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1. INTRODUCTION 

 

As a first approach to understand this final thesis, it is important to understand what a 

robot is. One of the simplest and best definitions for a robot is the following one. 

  

 

 

 

 

The branch of technology that deals with the design, construction, operation, and 

application of robots, as well as computer systems for their control is robotics. These 

technologies deal with automated machines that can take the place of humans in 

dangerous environments or manufacturing processes, or resemble humans in 

appearance, behavior, and/or cognition.  

It is a fact, that robotics is a field of study that is developing very fast, and there are still 

a lot of problems or just tedious task that can easily be accomplished by robots. If we 

success in using robots in the right way, and having in mind our moral values, the 

society can advance in good way. This is one of the reasons why I chose to work in 

robotics in my final thesis for my bachelor. 

This thesis explains the work I developed in this field, during the second semester of the 

school year 2013-2014. 

 

Objectives 

The main goal of this thesis is to develop a method for trajectory generation for a given 

hexapod robot. 

The robot is shown in figure 1.1. 

The ultimate goal of developing adaptive trajectories for the robot can be structured into 

two big stages, which can be clearly seen along the experiments. 

1. Mathematics of trajectories 

In this work, it has been carried out a thorough study of the best mathematics functions 

that the legs of the robot might follow, obtaining a parabola as the best mathematic 

function for this purpose. 

A robot is a mechanical or virtual artificial agent, usually an electro-mechanical 

machine that is guided by a computer program or electronic circuitry. Robots 

can be autonomous or semi-autonomous and range from humanoids 

to industrial robots, collectively programmed 'swarm' robots, and even 

microscopic nano-robots [10]. 

http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Robotics
http://en.wiktionary.org/wiki/agent
http://en.wikipedia.org/wiki/Electromechanics
http://en.wikipedia.org/wiki/Electromechanics
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Electronic_circuit
http://en.wikipedia.org/wiki/Autonomous_robot
http://en.wikipedia.org/wiki/Industrial_robot
http://en.wikipedia.org/wiki/Swarm_robotics
http://en.wikipedia.org/wiki/Nanorobotics
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  Figure 1.1 Hexapod robot 

2. Check trajectory generation with MATLAB® code which simulates the robot 

Before implementing any new technic or program in a machine, it is always easier to 

check it on a simulator first. Particularly with complex robots, it is nearly a necessity, 

since there are a lot of variables that can be checked and modified as desired towards a 

specific goal. 

For that, the hexapod robot of study, have an accurate simulator constructed in 

MATLAB ®. This is the application where all the new ideas and movements for the 

robot were checked. 
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2. ANALYTICAL PART 

 

There are several classifications of robots. Robots can be classified according to 

applications, number of degrees of freedom etc. Since this thesis’ purpose is 

development of a method for trajectory generation, it appears logical to discuss about 

means of locomotion and classify robots with the same criteria.  

 

2.1 Stationary robots  

This category includes robotic industrial arms with a global axis of movement. 

Although the hexapod robot is not a stationary one, these robots comprise a very large 

and important group. That is the reason why they should be reviewed in a short way. 

Cartesian/Gantry robots: A cartesian coordinate robot (also called linear robot) is 

an industrial robot whose three principal axes of control are linear (i.e. they move in a 

straight line rather than rotate) and are at right angles to each other. The three sliding 

joints correspond to moving the wrist up-down, in-out, back-forth. Among other 

advantages, this mechanical arrangement simplifies the robot control arm 

solution. Cartesian coordinate robots with the horizontal member supported at both ends 

are sometimes called Gantry robots [11]. 

 

Figure 2.1. Cartesian Robot 

Cylindrical robots: A cylindrical robot has two linear axes and one rotary axis. The 

robot derives its name from the operating envelope (the space in which a robot operates 

that is created by moving the axes from limit to limit). 

The Z axis is located inside the base, resulting in a compact end-of-arm design that 

allows the robot to "reach" into tight work envelopes without sacrificing speed or 

repeatability [12]. 

http://www.allonrobots.com/cartesian-robots.html
http://en.wikipedia.org/wiki/Industrial_robot
http://en.wikipedia.org/wiki/Principal_axis_(mechanics)
http://en.wikipedia.org/wiki/Right_angle
http://en.wikipedia.org/wiki/Robot_control
http://en.wikipedia.org/wiki/Arm_solution
http://en.wikipedia.org/wiki/Arm_solution
http://en.wikipedia.org/wiki/Cartesian_coordinate
http://en.wikipedia.org/wiki/Gantry
http://www.allonrobots.com/cylindrical-robot.html


10 
 

Figure 2.2. Cylindrical robot. 

Spherical robots: A spherical robot is a robot with two rotary joints and one prismatic 

joint; in other words, two rotary axes and one linear axis. Spherical robots have an arm 

which forms a spherical coordinate system [17]. 

 

Figure 2.3. Cylindrical robot. 

SCARA (Selective Compliant Assembly Robot Arm) robots: It is a type of cylindrical 

robot that has 4 axes of movement: X, Y, Z, and Theta Z. By virtue of the SCARA's 

parallel-axis joint layout, the arm is slightly compliant in the X-Y direction but rigid in 

the ‘Z’ direction, hence the term: Selective Compliant. This is advantageous for many 

types of assembly operations, i.e. inserting a round pin in a round hole without binding. 

The second attribute of the SCARA is the jointed two-link arm layout similar to our 

human arms, hence the often-used term, articulated. This feature allows the arm to 

extend into confined areas and then retract or “fold up” out of the way. This is 

advantageous for transferring parts from one cell to another or for loading/unloading 

process stations that are enclosed. 

http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Rotary_joint
http://en.wikipedia.org/wiki/Prismatic_joint
http://en.wikipedia.org/wiki/Prismatic_joint
http://en.wikipedia.org/wiki/Spherical_coordinate_system
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SCARA's are generally faster and cleaner than comparable Cartesian robot systems. 

Their single pedestal mount requires a small footprint and provides an easy, unhindered 

form of mounting [7]. 

 

Figure 2.4.  SCARA robot. 

Articulated robots (robotic arms): An articulated robot is one which uses rotary joints to 

access its work space. Usually the joints are arranged in a “chain”, so that one joint 

supports another further in the chain. 

 

Figure 2.5. Articulated robot examples. 

Parallel robots: parallel robots, or generalized Stewart platforms (in the Stewart 

platform, the actuators are paired together on both the basis and the platform), these 

systems are articulated robots that use similar mechanisms for the movement of either 

the robot on its base, or one or more manipulator arms. Their 'parallel' distinction, as 

opposed to a serial manipulator, is that the end effector (or 'hand') of this linkage (or 

'arm') is connected to its base by a number of (usually three or six) separate and 

independent linkages working in parallel. 'Parallel' is used here in the computer 

science sense, rather than the geometrical; these linkages act together, but it is not 

http://en.wikipedia.org/wiki/Cartesian_robot
http://en.wikipedia.org/wiki/Stewart_platform
http://en.wikipedia.org/wiki/Stewart_platform
http://en.wikipedia.org/wiki/Articulated_robot
http://en.wikipedia.org/wiki/Manipulator
http://en.wikipedia.org/wiki/Serial_manipulator
http://en.wikipedia.org/wiki/End_effector
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Geometrical
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implied that they are aligned as parallel lines; here parallel means that the position of 

the end point of each linkage is independent of the position of the other linkages [13]. 

 

 

Figure 2.6. Paralel robot examples. 

2.2 Locomotion overview 

A mobile robot needs locomotion mechanisms that enable it to move as desired 

throughout its environment. But there are a large variety of possible ways to move, and 

so the selection of a robot’s approach to locomotion is an important aspect of mobile 

robot design. In the laboratory, there are research robots that can walk, jump, run, slide, 

skate, swim, fly, and, of course, roll. Most of these locomotion mechanisms have been 

inspired by their biological counterparts (see table 1) [3]. 

 

There is, however, one exception: the actively powered wheel is a human invention that 

achieves extremely high efficiency on flat ground. This mechanism is not completely 

foreign to biological systems. Our bipedal walking system can be approximated by a 

rolling polygon, with sides equal in length to the span of the step (figure 2.7). As the 

step size decreases, the polygon approaches a circle or wheel. But nature did not 

develop a fully rotating, actively powered joint, which is the technology necessary for 

wheeled locomotion. Biological systems succeed in moving through a wide variety of 

harsh environments. Therefore it can be desirable to copy their selection of locomotion 

mechanisms. However, replicating nature in this regard is extremely difficult for several 

reasons. To begin with, mechanical complexity is easily achieved in biological systems 

through structural replication [3]. 

 

Cell division, in combination with specialization, can readily produce a millipede with 

several hundred legs and several tens of thousands of individually sensed cilia. In 

manmade structures, each part must be fabricated individually, and so no such 

economies of scale exist. Additionally, the cell is a microscopic building block that 

enables extreme miniaturization. With very small size and weight, insects achieve a 

level of robustness that we have not been able to match with human fabrication 

techniques. Finally, the biological energy storage system and the muscular and 

hydraulic activation systems used by large animals and insects achieve torque, response 

time, and conversion efficiencies that far exceed similarly scaled man-made systems 

[3]. 
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Table 1. Locomotion mechanisms used in biological systems. 

 
 

 

Owing to these limitations, mobile robots generally locomote either using wheeled 

mechanisms, a well-known human technology for vehicles, or using a small number of 

articulated legs, the simplest of the biological approaches to locomotion (see figure 2.7). 

In general, legged locomotion requires higher degrees of freedom and therefore greater 

mechanical complexity than wheeled locomotion. Wheels, in addition to being simple, 

are extremely well suited to flat ground. As figure 2.8 depicts, on flat surfaces, wheeled 

locomotion is one to two orders of magnitude more efficient than legged locomotion. 

But as the surface becomes soft, wheeled locomotion accumulates inefficiencies due to 

rolling friction whereas legged locomotion suffers much less because it consists only of 

point contacts with the ground. This is demonstrated in figure 2.8 by the dramatic loss 

of efficiency in the case of a tire on soft ground [3]. 
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Figure 2.8. Specific power versus attainable speed of various locomotion mechanisms 

[3]. 

 

In effect, the efficiency of wheeled locomotion depends greatly on environmental 

qualities, particularly the flatness and hardness of the ground, while the efficiency of 

legged locomotion depends on the leg mass and body mass, both of which the robot 

must support at various points in a legged gait. 

 

It is understandable therefore that nature favors legged locomotion, since locomotion 

systems in nature must operate on rough and unstructured terrain. For example, in the 

case of insects in a forest the vertical variation in ground height is often an order of 

magnitude greater than the total height of the insect. By the same token, the human 

environment frequently consists of engineered, smooth surfaces, both indoors and 

outdoors. Therefore, it is also understandable that virtually all industrial applications of 

Figure 2.7. A biped walking system can be approximated by a rolling polygon, with 

sides equal in length d to the span of the step. As the step size decreases, the polygon 

approaches a circle or wheel with the radius l [3]. 
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mobile robotics utilize some form of wheeled locomotion. Recently, for more natural 

outdoor environments, there has been some progress toward hybrid and legged 

industrial robots [3]. 
 

2.3 Wheeled robots 

Wheeled robots are robots that navigate around the ground using motorized wheels to 

propel themselves. This design is simpler than using treads or legs and by using wheels 

they are easier to design, build, and program for movement in flat, not-so-rugged 

terrain. They are also more well controlled than other types of robots. However, some 

disadvantages of wheeled robots are that they cannot navigate well over obstacles, such 

as rocky terrain, sharp declines, or areas with low friction. [18] 

Wheeled robots are most popular among the consumer market because their differential 

steering provides low cost and simplicity. Robots can have any number of wheels, but 

three wheels are sufficient for static and dynamic balance.  

Two wheeled robots: Two wheeled robots are harder to balance than other types 

because they must keep moving to maintain upright. The center of gravity of the robot 

body is kept below the axe, usually this is accomplished by mounting the batteries 

below the body.  

Famous examples of two wheeled robots are Roomba and Segway transporter.  

Figure 2.9. Two wheeled robot. 

 

Three wheeled robots: 3-wheeled vehicles may be of two types: differentially steered (2 

powered wheels with an additional free rotating wheel to keep the body in balance) or 2 

wheels powered by a single source and a powered steering for the third wheel. In the 

case of differentially steered wheels, the robot direction may be changed by varying the 

relative rate of rotation of the two separately driven wheels. If both the wheels are 

driven in the same direction and speed, the robot will go straight. Otherwise, depending 

on the speed of rotation and its direction, the center of rotation may fall anywhere in the 

line joining the two wheels [14]. 
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Figure 2.10. Differentially steered 3 wheeled robot. 

Four wheeled robots: four wheeled robots may be of two types: 

‒ 2 powered, 2 free rotating wheels:  the robot direction may be changed by 

varying the relative rate of rotation of the two separately driven wheels [19]. 

 

Figure 2.11. wheels powered, 2 free rotating wheels. 

 

‒ 2-by-2 powered wheels for tank-like movement: This kind of robot uses 2 

pairs of powered wheels. Each pair (connected by a line) turn in the same 

direction. The tricky part of this kind of propulsion is getting all the wheels to 

turn with the same speed. If the wheels in a pair aren't running with the same 

speed, the slower one will slip (inefficient). If the pairs don't run at the same 

speed the robot won't be able to drive straight. A good design will have to 

incorporate some form of car-like steering. [14]. 
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Figure 2.12. 2-by-2 powered wheels for tank-like movement. 

‒ Car-like steering: This method allows the robot to turn in the same way a car 

does.. This system does have an advantage over previous methods when your 

robot is powered by a combustion engine: It only needs one motor (and a servo 

for steering of course). The previous methods would require either 2 motors or a 

very complicated gearbox, since they require 2 output axes with independent 

speed and direction of rotation [8]. 

 

 

 

 

 

 

 

 

Figure 2.13. Car-like steering. 

 

2.4 Legged robots 

Legged locomotion is characterized by a series of point contacts between the robot and 

the ground. The key advantages include adaptability and maneuverability in rough 

terrain because only a set of point contacts is required; the quality of the ground 

between those points does not matter so long as the robot can maintain adequate ground 

clearance. In addition, a walking robot is capable of crossing a hole or chasm as long as 

its reach exceeds the width of the hole. Another advantage of legged locomotion is the 
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potential to manipulate objects in the environment with great skill. An excellent insect 

example, the dung beetle, is capable of rolling a ball while locomoting by way of its 

dexterous front legs. And as a final advantage, legs create discrete footprints and cause 

less damage to natural terrain. 

 

Figure 2.14. Car-like steering [3]. 

 

The main disadvantages of legged locomotion include power and mechanical 

complexity. The leg, which may include several degrees of freedom, must be capable of 

sustaining part of the robot’s total weight, and in many robots must be capable of lifting 

and lowering the robot. Additionally, high maneuverability will only be achieved if the 

legs have a sufficient number of degrees of freedom to impart forces in a number of 

different directions [3]. 

 

With the advances in control of complex systems, efforts to develop legged machines 

have become more intense. 

 

Leg configuration and stability 

Since all legged robots are inspired by nature, it is a good approach to examine 

biologically successful legged systems, in order to gain knowledge and experience. As 

shown in figure 2.14, different configurations for legs have been successful in different 

animals. Large animals, such as mammals and reptiles, have four legs, whereas insects 

have six or more legs. In some mammals, the ability to walk on only two legs has been 

perfected. Especially in the case of humans, balance has progressed to the point that we 

can even jump with one leg. This exceptional maneuverability comes at a price: much 

more complex active control to maintain balance [3]. 

 

In contrast, a creature with three legs can exhibit a static, stable pose provided that it can 

ensure that its center of gravity is within the tripod of ground contact. Static stability, 

demonstrated by a three-legged stool, means that balance is maintained with no need for 

motion. A small deviation from stability (e.g., gently pushing the stool) is passively 

corrected toward the stable pose when the upsetting force stops [3]. 

 

But a robot must be able to lift its leg at the end of its effective stroke, return it, and 

place it on the ground to begin another support phase. In order to achieve static walking, 

a robot must have at least six legs generally. In such a configuration, it is possible to 

design a gait in which a statically stable tripod of legs is in contact with the ground at all 

times [3]. 
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Figure 2.15. Static walking with six legs [3] 

 

In the case of legged mobile robots, a minimum of two degrees of freedom is generally 

required to move a leg forward by lifting the leg and swinging it forward. More 

common is the addition of a third degree of freedom for more complex maneuvers, 

resulting in legs such as those shown in figure 2.14. Recent successes in the creation of 

bipedal walking robots have added a fourth degree of freedom at the ankle joint. The 

ankle enables more consistent ground contact by actuating the pose of the sole of the 

foot. 

In general, adding degrees of freedom to a robot leg increases the maneuverability of 

the robot, both augmenting the range of terrains on which it can travel and the ability of 

the robot to travel with a variety of gaits. The primary disadvantages of additional joints 

and actuators are, of course, energy, control, and mass. Additional actuators require 

energy and control, and they also add to leg mass, further increasing power and load 

requirements on existing actuators. 

In the case of a multi-legged mobile robot, there is the issue of leg coordination for 

locomotion, or gait control. The number of possible gaits depends on the number of legs 

[3]. 

 

The gait is a sequence of lift and release events for the individual legs. For a mobile 

robot with k legs, the total number of possible events N for a walking machine is 

N = (2k – 1)! 

For a biped walker (k=2) legs, the number of possible events N is 

N = (2k – 1)! = 3! = 3 ·2 · 1 = 6. 
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The six different events are: 

 

1. lift right leg; 

2. lift left leg; 

3. release right leg; 

4. release left leg; 

5. lift both legs together; 

6. release both legs together. 

 

Of course, this quickly grows quite large. For example, a robot with six legs, like the 

robot studied here, has far more gaits theoretically: 

 

N = 11! = 39916800 [3]. 

2.5 Hexapod robots 

As said before, hexapod configuration for robots, is the best for obtaining static walking 

and therefore, this leads to a less complex control of the robots. To discuss hexapod 

gaits and movement, the study of insects become very fruitful, as they are arguably the 

most successful locomoting creatures on earth, excel at traversing all forms of terrain 

with six legs, even upside down. 

 

The following figures show some examples of hexapod robots. 

 

 

 
Figure 2.16. Examples of different hexapod robots. 

 

First, there are some definitions that need to be explained, in order to understand the 

section: 

 

Protraction is the forward movement of a leg relative to the body and ground. 

Retraction is the backward movement of a leg relative to the body with no movement of 

the leg relative to the ground.  

The transfer phase (or swing) of a leg is the period in which the leg is not on the 

ground. 

The support (or stance) of a leg is the period in which the leg is on the ground.  

The cycle time is the time for a complete cycle of locomotion.  
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The duty factor of a leg is the time fraction of cycle time for which that leg is in the 

support phase.  

The leg phase of a leg is the fraction of cycle time by which the contact of that leg on 

the ground lags behind the contact of the front leg of left side.  

The stride length is the distance the center of gravity translates during one complete 

locomotion cycle [4]. 

 

The limb movements of many arthropods occur in metachronal sequences (each leg lifts 

when the leg behind it is on ground), often sequences running from posterior to anterior. 

Wilson showed that many of the common gaits observed in insects could be generated 

by changes in just one variable namely the time. In particular, Wilson [2] accounted for 

the smooth transition between a metachronal gait at low walking speeds and an 

alternating tripod gait at high speeds. As per Wilson hypothesis, leg movement in 

insects follows some general rules. These are: 

1. Forward movement of legs relative to the body runs from posterior to anterior and 

no leg protracts until the one behind is placed in a supporting position. 

2. Contra lateral legs of the same body segment alternate in phase. 

3. Protraction time is constant. 

4. Retraction time decreases as frequency of stepping increases. 

5. The intervals between steps of the hind leg and fore leg and between the middle leg 

and fore leg are constant. However, the interval between the fore leg and the hind 

leg steps varies inversely with stepping frequency [4]. 

 

According to Wilson, no other patterns, using six legs have been reported for straight 

walking. Later, he added modifying conditions to accommodate much of the 

experimental evidences from other animals. However, in special cases, the model is 

either inaccurate or does not hold at all. For example, climbing grasshopper moves the 

two legs of a segment together. At slow speeds, mantis is also functionally quadrupedal 

using only the posterior two pairs of legs. Some other scientist made a detailed study on 

the cockroach Periplaneta americana and found nearly linear relationship between 

average frequency of leg movement and rate of forward progression [4]. 

 

The stride length of the insect is more or less constant. Except at very low speeds 

(stepping frequency less than 3 Hz), it always uses the alternating tripod gait. At higher 

speeds, it runs with its body raised well off the ground and its anterior end elevated 

relative to the posterior. 

It switches to a gait using only four hind legs. In this posture, the body is propelled 

primarily by the long hind legs. Increase in angle of attack of the body also allows 

greater range of movement through which the hind legs can swing [4]. 

 

Another advantage of hexapod robots is that they can walk forward with many kinds of 

gaits (see figure 2.17) to adapt different speeds and loads. And because the redundant 

limb exists, hexapod robot could continue its work even if limb is lost.  

 

These advantages makes it competent for some autonomous and high-reliability works, 

such as field scouting, underwater searching, and space exploring. However, the control 

of those 6 legs becomes a complex task, due to the number of variables that must be 
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monitored. There is large body of work devoted to the control of hexapod robot which 

contains gait planning and kinematics control. 

 

Gait takes an important role in the control of walking machine. The gait synthesis might 

be based on kinematics model of the robot and walking rules that are well known from 

insect walking. There are two main types of gaits adopted in walking machines: 

periodic gait and non-periodic gait which is also called free gait. 

 

 

Figure 2.17. Tripod, wave and ripple gaits for a hexapod robot. 

 

 

The free gait increases the adaptability of the walking machine because it can move on 

uneven terrain. However, the free gait is hard to be realized in the real multi-legged 

walking robots and is only on the stage of theoretical research. Periodic gait such as 

tripod gait can be easily controlled and has an optimal stability margin. 

 

Since tripod gait seems to be the most appropriate for hexapod robot, it is the one 

chosen to start programming and testing. 
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3. DESIGN PART 

 

3.1 Electronics schemes of the hexapod robot 

In this section, the explanation of the electric scheme is showed. The main circuit is 

shown in figure 3.1. 

 

Figure 3.1. Electric robot’s scheme. 

 

U1 circuit 

U1 circuit represents the microcontroller. It is an ATmega16. Some of the most 

important features are the following: 

The ATmega16 provides the following features: 16 Kbytes of In-System Programmable 

Flash Program memory with Read-While-Write capabilities, 512 bytes EEPROM, 1 

Kbyte SRAM, 32 general purpose I/O lines, 32 general purpose working registers, a 

JTAG interface for Boundary-scan, On-chip Debugging support and programming, 

three flexible Timer/Counters with compare modes, Internal and External Interrupts, a 

serial programmable USART and a byte oriented Two-wire Serial Interface [9]. 
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In the circuit, the USART is used to receive and transmit signals to the U2 circuit. 

 - PD0 is the USART input pin 

 - PD1 is the USART output pin 

In the microcontroller, it is where all the calculations are carried out. The two main 

functions developed in the microcontroller are the control of servos and the calculations 

of kinematics. 

U2 circuit  

This circuit is a Motorola SN54/74LS240. It transforms from two different reception 

and transmission lines to only one line. This is needed because the main controller 

communicates with the servos by sending and receiving data packets. There are two 

types of packets; the “Instruction Packet” (sent from the main controller to the 

Dynamixel actuators) and the “Status Packet” (sent from the actuators to the main 

controller). Since the controller needs two different lines for inputs and outputs, and the 

servo uses only one bi-directional data line, there is a need to convert from two lines in 

the microcontroller to one line in the servos, and this purpose is served by U2 circuit. 

 

Some of the most important features are: 

• Hysteresis at Inputs to Improve Noise Margins. 

• 3-State Outputs Drive Bus Lines or Buffer Memory Address Registers. 

• Input Clamp Diodes Limit High-Speed Termination Effects. 

U3 circuit  

This circuit is a power source, which transforms 12V input to 5V in the output. It is 

needed because ATmega16 is powered with 5V, whereas servos are powered with 12 V. 

With this circuit, we can use only one power source instead of two different ones, and 

this is very beneficial, as there is no need to carry two power sources, which would 

increase the weight. 

Servos 

The actuators used for the hexapod are Dynamel AX-12 servos. 

 

 

 

 

 

Figure 3.2. Dynamixel AX-12 servomotors 
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A total number of 18 are necessary to obtain 3 degrees of freedom in each leg. The main 

characteristics of the servos are showed below. 

Table 2. Servos characteristics 

 

Resolution    0.35° 

Operating Angle   300°, Endless Turn 

Voltage   7V~10V (Recommended voltage: 9.6V) 

Max. Current   900mA 

Operate Temperature   -5 ˚C ~ +85 ˚C 

Command Signal   Digital Packet 

Protocol Type  Half duplex Asynchronous Serial Communication (8bit, 

1stop, No Parity). 

 

Link (Physical)   TTL Level Multi Drop (daisy chain type Connector) 

ID     254 ID (0~253) 

Communication Speed  7343bps ~ 1 Mbps 

Feedback    Position, Temperature, Load, Input Voltage, etc. 

Material    Engineering Plastic 

 

3.2 Hexapod robot kinematics 

Forward kinematics 

Forward kinematics refers to the use of the kinematic equations of a robot to compute 

the position of the end-effector from specified values for the joint parameters [5]. In this 

case, the end effector is considered to be the end of the robot’s leg. 

The most common and easy way to obtain forward kinematics is Denavit-Hartenberg 

algorithm, and this is the method used in this work. 

http://en.wikipedia.org/wiki/Kinematic
http://en.wikipedia.org/wiki/Robot
http://en.wikipedia.org/wiki/Robot_end_effector
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Figure 3.3. Kinematic layout for one leg. 

From leg kinematic layout showed in figure 3.3, Denavit-Hartenberg solution gives the 

following three equations: 

                                                      

                                                                     (1) 

                                          

 

These equations provide a relation between the position of robot’s foot and the angle of 

the servos used as actuators. As it can be observed, they provide the foot position when 

these angles are known, which means forward kinematics. 

Inverse Kinematics 

In order to get inverse kinematics expressions, it is necessary to express   ,    and    

over x, y and z. Such task could be very complex or even unsolvable. 

Less complex way of dealing with robot’s inverse kinematics is geometric inverse 

kinematics method. The following figures demonstrate kinematic layout of one leg for 

geometric inverse kinematics (Figure 3.4) [1]. 

Figure 3.4. Leg projection onto XZ and XY planes. 
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The following expressions are derived using this method: 
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   √        ,    (2) 

  √           , 
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Where   ,    and    are leg actuator angles that must be calculated in order to position 

robot’s foot into position with coordinates x, y and z. 

Transforming leg base coordinates frames into body coordinate frame 

Once the kinematics for legs is solved, there is a need to transform each coordinate 

frame into robot’s coordinate frame. This way, it is easy to correct body positions, for 

instance when robot is climbing on inclined surface. This makes possible also to lift 

robot’s body when needed. Figure 3.5 shows the coordinate frames layout on the robot. 

 

Figure 3.5. Coordinates frames on the robot. 

To calculate leg base coordinate frame’s coordinates in robot’s body coordinate frame, 

homogeneous transformation matrices are used. Each leg’s base coordinate frame is 

transformed using three rotations and one translation. The homogeneous transformation 

matrix (Bi) is obtained by multiplying the matrix of translation (Ti) by the matrix of 

rotation        . In this matrix,     represents the rotation of the new base coordinates 

frame, and X0, Y0, Z0 the translation of this new base coordinates. 
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3.3 Construction of trajectory generation function 

In this section, the whole process followed to obtain the final method for trajectory 

generation is explained. 

The robot was given performing sinusoidal trajectories for its legs. However, this 

seemed not the best trajectory function for a robot that should adapt to terrain. This is 

better explained with an example. When robot would encounter a hole, it would change 

concavity, going from a convex function to a concave function, and allowing situations 

as the one in figure 3.6 to happen. In this kind of situations, the leg would step on the 

“wall” of the hole, and it would unbalance the whole robot. To avoid this situation, 

another function was needed, with a more appropriate shape for the step. 

 

 

Figure 3.6. Sinusoidal function. Leg drops in a hole. 

 

Parabola is one of the solutions that first come to mind. When compared with sinusoidal 

function (figure 3.7), it appears to be more suitable for adaptive trajectories. 
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Figure 3.7. Sinusoidal and parabola functions. 

 

The second advantage of this function is that, with some mathematical development, we 

can obtain a parabola from two important parameters: step-length and step-height. The 

idea is to input a step height suitable for the kind of obstacles robot can encounter, and a 

proper step length for them. 

To achieve this, the work was divided in some steps that are explained below. 

First approach 

The first problem to solve is to build a function that implements a parabola providing 

two inputs: step-height and step-length. 

Figure 3.8. Parabola function. 

 

This function plots a parabola; however, this mathematic expression for the parabola 

doesn’t seem to be the most suitable for our purpose, because we are seeking an 
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expression that permits to plot a parabola from two geometrical parameters. This leads 

to another equation of parabola. 

Second approach 

In this second approach, the function implements a parabola, receiving 4 inputs: k, step-

height, p, a. 

Step-height: height of the parabola; 

 k: longitudinal displacement; 

 p: changes the position of focus; 

a: this parameter controls the shape of the parabola. 

 

 

Figure 3.9. New parabola function. 

 

If we execute this function, the following shape is obtained. 

>> parabola2_antigua(0,4,1,4) 
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Figure 3.10. New parabola function shape. 

 

The function works properly, but these parameters are not the desired ones. We are 

looking for a parabola with only three inputs (longitudinal displacement, step-height, 

and step-length). But this mathematic expression of the parabola, allows to find the 

desired formula for the parabola. We just need to do some mathematical operations. 

If we take the equation of the parabola 

   
        

   
  .   (4) 

The step-length should be measured in Y=0, so: 

   
        

   
           , (5) 

                   ,  (6) 

  
√    

 
.    (7) 

And x is half the length of the step length. So step length is:  

    
√             

 
            . (8) 

As we can see in (8), step-length depends on step-height and parameter a. It became 

clear then that parameter a cannot be an input of the function, because it is something 

already fixed and depending on step-height. 
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This leads to a new function, in which parameter a is calculated from step-length and 

step-height, and it is not an input of the function. This way, we can obtain the desired 

parabola, controlling step height and step length. 

Obtaining parameter a is easy, and it comes from clearing it in the previous equation: 

 
√             

 
            ,  (9) 

 
√             

           
  .    (10) 

Parameter p is redundant now, because the step-height and step-length are enough to 

define one parabola. This is the new function: 

Figure 3.11. Third version of the function parabola. 

 

This is the plot obtained when executed: 
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Figure 3.12. Parabola plot. 

 

As it can be seen, now we obtain a parabola, with only the three desired inputs: 

Step-length, Step-height and k (longitudinal displacement). 

 

3.4 Implementing the parabola in the MATLAB® model of the robot 

 

When mathematics are solved, it comes the time to implement the parabola in the robot 

model. 

The function that needs to be changed is the following: 
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Figure 3.13. Feet_trajectory function. 

 

The way to change the trajectory of feet is to change the coordinate z in the third case of 

the “if” loop [(t>phase)&&(t<=phase+1)]. 

 

Taking into account the way parabola is calculated, the parameter a, needs to be 

calculated before any case of the if.  

The function remains then as shown in figure 3.14. 
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Figure 3.14. New Feet_trajectory function. 

 

Note: it’s important to stress that the parabola is now in the z-y plane, and not in the x-y 

plane like the function “parabola2.m” 

 

3.5 Adaptive Trajectories Method 

 

Once the robot is able to perform parabolas with its feet, it is time to determine the 

method of adaptive trajectory generation. 

The method proposed in this work consists of performing a parabola for the robot’s 

foot. This parabola does not suffer any change if no obstacle is found. However, if the 

sensor on hexapod’s foot detects any kind of obstacle, the leg stops its movement. In 
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this moment, robot’s body starts advancing over the obstacle. This way, robot can 

overcome obstacles without a need of a camera or any other sensors. 

 

Figure 3.15. Feet_trajectory function. 

Figure 3.15, shows a schematic way how robot’s foot should move over irregular 

terrain. As it can be seen, robot would pass both over higher obstacles and over lower 

obstacles (holes). 

In order to keep on advancing with the function that makes this method possible, it is 

important to check in order to see if the code will work properly and without 

singularities or failures. 

With the purpose of checking if the function is correct, it was obtained the step length 

from the z coordinate. 

For this, it is only necessary to clear the step-length from the function and displayed. As 

it can be seen, it always provides the value entered previously, without any 

indetermination or failure. 

 

   
      

 
                                                          

      

 
 (12) 

   
√            

           
                                                                     

                       
 √                

 
. (14) 

 

The function would remain as shown in figure 3.16. 

As it can be seen when code is executed, the values are the expected ones. 
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Figure 3.16. New Feet_trajectory function. Check of singularities. 

 

3.6 Obstacles 

First approach 

The next step for the development of adaptive trajectories would be to input the height 

of the obstacle, plotting a parabola that stops when reaches the obstacle. 

The first problem we need to overcome is that our current function is based on time. It 

has 3 “if” cases depending on time. However, for an adaptive trajectory, the legs 

movement cannot depend on time but on the characteristics of terrain (x, y, z) 

coordinates.  For this reason, a completely different function (with the same expression 

for the parabola) was built. This function generates different coordinates depending on z 

coordinate. The idea is to build a parabola, but in the very moment it reaches an 

obstacle, start moving the leg backwards. 

The trajectory script is the following: 
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Figure 3.17. Trajectory script. 

 

This function is an independent function, built apart from hexapod.m code, as a first 

step to check the suitability. It uses vectors to store values of cooridnates, in order to 

plot them after. 

                                 it: 

>> feet_traj_2(5,8,0,3) 

 

y=[];    %Inizialization of Vectors 
z=[];   

  
a=2*sqrt(step_height*4)/step_length; 

  
y(1)=-step_length/2;   %Inizialization of y vector 
i=2;     %Index 

  

    
for t= 1:0.1:70   %Vector of times 

  
if(y(i-1)==-step_length/2)||(obstacle==0) 

     
    y(i)=y(i-1)+0.01;  %Y vector. Linear 
    z(i)=-((a*y(i)).^2)/(4)+step_height; %Parabola 

 
    %if reached the obstacle (precision 0.1) 
    if(abs(obst_height-z(i))<0.1)&&(y(i)>0)  
        obstacle=1;  %Signal of obstacle (true/false sensor in 

legs) 
    end 

     
    i=i+1; 
end   

  
if (obstacle==1)&&(y(i-1)>-step_length/2) %obstacle found 

     
    %Backwards movement 

     
    z(i)=obst_height;   
    y(i)=y(i-1)-0.1; 

     
    i=i+1; 
end 

  
plot (y,z)   
end 
end 
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Figure 3.18. Leg trajectory shape in Z-Y frame. 

 

As it can be seen in this first approach, when the parabola reaches the value 3 for z 

coordinate, it starts moving backwards, until value -2.5 (-step_lenght/2), which is 

exactly the shaped looked for. Since we are working with discrete values, there is a limit 

on the precision we can obtain. That is the cause of the little mistake when the obstacle 

is reached. 

With this first approach made successfully, the challenge now is to adapt this function 

to the whole code, in order to simulate and start checking the robot movement. 

Second approach 

The first function developed, is basically the previous one, with some changes for 

adapting it to the hexapod.m code. 

As it has already been said, in the function “feet_traj.m”, the Y coordinates, generation 

is based on the variable “t”, this way, they kept advancing and there was no need to 

store the values. However, in this new function, the decisions are made based on the 

previous values of Y coordinates, so there is a need to “re-use” the previous values of Y 

coordinates in order to generate the next one. In addition, the code is much clearer if 

variable obstacle is not a local variable from “feet_traj_4” function but a global 

variable of “hexapod.m” code, and it is received from the function. 
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Figure 3.19. Adaptive trajectory. Second version. 

 

For that, the new concept of the function is the following. 

This way, if there is no obstacle, the movement is the regular parabolic one, however, if 

there is an obstacle, z values are equal to obstacle_height and Y coordinate starts to 

move back. 

It is important to note that variable “obstacle” is only used in this MATLAB® 

simulation, in order to make it work, but in the actual robot, it will be the signal from 

the sensors on the legs. 

function [x, y, z] = feet_traj_4(phase, T ,step_length, 

step_height,t,dir,obst_height)      

  

  
%Phase and T not used 

  
a=2*sqrt(step_height*4)/step_length; 
obstacle=0; 

  
if(t==0) 
       y=-step_length/2 ; 
 end    %Inizialization of y (only in first moment) 

  

  
if(obstacle==0) 

     
    y=-step_length/2+t*10;    %y vector. Linear 
    z=-((a*y).^2)/(4)+step_height; %Parabola     
    x=0; 
    %if reached the obstacle (precision 0.1) 
    if(abs(obst_height-z)<0.6)&&(y>0)  

  %Signal of obstacle (true/false sensor in legs) 
        obstacle=1      
    end 

     
end   

  
 if (obstacle==1)&&(y>-step_length/2) %obstacle found 

     
    %Backwards movement 

     
    z=obst_height;   
    y=y-0.1; 
    x=0; 

    
 end 
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Figure 3.20. Adaptive trajectory. Second version. 

 

For that, outside the function (in hexapod.m code) there is a need to establish if the z 

coordinate reached an obstacle, in order to set obstacle variable equal to 1. For that, it 

was built this new part of code, (outside the function) (figure 3.21). 

The results for this new function seem to be correct, and the MATLAB® model for the 

robot moves as desired. 

function [x, y, z] = feet_traj_4(phase, T,step_length, 

step_height,t,dir, yp,obstacle,obstacle_height)      

  
%Dir is ot used 

  

  
a=2*sqrt(step_height*4)/step_length; 

  
if (t==0) 
yp=-step_length/2 ; 
end 

  

  
if(obstacle==0)     

 

%Forward movement. Parabola 

 

    y=yp+0.2;  %y vector. Linear 
    z=-((a*y).^2)/(4)+step_height;  
    x=0; 

     
end   

  

  
if (obstacle==1)&&(yp>-step_length/2) %obstacle found 

     
    %Backwards movement 

    
    z=obstacle_height;   
    y=yp-0.2; 
    x=0;        
 end 

  

  

  
end 
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Figure 3.21 . Additional code to “hexapod.m”. 

 

However, it seems to fit better if the second buckle is guided by coordinates (space 

instead of time). Thus, the new second buckle is the following one: 

y=-step_length/2:res:step_length/2. 

 

 

This way, it will generate values for Y coordinates, no matter how long does it take for 

it. 

 

Third approach 

After checking the previous function, it came up a necessity to make some changes in 

order to stop generating coordinates after reaching the other side of the parabola. This is 

the current step shape: 

   %if reached the obstacle (precision 0.6) 
   if(abs(obstacle_height1-RF_z)<0.4)&&(RF_y>0)  

 %Signal of obstacle (true/false sensor in legs)           

obstacle1=1;  
    end 

  
   if(abs(obstacle_height2-RM_z)<0.4)&&(RM_y>0)  
         obstacle2=1         
    end 

  
   if(abs(obstacle_height3-RH_z)<0.4)&&(RH_y>0)  
            obstacle3=1;         
    end 

  
   if(abs(obstacle_height4-LF_z)<0.4)&&(LF_y>0)  
           obstacle4=1;         
    end 

  
   if(abs(obstacle_height5-LM_z)<0.4)&&(LM_y>0)  
          obstacle5=1;         
    end 

  
   if(abs(obstacle_height6-LH_z)<0.4)&&(LH_y>0)  
          obstacle6=1;  
    end 
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Figure 3.22. Current step shape. Z-Y frame. 

However, the desired step shape is the following. 

 

Figure 3.23 . Desired Step shape. 

To accomplish this, it can be done through two different ways: 

1. Recalculating the step length through mathematical expressions. 
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2. Adding a new condition to three second parts of the function, with the purpose 

of stopping the coordinate generation when the backwards movement reaches the 

other side of the parabola 

The second option is chosen, for being the simplest one. 

Before writing any piece of code, there is some mathematics that needs to be done. The 

Y value that needs to be found is the one in which the line crosses the parabola (stressed 

with red in the picture). If this value is found, the new condition for the parabola 

becomes easy to write. 

Starting with the equation of the parabola: 

   
      

 
           ,      (15) 

                                         ,    (16) 

    √                                   ,  (17) 

          
√                              

 
,     (18) 

           
√                              

 
.    (19) 

Once this value is found, the new function can be constructed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24. Adaptive trajectory generation function. Third version. 

As it can be seen in the simulation, with this function, the step shape is the desired one.  

function [x, y, z] = feet_traj_4(phase, T,step_length, 

step_height,t,dir, yp,obstacle,obstacle_height)      

  
%yp is the previous value of y coordinate. 
%Phase and T are not used 

  
 a=2*sqrt(step_height*4)/step_length; 

   
if(obstacle==0)     
    y=yp+0.2;  %y vector. Linear 
    z=-((a*y).^2)/(4)+step_height; %Parabola     
    x=0; 

     
end   

   
if (obstacle==1) && (yp>-sqrt((step_height-obstacle_height)*4)/a) 

%obstacle found 
        %Backwards movement 
    z=obstacle_height;   
    y=yp-0.2; 
    x=0;        
 end 
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Forth approach. Finishing the step 

The next problem that needs to be solved is the method to finish the step. In the current 

function both of current conditions for coordinates generating will be false after 

finishing the movement. And this gives an error when the function is called without any 

parameter as an output. 

In order to use the same function for every leg of the robot (increasing clearance), after 

the legs finish their movement, the function will keep generating coordinates, but they 

will be the same coordinates as the coordinates in the instant they stop. Thus, every leg 

of the robot will start its movement for each step at the same time, although they might 

finish at different time instants. (The leg that will find an obstacle will finish the 

movement before the leg that does not find any). This way, we can use the same 

function for every leg making the code more flexible and easier. Besides, the movement 

will be neater. 

Fifth approach. Different obstacles for each leg 

The purpose of this robot is to be able to walk over any surface, adapting itself to the 

terrain. For this reason, it seems natural, that in our simulation code there should be 

different obstacle heights and different obstacle signals. This way, we will make each 

leg movement independent, so the robot will adapt to the terrain. 

The first thing to do for this is to set different obstacle heights, so the robot can decide, 

for each leg, when this obstacle appears. 

And it is not enough with this, since in the actual robot there will be moments when no 

obstacle is found. To make it the more similar to the actual robot as possible, if there is 

no obstacle, obstacle height should be set as 0, and in the part of the code that generates 

the variable, instead of obstacle=1, we should change it to obstacle=0. 

After this, the feet trajectory function needs to be modified. This is the new function, 

which is now able to handle different movements for each leg, depending on whether 

there is an obstacle or not. 
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Figure 3.25 . Adaptive trajectory generation function. Fourth version. 

  

function [x, y, z] = feet_traj_4(phase, T,step_length, 

step_height,t,dir, yp,xp,zp,obstacle,obstacle_height)      

  
%xp,yp, and zp are the previous values of the coordinates. 
%Phase and T are not used  
a=2*sqrt(step_height*4)/step_length; 

   
if(obstacle==0)&&((t==-step_length/2)||zp>0)   

     
%There is no obstacle. We are in the first iteration of the loop 

or we are making the parabola movement (zp>0) 

     
    y=yp+0.3;  %y vector. Linear. 0.3 is the minimum speed. If the             

speed is still too much, this function is the one to be modified.  
    z=-((a*y).^2)/(4)+step_height; %Parabola     
    x=0; 

     
elseif(obstacle==0)&&(zp<=0)&&(yp>-step_length/2) 

     
  %no obstacle was found and z has got 0 (parabola movement finished).    

z maintains its position and Y starts moving back.     
    z=0; 
    y=yp-0.3; 
    x=0; 

     
elseif (obstacle==1) && (yp>-sqrt((step_height-obstacle_height)*4)/a) 

%obstacle found 

     
    %Obstacle found. Backwards movement."-sqrt((step_height-

obstacle_height)*4)/a" is  the crossing point between parabola and 

line. 
     

    
    z=obstacle_height;   
    y=yp-0.6; 
    x=0;        

  
 elseif(obstacle==1) 

     
   %There was an obstacle, but the backwards movement has finished. It 

generates the same coordinates.     
   z=obstacle_height; 
   y=yp; 
   x=0; 

  
end  
end 
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Figure 3.26 shows how different robot feet react to different obstacle heights, obtaining 

independence between legs. 

 

Figure 3.26. Different feet trajectories for different obstacles height. 

 

Sixth approach. Tripod gait 

The previous function worked perfectly. Yet, it had a problem. As it is previously 

explained, since the function keeps generating coordinates after the obstacle is reached, 

in the next step, all the legs would start its movement at the same time. This way, there 

is no option to program a specific gait. 

In order to fix that, a new function was built, which, instead of generating the same 

coordinates, it sets the obstacle variable to 0, this way, when the leg finish its 

movement, it starts a new one, without waiting for other legs to finish. This permits to 

perform the Tripod gait, by programing different starting points for the legs. Legs are 

now completely independent, although they will maintain the tripod gait as long as they 

are moving. The function remains as follows: 



48 
 

 

Figure 3.27. Adaptive trajectory generation function. Fifth and final version. 

 

The code was checked in the simulator, obtaining a successful movement of the robot. 

However, the code now has one disadvantage. Since there is no possibility to know 

when one whole step will end (it depends on terrain characteristics), it is better to use a 

long-lasting for loop, that will be the whole length of the robot movement. 

The robot moves now as desired, with a perfect tripod gait. The figure 3.28 shows a 

random instant of the simulation, where it shows different obstacle heights and how the 

robot adapts to them. 

 
function [x, y, z,obstacle] = feet_traj_5(step_length, 

step_height,t,dir, yp,xp,zp,obstacle,obstacle_height)      

  
%xp,yp, and zp are the previous values of the coordinates. 
%Phase and T are not used 
a=2*sqrt(step_height*4)/step_length; 

   
 if(obstacle==0)  

               
         y=yp+0.3;   
         z=-((a*y).^2)/(4)+step_height; %Parabola     
         x=0; 

                 
 elseif(obstacle==1) 

      
    if (yp>-sqrt((step_height-obstacle_height)*4)/a) %obstacle found 

     
%Obstacle found. Backwards movement."-sqrt((step_height-  

obstacle_height)*4)/a" is the crossing point between parabola 

and line.     
    z=obstacle_height;   
    y=yp-0.6; 
    x=0;     

        
    else     

%There was an obstacle, but the backwards movement has 

finished. It generates the same coordinates.     
        z=obstacle_height; 
        y=yp; 
        x=0; 

      
        obstacle=2 % allows to set obstacle variable to 1 again. 
    end    
    end 
 end 
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Figure 3.28 . Random instant of the simulation. 
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4. CONCLUSIONS 

1. Parabola function is better for foot trajectory than sinusoidal functions, because it 

has the property of not changing concavity when zero is passed. 

2. Developing independent parabolas for  the different robot’s feet and being able to 

stop its generation when any obstacle is reached, is a method that works properly 

on MATLAB® simulator, and it seems to be very appropriate for hexapod robots. 

3. Legged robots are much more complicate to control, but the potential is bigger over 

wheeled robots, when talking about unknown surfaces and terrains. 

4. Denavit-Hartenberg algorithm, together with geometric inverse kinematics method, 

easily allows to model the robot, and permit to develop a simple algorithm to 

control it. 

5. As for the experiments carried out, it is clear that being able to test the trajectory 

generation functions in a software is an enormous advantage, since almost every 

parameter can be checked. 

6. Robot movement was checked with the simulator, inputting different heights for 

obstacles encountered by different feet, and observing how robot adapted to them. 

7. Robot movement reacts very well to different obstacle heights, since the method for 

trajectory generation makes robot’s legs to move independently.  

8. As a general conclusion reached, robotics is a wide field of study, where a lot of 

research is still to be done, especially concerning control systems.  

9. Optical methods to examine unknown terrain (artificial vision) require more 

capacity for the microcontroller of the robot than yes-no sensors. The reason is that 

they need to process too much information, and this may affect real-time 

operations. On the other hand, using yes-no sensors, permit more speed in the 

operations. However, using yes-no sensors, have a big disadvantage, which is the 

necessity of knowing the maximum height of the obstacle. This height needs to be 

mandatorily less than step-height. 

Future work 

The function as it currently remains is not able to walk in a desired direction. Future 

work on trajectory generation should include some functions that would permit the 

robot to walk in every direction desired. The easiest way to achieve this would be to 

include sinusoidal functions that would give the trajectory the desired direction. 

In the present moment, there is no control over the speed of robot’s foot. It would be 

logical to include some parameters that would permit to control robot’s speed, in order 

to find the best speed for the different obstacles. 

More gaits should be developed, in order to improve the flexibility of the robot. 
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