polypeptide target size range. 

The composition of a resolving and stacking for a gel X%T is detail in Table 6. 

Reactive Resolving gel Stacking gel 
Acrylamide 40% 10% (w/v) 4% (w/v) 

Tris-HCl pH 8.8 375 mM -------- 

Tris-HCl pH 6.8 -------- 125 mM 

SDS 10% 0.1% (w/v) 0.1% (w/v) 

APS 10 % 0.05% (w/v) 0.05% (w/v) 

TEMED 0.05% (w/v) 0.08% (w/v) 

*both gels are prepared in ultrapure type I water 

Table 6 Composition of the resolving and stacking gel in a gel 10%T. 

A molecular weight marker (Unstained Protein Molecular Weight Marker, 
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Thermo Fisher) is loaded together with the samples in order to know the molecular weight 

of each band
43

. Staining is performed according to Lee‟s method
44

: Ten minutes incubation 

at room temperature of the gel in a 0.3M Copper chloride solution followed by a washing 

step in distilled water for 5 minutes. Pictures are taken by „Gel Logic 100 Imaging System‟ 

camera system and „Kodak 1D Image Analysis (Kodak)‟ software. 

2.2.13 Experimental techniques 

2.2.13.1 Dynamic light scattering 

Dynamic light scattering (DLS) is a technique for measuring the size of particles 

normally in the sub-micron region. Typically, DLS is concerned with measurements of 

dispersed particles or suspended macromolecules in a liquid medium, measuring the 

particles Brownian motion and relating it to the particles‟ size.  

Brownian motion is the random movement of particles suspended in a fluid due 

to their collision with the solvent molecules that surround them. Thus, the random motion 

will be affected by different factors, mainly the size of the molecules (the bigger the 

molecules, the slower they move), the viscosity of the solvent (the more viscous the 

solvent, the slower the molecules move) and temperature. Temperature is a crucial 

parameter, both temperature stability and temperature accurate knowledge are required, 

due to its influence on the solvent viscosity and owing to, temperature instability will lead 

to convection currents in the sample, thus non-random motion, resulting in incorrect size 

interpretation. 

The velocity of the Brownian motion is defined by the translational diffusion 

coefficient (D), which is used to calculate the size of the particles by using the Stokes-

Einstein equation: 

 

Where kB is the Boltzmann constant, T is the temperature and η is the viscosity. 

It is worth noting, that DLS refers to how a particle diffuse within a fluid so the calculated 

diameter is a hydrodynamic diameter (Dh), (effective molecule diameter + hydration layer, 

Figure 8) 
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Figure 8 Representation of particle with its hydration layer, hydrodynamic radius. 

Light scattering measurements were performed using a Zetasizer nano ZSP 

(Malvern instruments) equipped with a 10 mW He-Ne laser at a wavelength of 633 nm. 

2.2.13.2 Zeta potential 

Z-potential analysis is a technique for determining the surface charge of 

nanoparticles in solution. The Z-potential of the ELR was monitored at 37°C using a 

Zetasizer nano ZSP apparatus (Malvern instruments). The Z-potential values, which were 

determined using the Smolukowski equation relating ionic mobility to surface charge, were 

plotted as the average of 10 repeated measurements.  

2.2.13.3 Differential scanning calorimetry (DSC) 

Differential scanning calorimetry (DSC) is a technique in which the difference in 

the amount of heat required to increase the temperature of a sample and reference is 

measured as a function of temperature. 

DSC experiments were performed on a Mettler Toledo 822e with liquid-nitrogen 

cooler. Both temperature and enthalpy are calibrated with a standard sample of indium. 

The solutions for the DSC experiments were prepared at 50 mg/mL in water or an aqueous 

buffered solution (PBS). 20 μL of the solution were placed inside a standard 40-μL 

aluminum pan and sealed hermetically. The same volume of the employed solvent was 

placed in the reference pan. Both, sample and reference are heated at a constant velocity.  

The heating program included an initial isothermal stage (5 min at 0º C for 

stabilization of the temperature and the state of the polymers), followed by heating at 5º 

C/min from 0º C to 60ºC. 
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2.2.13.4 Rheology 

Rheology is the study of flow and deformation of materials under applied forces. 

In this sense, it was used to analyze the thermogelification process of the different 

tetrablock-ELRs, by studying their mechanical properties in order to obtain the storage and 

loss moduli of the hydrogel. 

Trhe viscoelastic properties of 250, 275 and 300 mg/mL solutions (final volume 

of 300μL) of each tetrablock-ELRs in ultrapure water and in PBS buffer were evaluated 

using a controlled stress rheometer (AR-2000ex, TA Instruments). A 12 mm Standard steel 

parallel plate was used to characterize the rheological properties at a constant strain of 

0.3% and a frequency of 1 Hz, mineral oil was used at the edge of the samples to prevent 

solvent evaporation in the hydrogels. 

To characterize the gelation kinetics of the tetrablock-ELRs hydrogels, time-

sweep experiments were performed at 25ºC and 37ºC Strain sweeps were carried out 

across a strain range of 0.01-15%. Temperature ramps were performed from 5ºC to 40ºC 

(heating rate: 5ºC/min). 

2.2.14 Experimental techniques performed by external services 

2.2.14.1 Amino-acid analysis  

The amino acid composition of the ELRs employed during this work was 

determined by Laboratorio de Técnicas Instrumentales (University of Valladolid).  

After addition of a known quantity of α-aminobutyric acid as internal pattern the 

samples were hydrolyzed (6M HCl, 1% Phenol and 2.5 hours at 155°C) and evaporated. 

The powder was resuspended in 1mL of 20mM HCl and a 1/10 dissolution was prepared. 

The quantification of the less represented amino acids was made from the most 

concentrated sample and the quantification of the most represented amino acids from the 

1/10 dissolution. One aliquot of each dissolution was derivatizated according to the AccQ-

Tag Waters method and analyzed by HPLC with UV detection, using a WATERS600 

HPLC gradient system with a WATERS2487 detector. 

2.2.14.2 MALDI-TOF Mass Spectrometry Analysis 

Determination of the ELRs molecular weight was made by MALDI TOF at the 
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Laboratorio de Técnicas Instrumentales (University of Valladolid). 

2.2.14.3 Cryo-Transmission electron microscope (Cryo-TEM) 

(Cryo-TEM imaging acquisition of buffered solutions was performed at CIC 

bioGUNE Structural Biology Platform, Bilbao). 

Samples were prepared through rapid vitrification of the liquid samples in the 

automated vitrification robot Vitrobot™ Mark IV (FEI).The specimens were observed with 

a JEM-2200FS/CR transmission electron microscope (JEOL, Japan), equipped with an 

ULTRASCAN 4000 SP (4008×4008 pixels) cooled slow-scan CCD camera (GATAN, 

UK).
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3 RESULTS AND DISCUSSION 

3.1 DESIGN, CONSTRUCTION AND RECOMBINANT PRODUCTION 

The use of block copolymers in nanotechnology has acquired a great interest in 

the last years. They enable the possibility of creating different structures in the nanometer 

scale thanks to their self-assembly properties in an easy and non-expensive way using the 

bottom up approach
45

.  

In this study, to facilitate the rational engineering of the physico-chemico 

properties of hydrogels based on amphiphilic tetrablock ELRs, three new tetrablock 

recombinamers with different molecular weight and composition were designed, taking as 

point of departure, the amphiphilic tetrablock E50I60E50I60 (A in Figure 9). A 

recombinamer that is comprised by two hydrophilic blocks, L-Glutamic acid containing 

block (E-block) and two hydrophobic blocks, L-Isoleucine containing block (I-block).  

The identity and sequence of the individual block units within the polymer 

dictates the nature of the supramolecular assembly, for this reason two of the new 

tetrablocks incorporated an extra-block at the N-terminal end (B in Figure 9) and at the C-

terminal end (C in Figure 9). Thus, the influence of an „asymmetric‟ block could be 

evaluated. 

 

 

Figure 9 Scheme of the four different tetrablock ELR sequences. 
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And finally, a tetrablock ELR that incorporated an extra hydrophobic content 

preserving the proportionality between its two diblocks was also designed (D in Figure 9).  

 

The construction of the different genes was performed following the guidelines 

described in material and methods. The different tetrablock genes were constructed on 

pDriveAll vector starting from the individual blocks E50, I40 and I60. All the 

constructions were assessed by agarose gel electrophoresis in every step of the process and 

by DNA sequencing. Figure 10 and 11 show the results of the different steps of the genetic 

engineering process. Figure 10 presents the starting building blocks in the cloning plasmid 

pDriveAll (Lanes 1-3) and the diblocks constructed as a middle point before obtaining the 

final tetrablocks (Figure 11 shows the desired tetrablock ELRs in the expression plasmid 

p7). 

 

Figure 10 Enzymatic analysis with the EcoRI endonuclease of the colonies containing the plasmid pDrive All and 
the inserts: Lane 1: E50 (750 bp); Lane 2: I40 (600 bp); Lane 3: I60 (900 bp); Lane 4: E50I60 (1650 bp); Lane 5: 

E100I60 (2400 bp); Lane 6: E50I100 (2250 bp); Lanes M: DNA marker 1Kb Plus.DNA agarose. 

The digestion with EcoRI produced two bands, an upper band corresponding to the pDrive plasmid and a 

lower one corresponding to the insert plus 100bp. 
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Figure 11 Enzymatic analysis with the XhoI and XbaI endonucleases of the colonies containing the expression 
plasmid p7 and the inserts: Lane 1: (E50I60)2 (3321 bp); Lane 2: E100I60E50I60 (4071 bp); Lane 3: 

E50I60E50I100 (3921 bp); Lane 4: (E50I100)2 (4521 bp); Lanes M: DNA marker 1Kb Plus.DNA agarose. 

The digestion with XhoI combined with XbaI produced two bands, an upper band corresponding to the p7 

plasmid and a lower one corresponding to the insert plus 168bp. 

Once the constructs were obtained, the following step was to introduce into the 

expression vector p7, and subsequent transforming of the E. coli strain BLR (DE3). 

Expression was qualitatively assessed by SDS-PAGE. The overexpressing colonies were 

selected taking into consideration the protein bands pattern. In the following figure 

(Fig.12) we can observe a SDS-PAGE assay for screening the capacity to produce one of 

the tetrablock ELRs, in this case E100I60E50I60. 
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Figure 12 SDS-PAGE of E. coli BLR (DE3) colonies expressing E100I60E50I60 stained with Cooper. 

M: Protein Marker (Unstained marker); Lanes 1 to 8: total protein fraction of eight BLR (DE3) ELR 

E100I60E50I60 producing transformants after overnight induction in TB medium; Lane 0: untransformed BLR 

as negative control of recombinamer production. 

The screening assay showed a slightly variation in recombinamer production 

between the colonies, nevertheless it is very important to  perform first, a small scale 

experiment of several transformants in order to choose the most suitable for large scale 

recombinamer expression (Figure 12, Lane 4 in this case). 

Then, the polymers were produced in large scale and appropriately purified by 

Inverse Transition Cycling (ITC). The recombinant proteins were purified from the soluble 

protein fraction as described on 2.2.11.3. As can be seen in the Figure 13, a high level of 

purity is achieved after two IT cycles, despite that three IT cycles were carried out for 

ensuring that a level of purity greater than 95% is obtained. Following the three IT cycles, 

the solubilized polymer was dialyzed and lyophilized (see 2.2.11.3). 
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Figure 13 E50I60E50I100 purification analysis by 10% SDS-PAGE stained with Cooper. 

Electrophoretic SDS-PAGE image of different stages of the purification procedure of the tetrablock ELR 

E50I60E50I100. Lane 1: Overnight cold supernatant from the disrupted supernatant; Lane 2: Overnight cold 

precipitate from the disrupted supernatant; Lane 3: First heating supernatant; Lane 4: First heating 

precipitate; Lane 5: Overnight cold-dissolved precipitate from first heating; Lane 6: Overnight cold-dissolved 

supernatant from first heating; Lane 7: Second heating supernatant; Lane 8: Second heating precipitate. M: 

Marker Unstained. 
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3.2 MOLECULAR CHARACTERIZATION 

3.2.1 SDS-PAGE  

 

Figure 14 Analysis of the different purified tetrablock-ELRs. 10% SDS-PAGE stained with Cooper. 

Lane 1– running pattern of 5µg of the purified recombinamer (E50I60)2. Lane 2– Of the purified 

E100I60E50I60. Lane 3– Of the purified E50I60E50I100. Lane 4– Of the purified (E50I100)2.  

The band although is slightly higher than the theoretical size is within the 20% range, typical of this 

polymer’s, where the ELR run in a polyacrylamide gel. The numbers on the left side of the image correspond 

to the size in kDa of protein marker reference bands. M: Protein Marker Unstained. 

SDS-PAGE analysis lets us verify the purity of the polymer and the correct 

molecular weight. As we can see, the purity level is over 95%, which demonstrates that the 

ITC purification method is highly effective and easy to perform. 

3.2.2  MALDI-ToF and HPLC analysis 

Both, MALDI-ToF and Amino Acid Composition analyses are techniques that 

confirm the correctness of the expressed recombinant biopolymers. The first method give 

the information about the protein molecular weight and the theoretical value should be 

close enough to the one determined by MALDI-ToF and inside the experimental error. The 
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second, although affected by higher experimental error, gives information about the protein 

sequence and if there are present any other amino acid not predicted by the DNA sequence. 

3.2.2.1 MALDI-ToF Mass Spectrometry Analysis 

The MALDI-ToF confirmed the monodisperse character of the purified 

tetrablock-ELRs. The differences between the theoretical molecular weight and the value 

experimentally determined are within the experimental error associated with the technique. 

There are three peaks in each spectrum. The peaks correspond to the whole tetrablock-

ELR, and to the double and triple charged species. 

The spectrum for the tetrablock (E50I100)2 is missing because it was impossible 

to perform. The molecular weight of this polymer is 127kDa, and it is on the limit 

resolution of this technique. Nor has it been possible to find the double charged specie. 

Nevertheless, as we could see in the electrophoretic SDS-PAGE analysis, the molecular 

weight of the polymer and its purity correspond to the expected value. 

 

Figure 15 MALDI-ToF mass spectrometry spectrum of the tetrablock (E50I60)2. 
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Figure 16 MALDI-ToF mass spectrometry spectrum of the tetrablock E100I60E50I60. 

 

Figure 17 MALDI-ToF mass spectrometry spectrum of the tetrablock E50I60E50I100. 

3.2.2.2 Amino acid Composition Analysis (HPLC) 

 

(E50I60)2 

Amino Acid 
Residues 

Theoretical 
Value 

Experimental 
Value 
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Alanine 0 0.37 

Aspartic Acid 0 0.47 

Glycine 440 432.83 

Glutamic Acid 21 22.01 

Isoleucine 120 119.34 

Leucine 2 1.91 

Lysine 0 0.22 

Methionine 1 0.44 

Proline 221 221.02 

Serine 1 1.09 

Valine 301 304.8 

TOTAL 1107 1104.5 

Table 7 Amino acid composition of the tetrablock ELR (E50I60)2, calculated by HPLC. 

 

E100I60E50I60 

Amino Acid Residues Theoretical Value Experimental Value 

Glycine 640 647.23 

Glutamic Acid 41 37.82 

Isoleucine 120 145.94 

Leucine 2 1.96 

Methionine 1 1.68 

Proline 321 322.14 

Serine 1 1.68 

Valine 481 448.76 
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TOTAL 1607 1607.21 

Table 8 Amino acid composition of the tetrablock ELR E100I60E50I60, calculated by HPLC. 

 

E50I60E50I100 

Amino Acid Residues Theoretical Value Experimental Value 

Glycine 520 524.24 

Glutamic Acid 21 24.74 

Isoleucine 160 156.54 

Leucine 2 2.54 

Methionine 1 334.83 

Proline 261 261.32 

Serine 1 1.33 

Valine 341 334.83 

TOTAL 1307 1307.65 

Table 9 Amino acid composition of the tetrablock ELR E50I60E50I100, calculated by HPLC. 

 

(E50I100)2 

Amino Acid 
Residues 

Theoretical 
Value 

Experimental 
Value 

Glycine 600 623.52 

Glutamic Acid 21 30.6 

Isoleucine 200 196.77 

Leucine 2 4.31 

Methionine 1 1.78 
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Proline 301 310.05 

Serine 1 2.82 

Valine 381 343.38 

TOTAL 1507 1513.23 

Table 10 Aminoacid composition of the tetrablock ELR (E50I100)2, calculated by HPLC. 

 

3.3 Determination of the Inverse Temperature Transition (ITT) by 

Differential Scanning Calorimetry (DSC) as a function of pH and 

solvent 

Inverse Temperature Transition (ITT) can be determined by Differential 

Scanning Calorimetry (DSC) a technique described elsewhere
41

. In order to determine the 

ITT of the tetrablock-ELRs and the solvent and composition dependence three solutions 

were prepared for each tetrablock (two of those solutions in ultrapure water, at 

pH<pKGlutamic acid and at pH≈7), and the other in PBS buffer (1X). 

The solutions for the DSC experiments were prepared at 50 mg/mL in both water 

and in PBS. The heating program of a typical DSC experiment included an initial 

isothermal stage (5 min at 0º C for stabilization of the temperature and the state of the 

polymers), followed by heating at 5º C/min from 0º C to 60º C. The results obtained are 

summarized in Figure 18 and Table 11. 
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Figure 18 DSC thermograph for a heating cycle (5°C min
-1

) for the four tetrablock ELRs at 50 mg.mL
-1

. 

 

 Mw (Da) Water 
(pH<pKGlu) 

Water 
(pH≈7) 

PBS (1X) 

(E50I60)2 
93157.7 15.2 21 16.5 

E100I60E50I60 113931.8 15 19.8 15.6 

E50I60E50I100 110098.20 12.2 15.5 12.8 

(E50I100)2 
127038.7 13.2 15.6 12.4 

Table 11 Transition temperatures of the polymers under study in water and PBS. 

The ITT is a parameter strongly influenced by the composition of the ELRs but 

also depends on the molecular mass, concentration, the degree of ionization of any 

functional side chains, the mean polarity of the polymer, salt concentration and the 
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presence of other ions and molecules
6
. 

As expected, in all cases, the ITT is lower in the case of solution in ultrapure 

water at pH<pKGlu than when at pH≈7. This is due to the fact that at pH below the pKa of 

carboxylic acid (COOH) of glutamic acid residues in the elastin polypeptide chain, these 

groups are uncharged (COOH), lowering the interaction with water molecules. This means 

that there are less water molecules surrounding the protein and therefore a lower 

temperature or energy is needed in order to break these interactions and promote transition 

when compared with the solution at pH 7, because in this case, carboxylic groups are 

deprotonated (COO
-
) and hence the interaction with water molecules is higher than in the 

other case. 

In PBS, there are different ions present in the solution, which lower the ITT 

independently of the pH that is buffered neutral (pH 7.4), which is very likely to happen in 

this conditions as described elsewhere. 

Comparing the four polymers, the ITT decreases when the ratio hydrophobic 

block (I): hydrophilic block (E) is increased. But the molecular weight is also a variable of 

the ITT, and the higher the molecular weight, the lower the transition temperature (Tt) is
46

.

 

3.4 ANALYSIS OF THE ABILITY TO ASSEMBLE NANOPARTICLES AND 

HYDROGELS 

3.4.1 Dynamic light scattering 

Elastin-like recombinamers composed of block with different hydrophobicities 

assemble nanostructures
47

. On the basis of the ability of the tetrablock (E50I60)2 to form 

spherical nanoparticles
2
, the nanoparticles formation was studied by DLS. To determine 

the size of the formed supramolecular structures two series of solutions were prepared (in 

ultrapure water and in PBS 1X). Thus, the aggregation process has been studied in a 

solution without any extrinsic factor (Water) and in a solution that mimics the serum salt 

concentration (PBS).  
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In order to study the thermal behavior, DLS measurements were carried out using 

3 mg/mL solutions of each tetrablock-ELR. The temperature dependence of the intensity of 

the scattered light when the different solutions were heated is shown in Figure 19. 

 

Figure 19 Thermal behavior of the nanostructures formed by the four tetrablock-ELRs. 

A: Thermal behavior of the nanostructures formed in ultrapure water.  A1: Normalized intensity profile of the scattered 

light as a function of temperature. A2: Normalized size distribution by intensity at 37ºC. 

B: Thermal behavior of the nanostructures formed in PBS (1X).  B1: Normalized intensity profile of the scattered light as 
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a function of temperature. B2: Normalized size distribution by intensity at 37ºC. 

The transition temperature (Tt) or inverse temperature transition (ITT) is taken to 

be the temperature at which the change in the scattered intensity reaches a value of 50%. Tt 

differences can be best appreciated in the first plot (A), since the effect of buffer ions 

minimizes Tt differences. 

As expected, the Tt decreases when the hydrophilic content increases, as it had 

been noticed by DSC. But it is also observable the effect of the size proportion between the 

two hydrophobic blocks of each tetrablock. 

 

Figure 20 Transition temperatures analyzed by DSC or DLS. 

Apparently, this lack of balance between these blocks is involved on the 

coacervation process, the polymers that present a disproportionate block show a decrease 

in the Tt, when we are strictly talking about the transition polymer-chains-in 

solution/polymer-nanoparticles. 

In addition, it should be noticed that the salts of the PBS buffer stabilized the 

nanoparticles, the hydrodynamic diameter decreased and the distributions were more 

monodisperse, as we can see in the size distributions (Figure 19, B2) and in the following 

table: 

 Polydispersity Index (PdI) 

 (E50I60)2 E100I60E50I60 E50I60E50I60100 (E50I100)2 

PBS 0,0133 0,031 0,1263 0,0233 

Water 0,0983 0,074 0,5427 0,1707 

Table 12 Polydispersity Index of the nanoparticles distributions of the tetrablock-ELRs, at a concentration of 3 
mg/mL and at temperature of 37ºC. 
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Moreover, comparing the size distributions based on the scattered intensity 

(Figure 19:A2, B2), it can be seen the influence of the different block combinations in the 

final formed nanostructures. 

Noting that the nanoparticles formed in ultrapure water showed a greater 

polydispersity, we cannot evaluate the divergences between the diameters of the 

nanoparticles. We can only suggest that the proportion hydrophobic block (I-block) control 

the nanoparticle organization. The presence of a disproportion between the two I-blocks 

(E50I60E50I100) involves an increase in the dispersity of the 

distribution. 

However, the salts present in the buffer stabilize the 

nanoparticle diameter, and this fact allows us to analyze these 

divergences. Except for the E50I60E50I100 nanoparticles, that 

showed greater polydispersity (Table 12) and diameter, as a 

consequence of the presence of an extra I-block at the C-terminal end. 

The other three tetrablock ELRs self-assembled into highly 

monodisperse nanoparticles, with different hydrodynamic diameters.  

These size divergences cannot be attributed to 

differences in the sequence, because as we can see on Table 13, 

the diameter divergences can be a consequence of the different 

molecular weight, not of a different self-assembling pattern.  

 (E50I60)2 E100I60E50I60 (E50I100)2 E50I60E50I60100 

Dh (PBS) 38.4 nm 49.3 nm 53.4 nm 56.1 nm 

Mw 93.2 kDa 113.9 kDa 127.0 kDa 110.1 kDa 

Table 13 Nanoparticle hydrodynamic diameters and molecular weights of the four tetrablock-ELRs in PBS. 

Once we have verified that the new polymers chains assemble into defined 

nanostructures at ≈25µM (3mg/mL), the nanoparticles stability at different concentrations 

were checked. For this, two series of 1, 3, 5, 7 and 10 mg/mL were prepared, in ultrapure 

Figure 21 Ionic strenght effect on the 
hydrodynamic diameter (Dh) 
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water and in PBS (1X). 

 

Figure 22 Normalized size distributions for different concentrations in ultrapure water of the four tetrablock-
ELRs. 

If we compare the divergences between the size distributions of the 

nanostructures formed in water (Figure 22) or PBS (Figure 23), we may see the effect of 

the concentration in the nanoparticle stability.  

Comparing the distributions in ultrapure water, it is clearly observable that the 

monodisperse distribution disappeared at concentrations above 3 mg/mL in all the cases 

except for the recombinamer E100I60E50I60. It can thus be suggested that the increase of 

hydrophobic content indicates the stabilization of the nanoparticle structure. 
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Nonetheless, as far as the other three recombinamers, it is a remarkable fact that 

maintaining the proportion between the hydrophobic blocks (I-blocks), the increase in 

hydrophobic content enhanced the nanoparticle stability in ultrapure water. 

 

Figure 23 Normalized size distributions for different concentrations in PBS (1X) of the four tetrablock-ELRs. 

On the other hand, in PBS the nanoparticles distributions are completely 

different. As Figure 23 shows, in all the cases, at all the concentrations the nanoparticles 

maintained their monodisperse distribution, with the exception of the E50I60E50I100 

recombinamer, which was almost not monodisperse. 
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3.4.1.1 Zeta Potential of the spherical nanoparticles 

 

 Ζ-Potential (mV) 

 (E50I60)2 E100I60E50I60 E50I60E50I60100 (E50I100)2 

Water -31±0.97 -29.3±0.87 -26±1.15 -27.5±0.56 

PBS  -8.9±0.83 -7.9±0.74 -8.8±0.87 -9.3±0.97 

Table 14 Zeta potential of the ELRs when dissolved in water or PBS at pH≈7 and at 37ºC. 

Data are presented as the mean ± standard deviation (SD) from three different measurements by performing 10 readings 

on each. 

The four tetrablock nanoparticles when dissolved in ultrapure water at neutral pH 

rendered negative surface charges because the presence of glutamic acids. Generally a Z-

potential of +/-30mV is considered a suitable threshold value for colloidal stability48. 

As we can see in Table14, in all four cases the potentials are around this value. That 

confirms that the nanoparticles are electrostatically stable. 

On the other hand, the presence of salts, when the Z-potential determinations 

were carried out in PBS, drastically increased the resulting zeta potential value. The 

ionic interactions between the buffer salts and the nanoparticles masked the superficial 

charge of the nanoparticles. 

3.4.2 Cryo-Transmission Electron Microscopy (Cryo-TEM) 

The spherical nanoparticles observed by DLS were also verified by cryo-TEM. 

Buffered solutions of the four recombinamers were dissolved (25 μM in PBS) at 4ºC O/N, 

after that the solutions were equilibrated at 37ºC during at least 1hour. The results are 

shown in the Figures 24 and 25. 
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Figure 24 Cryo-TEM images of the nanoparticles formed by the different tetrablock-ELRs at 37ºC in PBS. 

A: (E50I60)2; B: E100I60E50I60; C: E50I60E50I100; D: (E50I100)2 

 

Spherical nanoparticles were observed by cryo-TEM in all the cases. The 

nanoparticle diameters noticed are shown in the following table: 

 (E50I60)2 E100I60E50I60 E50I60E50I60100 (E50I100)2 

Dh (PBS) 

[DLS] 
38.4  49.3  56.1 53.4 

Diameter 

[Cryo-TEM] 
14.7±1.8 18±2.7 22.8±5.4 35.2±7.7 

Mw 93.2 kDa 113.9 kDa 110.1 kDa 127.0 kDa 

Table 15 Comparative table of the different diameters measured by DLS and Cryo-TEM. 

 

The differences observed between the nanoparticles diameters measured by DLS 

or by cryo-TEM are mainly due to the fact that the measurements done by DLS consider 

the hydrodynamic diameter (the nanoparticle and its hydratation sphere), and this is the 

reason why the nanoparticles are smaller. 
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Figure 25 Cryo-TEM images of the protogels formed by the (E50I100)2 recombinamer at 37ºC in PBS. 

It is also worth noting that when the images were taken other nanostructures 

more complex were found. This nanostructures were found only in the samples prepared 

with the recombinamer (E50I100)2. As we can see in Figure 25, these nanostructures are 

based on aggregations of nanoparticles. These protogels will result in the formation of the 

final physical hydrogel. Similar nanogels have been described previously
49

 but in this case 

they were based on a chemical approach.  

 

3.4.3 Rheological characterization 

Amphiphilic ELRs are a promising class of biomaterials with applications 

including drug delivery and tissue engineering. The demonstrated ability
2
 of the ELRs 

based on amphiphilic-tetrablocks to form hydrogel makes these kind of recombinamers an 

attractive option to design biomimetic scaffolds that can act as the extracellular matrix 

(ECM). 

These hydrogels would have a mainly importance in the biomedical field. Due to 

the Elastin-like thermoresponsive nature, these hydrogels could be used as injectable 

systems, which would imply several advantages including patient comfort and cost 

reduction. 

Rheological measurements were performed to evaluate the relationships between 

molecular structure and viscoelastic behavior of the tetrablock-ELRs. Different solutions at 

250, 275 and 300 mg/mL of each tetrablock ELR were prepared in ultrapure water and 

PBS (1X). The most representative results (at 275mg/mL) are shown. 
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The thermogelling properties of the eigth solutions were evaluated as a function 

of temperature using a controlled stress rheometer at a constant strain of 0.3% and a 

frequency of 1 Hz (Figure 27 (Water) and 28 (PBS)). A strain of 0.3% was selected 

because this frecuency is located on the linear viscoelastic (LVE) region of the materials 

(Figure 26). The determination of the LVE region is important because it allows for the 

determination of the range of percent strains that are acceptable for use in later tests. If a 

percent strain is utilized that exceeds the percent strain in the LVE region the mechanical 

structure of the sample will be compromised and thus the data collected may be inaccurate. 

 

Figure 26 Strain dependance of the storage and loss modulus at 37ºC and 1Hz. 

Determined a strain value, the thermal behavior was analyzed. For this purpose, 

two temperature ramps were performed (heating and cooling ramp) from 5 to 40ºC (and 

from 40 to 5ºC), and time sweeps at 37ºC. 
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3.4.3.1 Hydrogels formed in Ultrapure Water 

 

Figure 27 Evolution of loss and storage modulus of 275 mg/mL ultrapure water as a function of temperature and 
time. The letters correspond to the four tetrablock-ELRs: A-(E50I60)2; B- E100I6050I60; C- E50I60E50I100; D- 
(E50I100)2. And the numbers correspond to the experimental process: 1-Heating ramp (5-40ºC); 2-Cooling 
ramp (40-5ºC); 3-Time sweeps (25 and 37ºC). 

First, the temperature ramps were carried out. The plots of the thermogelling 

properties as a function of the temperature revealed a gelation temperature (G‟=G‟‟)
50,51

 

and the maximus storage moduli of the four recombinamer solutions in water (Table 16). 

After that, time sweeps at 37ºC were performed with the same solutions to 

accurately report the equilibrium moduli (Table 16) at physiological temperature and the 

gelation time. The gelation process was an instantaneous process. As we can see in the 
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time sweep plots, less than 1 minute was required to the hydrogels conformation. 

 (E50I60)2 E100I60E50I60 E50I60E50I100 (E50I100)2 

Gelation 
T(ºC) 

17 22 14.4 13.2 

Maximus G’ 10620 Pa 
(40ºC) 

2868 Pa (35ºC) 7273Pa (30ºC) 6360 Pa (40ºC) 

Linear 
equilibrium 

modulus 
(37ºC) 

10100 Pa 2830 Pa 6900 Pa 6250 Pa 

Table 16 Gelification temperatures and storage moduli when the 275 mg/mL hydrogels were formed in ultrapure 
water. 

As we can see in Table 16, practically there are no difference between the 

maximus storage moduli and the linear storage moduli. Analyzing the four time sweeps, 

we can observe that in all the cases the storage moduli reached their greatest value at 37ºC, 

and after that remained stable.  

It is also worth noting that the gelation process is a reversible process. It was 

clearly demonstrated because during the rheological analysis the recombinamers solutions 

experienced three transitions; first it was carried out the heating ramp (540ºC), then 

cooling ramp (405ºC), and finally the time sweep (537 and 15‟ at 37ºC) (in Figure 27 

numbers 1, 2, 3). 
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3.4.3.2 Hydrogels formed in Phosphate buffer saline (PBS) 

 

Figure 28 Evolution of loss and storage modulus of 275 mg/mL PBS (1X) as a function of temperature and time. 
The letters correspond to the four tetrablock-ELRs: A-(E50I60)2; B- E100I6050I60; C- E50I60E50I100; D- 
(E50I100)2. And the numbers correspond to the experimental process: 1-Heating ramp (5-40ºC); 2-Cooling 
ramp (40-5ºC); 3-Time sweeps (25 and 37ºC). 

The thermal behavior of the different tetrablock-ELRs solutions in PBS is shown 

in Figure 28. At it happened in ultrapure water solutions the recombinamers showed in 

PBS; an instantaneous and reversible gelification process. But unexpectedly a new 

thermogelling behavior appeared. 

In this case, the storage moduli behavior changes completely. The maximum 
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storage moduli were considerably decreased, and this value was reached around the 20-

25ºC, depending on the recombinamer. After that the modulus began to be reduced if the 

temperature was increased, if not (as we can see in the time sweeps A3, B3, C3 and D3 of 

the Figure 28) the modulus maintained over the time. 

This behavior suggests the presence of two different states of organization. The 

interaction of the ions presents in the buffer with the hydrophobic blocks of the tetrablock-

ELRs (VGIPG) conditions the self-organization of the hydrogel (maximum modulus 

values decrease with respect water). This hydrogel organization was stable over time, but 

when we gave energy to the system (temperature was increased) this state began to self-

reorganize into softer hydrogel forms. 

It is particularly noteworthy the E50I60E50I100 and the (E50I100)2 behavior. In 

the first case, the abrupt changes of its modulus stood out from the rest. A possible 

explanation for this might be that the disproportion between the hydrophobic blocks 

determines the thermal stability of the new chains organization. In the second one 

[(E50I100)2], it should be noted that a proportional increase of the hydrophobic content 

suggests the formation of a thermal-stable hydrogel. In this recombinamer the modulus fall 

was the smallest (as we can see on Table 17). This behavior is consistent with the images 

obtained by cryo-TEM. This tetrablock ELR show a tendency to form hydrogels and these 

are more thermal-stable.  

 (E50I60)2 E100I60E50I60 E50I60E50I100 (E50I100)2 

Gelation 
T(ºC) 

15.7 (17) 15.6 (22) 11.4 (14.4) 9.8 (13.2) 

Maximus G’ 6412 Pa (27ºC) 2650 Pa (26ºC) 4945 Pa (21ºC) 4268 Pa (27ºC) 

Linear 
equilibrium 

modulus 
(37ºC) 

4670 Pa 1940 Pa 1500 Pa 3850 Pa 

Table 17 Gelification temperatures and storage moduli when the 275 mg/mL hydrogels were formed in PBS (1X). 

Lastly, looking at the results obtained, we can assert that the mechanical strength 

of the tetrablock based hydrogels is tunable. Changes on the ratio hydrophobic blocks (I-
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blocks): hydrophilic blocks (E-blocks) have a negative effect on the mechanical strength. 

As it could be noticed, comparing the rheological behavior of the new constructions with 

the (E50I60)2 behavior, the storage moduli (G’) significantly decrease in the cases of the 

„asymmetric‟ tetrablock-ELRs (E100I60E50I60 and E50I60E50I100). 

What is surprising is that the mechanical properties were not improved in the 

case of the (E50I100)2 recombinamer. This ELR was intended to have greater moduli; 

therefore it contains two hydrophobic blocks longer than (E50I60)2. Nor was it improved, 

only it was improved the dynamic behavior in PBS. After the gelation temperature the 

hydrogel state formed showed the greater thermal stability. 
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4 CONCLUSION 

The intrinsic ability of the ELRs to self-assemble into complex supramolecular 

nanostructures makes these materials a highly attractive alternative to biomedical 

applications, in terms of biocompatibility, cost effectiveness and extremely specific 

functionalities. 

In this Master thesis, we present a study on the effect of the size proportion of the 

individual blocks on the ability of tetrablock-Elastin-like-Recombinamers to self-assemble 

into nanoparticles and hydrogels. For this reason, four biopolymers were recombinantly 

produced and physico-chemically characterized.  

Results presented here demonstrate that the size proportion between the 

hydrophobic and hydrophilic blocks is a factor that predetermines the supramolecular 

organization of the nanoparticles and the hydrogels. 

The „asymmetry‟ between the diblocks that forms a tetrablock seems to have 

hardly any effect on the self-organization of the spherical nanoparticles. The divergences 

observed on the nanoparticle diameter were not significant; these can be a consequence of 

the differences in the molecular weight of the individual chains. 

On the other hand, this asymmetry seems to have a profound effect on the 

viscoelastic properties of the hydrogels. The proportion between the hydrophobic and the 

hydrophilic blocks directly influences the storage modulus. When the proportion 

hydrophobic block : hydrophilic block ≈ 1 is broken the storage modulus value decreases 

considerably. But even though this fall, when both hydrophobic blocks were increased 

[(E50I100)2] the hydrogel formed show an improved thermodynamic behavior, and an 

unusual feature; the presence of physical nanogels at low concentrations. 

In conclusion, we have demonstrated that not only the disposition of the blocks, 

but also the proportionality between the hydrophobic and hydrophilic parts have influence 

over the thermogelling mechanical properties of the physical hydrogels. Moreover, these 

new biomaterials have future applications as nanocarriers for drug delivery and as 

injectable hydrogels for tissue regeneration.  
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