

6

INDEX

1. Introduction………………………………………………………………….……….7

1.2 Objectives…………………………………………………………….……..7

2. Analytical part……………………………………..…………………….…….….…..9

 2.1 Stationary robots……………………………………………….….……....…9

 2.2 Locomotion overview………………………………………………..……..12

 2.3 Wheeled robots……………………………………………………………..15

 2.4 Legged robots……………………………………………………………....17

 2.5 Hexapod robots………………………………………………….………….20

3 Design part.…………………………………………………………………….…..…23

 3.1 Electronics schemes of the hexapod robot………………………………….23

 3.2 Kinematics………………………………………………………………….25

 3.3 Construction of trajectory generation function…………...………….…….28

 3.4 Implementing the parabola in the MATLAB® model……………………..33

 3.5 Adaptive trajectories method……………………………………..…….….35

 3.6 Obstacles………………………………………………………………..….37

4 Conclusions……………………………………………………………….………….50

 4.1 Future work………………………………………………………………...50

5 References …………………………………………………………………………...51

7

1. INTRODUCTION

As a first approach to understand this final thesis, it is important to understand what a

robot is. One of the simplest and best definitions for a robot is the following one.

The branch of technology that deals with the design, construction, operation, and

application of robots, as well as computer systems for their control is robotics. These

technologies deal with automated machines that can take the place of humans in

dangerous environments or manufacturing processes, or resemble humans in

appearance, behavior, and/or cognition.

It is a fact, that robotics is a field of study that is developing very fast, and there are still

a lot of problems or just tedious task that can easily be accomplished by robots. If we

success in using robots in the right way, and having in mind our moral values, the

society can advance in good way. This is one of the reasons why I chose to work in

robotics in my final thesis for my bachelor.

This thesis explains the work I developed in this field, during the second semester of the

school year 2013-2014.

Objectives

The main goal of this thesis is to develop a method for trajectory generation for a given

hexapod robot.

The robot is shown in figure 1.1.

The ultimate goal of developing adaptive trajectories for the robot can be structured into

two big stages, which can be clearly seen along the experiments.

1. Mathematics of trajectories

In this work, it has been carried out a thorough study of the best mathematics functions

that the legs of the robot might follow, obtaining a parabola as the best mathematic

function for this purpose.

A robot is a mechanical or virtual artificial agent, usually an electro-mechanical

machine that is guided by a computer program or electronic circuitry. Robots

can be autonomous or semi-autonomous and range from humanoids

to industrial robots, collectively programmed 'swarm' robots, and even

microscopic nano-robots [10].

http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Robotics
http://en.wiktionary.org/wiki/agent
http://en.wikipedia.org/wiki/Electromechanics
http://en.wikipedia.org/wiki/Electromechanics
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Autonomous_robot
http://en.wikipedia.org/wiki/Industrial_robot
http://en.wikipedia.org/wiki/Swarm_robotics
http://en.wikipedia.org/wiki/Nanorobotics

8

 Figure 1.1 Hexapod robot

2. Check trajectory generation with MATLAB® code which simulates the robot

Before implementing any new technic or program in a machine, it is always easier to

check it on a simulator first. Particularly with complex robots, it is nearly a necessity,

since there are a lot of variables that can be checked and modified as desired towards a

specific goal.

For that, the hexapod robot of study, have an accurate simulator constructed in

MATLAB ®. This is the application where all the new ideas and movements for the

robot were checked.

9

2. ANALYTICAL PART

There are several classifications of robots. Robots can be classified according to

applications, number of degrees of freedom etc. Since this thesis’ purpose is

development of a method for trajectory generation, it appears logical to discuss about

means of locomotion and classify robots with the same criteria.

2.1 Stationary robots

This category includes robotic industrial arms with a global axis of movement.

Although the hexapod robot is not a stationary one, these robots comprise a very large

and important group. That is the reason why they should be reviewed in a short way.

Cartesian/Gantry robots: A cartesian coordinate robot (also called linear robot) is

an industrial robot whose three principal axes of control are linear (i.e. they move in a

straight line rather than rotate) and are at right angles to each other. The three sliding

joints correspond to moving the wrist up-down, in-out, back-forth. Among other

advantages, this mechanical arrangement simplifies the robot control arm

solution. Cartesian coordinate robots with the horizontal member supported at both ends

are sometimes called Gantry robots [11].

Figure 2.1. Cartesian Robot

Cylindrical robots: A cylindrical robot has two linear axes and one rotary axis. The

robot derives its name from the operating envelope (the space in which a robot operates

that is created by moving the axes from limit to limit).

The Z axis is located inside the base, resulting in a compact end-of-arm design that

allows the robot to "reach" into tight work envelopes without sacrificing speed or

repeatability [12].

http://www.allonrobots.com/cartesian-robots.html
http://en.wikipedia.org/wiki/Industrial_robot
http://en.wikipedia.org/wiki/Principal_axis_(mechanics)
http://en.wikipedia.org/wiki/Right_angle
http://en.wikipedia.org/wiki/Robot_control
http://en.wikipedia.org/wiki/Arm_solution
http://en.wikipedia.org/wiki/Arm_solution
http://en.wikipedia.org/wiki/Cartesian_coordinate
http://en.wikipedia.org/wiki/Gantry
http://www.allonrobots.com/cylindrical-robot.html

10

Figure 2.2. Cylindrical robot.

Spherical robots: A spherical robot is a robot with two rotary joints and one prismatic

joint; in other words, two rotary axes and one linear axis. Spherical robots have an arm

which forms a spherical coordinate system [17].

Figure 2.3. Cylindrical robot.

SCARA (Selective Compliant Assembly Robot Arm) robots: It is a type of cylindrical

robot that has 4 axes of movement: X, Y, Z, and Theta Z. By virtue of the SCARA's

parallel-axis joint layout, the arm is slightly compliant in the X-Y direction but rigid in

the ‘Z’ direction, hence the term: Selective Compliant. This is advantageous for many

types of assembly operations, i.e. inserting a round pin in a round hole without binding.

The second attribute of the SCARA is the jointed two-link arm layout similar to our

human arms, hence the often-used term, articulated. This feature allows the arm to

extend into confined areas and then retract or “fold up” out of the way. This is

advantageous for transferring parts from one cell to another or for loading/unloading

process stations that are enclosed.

http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Rotary_joint
http://en.wikipedia.org/wiki/Prismatic_joint
http://en.wikipedia.org/wiki/Prismatic_joint
http://en.wikipedia.org/wiki/Spherical_coordinate_system

11

SCARA's are generally faster and cleaner than comparable Cartesian robot systems.

Their single pedestal mount requires a small footprint and provides an easy, unhindered

form of mounting [7].

Figure 2.4. SCARA robot.

Articulated robots (robotic arms): An articulated robot is one which uses rotary joints to

access its work space. Usually the joints are arranged in a “chain”, so that one joint

supports another further in the chain.

Figure 2.5. Articulated robot examples.

Parallel robots: parallel robots, or generalized Stewart platforms (in the Stewart

platform, the actuators are paired together on both the basis and the platform), these

systems are articulated robots that use similar mechanisms for the movement of either

the robot on its base, or one or more manipulator arms. Their 'parallel' distinction, as

opposed to a serial manipulator, is that the end effector (or 'hand') of this linkage (or

'arm') is connected to its base by a number of (usually three or six) separate and

independent linkages working in parallel. 'Parallel' is used here in the computer

science sense, rather than the geometrical; these linkages act together, but it is not

http://en.wikipedia.org/wiki/Cartesian_robot
http://en.wikipedia.org/wiki/Stewart_platform
http://en.wikipedia.org/wiki/Stewart_platform
http://en.wikipedia.org/wiki/Articulated_robot
http://en.wikipedia.org/wiki/Manipulator
http://en.wikipedia.org/wiki/Serial_manipulator
http://en.wikipedia.org/wiki/End_effector
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Geometrical

12

implied that they are aligned as parallel lines; here parallel means that the position of

the end point of each linkage is independent of the position of the other linkages [13].

Figure 2.6. Paralel robot examples.

2.2 Locomotion overview

A mobile robot needs locomotion mechanisms that enable it to move as desired

throughout its environment. But there are a large variety of possible ways to move, and

so the selection of a robot’s approach to locomotion is an important aspect of mobile

robot design. In the laboratory, there are research robots that can walk, jump, run, slide,

skate, swim, fly, and, of course, roll. Most of these locomotion mechanisms have been

inspired by their biological counterparts (see table 1) [3].

There is, however, one exception: the actively powered wheel is a human invention that

achieves extremely high efficiency on flat ground. This mechanism is not completely

foreign to biological systems. Our bipedal walking system can be approximated by a

rolling polygon, with sides equal in length to the span of the step (figure 2.7). As the

step size decreases, the polygon approaches a circle or wheel. But nature did not

develop a fully rotating, actively powered joint, which is the technology necessary for

wheeled locomotion. Biological systems succeed in moving through a wide variety of

harsh environments. Therefore it can be desirable to copy their selection of locomotion

mechanisms. However, replicating nature in this regard is extremely difficult for several

reasons. To begin with, mechanical complexity is easily achieved in biological systems

through structural replication [3].

Cell division, in combination with specialization, can readily produce a millipede with

several hundred legs and several tens of thousands of individually sensed cilia. In

manmade structures, each part must be fabricated individually, and so no such

economies of scale exist. Additionally, the cell is a microscopic building block that

enables extreme miniaturization. With very small size and weight, insects achieve a

level of robustness that we have not been able to match with human fabrication

techniques. Finally, the biological energy storage system and the muscular and

hydraulic activation systems used by large animals and insects achieve torque, response

time, and conversion efficiencies that far exceed similarly scaled man-made systems

[3].

13

Table 1. Locomotion mechanisms used in biological systems.

Owing to these limitations, mobile robots generally locomote either using wheeled

mechanisms, a well-known human technology for vehicles, or using a small number of

articulated legs, the simplest of the biological approaches to locomotion (see figure 2.7).

In general, legged locomotion requires higher degrees of freedom and therefore greater

mechanical complexity than wheeled locomotion. Wheels, in addition to being simple,

are extremely well suited to flat ground. As figure 2.8 depicts, on flat surfaces, wheeled

locomotion is one to two orders of magnitude more efficient than legged locomotion.

But as the surface becomes soft, wheeled locomotion accumulates inefficiencies due to

rolling friction whereas legged locomotion suffers much less because it consists only of

point contacts with the ground. This is demonstrated in figure 2.8 by the dramatic loss

of efficiency in the case of a tire on soft ground [3].

14

Figure 2.8. Specific power versus attainable speed of various locomotion mechanisms

[3].

In effect, the efficiency of wheeled locomotion depends greatly on environmental

qualities, particularly the flatness and hardness of the ground, while the efficiency of

legged locomotion depends on the leg mass and body mass, both of which the robot

must support at various points in a legged gait.

It is understandable therefore that nature favors legged locomotion, since locomotion

systems in nature must operate on rough and unstructured terrain. For example, in the

case of insects in a forest the vertical variation in ground height is often an order of

magnitude greater than the total height of the insect. By the same token, the human

environment frequently consists of engineered, smooth surfaces, both indoors and

outdoors. Therefore, it is also understandable that virtually all industrial applications of

Figure 2.7. A biped walking system can be approximated by a rolling polygon, with

sides equal in length d to the span of the step. As the step size decreases, the polygon

approaches a circle or wheel with the radius l [3].

15

mobile robotics utilize some form of wheeled locomotion. Recently, for more natural

outdoor environments, there has been some progress toward hybrid and legged

industrial robots [3].

2.3 Wheeled robots

Wheeled robots are robots that navigate around the ground using motorized wheels to

propel themselves. This design is simpler than using treads or legs and by using wheels

they are easier to design, build, and program for movement in flat, not-so-rugged

terrain. They are also more well controlled than other types of robots. However, some

disadvantages of wheeled robots are that they cannot navigate well over obstacles, such

as rocky terrain, sharp declines, or areas with low friction. [18]

Wheeled robots are most popular among the consumer market because their differential

steering provides low cost and simplicity. Robots can have any number of wheels, but

three wheels are sufficient for static and dynamic balance.

Two wheeled robots: Two wheeled robots are harder to balance than other types

because they must keep moving to maintain upright. The center of gravity of the robot

body is kept below the axe, usually this is accomplished by mounting the batteries

below the body.

Famous examples of two wheeled robots are Roomba and Segway transporter.

Figure 2.9. Two wheeled robot.

Three wheeled robots: 3-wheeled vehicles may be of two types: differentially steered (2

powered wheels with an additional free rotating wheel to keep the body in balance) or 2

wheels powered by a single source and a powered steering for the third wheel. In the

case of differentially steered wheels, the robot direction may be changed by varying the

relative rate of rotation of the two separately driven wheels. If both the wheels are

driven in the same direction and speed, the robot will go straight. Otherwise, depending

on the speed of rotation and its direction, the center of rotation may fall anywhere in the

line joining the two wheels [14].

16

Figure 2.10. Differentially steered 3 wheeled robot.

Four wheeled robots: four wheeled robots may be of two types:

‒ 2 powered, 2 free rotating wheels: the robot direction may be changed by

varying the relative rate of rotation of the two separately driven wheels [19].

Figure 2.11. wheels powered, 2 free rotating wheels.

‒ 2-by-2 powered wheels for tank-like movement: This kind of robot uses 2

pairs of powered wheels. Each pair (connected by a line) turn in the same

direction. The tricky part of this kind of propulsion is getting all the wheels to

turn with the same speed. If the wheels in a pair aren't running with the same

speed, the slower one will slip (inefficient). If the pairs don't run at the same

speed the robot won't be able to drive straight. A good design will have to

incorporate some form of car-like steering. [14].

17

Figure 2.12. 2-by-2 powered wheels for tank-like movement.

‒ Car-like steering: This method allows the robot to turn in the same way a car

does.. This system does have an advantage over previous methods when your

robot is powered by a combustion engine: It only needs one motor (and a servo

for steering of course). The previous methods would require either 2 motors or a

very complicated gearbox, since they require 2 output axes with independent

speed and direction of rotation [8].

Figure 2.13. Car-like steering.

2.4 Legged robots

Legged locomotion is characterized by a series of point contacts between the robot and

the ground. The key advantages include adaptability and maneuverability in rough

terrain because only a set of point contacts is required; the quality of the ground

between those points does not matter so long as the robot can maintain adequate ground

clearance. In addition, a walking robot is capable of crossing a hole or chasm as long as

its reach exceeds the width of the hole. Another advantage of legged locomotion is the

18

potential to manipulate objects in the environment with great skill. An excellent insect

example, the dung beetle, is capable of rolling a ball while locomoting by way of its

dexterous front legs. And as a final advantage, legs create discrete footprints and cause

less damage to natural terrain.

Figure 2.14. Car-like steering [3].

The main disadvantages of legged locomotion include power and mechanical

complexity. The leg, which may include several degrees of freedom, must be capable of

sustaining part of the robot’s total weight, and in many robots must be capable of lifting

and lowering the robot. Additionally, high maneuverability will only be achieved if the

legs have a sufficient number of degrees of freedom to impart forces in a number of

different directions [3].

With the advances in control of complex systems, efforts to develop legged machines

have become more intense.

Leg configuration and stability

Since all legged robots are inspired by nature, it is a good approach to examine

biologically successful legged systems, in order to gain knowledge and experience. As

shown in figure 2.14, different configurations for legs have been successful in different

animals. Large animals, such as mammals and reptiles, have four legs, whereas insects

have six or more legs. In some mammals, the ability to walk on only two legs has been

perfected. Especially in the case of humans, balance has progressed to the point that we

can even jump with one leg. This exceptional maneuverability comes at a price: much

more complex active control to maintain balance [3].

In contrast, a creature with three legs can exhibit a static, stable pose provided that it can

ensure that its center of gravity is within the tripod of ground contact. Static stability,

demonstrated by a three-legged stool, means that balance is maintained with no need for

motion. A small deviation from stability (e.g., gently pushing the stool) is passively

corrected toward the stable pose when the upsetting force stops [3].

But a robot must be able to lift its leg at the end of its effective stroke, return it, and

place it on the ground to begin another support phase. In order to achieve static walking,

a robot must have at least six legs generally. In such a configuration, it is possible to

design a gait in which a statically stable tripod of legs is in contact with the ground at all

times [3].

19

Figure 2.15. Static walking with six legs [3]

In the case of legged mobile robots, a minimum of two degrees of freedom is generally

required to move a leg forward by lifting the leg and swinging it forward. More

common is the addition of a third degree of freedom for more complex maneuvers,

resulting in legs such as those shown in figure 2.14. Recent successes in the creation of

bipedal walking robots have added a fourth degree of freedom at the ankle joint. The

ankle enables more consistent ground contact by actuating the pose of the sole of the

foot.

In general, adding degrees of freedom to a robot leg increases the maneuverability of

the robot, both augmenting the range of terrains on which it can travel and the ability of

the robot to travel with a variety of gaits. The primary disadvantages of additional joints

and actuators are, of course, energy, control, and mass. Additional actuators require

energy and control, and they also add to leg mass, further increasing power and load

requirements on existing actuators.

In the case of a multi-legged mobile robot, there is the issue of leg coordination for

locomotion, or gait control. The number of possible gaits depends on the number of legs

[3].

The gait is a sequence of lift and release events for the individual legs. For a mobile

robot with k legs, the total number of possible events N for a walking machine is

N = (2k – 1)!

For a biped walker (k=2) legs, the number of possible events N is

N = (2k – 1)! = 3! = 3 ·2 · 1 = 6.

20

The six different events are:

1. lift right leg;

2. lift left leg;

3. release right leg;

4. release left leg;

5. lift both legs together;

6. release both legs together.

Of course, this quickly grows quite large. For example, a robot with six legs, like the

robot studied here, has far more gaits theoretically:

N = 11! = 39916800 [3].

2.5 Hexapod robots

As said before, hexapod configuration for robots, is the best for obtaining static walking

and therefore, this leads to a less complex control of the robots. To discuss hexapod

gaits and movement, the study of insects become very fruitful, as they are arguably the

most successful locomoting creatures on earth, excel at traversing all forms of terrain

with six legs, even upside down.

The following figures show some examples of hexapod robots.

Figure 2.16. Examples of different hexapod robots.

First, there are some definitions that need to be explained, in order to understand the

section:

Protraction is the forward movement of a leg relative to the body and ground.

Retraction is the backward movement of a leg relative to the body with no movement of

the leg relative to the ground.

The transfer phase (or swing) of a leg is the period in which the leg is not on the

ground.

The support (or stance) of a leg is the period in which the leg is on the ground.

The cycle time is the time for a complete cycle of locomotion.

21

The duty factor of a leg is the time fraction of cycle time for which that leg is in the

support phase.

The leg phase of a leg is the fraction of cycle time by which the contact of that leg on

the ground lags behind the contact of the front leg of left side.

The stride length is the distance the center of gravity translates during one complete

locomotion cycle [4].

The limb movements of many arthropods occur in metachronal sequences (each leg lifts

when the leg behind it is on ground), often sequences running from posterior to anterior.

Wilson showed that many of the common gaits observed in insects could be generated

by changes in just one variable namely the time. In particular, Wilson [2] accounted for

the smooth transition between a metachronal gait at low walking speeds and an

alternating tripod gait at high speeds. As per Wilson hypothesis, leg movement in

insects follows some general rules. These are:

1. Forward movement of legs relative to the body runs from posterior to anterior and

no leg protracts until the one behind is placed in a supporting position.

2. Contra lateral legs of the same body segment alternate in phase.

3. Protraction time is constant.

4. Retraction time decreases as frequency of stepping increases.

5. The intervals between steps of the hind leg and fore leg and between the middle leg

and fore leg are constant. However, the interval between the fore leg and the hind

leg steps varies inversely with stepping frequency [4].

According to Wilson, no other patterns, using six legs have been reported for straight

walking. Later, he added modifying conditions to accommodate much of the

experimental evidences from other animals. However, in special cases, the model is

either inaccurate or does not hold at all. For example, climbing grasshopper moves the

two legs of a segment together. At slow speeds, mantis is also functionally quadrupedal

using only the posterior two pairs of legs. Some other scientist made a detailed study on

the cockroach Periplaneta americana and found nearly linear relationship between

average frequency of leg movement and rate of forward progression [4].

The stride length of the insect is more or less constant. Except at very low speeds

(stepping frequency less than 3 Hz), it always uses the alternating tripod gait. At higher

speeds, it runs with its body raised well off the ground and its anterior end elevated

relative to the posterior.

It switches to a gait using only four hind legs. In this posture, the body is propelled

primarily by the long hind legs. Increase in angle of attack of the body also allows

greater range of movement through which the hind legs can swing [4].

Another advantage of hexapod robots is that they can walk forward with many kinds of

gaits (see figure 2.17) to adapt different speeds and loads. And because the redundant

limb exists, hexapod robot could continue its work even if limb is lost.

These advantages makes it competent for some autonomous and high-reliability works,

such as field scouting, underwater searching, and space exploring. However, the control

of those 6 legs becomes a complex task, due to the number of variables that must be

22

monitored. There is large body of work devoted to the control of hexapod robot which

contains gait planning and kinematics control.

Gait takes an important role in the control of walking machine. The gait synthesis might

be based on kinematics model of the robot and walking rules that are well known from

insect walking. There are two main types of gaits adopted in walking machines:

periodic gait and non-periodic gait which is also called free gait.

Figure 2.17. Tripod, wave and ripple gaits for a hexapod robot.

The free gait increases the adaptability of the walking machine because it can move on

uneven terrain. However, the free gait is hard to be realized in the real multi-legged

walking robots and is only on the stage of theoretical research. Periodic gait such as

tripod gait can be easily controlled and has an optimal stability margin.

Since tripod gait seems to be the most appropriate for hexapod robot, it is the one

chosen to start programming and testing.

23

3. DESIGN PART

3.1 Electronics schemes of the hexapod robot

In this section, the explanation of the electric scheme is showed. The main circuit is

shown in figure 3.1.

Figure 3.1. Electric robot’s scheme.

U1 circuit

U1 circuit represents the microcontroller. It is an ATmega16. Some of the most

important features are the following:

The ATmega16 provides the following features: 16 Kbytes of In-System Programmable

Flash Program memory with Read-While-Write capabilities, 512 bytes EEPROM, 1

Kbyte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a

JTAG interface for Boundary-scan, On-chip Debugging support and programming,

three flexible Timer/Counters with compare modes, Internal and External Interrupts, a

serial programmable USART and a byte oriented Two-wire Serial Interface [9].

24

In the circuit, the USART is used to receive and transmit signals to the U2 circuit.

 - PD0 is the USART input pin

 - PD1 is the USART output pin

In the microcontroller, it is where all the calculations are carried out. The two main

functions developed in the microcontroller are the control of servos and the calculations

of kinematics.

U2 circuit

This circuit is a Motorola SN54/74LS240. It transforms from two different reception

and transmission lines to only one line. This is needed because the main controller

communicates with the servos by sending and receiving data packets. There are two

types of packets; the “Instruction Packet” (sent from the main controller to the

Dynamixel actuators) and the “Status Packet” (sent from the actuators to the main

controller). Since the controller needs two different lines for inputs and outputs, and the

servo uses only one bi-directional data line, there is a need to convert from two lines in

the microcontroller to one line in the servos, and this purpose is served by U2 circuit.

Some of the most important features are:

• Hysteresis at Inputs to Improve Noise Margins.

• 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers.

• Input Clamp Diodes Limit High-Speed Termination Effects.

U3 circuit

This circuit is a power source, which transforms 12V input to 5V in the output. It is

needed because ATmega16 is powered with 5V, whereas servos are powered with 12 V.

With this circuit, we can use only one power source instead of two different ones, and

this is very beneficial, as there is no need to carry two power sources, which would

increase the weight.

Servos

The actuators used for the hexapod are Dynamel AX-12 servos.

Figure 3.2. Dynamixel AX-12 servomotors

25

A total number of 18 are necessary to obtain 3 degrees of freedom in each leg. The main

characteristics of the servos are showed below.

Table 2. Servos characteristics

Resolution 0.35°

Operating Angle 300°, Endless Turn

Voltage 7V~10V (Recommended voltage: 9.6V)

Max. Current 900mA

Operate Temperature -5 ˚C ~ +85 ˚C

Command Signal Digital Packet

Protocol Type Half duplex Asynchronous Serial Communication (8bit,

1stop, No Parity).

Link (Physical) TTL Level Multi Drop (daisy chain type Connector)

ID 254 ID (0~253)

Communication Speed 7343bps ~ 1 Mbps

Feedback Position, Temperature, Load, Input Voltage, etc.

Material Engineering Plastic

3.2 Hexapod robot kinematics

Forward kinematics

Forward kinematics refers to the use of the kinematic equations of a robot to compute

the position of the end-effector from specified values for the joint parameters [5]. In this

case, the end effector is considered to be the end of the robot’s leg.

The most common and easy way to obtain forward kinematics is Denavit-Hartenberg

algorithm, and this is the method used in this work.

http://en.wikipedia.org/wiki/Kinematic
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Robot_end_effector

26

Figure 3.3. Kinematic layout for one leg.

From leg kinematic layout showed in figure 3.3, Denavit-Hartenberg solution gives the

following three equations:

 (1)

These equations provide a relation between the position of robot’s foot and the angle of

the servos used as actuators. As it can be observed, they provide the foot position when

these angles are known, which means forward kinematics.

Inverse Kinematics

In order to get inverse kinematics expressions, it is necessary to express , and

over x, y and z. Such task could be very complex or even unsolvable.

Less complex way of dealing with robot’s inverse kinematics is geometric inverse

kinematics method. The following figures demonstrate kinematic layout of one leg for

geometric inverse kinematics (Figure 3.4) [1].

Figure 3.4. Leg projection onto XZ and XY planes.

27

The following expressions are derived using this method:

,

 ,

,

 √ , (2)

 √ ,

,

.

Where , and are leg actuator angles that must be calculated in order to position

robot’s foot into position with coordinates x, y and z.

Transforming leg base coordinates frames into body coordinate frame

Once the kinematics for legs is solved, there is a need to transform each coordinate

frame into robot’s coordinate frame. This way, it is easy to correct body positions, for

instance when robot is climbing on inclined surface. This makes possible also to lift

robot’s body when needed. Figure 3.5 shows the coordinate frames layout on the robot.

Figure 3.5. Coordinates frames on the robot.

To calculate leg base coordinate frame’s coordinates in robot’s body coordinate frame,

homogeneous transformation matrices are used. Each leg’s base coordinate frame is

transformed using three rotations and one translation. The homogeneous transformation

matrix (Bi) is obtained by multiplying the matrix of translation (Ti) by the matrix of

rotation . In this matrix, represents the rotation of the new base coordinates

frame, and X0, Y0, Z0 the translation of this new base coordinates.

28

 [

] [

]

[

]

 [

] [

] (3)

3.3 Construction of trajectory generation function

In this section, the whole process followed to obtain the final method for trajectory

generation is explained.

The robot was given performing sinusoidal trajectories for its legs. However, this

seemed not the best trajectory function for a robot that should adapt to terrain. This is

better explained with an example. When robot would encounter a hole, it would change

concavity, going from a convex function to a concave function, and allowing situations

as the one in figure 3.6 to happen. In this kind of situations, the leg would step on the

“wall” of the hole, and it would unbalance the whole robot. To avoid this situation,

another function was needed, with a more appropriate shape for the step.

Figure 3.6. Sinusoidal function. Leg drops in a hole.

Parabola is one of the solutions that first come to mind. When compared with sinusoidal

function (figure 3.7), it appears to be more suitable for adaptive trajectories.

29

Figure 3.7. Sinusoidal and parabola functions.

The second advantage of this function is that, with some mathematical development, we

can obtain a parabola from two important parameters: step-length and step-height. The

idea is to input a step height suitable for the kind of obstacles robot can encounter, and a

proper step length for them.

To achieve this, the work was divided in some steps that are explained below.

First approach

The first problem to solve is to build a function that implements a parabola providing

two inputs: step-height and step-length.

Figure 3.8. Parabola function.

This function plots a parabola; however, this mathematic expression for the parabola

doesn’t seem to be the most suitable for our purpose, because we are seeking an

30

expression that permits to plot a parabola from two geometrical parameters. This leads

to another equation of parabola.

Second approach

In this second approach, the function implements a parabola, receiving 4 inputs: k, step-

height, p, a.

Step-height: height of the parabola;

 k: longitudinal displacement;

 p: changes the position of focus;

a: this parameter controls the shape of the parabola.

Figure 3.9. New parabola function.

If we execute this function, the following shape is obtained.

>> parabola2_antigua(0,4,1,4)

31

Figure 3.10. New parabola function shape.

The function works properly, but these parameters are not the desired ones. We are

looking for a parabola with only three inputs (longitudinal displacement, step-height,

and step-length). But this mathematic expression of the parabola, allows to find the

desired formula for the parabola. We just need to do some mathematical operations.

If we take the equation of the parabola

 . (4)

The step-length should be measured in Y=0, so:

 , (5)

 , (6)

√

. (7)

And x is half the length of the step length. So step length is:

√

 . (8)

As we can see in (8), step-length depends on step-height and parameter a. It became

clear then that parameter a cannot be an input of the function, because it is something

already fixed and depending on step-height.

32

This leads to a new function, in which parameter a is calculated from step-length and

step-height, and it is not an input of the function. This way, we can obtain the desired

parabola, controlling step height and step length.

Obtaining parameter a is easy, and it comes from clearing it in the previous equation:

√

 , (9)

√

 . (10)

Parameter p is redundant now, because the step-height and step-length are enough to

define one parabola. This is the new function:

Figure 3.11. Third version of the function parabola.

This is the plot obtained when executed:

33

Figure 3.12. Parabola plot.

As it can be seen, now we obtain a parabola, with only the three desired inputs:

Step-length, Step-height and k (longitudinal displacement).

3.4 Implementing the parabola in the MATLAB® model of the robot

When mathematics are solved, it comes the time to implement the parabola in the robot

model.

The function that needs to be changed is the following:

34

Figure 3.13. Feet_trajectory function.

The way to change the trajectory of feet is to change the coordinate z in the third case of

the “if” loop [(t>phase)&&(t<=phase+1)].

Taking into account the way parabola is calculated, the parameter a, needs to be

calculated before any case of the if.

The function remains then as shown in figure 3.14.

35

Figure 3.14. New Feet_trajectory function.

Note: it’s important to stress that the parabola is now in the z-y plane, and not in the x-y

plane like the function “parabola2.m”

3.5 Adaptive Trajectories Method

Once the robot is able to perform parabolas with its feet, it is time to determine the

method of adaptive trajectory generation.

The method proposed in this work consists of performing a parabola for the robot’s

foot. This parabola does not suffer any change if no obstacle is found. However, if the

sensor on hexapod’s foot detects any kind of obstacle, the leg stops its movement. In

36

this moment, robot’s body starts advancing over the obstacle. This way, robot can

overcome obstacles without a need of a camera or any other sensors.

Figure 3.15. Feet_trajectory function.

Figure 3.15, shows a schematic way how robot’s foot should move over irregular

terrain. As it can be seen, robot would pass both over higher obstacles and over lower

obstacles (holes).

In order to keep on advancing with the function that makes this method possible, it is

important to check in order to see if the code will work properly and without

singularities or failures.

With the purpose of checking if the function is correct, it was obtained the step length

from the z coordinate.

For this, it is only necessary to clear the step-length from the function and displayed. As

it can be seen, it always provides the value entered previously, without any

indetermination or failure.

 (12)

√

 √

. (14)

The function would remain as shown in figure 3.16.

As it can be seen when code is executed, the values are the expected ones.

37

Figure 3.16. New Feet_trajectory function. Check of singularities.

3.6 Obstacles

First approach

The next step for the development of adaptive trajectories would be to input the height

of the obstacle, plotting a parabola that stops when reaches the obstacle.

The first problem we need to overcome is that our current function is based on time. It

has 3 “if” cases depending on time. However, for an adaptive trajectory, the legs

movement cannot depend on time but on the characteristics of terrain (x, y, z)

coordinates. For this reason, a completely different function (with the same expression

for the parabola) was built. This function generates different coordinates depending on z

coordinate. The idea is to build a parabola, but in the very moment it reaches an

obstacle, start moving the leg backwards.

The trajectory script is the following:

38

Figure 3.17. Trajectory script.

This function is an independent function, built apart from hexapod.m code, as a first

step to check the suitability. It uses vectors to store values of cooridnates, in order to

plot them after.

 it:

>> feet_traj_2(5,8,0,3)

y=[]; %Inizialization of Vectors
z=[];

a=2*sqrt(step_height*4)/step_length;

y(1)=-step_length/2; %Inizialization of y vector
i=2; %Index

for t= 1:0.1:70 %Vector of times

if(y(i-1)==-step_length/2)||(obstacle==0)

 y(i)=y(i-1)+0.01; %Y vector. Linear
 z(i)=-((a*y(i)).^2)/(4)+step_height; %Parabola

 %if reached the obstacle (precision 0.1)
 if(abs(obst_height-z(i))<0.1)&&(y(i)>0)
 obstacle=1; %Signal of obstacle (true/false sensor in

legs)
 end

 i=i+1;
end

if (obstacle==1)&&(y(i-1)>-step_length/2) %obstacle found

 %Backwards movement

 z(i)=obst_height;
 y(i)=y(i-1)-0.1;

 i=i+1;
end

plot (y,z)
end
end

39

Figure 3.18. Leg trajectory shape in Z-Y frame.

As it can be seen in this first approach, when the parabola reaches the value 3 for z

coordinate, it starts moving backwards, until value -2.5 (-step_lenght/2), which is

exactly the shaped looked for. Since we are working with discrete values, there is a limit

on the precision we can obtain. That is the cause of the little mistake when the obstacle

is reached.

With this first approach made successfully, the challenge now is to adapt this function

to the whole code, in order to simulate and start checking the robot movement.

Second approach

The first function developed, is basically the previous one, with some changes for

adapting it to the hexapod.m code.

As it has already been said, in the function “feet_traj.m”, the Y coordinates, generation

is based on the variable “t”, this way, they kept advancing and there was no need to

store the values. However, in this new function, the decisions are made based on the

previous values of Y coordinates, so there is a need to “re-use” the previous values of Y

coordinates in order to generate the next one. In addition, the code is much clearer if

variable obstacle is not a local variable from “feet_traj_4” function but a global

variable of “hexapod.m” code, and it is received from the function.

40

Figure 3.19. Adaptive trajectory. Second version.

For that, the new concept of the function is the following.

This way, if there is no obstacle, the movement is the regular parabolic one, however, if

there is an obstacle, z values are equal to obstacle_height and Y coordinate starts to

move back.

It is important to note that variable “obstacle” is only used in this MATLAB®

simulation, in order to make it work, but in the actual robot, it will be the signal from

the sensors on the legs.

function [x, y, z] = feet_traj_4(phase, T ,step_length,

step_height,t,dir,obst_height)

%Phase and T not used

a=2*sqrt(step_height*4)/step_length;
obstacle=0;

if(t==0)
 y=-step_length/2 ;
 end %Inizialization of y (only in first moment)

if(obstacle==0)

 y=-step_length/2+t*10; %y vector. Linear
 z=-((a*y).^2)/(4)+step_height; %Parabola
 x=0;
 %if reached the obstacle (precision 0.1)
 if(abs(obst_height-z)<0.6)&&(y>0)

 %Signal of obstacle (true/false sensor in legs)
 obstacle=1
 end

end

 if (obstacle==1)&&(y>-step_length/2) %obstacle found

 %Backwards movement

 z=obst_height;
 y=y-0.1;
 x=0;

 end

41

Figure 3.20. Adaptive trajectory. Second version.

For that, outside the function (in hexapod.m code) there is a need to establish if the z

coordinate reached an obstacle, in order to set obstacle variable equal to 1. For that, it

was built this new part of code, (outside the function) (figure 3.21).

The results for this new function seem to be correct, and the MATLAB® model for the

robot moves as desired.

function [x, y, z] = feet_traj_4(phase, T,step_length,

step_height,t,dir, yp,obstacle,obstacle_height)

%Dir is ot used

a=2*sqrt(step_height*4)/step_length;

if (t==0)
yp=-step_length/2 ;
end

if(obstacle==0)

%Forward movement. Parabola

 y=yp+0.2; %y vector. Linear
 z=-((a*y).^2)/(4)+step_height;
 x=0;

end

if (obstacle==1)&&(yp>-step_length/2) %obstacle found

 %Backwards movement

 z=obstacle_height;
 y=yp-0.2;
 x=0;
 end

end

42

Figure 3.21 . Additional code to “hexapod.m”.

However, it seems to fit better if the second buckle is guided by coordinates (space

instead of time). Thus, the new second buckle is the following one:

y=-step_length/2:res:step_length/2.

This way, it will generate values for Y coordinates, no matter how long does it take for

it.

Third approach

After checking the previous function, it came up a necessity to make some changes in

order to stop generating coordinates after reaching the other side of the parabola. This is

the current step shape:

 %if reached the obstacle (precision 0.6)
 if(abs(obstacle_height1-RF_z)<0.4)&&(RF_y>0)

 %Signal of obstacle (true/false sensor in legs)

obstacle1=1;
 end

 if(abs(obstacle_height2-RM_z)<0.4)&&(RM_y>0)
 obstacle2=1
 end

 if(abs(obstacle_height3-RH_z)<0.4)&&(RH_y>0)
 obstacle3=1;
 end

 if(abs(obstacle_height4-LF_z)<0.4)&&(LF_y>0)
 obstacle4=1;
 end

 if(abs(obstacle_height5-LM_z)<0.4)&&(LM_y>0)
 obstacle5=1;
 end

 if(abs(obstacle_height6-LH_z)<0.4)&&(LH_y>0)
 obstacle6=1;
 end

43

Figure 3.22. Current step shape. Z-Y frame.

However, the desired step shape is the following.

Figure 3.23 . Desired Step shape.

To accomplish this, it can be done through two different ways:

1. Recalculating the step length through mathematical expressions.

44

2. Adding a new condition to three second parts of the function, with the purpose

of stopping the coordinate generation when the backwards movement reaches the

other side of the parabola

The second option is chosen, for being the simplest one.

Before writing any piece of code, there is some mathematics that needs to be done. The

Y value that needs to be found is the one in which the line crosses the parabola (stressed

with red in the picture). If this value is found, the new condition for the parabola

becomes easy to write.

Starting with the equation of the parabola:

 , (15)

 , (16)

 √ , (17)

√

, (18)

√

. (19)

Once this value is found, the new function can be constructed.

Figure 3.24. Adaptive trajectory generation function. Third version.

As it can be seen in the simulation, with this function, the step shape is the desired one.

function [x, y, z] = feet_traj_4(phase, T,step_length,

step_height,t,dir, yp,obstacle,obstacle_height)

%yp is the previous value of y coordinate.
%Phase and T are not used

 a=2*sqrt(step_height*4)/step_length;

if(obstacle==0)
 y=yp+0.2; %y vector. Linear
 z=-((a*y).^2)/(4)+step_height; %Parabola
 x=0;

end

if (obstacle==1) && (yp>-sqrt((step_height-obstacle_height)*4)/a)

%obstacle found
 %Backwards movement
 z=obstacle_height;
 y=yp-0.2;
 x=0;
 end

45

Forth approach. Finishing the step

The next problem that needs to be solved is the method to finish the step. In the current

function both of current conditions for coordinates generating will be false after

finishing the movement. And this gives an error when the function is called without any

parameter as an output.

In order to use the same function for every leg of the robot (increasing clearance), after

the legs finish their movement, the function will keep generating coordinates, but they

will be the same coordinates as the coordinates in the instant they stop. Thus, every leg

of the robot will start its movement for each step at the same time, although they might

finish at different time instants. (The leg that will find an obstacle will finish the

movement before the leg that does not find any). This way, we can use the same

function for every leg making the code more flexible and easier. Besides, the movement

will be neater.

Fifth approach. Different obstacles for each leg

The purpose of this robot is to be able to walk over any surface, adapting itself to the

terrain. For this reason, it seems natural, that in our simulation code there should be

different obstacle heights and different obstacle signals. This way, we will make each

leg movement independent, so the robot will adapt to the terrain.

The first thing to do for this is to set different obstacle heights, so the robot can decide,

for each leg, when this obstacle appears.

And it is not enough with this, since in the actual robot there will be moments when no

obstacle is found. To make it the more similar to the actual robot as possible, if there is

no obstacle, obstacle height should be set as 0, and in the part of the code that generates

the variable, instead of obstacle=1, we should change it to obstacle=0.

After this, the feet trajectory function needs to be modified. This is the new function,

which is now able to handle different movements for each leg, depending on whether

there is an obstacle or not.

46

Figure 3.25 . Adaptive trajectory generation function. Fourth version.

function [x, y, z] = feet_traj_4(phase, T,step_length,

step_height,t,dir, yp,xp,zp,obstacle,obstacle_height)

%xp,yp, and zp are the previous values of the coordinates.
%Phase and T are not used
a=2*sqrt(step_height*4)/step_length;

if(obstacle==0)&&((t==-step_length/2)||zp>0)

%There is no obstacle. We are in the first iteration of the loop

or we are making the parabola movement (zp>0)

 y=yp+0.3; %y vector. Linear. 0.3 is the minimum speed. If the

speed is still too much, this function is the one to be modified.
 z=-((a*y).^2)/(4)+step_height; %Parabola
 x=0;

elseif(obstacle==0)&&(zp<=0)&&(yp>-step_length/2)

 %no obstacle was found and z has got 0 (parabola movement finished).

z maintains its position and Y starts moving back.
 z=0;
 y=yp-0.3;
 x=0;

elseif (obstacle==1) && (yp>-sqrt((step_height-obstacle_height)*4)/a)

%obstacle found

 %Obstacle found. Backwards movement."-sqrt((step_height-

obstacle_height)*4)/a" is the crossing point between parabola and

line.

 z=obstacle_height;
 y=yp-0.6;
 x=0;

 elseif(obstacle==1)

 %There was an obstacle, but the backwards movement has finished. It

generates the same coordinates.
 z=obstacle_height;
 y=yp;
 x=0;

end
end

47

Figure 3.26 shows how different robot feet react to different obstacle heights, obtaining

independence between legs.

Figure 3.26. Different feet trajectories for different obstacles height.

Sixth approach. Tripod gait

The previous function worked perfectly. Yet, it had a problem. As it is previously

explained, since the function keeps generating coordinates after the obstacle is reached,

in the next step, all the legs would start its movement at the same time. This way, there

is no option to program a specific gait.

In order to fix that, a new function was built, which, instead of generating the same

coordinates, it sets the obstacle variable to 0, this way, when the leg finish its

movement, it starts a new one, without waiting for other legs to finish. This permits to

perform the Tripod gait, by programing different starting points for the legs. Legs are

now completely independent, although they will maintain the tripod gait as long as they

are moving. The function remains as follows:

48

Figure 3.27. Adaptive trajectory generation function. Fifth and final version.

The code was checked in the simulator, obtaining a successful movement of the robot.

However, the code now has one disadvantage. Since there is no possibility to know

when one whole step will end (it depends on terrain characteristics), it is better to use a

long-lasting for loop, that will be the whole length of the robot movement.

The robot moves now as desired, with a perfect tripod gait. The figure 3.28 shows a

random instant of the simulation, where it shows different obstacle heights and how the

robot adapts to them.

function [x, y, z,obstacle] = feet_traj_5(step_length,

step_height,t,dir, yp,xp,zp,obstacle,obstacle_height)

%xp,yp, and zp are the previous values of the coordinates.
%Phase and T are not used
a=2*sqrt(step_height*4)/step_length;

 if(obstacle==0)

 y=yp+0.3;
 z=-((a*y).^2)/(4)+step_height; %Parabola
 x=0;

 elseif(obstacle==1)

 if (yp>-sqrt((step_height-obstacle_height)*4)/a) %obstacle found

%Obstacle found. Backwards movement."-sqrt((step_height-

obstacle_height)*4)/a" is the crossing point between parabola

and line.
 z=obstacle_height;
 y=yp-0.6;
 x=0;

 else

%There was an obstacle, but the backwards movement has

finished. It generates the same coordinates.
 z=obstacle_height;
 y=yp;
 x=0;

 obstacle=2 % allows to set obstacle variable to 1 again.
 end
 end
 end

49

Figure 3.28 . Random instant of the simulation.

50

4. CONCLUSIONS

1. Parabola function is better for foot trajectory than sinusoidal functions, because it

has the property of not changing concavity when zero is passed.

2. Developing independent parabolas for the different robot’s feet and being able to

stop its generation when any obstacle is reached, is a method that works properly

on MATLAB® simulator, and it seems to be very appropriate for hexapod robots.

3. Legged robots are much more complicate to control, but the potential is bigger over

wheeled robots, when talking about unknown surfaces and terrains.

4. Denavit-Hartenberg algorithm, together with geometric inverse kinematics method,

easily allows to model the robot, and permit to develop a simple algorithm to

control it.

5. As for the experiments carried out, it is clear that being able to test the trajectory

generation functions in a software is an enormous advantage, since almost every

parameter can be checked.

6. Robot movement was checked with the simulator, inputting different heights for

obstacles encountered by different feet, and observing how robot adapted to them.

7. Robot movement reacts very well to different obstacle heights, since the method for

trajectory generation makes robot’s legs to move independently.

8. As a general conclusion reached, robotics is a wide field of study, where a lot of

research is still to be done, especially concerning control systems.

9. Optical methods to examine unknown terrain (artificial vision) require more

capacity for the microcontroller of the robot than yes-no sensors. The reason is that

they need to process too much information, and this may affect real-time

operations. On the other hand, using yes-no sensors, permit more speed in the

operations. However, using yes-no sensors, have a big disadvantage, which is the

necessity of knowing the maximum height of the obstacle. This height needs to be

mandatorily less than step-height.

Future work

The function as it currently remains is not able to walk in a desired direction. Future

work on trajectory generation should include some functions that would permit the

robot to walk in every direction desired. The easiest way to achieve this would be to

include sinusoidal functions that would give the trajectory the desired direction.

In the present moment, there is no control over the speed of robot’s foot. It would be

logical to include some parameters that would permit to control robot’s speed, in order

to find the best speed for the different obstacles.

More gaits should be developed, in order to improve the flexibility of the robot.

51

5. REFERENCES

[1] Mechatronic systems and materials. Edited by Andrejus H. Marcinkevicius and

Algirdas V.Valiulis. Trans Tech publications.

[2] D.M. Wilson, Insect walking, Annual Review of Entomology 11 (1966) 103–122.

[3] Introdution to Autonomous Mobile Robots. Roland illah r. siegwart nourbakhsh.

[4] Gaits and energetics in terrestrial legged locomotion D.C. Kar a,*, K. Kurien Issac

b, K. Jayarajan a.

[5] Paul, Richard (1981). Robot manipulators: mathematics, programming, and control :

the computer control of robot manipulators. MIT Press, Cambridge, MA. ISBN 978-0-

262-16082-7.

[6] http://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled.

[7] http://no.cyclopaedia.net/wiki/SCARA_robot

[8] http://www.challenge.toradex.com/

[9] ATmega16 datasheet.

[10] http://en.wikipedia.org/wiki/Robot

[11] http://en.wikipedia.org/wiki/Cartesian_coordinate_robot

[12] http://en.wikipedia.org/wiki/Cartesian_coordinate_robot

[13] http://en.wikipedia.org/wiki/Parallel_manipulator

[14] http://en.wikipedia.org/wiki/Ro

[15] http://www.allonrobots.com/

 [16] http://en.wikibooks.org/wiki/Robotics

[17] http://en.wikipedia.org/wiki/Spherical_robot

[18] http://www.thefullwiki.org/Wheeled

[19] ttp://www.openbook.com.vn/index.php?title=Robotics/Types_of_Robots/Wheeled

http://books.google.com/books?id=UzZ3LAYqvRkC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://books.google.com/books?id=UzZ3LAYqvRkC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-262-16082-7
http://en.wikipedia.org/wiki/Special:BookSources/978-0-262-16082-7
http://en.wikibooks.org/wiki/Robotics/Types_of_Robots/Wheeled
http://no.cyclopaedia.net/wiki/SCARA_robot
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Cartesian_coordinate_robot
http://en.wikipedia.org/wiki/Cartesian_coordinate_robot
http://en.wikipedia.org/wiki/Parallel_manipulator
http://www.allonrobots.com/
http://en.wikibooks.org/wiki/Robotics
http://www.thefullwiki.org/Wheeled

