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Abstract 

The industrial process monitoring with acoustic waves is a common and interesting 

technique especially when a non-invasive clamp-on configuration (by mounting the sensor on the 

outer surface of a pipe wall) can be realised, because of its non-destructive nature and easy handling. 

Since a pipe is a closed system no free bulk wave can be assumed and the vessel acts as a complex 

waveguide. For “low” frequencies the propagation of an acoustic wave within a simple cylindrical 

pipe depends on the mechanical impedance or elasticity of the boundary (pipe wall) and the 

particular filling medium. For “higher” frequencies the pipe acts as a waveguide and additional wave 

modes will occur depending on the measurement frequencyand its geometry.  

The tasks of the current thesis are the investigation and empirical verification of the 

dependency of the sound velocity within the filling fluid – at low frequencies – due to the elastic 

properties of the pipe wall, the pipes diameter and the bending of the pipe (axial curvilinear shape). 

The labels “low” and “high” are related to the acoustic cut off frequency fg  (first radial frequency) of 

the guided waves. 

In particular, a feasibility study has to be made to validate the measurability of the guided 

wave velocities inside the pipe by using a sound source (exciters) placed on the outer pipe wall. 

 

Tasks: 

- Literature overview on guided acoustic wave propagation in water filled elastic pipes 
- Theoretical description of free and guided acoustic waves 
- Understanding for dispersion diagram 
- 3D-FEM-Simulation model of water filled elastic pipes 
- Parameter study  

o measurement of phase velocities within the pipe by using different sensor points (at 
least 2) with variable number, spacing in between and to the source 

o influence of pipes diameter and frequency 
o influence of bending and arbitrary pipes shape (phase velocity in front and behind a 

bending of the pipe) 
- Empirical validation of results with a plastic pipe in laboratory 

 
 

Keywords 

Waveguide, elastic pipe, bent pipe, straight pipe, acoustic, sound propagation, phase velocity, group 

velocity, FEM simulation, measurement   
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Abstracto 

El proceso industrial de monitorización con ondas acústicas es una técnica común e 

interesante especialmente cuando una configuración no invasiva con abrazaderas montando el 

sensor en la superficie exterior del tubo puede ser realizada, ya que tiene una naturaleza no 

destructiva y de fácil manejo. Como un tubo es un sistema cerrado, no se puede asumir una onda de 

masa libre y el recipiente actúa como una compleja guía de ondas. Para frecuencias bajas, la 

propagación de una onda acústica dentro de un tubo cilíndrico simple depende de la impedancia 

mecánica o elasticidad de los límites (pared del tubo) y del medio con el que se haya llenado el 

mismo. Para frecuencias altas, la tubería actúa como una guía de ondas y otros modos de onda 

pueden aparecer dependiendo de la frecuencia de medición y de su geometría. 

El propósito de este trabajo será la investigación de la dependencia de la velocidad del 

sonido dentro de una tubería llena con un fluido con el susodicho fluido con el que es llenada a bajas 

frecuencias y su correspondiente verificación empírica, debido a las propiedades elásticas de la pared 

de la tubería, el diámetro de la tubería y la curva de la misma (curvilínea axial). Los nombres de baja y 

alta frecuencia están relacionados con la frecuencia de corte fg (primera frecuencia radial) de las 

guías de ondas. 

En particular, un estudio de factibilidad será hecho para validar la mensurabilidad de las 

velocidades en las guías de ondas dentro de tuberías a través de usar fuentes de sonido (excitador) 

colocadas en la superficie exterior de la pared de la tubería.  

Tareas: 

- Visión general de la literatura de propagación de ondas acústicas guiadas en tuberías 
elásticas llenadas con agua 

- Descripción teórica de ondas acústicas libres y guiadas 
- Entendimiento de los diagramas de dispersión 
- Simulación 3D con el método de elementos finitos para modelos de tuberías elásticas llenas 

con agua 
- Estudio paramétrico 

o Medición de las velocidades de fase dentro de tuberías usando diferentes sensores 
colocados en diferentes posiciones 

o Influencia del diámetro de la tubería y frecuencia de excitación 
o Influencia del cambio de forma de la tubería (velocidad de fase antes y después de la 

curva) 
- Validación empírica de los resultados con una tubería de plástico en el laboratorio 

Palabras clave 

Guía de onda, tubería elástica, tubería doblada, tubería recta, propagación del sonido, velocidad de 

fase, velocidad de grupo, simulación de elementos finitos, medición  
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1.  Introduction 

The use of sounds have been increased over the last few years for different fields, such as 

medical imaging, detection, and cleaning. It could be said that the most extended application within 

this field could be the bidimensional-scan of fetus in the womb. Besides, sounds are also used in the 

measurement technology field for measuring distances, speeds, or vibration frequencies. A really 

known example in this last field is the use of ultrasounds by bats, which are used in order to navigate 

in the darkness. [1] [2] [3] 

What is different of sound use in measurement technology is that it is possible to measure 

the aspects we are interested in or to perform a test in a noninvasive way. Normal sensors need to 

be in touch with the material or the machine that is to be measured, whereas sound sensors just 

need to be installed outside the material or really close to it, but not in contact with it. This is a really 

big advantage since the lifetime of the sensor can be longer due to the absence of contact, and the 

efficiency of the machine that is working does not decrease due to the set of sensors. 

Sound could be defined as an oscillating pressure wave with a specific frequency that 

propagates inside a material, such as water, plastic, or air. It is always necessary to have a material in 

which the wave can be propagated. [4] 

Depending on the frequency of the pressure wave, the sound can be classified as infrasound 

(lower than what a human hear can detect, lower than about 20Hz), ultrasound (higher than what a 

human can perceive, higher than about 20kHz), and acoustic (what a human can hear, between 20Hz 

and 20kHz). A small diagram of this classification can be seen in Image 1.1. [5] 

 

Image 1.1: Classification of sound depending on its frequency. 

Ultrasound is the more used sound for technical applications because humans cannot hear it, 

since it has a frequency higher than the upper limit of the human hearing range, which is 

approximately 20kHz. 

Sound can be propagated in a free way or within a waveguide and the characteristics of its 

propagation depend on how it does it. In the current thesis the propagation of acoustic waves of low 

frequencies within a simple cylindrical pipe is going to be investigated. The way it is propagated 

depends on the characteristics of the pipe and the filling medium, which, in this thesis, will be water. 

 



 

Messtechnik und Leistungselektronik 
 

16 
 

1.1.  Road Map of Thesis 

The first thing that is going to be done in this thesis is to give a short explanation of the main 

theoretical qualitative and mathematical aspects of free acoustics, Ch. 2. , and its most important 

phenomena that can affect to measurements of pressure waves, Section 2.1.3. After this, a 

theoretical introduction to waveguides filled with fluid is going to be done in Ch. 3. Besides, there is a 

short explanation about dispersion diagrams because they will be used in the thesis to represent the 

phase and group velocities.  

The goal of these first two chapters containing theoretical introduction to acoustics is to have 

a small understanding of how waves are propagated within pipes and so as to be able to interpret 

the results that will be given later on by measurements. During this theoretical introduction, many 

references to different authors are given so that the reader can go deeper in this topic if it is wanted. 

However, in this thesis only the main aspects are presented as an introduction since the main goal of 

this thesis is not doing an overview of literature concerning acoustics and waveguides, but measuring 

group and phase velocities. 

Therefore, in order to understand what group and phase velocities are, in Ch. 4. a qualitative 

and mathematical explanation of these concepts is explained. Also, the mathematical concepts are 

supported with examples so that the reader can better understand them. These examples are given 

after the theoretical explanation as it is not an easy task to find examples of calculating these 

velocities in neither on the Internet nor in books. With this chapter concerning group and phase 

velocities it is wanted to create a guide for future readers who want to know and calculate these 

velocities in both dispersive and non-dispersive mediums. 

At this point, it is possible to start presenting different methods of measuring group and 

phase velocities, since the theoretical background has been already explained. Thus, in Ch. 5. , a list 

of different methods to measure these velocities and its mathematical background are discussed, 

explaining which ones are suitable for which situations. As the signals which are acquired by 

hydrophones normally have noise, a list of different methods to reduce this noise and how to use 

them is presented in the sections 5.6. and 5.7.  

Now, everything is ready to start simulating a PVC water-filled pipe in order to measure the 

group and phase velocity at low frequencies. For this reason, a FEM simulation of a straight pipe is 

performed in 6.1. This simulation is done to have a first overview of how to work with a real system 

and to compare the results given by simulation to the ones that will be obtained in the laboratory. If 

both results are similar, it will be possible to say that the simulation was done properly and it can be 

extended to different kinds of pipes. Therefore, after doing the simulation with a straight pipe of a 

specific diameter, different properties of it are changed, such as the frequency, the length and the 

shape. The different shape that is going to be simulated is a pipe with a bending of 90º in the middle 

of it, section 6.2. This simulation will be also compared with a real PVC water-filled in the laboratory.  

In Ch. 7. , an empirical validation in the laboratory with a PVC water-filled pipe of the results 

obtained in the simulations is done. Besides, in this chapter, different tests and different methods of 

performing are presented to measure velocities within the pipe for both a straight pipe and a bent 

pipe. The problems of measuring velocities with different methods is presented and, in the end of 

every experiment, it is possible to see which method has been chosen in order to calculate properly 
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the desired velocities avoiding reflections and other issues. These measurements are also explained 

with MATLAB scripts as an example of how to work with the obtained data by the hydrophones. 

In the end, after comparing the simulations and results obtained in the laboratory, there is a 

comparison among them in order to decide whether the experiments and the simulations have been 

carried on properly. Finally, in Ch. 8.  there is a global conclusion concerning the work done in this 

thesis and presenting questions and some research lines for further research. 
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2.  Main aspects of free acoustic waves 

An acoustic wave is a longitudinal wave which is associated with a sound. If it is propagated 

in an elastic and continuous medium, it produces a local deviation on the pressure and density, which 

is transmitted as a spherical periodic or quasi-periodic wave. Mechanically, sound waves are a kind of 

elastic wave. [6] 

Variations of pressure, humidity or medium temperature produce a displacement of the 

molecules which form it. Every molecule transmits the vibration to the ones that are close to it, 

producing a chain move.  

2.1.  Wave propagation 

2.1.1 Propagation mode 

The sound is formed by longitudinal elastic mechanical waves or compression waves in a 

medium. Therefore, it means that: [7] [8] 

 In order to propagate, they need a material medium, such as air, water, or a solid 

body, that transmits the perturbation. It travels faster in solids than in liquids, and faster in 

liquids than in air. Sound waves cannot be propagated in vacuum. The medium is the one which 

produces and propitiate the wave propagation with its compression and expansion. The medium 

needs to be elastic so as to compress and expand, since a rigid body does not allow vibration to 

propagate. Therefore, without elastic mediums, sound would not exist, as it does not propagate 

in vacuum. 

 Besides, fluids can also transmit undulatory moves in which the particle vibration is 

given in the parallel direction to the propagation velocity along the propagation direction. Thus, 

the pressure gradients of the sound wave propagation are produced in the same direction of the 

propagation wave. Therefore, this waves are a kind of longitudinal waves (in solids, transversal 

waves can be also propagated). 

2.1.2 Propagation in mediums 

An acoustic wave needs a medium in which it can be propagated, such as air, water, etc. The 
propagation of sound waves can be modeled by an equation of continuity (conservation of mass) and 
an equation of motion (conservation of momentum). These two equations can be given as follows: 
[9] 

 

 

 

𝜕𝑝

𝜕𝑡
 𝒙, 𝑡 + K∇ · 𝒖 𝒙, 𝑡 = 𝟎 

  Eq. 2.1 

𝜌0

𝜕𝒖

𝜕𝑡
 𝒙, 𝑡 + ∇𝑝 𝒙, 𝑡 = 𝟎 

  Eq. 2.2 
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Where Eq. 2.1 is the mass balance and Eq. 2.2 is the momentum balance. 𝑝 𝒙, 𝑡  is the 

acoustic pressure, 𝒖 𝒙, 𝑡  is the flow velocity vector, which gives the velocity of an element of a fluid 

at a position 𝒙 = (𝑥, 𝑦, 𝑧) and time 𝑡, K is the bulk modulus of the medium, and 𝜌0 is the statistic 

mass density of the medium. 

Richard Feynman derives the wave equation that describes the behavior of sound in matter 

in one dimension as [10]: 

 

Where 𝑐 is the speed of sound in the propagation material. 

Sound waves travel in three dimensions and their wavefronts are, in isotropic mediums, 

concentric spheres which have their center in the perturbation focus. The pressure changes that 

happen in a three-dimension wave with frequency ν and wavelength λ in an isotropic medium in 

repose are given by the differential equation: 

 

Where 𝑟 is the distance to the transmitter center of the wave and  𝑐 is the propagation wave 

velocity in the medium. For a wave which has its period well defined, it is verified that 𝑐 = λν, and in 

this case, the solution to the equation for distances far away from the transmitter center can be 

written as [11]: 

 

Where 𝑝0 is the initial sound pressure of the fluid and ∆𝑝 is the maximum overpressure that 

is produced by the pass of the wave. 

In the case of ordinary sound waves, they are produced by the superposition of waves of 

different frequency and different wavelengths, which produce a finite pulse. For these waves, the 

phase velocity is not the same than the group velocity or pulse propagation velocity. The phase 

velocity is different for every frequency and depends on the relation 𝑐 = λν. The general solution to 

Eq. 2.4 can be expressed as: 

Where 𝐴 𝒌  is the normalized amplitude for the component 𝒌, 𝒌 is the wave vector, and 

𝜔 = 𝑐 𝒌  is the angular frequency. 

𝜕2𝑝

𝜕𝑥2
−

1

𝑐2

𝜕2𝑝

𝜕𝑡2
= 0, 

  Eq. 2.3 

1

𝑟2

𝜕

𝜕𝑟
 𝑟𝟐

𝜕𝑝(𝑟, 𝑡)

𝜕𝑟
 −

1

𝑐2

𝜕2𝑝(𝑟, 𝑡)

𝜕𝑡2
= 0 

  Eq. 2.4 

𝑝 𝑟, 𝑡 = 𝑝0 +
∆𝑝

𝑟
sin  2𝜋νt − 2π

r

λ
+ 𝜑0  

  Eq. 2.5 

𝑝 𝑟, 𝑡 = 𝑝0 +
∆𝑝

𝑟
 𝐴 𝒌 𝑠𝑖𝑛
ℝ3

 𝜔𝑡 −  𝒌 𝑟 𝑑3𝒌 
  Eq. 2.6 
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2.1.3 Phenomena 

Acoustic waves exhibit phenomena like diffraction, reflection, and interference. However, 

they do not have polarization, as they oscillate along the same direction as they move. 

2.1.3.1 Diffraction 

Diffraction occurs when a propagating wave encounters an obstacle or a slit that is 

comparable in size to its wavelength. The sound wave is dispersed after finding this obstacle or slit. 

Huygens [12] explained that every point which a luminous disturbance reaches becomes a source of 

spherical wave and the sum of these secondary waves determines the form of the wave at any 

subsequent time. Besides, according to Huygens, this secondary waves travel only in the "forward" 

direction, which means that they do not come back. In Image 2.1 (created by Arne Nordmann, 

published in Wikipedia, and with license CC BY-SA 3.0) it is possible to appreciate this phenomenon, 

where the blue wave is the original wave, the yellow dots indicate notional origins of new waves, the 

gray waves are the secondary ones conforming the green wave. [13] 

 

Image 2.1:  Wave refraction in the manner of Huygens. 

 

Image 2.2: Wave diffraction in the manner of Huygens and Fresnel. 

As Huygens was not able to explain why these waves only travel in the "forward" direction, 

Fresnel [14] explained using his principle of interference and Huygens' principle this phenomenon 

and establishes that every point in a wavefront is susceptible of becoming a new transmitter focus 

like the one which generated this wavefront with a rectilinear propagation. Therefore, when a wave 
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finds an obstacle or an aperture that prevents its propagation, all the points that are on this plane 

become secondary sources of waves, transmitting new waves that are called diffracted waves. In 

Image 2.2 (created by Arne Nordmann, published in Wikipedia, and with license CC BY-SA 3.0) the 

phenomenon described by Huygens-Fresnel is shown, where the colors represent the same things 

than in Image 2.1. 

 Diffraction occurs with all waves, including sound waves, water waves, and electromagnetic 

waves, and can be seen as a consequence of the isotropy of space, which means that all the 

directions in space are equal. Isotropy of space is fundamental to quantum electrodynamics, where 

the wave function of any object propagates along all available unobstructed paths [15]. 

2.1.3.2 Reflection 

Reflection is referred to the phenomenon that explains the reason why a wave is absorbed or 

it returns. When a wave finds an object in its way that cannot cross nor encircle, it crashes with the 

object and it is reflected, going back again in the direction of the main transmitting focus. If the 

obstacle is small in relation to its wavelength, the sound wave will surround it (diffraction), whereas 

if it is big, the sound wave will be reflected [16]. In Image 2.3 (created by Johan Arvelius on 

26.09.2005, published in Wikipedia, and with license CC BY-SA 3.0) a diagram of a wave reflecting on 

a mirror (or a barrier) is displayed. It is important to notice that the angle in which the original wave 

incises on the mirror is the same than the angle with which it is reflected, that is to say, 𝜃𝑖 = 𝜃𝑟 . This 

phenomenon is going to be important in the research of this thesis because inside pipes, the sound is 

reflected many times and it is going to influence the obtained results. 

 

Image 2.3: Diagram of a wave reflecting. 

2.1.3.3 Refraction 

Refraction is the change in direction of propagation of a wave due to a change in its 

transmission medium. This phenomenon was explained by Ibn Sahl [17]  and later Willebroad Snellius 

(1580–1626) stated his law saying that the ratio of the sine of the angles of incidence and refraction 

is equivalent to the ratio of phase velocities in the two media, or equivalent to the reciprocal of the 

ratio of the indices of refraction: 

𝑠𝑖𝑛𝜃1

𝑠𝑖𝑛𝜃2
=

𝑣𝑝1

𝑣𝑝2
=

𝑛2

𝑛1
 

  Eq. 2.7 
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where 𝜃 is the angle measured from the normal of the boundary, 𝑣𝑝  is the phase velocity, 

and 𝑛 is the refractive index, respectively in each medium. When the incident waves reaches a critical 

angle, there is no refracted wave and there is only reflected  wave. In Image 2.4 (created by Josell7 

on 21.09.2012, published in Wikipedia, and with license CC BY-SA 3.0)  it is possible to see a diagram 

of this phenomenon with different incident angles.  

 

Image 2.4: Optical reflection: critical angle and total internal reflection. 

2.2.  Measurement 

Sound pressure can be measured using a microphone, which converts air pressure variations 

into electrical signals. 

It is not the same the sound pressure, the particle velocity and the sound intensity. The 

quantities are normally measured as a level in decibels relative to a certain quantity. 

The sound pressure level is normally given by: 

Where 𝑝𝑟𝑚𝑠  is the root-mean square pressure in 𝑃𝑎 and 𝑝𝑟𝑒𝑓  is the reference pressure value 

of 2 · 10−5𝑃𝑎. 

The particle velocity is given by: 

Where 𝑢𝑟𝑚𝑠  is the root-mean square particle velocity in 𝑚/𝑠 and 𝑢𝑟𝑒𝑓  is the reference 

particle velocity value of  5 · 10−8𝑚/𝑠. 

The sound intensity is given by: 

Where 𝐼𝑟𝑚𝑠  is the root-mean square sound intensity in 𝑊 and 𝐼𝑟𝑒𝑓  is the reference sound 

intensity value of 1 · 10−12𝑊. 

𝐿𝑝 = 10 · log10  
𝑝𝑟𝑚𝑠

2

𝑝𝑟𝑒𝑓
2  = 20 · log10  

𝑝𝑟𝑚𝑠

𝑝𝑟𝑒𝑓
 , 

  Eq. 2.8 

𝐿𝑢 = 10 · log10  
𝑢𝑟𝑚𝑠

2

𝑢𝑟𝑒𝑓
2  = 20 · log10  

𝑢𝑟𝑚𝑠

𝑢𝑟𝑒𝑓
 , 

  Eq. 2.9 

𝐿𝐼 = 10 · log10  
𝐼𝑟𝑚𝑠

𝐼𝑟𝑒𝑓
 , 

  Eq. 2.10 
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3.  Main aspects of guided acoustic waves in fluid-filled pipes 

A waveguide is a structure that guides waves, such as electromagnetic waves or pressure 

waves. There are different types of waveguides for each type of wave. The one that is going to be 

used in the end of this work for guiding pressure waves in water is a PVC pipe. 

However, it is also common to use a hollow conductive metal pipe to carry high frequency 

radio waves. It is becoming more popular to use optical fiber to transmit light and signals for long 

distances and with high signal rate. 

Waves propagate in open space in every direction behaving as spherical waves. 

Nevertheless, when a waveguide is used, waves can only propagate within the guide and, therefore, 

not in every direction, but just in one. 

3.1.  Propagation of sound waves in cylindrical tubes 

Depending on what fluid the sound is propagating, its propagation speed changes according 

to the following expression: 

 

 

where 𝜌 is the density of the fluid and 𝐾 its bulk modulus, which is given by: 

where 𝑑𝑃/𝑑𝑉 denotes the derivative of pressure on density. 

The approximate bulk modulus for water is 𝐾 = 2,2 · 109 𝑃𝑎. Besides, its density is  

𝜌 = 1000 𝑘𝑔/𝑚3. Therefore, speed of sound in water is approximately: 

Note that this speed change depending on the deepness (pressure), quantity of salt and 

other components, and temperature, since all this parameters affect to both bulk modulus and 

density of water. 

3.2.  Propagation modes 

The solution of the equation for propagating waves along a tube in cylindrical coordinates is 

[18]: 

𝑐𝑓𝑙𝑢𝑖𝑑 =  
𝐾

𝜌
, 

  Eq. 3.1 

𝐾 = −𝑉
𝑑𝑃

𝑑𝑉
 , 

  Eq. 3.2 

𝑐𝑤𝑎𝑡𝑒𝑟 =  
2,2 · 109

1000
= 1480 𝑚/𝑠 

  Eq. 3.3 
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where 𝐴 and 𝐵 are constants,  𝑘 is the wave number in each spatial direction, and 𝐽𝑛  is the 

Bessel function of order 𝑛. 

 

Image 3.1: Parameters of the pipe 

The solution of the waveguide equation provides three types of propagation modes: 

longitudinal, torsional, and flexural mode. For all of these modes, it exists an infinite number of 

individual modes, which are distinguished by their cut-off frequency, phase velocity and attenuation. 

Longitudinal wave, which is displayed in Image 3.2, has a displacement in the radial, 𝑟, and axial, 𝑧, 

direction. Torsional mode, which can be seen in Image 3.3, however, have only a displacement in 𝜃 

direction. Both modes are axially symmetric, which means that the displacement in a certain distance 

to the source is constant over the circumference. The flexural modes, which are shown in Image 3.4, 

are not axially symmetric and have a negligible displacement component in the axial direction. 

A longitudinal mode group is normally expressed as 𝐿(𝑚, 𝑛), a torsional mode group as 

𝑇(𝑚, 𝑛) and a flexural mode group as 𝐹(𝑚, 𝑛), where the integer 𝑚 denotes the circumferential 

order of a mode and the integer 𝑛 represents the group order of a mode. An axisymmetric mode has 

the circumferential number 𝑚 = 0. 

 

Image 3.2: Longitudinal mode 

 

Image 3.3: Torsional mode 

 

 

Image 3.4: Flexural mode 

𝑢 𝑟, 𝜃, 𝑧, 𝑡 =  𝐴 · sin 𝑘𝜃𝜃 + 𝐵𝑠𝑖𝑛 𝑘𝜃𝜃  𝐽𝑛 𝑘𝑐𝑟 𝑒𝑖 𝑘𝑧𝑧−𝜔𝑡     Eq. 3.4 

𝑘𝑐
2 = 𝑘2 − 𝑘𝑧

2 

𝜔 = 𝑘 · 𝑐 

  Eq. 3.5 
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In Image 3.5, the phase velocity depending on the time for the different modes in a pipe 

filled with water and air is shown. 

 

Image 3.5: Dispersion diagram for the phase velocity on frequency dependency for a pipe filled with water and air. 
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4.  Group and phase velocities 

Let us consider a wave travelling in the x direction, with constant maximum amplitude A, 

with constant velocity v independent of wavelength and also independent of amplitude. This wave 

can described by D'Alambert's formula: 

 

where F and G represent two waveforms travelling through the medium in opposite 

direction. 

We can distinguish between continuous waves, which have constant maximum amplitude, 

and modulated waves, in which their amplitude vary with time and/or position. 

A modulated wave can be mathematically described as follows: 

u x, t = A x, t cos ωt − kx + φ , Eq. 4.2 

where 

 A x, t  represents the change of the maximum amplitude depending with the 
position and the time, that is to say, the amplitude envelope of the wave 

 𝑘 is the wave number, which is the spatial frequency of a wave, which means the 
number of wavelengths per unit distance or the number of cycles per wavelength 

 ω is the angular velocity, which is related to the wave frequency by ω = 2π f 
 φ is the phase of the wave 

There are two velocities that are associated with waves: phase velocity and group velocity. 

4.1.  Phase velocity 

The phase velocity of a wave is the rate at which the phase of a wave propagates in space. Its 
value is given by the following expression: 

vp =
λ

T
, 

Eq. 4.3 

where λ is the wavelength and 𝑇 is the period. 

It can also be written in terms of the angular frequency and the wave number by: 

vp =
ω

k
, 

Eq. 4.4 

In order to understand what phase velocity is, let us assume a continuous wave as: 

u x, t =  F x − vt + G(x + vt),   Eq. 4.1 
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u x, t = A sin kx − ωt + φ , Eq. 4.5 

in which the amplitude is constant and it does not depend on the timer nor the position.  

Let us have two different points in the positive x direction, x1 and x2, with x2>x1. Thus, the 
phase velocity will be defined by: 

vp =
x2 − x1

t21
 

Eq. 4.6 

where t12  is the time elapse between the timet1in which the size of the wave is given 

byu(x1, t1)and the time t2 in which the size of the wave is given byu(x2, t2), taking into account 

that u x1, t1 =  u x2, t2 = 𝑢𝑜 . 

Therefore: 

A cos ωt1 − kx1 + φ = A cos ωt2 − kx2 + φ  Eq. 4.7 

Simplifying: 

cos ωt1 − kx1 + φ = cos ωt2 − kx2 + φ  Eq. 4.8 

Both arguments must be the same: 

ωt1 − kx1 = ωt2 − kx2  Eq. 4.9 

 

𝑡12 = 𝑡1 − 𝑡2 =
𝑘

ω
 𝑥1 − 𝑥2  

Eq. 4.10 

 

vp =
x2 − x1

t2 − t1
=

x2 − x1

𝑘

ω
 x2 − x1 

=
ω

k
 

Eq. 4.11 

 
So it is proven that it is possible to measure the phase velocity by measuring the size of the 

wave in two different positions. 

4.1.1 Example 

For instance, let us have a sinusoidal wave such as: 

u x, t = cos 10x − t + π  Eq. 4.12 

 

In the Image 4.1 in blue it is shown the wave in t1 = 10 and in red in t2 = 13. Two points are 

selected, 𝑥1 = 1,627 and 𝑥2 = 1,927. In these points, the wave reaches the same size in 10 and 20, 

respectively. Therefore, it is possible to apply Eq. 4.6: 

vp =
x2 − x1

t2 − t1
=

1,927 − 1,627

13 − 10
= 0,1, 

Eq. 4.13 
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which is the same result than using Eq. 4.4: 

vp =
ω

k
=

1

10
= 0,1 

Eq. 4.14 

 

 

Image 4.1: Two points in the distance selected to calculate the phase velocity. 

 

Image 4.2: Two points in the time selected to calculate the phase velocity. 

So it is possible to measure the phase velocity by knowing the time elapse and measuring the 

distance. Furthermore, it is also possible to get the same result by knowing the distance between 

these two points and measuring the time elapse. This second way of performing is shown in Image 
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4.2 with the same wave as in Image 4.1, in red it is shown the wave in position 𝑥1 = 1,627 and in 

blue the position 𝑥2 = 1,927, in a time range from 9 to 14. 

The same result as in the last performance is obtained: 

vp =
x2 − x1

t2 − t1
=

1,927 − 1,627

13 − 10
= 0,1 

Eq. 4.15 

 

Thus, it is possible to measure the phase velocity of a wave by knowing either the time 

elapse and measuring the distance between the two sensors, or the distance between them and 

measuring the time elapse. 

 

4.2.  Group velocity 

The group velocity is also known as modulation or envelope of the wave, and it is the velocity 

which the overall shape of the waves' amplitudes propagates through space. It is defined by: 

vg =
∂ω

∂k
 

Eq. 4.16 

 

It is clear that if ω ∝ 𝑘, then the group velocity and the phase velocity would be the same, 

since: 

 

vg =
∂ω

∂k
=

ω

k
= vp  

Eq. 4.17 

 

In general, in the rest of the cases, phase velocity and group velocity will be different. 

For instance, let us have two continuous waves: 

u1 x, t = A1 cos ω1t − k1x + φ1  Eq. 4.18 

 

u2 x, t = A2 cos ω2t − k2x + φ2  Eq. 4.19 

 

And let us have a wave formed by the superposition of the two previous waves: 

u x, t = A1 cos ω1t − k1x + φ1 + A2cos ω2t − k2x + φ2 = 

= A1  cos ω1t − k1x + φ1 +  1 +
A2 − 𝐴1

A1
 cos ω2t − k2x + φ2  = 

 
 

 
Eq. 
4.20 
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= A1  2 cos
ω1t − k1x + φ1+ω2t − k2x + φ2

2
cos

ω1t − k1x + φ1 − ω2t + k2x − φ2

2

+
A2 − 𝐴1

A1
 cos ω2t − k2x + φ2   

 
Let us set the following average values: 

ωP =
ω1 + ω2

2
; kP =

k1 + k2

2
; ωM =

ω1 − ω2

2
; kM =

k1 − k2

2
 

Eq. 4.21 

 

Using the values of Eq. 4.21 in Eq. 4.20: 

u x, t = A1  2 cos ωp t − kp x + φp cos ωm t − km x + φm 

+
A2 − 𝐴1

A1
 cos ω2t − k2x + φ2   

 

Eq. 4.22 

Note that if the amplitude of the two waves is the same, the result wave is: 

u x, t = 2A cos(ωM t − kM x) cos(ωPt − kp x) Eq. 4.23 

 

4.2.1 Example 

For instance, let us have the two following waves, which will be superposed: 

u1 x, t = 2 cos(8t − x) 

u2 x, t = 2 cos  7,5t −
15

16
x  

Eq. 4.24 

The average values are: 

ωP = 7,75s−1; kP =
31

32
m−1;  ωM = 0,25s−1;  kM =

1

32
m−1 

Eq. 4.25 

Then, the resulting wave is: 

u x, t = 2 · 2 cos  0,25t −
1

32
x cos  7,75t −

31

32
x  

Eq. 4.26 

It is possible to see the result of this wave depending of the time and the position by using 

the script of MATLAB shown in the appendix A. 1. Propagation of a wave in a non-dispersive medium. 
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Image 4.3: Envelope wave of  two waves superposed propagating in the positive 𝐱 direction in a non dispersive medium. 

In Image 4.3 it is possible to see the wave at  t = 1 and in a space between 0 and 100, whose 

MATLAB script is also shown in appendix A. 1. Propagation of a wave in a non-dispersive medium. A 

envelope wave is possible to be appreciated, which is propagating in the positive x direction. The 

wavelength of the envelope wave is: 

λM =
2π

kM
=

2π

1/16
= 100,5 𝑚 

Eq. 4.27 

 

Inside this envelope wave, there are a group of small waves which have a wavelength of: 

λM =
2π

kp
=

2π

31/32
= 6,4 𝑚 

Eq. 4.28 

 

It is also possible to calculate the phase velocity and the group velocity: 

vg =
ωp

kp
=

7,75

31/32
= 8 𝑚/𝑠 

Eq. 4.29 

vM =
ωM

kM
=

0,25

1/32
= 8 𝑚/𝑠 

Eq. 4.30 

 

Phase velocity and group velocity are the same due to the fact that in this example a non dispersive 

medium has been chosen since the velocities of the waves that are superposed are the same (note 

that in non superposed waves phase velocity and group velocity are the same): 
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v1 =
ω1

k1
=

8

1
= 8

𝑚

𝑠
= v1 =

ω2

k2
=

7,5

15/16
= 8

𝑚

𝑠
 

Eq. 4.31 

 

In a non dispersive medium, it is fulfilled:  

vp =
ω1

k1
=

ω2

k2
 

 

Eq. 4.32 

However, in a dispersive medium, velocities for different frequencies are different. Let us 

have now these two waves that are going to be superposed: 

 

u1 x, t = 2 cos(8t − x) 

u2 x, t = 2 cos  7,5t −
14,5

16,5
x  

Eq. 4.33 

The average values will be: 

ωP = 7,75s−1; kP =
31

33
m−1;  ωM = 0,25s−1;  kM =

2

33
m−1 

Eq. 4.34 

Then, the resulting wave is: 

u x, t = 2 · 2 cos  0,25t −
2

33
x cos  7,75t −

31

33
x  

Eq. 4.35 

 

Image 4.4: Envelope wave of a superposition of two waves propagating in the positive 𝐱 direction in a dispersive 
medium. 
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In Image 4.4, it is possible to see the wave at t = 1 and in a space between 0 and 100. A 

envelope wave is possible to be appreciated, which is propagating in the positive x direction. The 

wavelength of the envelope wave is: 

 

λM =
2π

kM
=

2π

2/33
= 103,7 𝑚 

Eq. 4.36 

 

Inside this envelope wave, there are a group of small waves which have a wavelength of: 

λM =
2π

kp
=

2π

31/33
= 6,69 𝑚 

Eq. 4.37 

 

It is also possible to calculate the phase velocity and the group velocity: 

vp =
ωp

kp
=

7,75

31/33
= 8,25 𝑚/𝑠 

Eq. 4.38 

vg =
ωM

kM
=

0,25

2/33
= 4,13 𝑚/𝑠 

Eq. 4.39 

 

Phase velocity and group velocity are not the same due to the fact that in this example a 

dispersive medium has been chosen and the velocities of the waves that are superposed are not the 

same: 

v1 =
ω1

k1
=

8

1
= 8

𝑚

𝑠
≠ v2 =

ω2

k2
=

7,5

14,5/16,5
= 8,53

𝑚

𝑠
 

Eq. 4.40 

 

Thus, it is clear that in general phase and group velocity are different. Actually, just with a 

little chance in one of the waves that is to be superposed -as in the last example-, group velocity can 

vary considerably. 

 

4.3.  Dispersion diagram 

The phase and group velocity have a relation with the frequency of the source wave. It 

means that if we have a pipe filled with water and we stimulate the water with a sinusoidal wave, the 

phase and group velocity change depending on the frequency of this sinusoidal wave. This statement 

is easy to confirm by the definition of phase and group velocity, since they both depend on the 

frequency ω of the wave, as it is shown in Eq. 4.4 and in Eq. 4.16: vg =
∂ω

∂k
 ; vp =

ω

k
. 
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In order to show the relation between the phase and group velocities and the frequency of 

the source wave, a dispersion diagram can be built, as it is shown in Image 4.5, where the dispersion 

diagram of a water-filled PVC straight pipe of 2 meters for low frequencies is shown. 

When the frequency is increased, the dispersion diagram changes and it looks like the one in 

Image 3.5. 

 

Image 4.5: Phase velocity on the space of the frequency of a water-filled PVC pipe. 
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5.  Measurement methods to measure the phase and group velocity of 

dispersive sound waves 

5.1.  Phase velocity by zero crossing time delay 

It could be a possibility to measure the phase velocity of a wave by measuring when the size 

of the wave in two different points and, then, measuring the time elapse between when the wave 

changes from positive to negative in the first point and in the second, or vice versa. 

It is easy to show this method in an example with two waves like these: 

x t = cos(ωt) Eq. 5.1 

y t = cos(ωt + φ) Eq. 5.2 

x t  will change from positive to negative in 𝑡𝑥 =  
𝜋

2
+ 2𝜋 · 𝑘 /𝜔, where 𝑘 ∈ ℤ. Besides, 

y t  will do it in 𝑡𝑦 =  
𝜋

2
+ 2𝜋 · 𝑘 /𝜔 − φ, where 𝑘 ∈ ℤ. Therefore, for a given 𝑘 ∈ ℤ, the time 

elapse will be: 

∆t = tx − ty =
 

𝜋

2
+ 2𝜋 · 𝑘 

𝜔
−

 
𝜋

2
+ 2𝜋 · 𝑘 

𝜔
+ φ =  φ 

Eq. 5.3 

 

Calculated this time, it is now possible to obtain the value of the phase velocity by: 

vp =
s

∆t
, 

Eq. 5.4 

where s is the space between the two points in which the wave is measured. 

For example, if the following two waves are obtained by two points separated s = 0,1m by 

measuring a wave propagating: 

x t = cos(10t) Eq. 5.5 

y t = cos(10t + 5) Eq. 5.6 

The shapes of the waves and the time elapse are shown in Image 5.1. Then, the phase 

velocity of this wave can be calculated as: 

vp =
s

∆t
=

0,1

0,9137 − 0,7854
= 0,779 m/s , 

Eq. 5.7 
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Image 5.1: Two points selected to calculate the phase velocity with the method of zero crossing. 

Note that this method is not good for noisy signals because there could be noise in points 

close to zero, producing a lot of changes in the sign of the wave and, therefore, making this method 

unusable. This problem is clearly observed in Image 5.2 when adding a gaussian noise to the waves 

shown in Eq. 5.5 and Eq. 5.6. A zoom has been performed in Image 5.3 in order to better appreciate 

this problem. It is clear that is not possible to use this method with noisy signals unless a filter is 

used. 

 

Image 5.2: Two noisy waves that makes unusable the method of zero crossing without using filters. 
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The MATLAB script that has been used to emulate the noise can be seen in the appendix A. 3. 

Noisy waves with which is not possible use the zero-crossing method. 

 

Image 5.3: Zoom of two noisy waves that make unusable the method of zero crossing. 

 

5.2.  Phase velocity in frequency domain by phase shift 

In order to calculate the phase velocity it is also possible to obtain the Fourier transform of 

the signal measured in two different points and measure the phase shift between the two 

transforms. 

Fourier transform ℱ 𝑓  of a function 𝑓 is given by [19]: 
 

ℱ 𝑓  𝜔 =  𝑓 𝑥 𝑒−𝑖𝑥𝜔 𝑑𝑥
∞

−∞

, 
Eq. 5.8 

 

where 𝑓 ∈ 𝐿1(ℝ), where 𝐿1(ℝ) is defined by the group of functions 𝑓: ℝ →ℂ such that 𝑓 
verifies that: 

 |𝑓 𝑥 |𝑑𝑥
∞

−∞

< ∞ 
Eq. 5.9 

 

However, we are interested in discrete signals, which are acquired by the sensors that 

receive them. For this reason, it is also possible to define a discrete Fourier transform as: 

ℱ 𝑥𝑘 = 𝑋𝑘 =  𝑥𝑛

𝑁−1

𝑛=0

𝑒−
2𝜋𝑖

𝑁
𝑘𝑛   , 𝑘 = 0, … , 𝑁 − 1 

Eq. 5.10 

As the result is a serial of complex numbers, the amplitude 𝐴𝑘  and phase 𝜑𝑘of every sample 

can be calculated as: 
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𝐴𝑘 = |𝑋𝑘 | =  𝑅𝑒 𝑋𝑘 2 + 𝐼𝑚 𝑋𝑘 2 Eq. 5.11 

𝜑𝑘 = arg(𝑋𝑘) = 𝑎𝑡𝑎𝑛2 𝐼𝑚 𝑋𝑘 , 𝑅𝑒(𝑋𝑘) , Eq. 5.12 

 

where atan2 is the arctangent function with two arguments that returns the value of the 

arctangent in the correct quadrant. 

An example to better understand the result that is given by the discrete Fourier, let us have 

the following serial: 

𝑥𝑘 = 2𝑘  ,            𝑘 = 0,1, 2 Eq. 5.13 

Applying the definition of the Fourier transform to Eq. 5.13: 

𝐹 𝑥𝑘 = 𝑋𝑘 =  2𝑛

2

𝑛=0

𝑒−
2𝜋𝑖

𝑁
𝑘𝑛  = 

Eq. 5.14 

= 20𝑒0 + 21𝑒−
2𝜋𝑖

2
𝑘·1 + 22𝑒−

2𝜋𝑖

2
𝑘·2 = 

Eq. 5.15 

= 1 + 2𝑒−𝜋𝑖𝑘 + 4𝑒−2𝜋𝑖𝑘 ,            𝑘 = 0,1, 2 Eq. 5.16 

Therefore: 

𝑥0 = 7 ; 𝑥1 = 1 + 2𝑒−𝜋𝑖 + 4𝑒−2𝜋𝑖 ; 𝑥2 = 1 + 2𝑒−2𝜋𝑖 + 4𝑒−4𝜋𝑖  Eq. 5.17 

 

If it is expressed as complex numbers: 

𝑥0 = 7 ; 𝑥1 = −2 +  3 · 𝑖; 𝑥2 = −2 −  3 · 𝑖 Eq. 5.18 

 

And then expressed in the polar form: 

𝑥0 = 70 𝑟𝑎𝑑  

𝑥1 =  7𝑎𝑡𝑎𝑛 2 −2, 3 ≈ 2,6458−0,8571 𝑟𝑎𝑑  

𝑥2 =  7𝑎𝑡𝑎𝑛 2 −2,− 3 ≈ 2,6458−2,2845 𝑟𝑎𝑑  

Eq. 5.19 

 

If the phase shift between two signals is wanted to be known in order to measure the phase 

velocity, it is necessary to perform a discrete Fourier transform and compare the graphs obtained for 

the two signals. 

So now suppose that the two following signals are acquired in two sensors separated a 

distance 𝑑 = 0,1𝑚: 

 

𝑥𝑘 = cos 2π · 10k/1000 ,                 𝑘 = 1, … ,201 Eq. 5.20 
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𝑦𝑘 = cos 2π · 10k/1000 + 1,5 ,      𝑘 = 1, … ,201 Eq. 5.21 

 

Where 𝐹𝑠 = 1000 𝐻𝑧 is the sample frequency.Calculating their discrete Fourier transform: 

𝑋𝑘 =  cos 2π · 10k/1000 

201

𝑛=1

𝑒−
2𝜋𝑖

𝑁
𝑘𝑛   , 𝑘 = 1, … ,201 

Eq. 5.22 

𝑌𝑘 =  cos 2π · 10k/1000 + 1,5 

201

𝑛=1

𝑒−
2𝜋𝑖

𝑁
𝑘𝑛   , 𝑘 = 1, … ,201 

Eq. 5.23 

 

The calculation of the Fourier transform done with MATLAB step by step is shown in 

appendix A. 4. Fourier transform. MATLAB also has a function that calculates the Fourier transform in 

a fast way (Fast Fourier Transform, FFT) first discussed by Cooley and Tukey [20] . 

Calculating the value of 𝑋𝑘  and 𝑌𝑘  for 𝑘 = 3, as  3 − 1 ·
𝐹𝑠

𝑁
=  3 − 1 ·

1000

201
≈ 10 𝐻𝑧, the 

values obtained are: 

𝑋100 =   100,73421,7910º Eq. 5.24 

𝑌100 = 100,235287,7145º Eq. 5.25 

The phase shift is then: 

𝜑 = 87,7145 − 1,7910 = 85,9234 ·
𝜋

180

𝑟𝑎𝑑

º
= 1,4996 ≈ 1,5 𝑟𝑎𝑑, 

Eq. 5.26 

which is the phase delay of the two signals. Therefore, if the distance between the two 

points is known, it is possible to calculate the phase velocity: 

𝑣𝑝 = 0,1𝑚/
1,5𝑟𝑎𝑑

2𝜋 · 10
𝑟𝑎𝑑

𝑠

= 4,189𝑚/𝑠 
Eq. 5.27 

 

 

Image 5.4: Fourier transform of two ideal waves. 
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To show how this could be done with MATLAB, in appendix A. 5. Phase velocity with the 
method of phase shift, a script is written which calculates the Fourier transform of the previous two 
serials (or waves) and displays this information. In Image 5.4 the original waves, the absolute value of 
the Fourier transform, and the phase shift of the Fourier transform are shown. Measuring the 
difference between the two curves in the phase shift diagram in the main frequency (𝑓 = 10𝐻𝑧), the 
result is 𝜑 = 87,27º, which is almost the same value than the one obtained analytically before.  
 

 

Image 5.5: Fourier transform of two noisy waves. 

 

Image 5.6: Zoom of the angle of the Fourier transform of two noisy waves. 

However, when some noise is introduced, even though the phase diagram is completely 

deformed, it is possible to measure the phase velocity, since the phase values in the interesting 
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frequency is not deformed. For instance, adding small gaussian noise the phase diagrams is shown in 

Image 5.5 the big deformation of it, and in Image 5.6 a zoom in which it is appreciated that the phase 

shift is still the same. The way to add this gaussian noise is the same than the one used in the section 

5.1. Phase velocity by zero crossing time delay. 

 

5.3.  Group velocity by time delay of maximum of envelope wave 

One of the ways of measuring the group velocity of a wave is by calculating its envelope and 

measuring it in two different points. Then, it is possible to determine at what time the envelope 

reaches its maximum value and measure the time elapse between the time in which the first point 

acquires the maximum value of the envelope and the time in which the second point does it. 

In Image 5.7 the wave of Eq. 4.35 is shown in the points 𝑥1 = 1𝑚 and 𝑥2 = 10𝑚 in time 

dependency. The maximum values of the envelope are reached in 𝑡1 = 0,2425𝑠 and 𝑡2 = 2,424𝑠, 

making the group velocity be: 

vg =
s

∆t
=

9

2,424 − 0,2425
= 4,1256 ≈ 4,13 m/s , 

Eq. 5.28 

 

which is the same result that was calculated in Eq. 4.39. 

However,  let us have gaussian noise in the signals as it is shown in Image 5.8. Now it is more 

difficult to calculate the envelope wave because it is necessary to apply a filter so as to reduce the 

noise. 

 

 
Image 5.7: Envelope waves of two waves formed by the superposition of two waves to calculate the group velocity. 
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Image 5.8: Two noisy waves that make difficult to calculate the envelope waves without applying filters. 

 

5.3.1 Calculation of the envelope wave by the Hilbert transform 

When a modulated wave is obtained by the probes and its envelope is wanted to be 

calculated so as to measure the group velocity, a first approximation can be done by calculating its 

Hilbert transform. 

Hilbert transform of a real function s t  is obtained by the convolution of the signal itself and 
1/πt. Then, it can be interpreted as the output of a LTI system with input s t  and impulse response 
of 1/πt as it is schematized in Image 5.9. Mathematically, it is defined by [21]: 
 

s  t = ℋ  s  t =  h ∗ s  t =
1

π
 

s τ 

t − τ
dτ

∞

−∞

 , 
Eq. 5.29 

where h t = 1/πt. 

 

Image 5.9: LTI system for calculating the Hilbert transform. 

Using s  t  it is possible to build the analytical signal of s t  as: 

sa t = s t + is  t  Eq. 5.30 
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Hilbert transform frequency response is given by the Fourier transform by: 
 

ℋ ω = ℱ h  ω =  
+i,         if ω < 0
−i, if ω > 0

  
Eq. 5.31 

 
or, equivalently: 

 

ℋ ω = ℱ h  ω = −i · sgn(ω) Eq. 5.32 

 
 

And, due to the fact that: 
 

ℱ s   ω = ℋ ω · ℱ s  ω  Eq. 5.33 

 
 

Therefore, Hilbert transform produces a displacement in negative frequencies of s(t) of 
+90º and for the positive ones, −90º. 
 

It is also interesting to notice that it is possible to obtain the original signal s(t) when the 
Hilbert transform is calculated by taking into account that: 
 

ℋ2 ω = −1 Eq. 5.34 

 
Thus, multiplying Eq. 5.33 by −ℋ(ω): 

 
ℱ s  ω = −ℋ ω · ℱ s   ω  Eq. 5.35 

 
So the original signal is given by: 

 

s t = − h ∗ s   t = −ℋ  s   t  Eq. 5.36 

 
As we are dealing with discrete signals, the definition of the Hilbert transform given in Eq. 

5.29 is not usable because it works only for continuous signals. In the case of discrete signal 𝑠𝑘  with  
𝑘 = 0,1, … , 𝑁 − 1 Hilbert transform is given by [22]: 
 

sk = h s k =

 
 
 

 
 

2

π
 

sn

k − n
, k even

n odd

2

π
 

sn

k − n
, k odd

n even

  

Eq. 5.37 
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Discrete Hilbert transform can be calculated by a four-step algorithm [23], which is the 
method that MATLAB uses when the function hilbert is called: 

1. Calculating the Fast Fourier Transform of the input sequence, storing the 
result in a vector x. 

2. Creating a vector h whose elements h(i) have the values: 
 1 for i = 1, (n/2)+1 
 2 for i = 2, 3, ... , (n/2) 
 0 for i = (n/2)+2, ... , n 

3. Calculating the element-wise product of x and h. 
4. Calculating the inverse Fast Fourier Transform of the sequence obtained in 

step 3 and giving the first n elements of the result. 
 
 

5.4.  Group velocity by time delay of cross-correlation 

In order to compare two discrete signals  xn 𝑛∈𝐴 and  𝑦n 𝑛∈𝐴 where 𝐴 is the 

subspace of 𝑁 real numbers which contains the time values in which the samples are been 

taken, it is possible to use the cross-correlation defined as:  

cxy =  𝑥𝑖 · 𝑦𝑖

𝑁

𝑖=1

 

Eq. 5.38 

 

If the value of cxy  is positive, it means that when an increment in xn  is associated to a 

decrement of 𝑦n , and vice versa. Besides, the bigger cxy  is, the bigger the similarity between the two 

signals is. Note that this definition depends on the number of samples 𝑁. Thus, it is also possible to 

define the cross-correlation independently of 𝑁 by:  

cxy =
1

N
 𝑥𝑖 · 𝑦𝑖

𝑁

𝑖=1

 

Eq. 5.39 

 

 
1 2 3 4 5 6 7 8 9 

x 4 2 -1 3 -2 -6 -5 4 5 

y -4 1 3 7 4 -2 -8 -2 1 

xi*yi -16 2 -3 21 -8 12 40 -8 5 
Table 5.1:  Values of two signals of which cross-correlation is going to be calculated 

For instance, the cross-correlation between two signals with values shown in Table 5.1 can 

be calculated by Eq. 5.39 as shown in Eq. 5.40. 

cxy =
1

9
 4 ·  −4 + 2 · 1 − 3 · 1 + 3 · 7 − 2 · 4 − 6 ·  −2 − 5 ·  −8 + 4 ·  −2 

+ 5 · 1 =
1

9
· 45 = 5  

Eq. 5.40 
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However, this Eq. for the cross-correlation does not give a good result when two signals has 

the same frequency but different phase. For this reason, it is reasonable to think about moving one 

of the series to right or the left (advance or delay) a time delay k in order to equal both phases. Then, 

the Eq. for the cross-correlation will be: 

cxy (k) =  𝑥𝑖 · 𝑦𝑖+𝑘

𝑁

𝑖=1

 , 

Eq. 5.41 

 

where (𝑖 + 𝑘) ∈ 𝐴 and it means a  displacement of the series  𝑦n 𝑛∈𝐴 to the left or the right. 

The purpose of this method is to find the value of k that maximizes the value of cxy (k). 

When this value of kis found, both phases are equaled and, thus, the time delay between the two 

signals is k . By doing so it is possible to find the time delay k between the two given signals and, 

therefore, calculate the group velocity of the propagating wave. 

For example, if we have the two following general expressions that represent two waves in 𝑁 

sample points: 

xn = cos(𝜔 · 𝑛) Eq. 5.42 

yn = cos 𝜔 · 𝑛 + 𝜑  Eq. 5.43 

 

Then, the cross-correlation will be: 

cxy (k) =  cos 𝜔 · 𝑖 · cos 𝜔 · 𝑖 + 𝜑 + 𝑘 

𝑁

𝑖=1

 

Eq. 5.44 

 

In order to calculate the value of 𝑘 that maximizes cxy , we are going to consider two 

continuous signals: 

x(t) = cos(𝜔𝑡) Eq. 5.45 

y(t) = cos(𝜔𝑡 + 𝜑) Eq. 5.46 

Therefore, the cross-correlation is now: 

cxy  k =  cos 𝜔𝑡 · cos 𝜔𝑡 + 𝜑 + 𝑘 
T

0

𝑑𝑡, 𝑇 ∈ ℝ+ 
Eq. 5.47 

In order to maximize cxy , we differentiate it in k: 

d

dk
cxy  k =

d

dk
  cos 𝜔𝑡 · cos(𝜔𝑡 + 𝜑 + 𝑘)

T

0

𝑑𝑡   
Eq. 5.48 

=
d

dk
  

cos 2𝜔𝑡 + 𝜑 + 𝑘 + cos(𝜑 + 𝑘)

2

T

0

𝑑𝑡   
Eq. 5.49 
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=
1

2

d

dk
  cos 2𝜔𝑡 + 𝜑 + 𝑘 

T

0

𝑑𝑡 +  cos(𝜑 + 𝑘)𝑑𝑡
𝑇

0

  
Eq. 5.50 

=
1

2

d

dk
 cos 2𝜔𝑡 + 𝜑 + 𝑘 

T

0

𝑑𝑡 +
1

2

d

dk
cos(𝜑 + 𝑘)𝑇  

Eq. 5.51 

=
1

2

d

dk
 
− sin 2𝜔𝑡 + 𝜑 + 𝑘 

2𝜔
 

0

𝑇

−
1

2
T sin 𝜑 + 𝑘  

Eq. 5.52 

=
1

4𝜔

d

dk
 − sin 2𝜔𝑇 + 𝜑 + 𝑘 + sin 𝜑 + 𝑘  −

1

2
T sin 𝜑 + 𝑘  

Eq. 5.53 

=
1

4𝜔
 − 𝑐𝑜𝑠 2𝜔𝑇 + 𝜑 + 𝑘 + cos 𝜑 + 𝑘  −

1

2
T sin 𝜑 + 𝑘  

Eq. 5.54 

 

Making it equal to 0: 

cos 𝜑 + 𝑘 − 𝑐𝑜𝑠 2𝜔𝑇 + 𝜑 + 𝑘 − 2𝜔T sin 𝜑 + 𝑘 = 0 →  

 

Eq. 5.55 

→ 2sin 𝜔𝑇 + 𝜑 + 𝑘 sin 2𝜔𝑇 = 2𝜔T sin 𝜑 + 𝑘  Eq. 5.56 

Now if 𝑘 = −𝜑: 

2sin 𝜔𝑇 sin 2𝜔𝑇 = 0 Eq. 5.57 

Then either sin 𝜔𝑇  or sin 2𝜔𝑇  has to be equal to 0. Then: 

𝜔𝑇 =
𝜋

2
𝑚, 𝑚 ∈ ℤ 

Eq. 5.58 

Therefore, when Eq. 5.58 is verified, it exists a maximum or minimum in 𝑘 = −𝜑. In order to 

see whether it is a maximum or minimum, the second differentiate is going to be performed: 

d2cxy  k 

dk2
=

d

dk

d

dk

1

4𝜔
 − 𝑐𝑜𝑠 𝜋𝑚 + 𝜑 + 𝑘 + cos 𝜑 + 𝑘  −

d

dk

1

2
T sin 𝜑 + 𝑘 = 

Eq. 5.59 

=
1

4𝜔
 sin 𝜋𝑚 + 𝜑 + 𝑘 − sin 𝜑 + 𝑘  −

1

2
T cos 𝜑 + 𝑘  

Eq. 5.60 

Making 𝑘 = −𝜑: 

 
d2cxy  k 

dk2
 
𝑘=−𝜑

= −
1

2
T < 0 

Eq. 5.61 

Thus, there is a maximum in 𝑘 = −𝜑 when 𝑇 =
𝜋

2
𝑚, 𝑚 ∈ ℤ. 

This result can be exported to a discrete wave as long as the sample frequency is big enough. 

Then, the maximum value of the cross-correlation will be reached in 𝑘 = −𝜑. So, when the two wave 

signals acquired by the two sensors, an iteration process will be performed in order to find the 

maximum value of the cross correlation by changing the parameter 𝑘. When this maximum value is 
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reached, the value of 𝑘 with which it is reached is the value of −𝜑 and, thus, it will be possible to 

determine the group velocity. 

Let us now measure the signal of Eq. 4.35 by this method. In Image 5.10 the result of the 

cross-correlation for different values is shown. A maximum is reached in 𝑘 = 5,74 𝑟𝑎𝑑 → 𝜑 =

−5,74 𝑟𝑎𝑑 + 2𝜋 = 0,5432 𝑟𝑎𝑑. 

vg =
 10 − 1 m

0,5432rad/(0,25rad/s)
= 4,14m/s, 

Eq. 5.62 

which is the same result obtained by measuring the time difference in the maximum of the 

envelope. 

The script used to obtain these results is displayed in the appendix A. 7. Group velocity with cross-

correlation. 

 

5.5.  Phase velocity by comparing two same points in two waves 

Let us have the superposition of two waves that forms an amplitude-modulated wave: 

u x, t = A1  2 cos ωp t − kp x + φp cos ωm t − km x + φm 

+
A2 − 𝐴1

A1
 cos ω2t − k2x + φ2   

 

Eq. 5.63 

 

Image 5.10: Envelope for the 𝒌 that makes the cross-correlation reaches a maximum and cross-correlation of two waves 
for different values of 𝒌 
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We will try to compare two points with the same characteristics in the two waves, so let us 

choose when the waves reach their maximums. So as to find the maximum values of the wave, it is 

necessary to differentiate in time: 

u t = A1  2 cos ωpt + φp cos ωm t + φm +
A2 − 𝐴1

A1
 cos ω2t + φ2   

 

Eq. 5.64 

du t 

dt
= −A1 ω1 sin ω1t + φ1 − A2ω2sin ω2t + φ2 = 0 

Eq. 5.65 

 

A1ω1   sin ω1t + φ1 + sin ω2t + φ2 +
A2ω2 − A1ω1

A1ω1
sin ω2t + φ2  = 0 

Eq. 5.66 

 

 2sin  
 ω1 + ω2 t + φ1 + φ2

2
  cos  

 ω1−ω2 t + φ1 − φ2

2
 +

A2ω2 − A1ω1

A1ω1
sin ω2t

+ φ2 = 0 

Eq. 5.67 

 

When it is verified that A1ω1 = A2ω2: 

 sin ωp t + φp  cos ωm t + φm = 0 Eq. 5.68 

 

So the solution is when either the sine or the cosine (or both) is zero: 

ωpt + φp = π · m, m ϵ ℤ Eq. 5.69 

 

t =
π · m − φp

ωp
, m ϵ ℤ 

Eq. 5.70 

 

ωm t + φm =
π

2
· p, p ϵ ℤ 

Eq. 5.71 

 

t =

π

2
· p − φm

ωm
, p ϵ ℤ 

Eq. 5.72 

 

So when a maximum or minimum is found when A1ω1 = A2ω2 is: 

t0 =  
π · m − φp

ωp
,

π

2
· p − φm

ωm
 , m, p ϵ ℤ 

Eq. 5.73 
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To see if it is a maximum or minimum, the second differentiate is performed and evaluated 

in t0: 

 d
2u t 

dt2
 

t0

=
d

dt
  2A1ω1sin ωpt + φp  cos ωm t + φm   

t0
= 

Eq. 5.74 

 

= 2A1ω1
  ωpcos ωpt + φp  cos ωm t + φm 

− ωm sin ωpt + φp sin ωm t + φm   
t0

 

Eq. 5.75 

 

Therefore, if t0 has the form of  
π·m−φp

ωp
: 

 d
2u t 

dt2
 

t0=
π ·m −φp

ωp

= 2A1ω1  ωp cos π · m  cos  
ωmπ · m

ωp
+

ωpφm − ωmφp

ωp
   

 

Eq. 5.76 

So cos π · m > 0when m = 2q, qϵ ℤ, and cos π · m < 0 when m = 1 + 2q, qϵ ℤ. 

The other part of the equation has to be negative when cos π · m  is positive so as the global 

equation is negative and, therefore, there is a maximum in t0, or the other part of the equation 

positive when cos π · m  is negative. Let us find when the other part of the equation is negative: 

 

π

2
+ 2πr <

ωmπ · m

ωp
+

ωpφm − ωmφp

ωp
<

3π

2
+ 2πr, rϵ ℤ 

Eq. 5.77 

  

Solving: 

ωmφp + ωp  2πr − φm +
π

2
 

ωmπ
< 𝑚 <

ωmφp + ωp  2πr − φm +
3π

2
 

ωmπ
, rϵ ℤ 

 

Eq. 5.78 

Therefore, when t0 is with the form of  
π·m−φp

ωp
, m = 2q, qϵ ℤ and Eq. 5.78 is verified, it 

implies that  
d2u t 

dt 2  
t0=

π ·m −φ p

ωp

< 0 and, thus, there is a maximum in t0. 

Similarly,  ift0 is with the form of  
π

2
·p−φm

ωm
, m = 1 + 2q, qϵ ℤ and Eq. 5.79 is verified, it 

implies that  
d2u t 

dt 2  
t0=

π ·m −φ p

ωp

< 0 and, thus, there is a maximum in t0. 

ωmφp + ωp  2πr − φm +
π

2
 

ωmπ
> 𝑚 >

ωmφp + ωp  2πr − φm +
3π

2
 

ωmπ
, rϵ ℤ 

Eq. 5.79 
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In order to find the maximum of the original wave with A1ω1 ≠ A2ω2 it is necessary to use 

numerical methods or use graphs. However, when A1ω1 ≠ A2ω2, the solution will be close to the 

one found before if A1ω1 ≈ A2ω2. 

 

For example, let us have these two waves that are going to form a superposed wave: 

u1 x, t = 2 cos(8t − 1) 

u2 x, t = 2,2 cos  
8

1,1
t −

15

16
  

Eq. 5.80 

 

It verifies that A1ω1 = A2ω2 → 2 · 8 = 16 = 2,2 ·
8

1,1
= 16. Therefore, the method can be 

applied. 

ωP = 7,63636s−1; φp = −0,96875rad; ωM = 0,363636s−1;  φm

= −0,03125rad 

Eq. 5.81 

−0,96875 · 0,363636 · +7,63636  2πr + 0,03125 +
π

2
 

0,363636 · π
< 𝑚 <

<
−0,96875 · 0,363636 · +7,63636  2πr + 0,03125 +

3π

2
 

0,363636 · π
, rϵ ℤ 

 

Eq. 5.82 

If 𝑟 = 0: 

10,4005 < 𝑚 < 31,4005 → m = {11,12, … ,31} 

 

Eq. 5.83 

If 𝑚 = 21: 

t0 = 8,76624s Eq. 5.84 

 

Doing the same for the two following waves: 

u1 x, t = 2 cos(8t − 2) 

u2 x, t = 2,2 cos  
8

1,1
t −

30

16
  

Eq. 5.85 

7,1180 < 𝑚 < 28,1180 → m = {8,9, … ,28} 

 

Eq. 5.86 

The result for 𝑟 = 0 and 𝑚 = 21 is: 
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t0 = 8,89310s Eq. 5.87 

So now 𝑖𝑡 𝑖𝑠 possible to calculate the phase velocity: 

vp =
1

8,89310 − 8,76624
= 7,8827m/s 

Eq. 5.88 

 

 

Image 5.11: Two waves whose phase velocity is going to be calculated. 

 

 

Image 5.12: Zoom of the points selected to calculate the phase velocity. 
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Now let us have these two other waves: 

u1 x, t = 2 cos(8t − x) 

u2 x, t = 2 cos  7,5t −
15

16
x  

Eq. 5.89 

The result of superposing them is: 

u x, t = 4 cos  0,25t −
2

33
 cos  7,75t −

31

33
  

 

Eq. 5.90 

Therefore: 

ωP = 7,75s−1; φp = −
31

33
rad; ωM = 0,25s−1;  φm = −

2

33
rad 

Eq. 5.91 

  

−
31

33
0,25 + 7,75  2πr +

2

33
+

π

2
 

0,25 · π
> 𝑚 >

−
31

33
0,25 + 7,75  2πr +

2

33
+

3π

2
 

0,25 · π
, rϵ ℤ 

 

Eq. 5.92 

If 𝑟 = 0: 

15,799 < 𝑚 < 46,799 → 𝑚 = {16,17, … ,46} 

 

Eq. 5.93 

t01
=  

π · m + 31/33

7,75
,

π

2
· p + 2/33

0,25
 , m, p ϵ ℤ 

Eq. 5.94 

 

For instance, if 𝑚 = 21: 

t01
=

π · 21 + 31/33

7,75
= 8,6339, m, p ϵ ℤ 

Eq. 5.95 

 

It will be a maximum in t01
= 8,6339. 

 

Now let us have the following wave: 

u2 x, t = 4 cos  0,25t −
4

33
 cos  7,75t −

62

33
  

 

Eq. 5.96 
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Therefore: 

ωP = 7,75s−1; φp = −
62

33
rad; ωM = 0,25s−1;  φm = −

4

33
rad 

Eq. 5.97 

 

Applying the same equations than for the other wave: 

−
62

33
0,25 + 7,75  2πr +

4

33
+

π

2
 

0,25 · π
< 𝑚 <

−
62

33
0,25 + 7,75  2πr +

4

33
+

3π

2
 

0,25 · π
, rϵ ℤ 

 

Eq. 5.98 

If 𝑟 = 0: 

16,098 < m < 47,098 → 𝑚 = {17,18, … ,46} 

 

Eq. 5.99 

If 𝑚 = 21: 

 

t02
=

π · 21 + 62/33

7,75
= 8,7551 

Eq. 5.100 

 

 

5.6.  Elimination of the noise by using the method of least squares 

The purpose of this method is to obtain a wave without noise with which it is possible to 

measure the phase and group velocities easily. In order to use this method, it is necessary to know 

the shape of the wave a priori, as the theoretical wave and  the obtained wave in the 

simulation/measurements are going to be compared. 

Let us assume that the function u x, t, β0  that best adjust to the serial of values  wk 𝑘∈ℕ 

obtained in simulation/measurement is wanted to be calculated. The value of the square difference 

for every k has to be minimized and so the function u x, t, β0  is going to be defined as: 

u x, t, 𝛃𝟎 :   S 𝛃𝟎 = min S(𝛃)  Eq. 5.101 

where 

S 𝛃 =   wk − u x, k · T, 𝛃  2, 𝛃ϵ ℝm ,

N

k=1

 

Eq. 5.102 

 

where N is the number of samples of the serial  wk 𝑘∈ℕ, m is the number of parameters that 

can be changed in the function u x, t, 𝛃  and T is the period sample. 
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For example, suppose a serial of numbers like the ones in the first two columns of Table 5.2 

want to be adjust by a sinusoidal wave. What it wants to be minimized is the sum of the quadratic 

difference between the values that want to be adjusted and the calculated wave for every point. This 

calculated wave is obtained by iteration by changing the values of the amplitude, the frequency and 

the phase delay. Therefore: 

𝛃 = (A, ω, φ) Eq. 5.103 

u x, t, 𝛃 = A · cos(ωt + φ) Eq. 5.104 

 

 The points which are solution for this optimization are shown in the third column of Table 

5.2. 

tk = T · k wk  uk   uk − wk 2 
0 0,065 0,0696797 2,19E-05 

0,1 -0,45 -0,51948095 0,0048276 

0,2 -0,99 -0,90922631 0,00652439 

0,3 -0,98 -0,9499432 0,00090341 

0,4 -0,61 -0,62600148 0,00025605 

0,5 0 -0,06175398 0,00381355 

0,6 0,45 0,52619927 0,00580633 

0,7 1 0,91215823 0,00771618 

0,8 0,88 0,94796325 0,004619 

0,9 0,57 0,6198697 0,00248699 

1 0,12 0,05382421 0,00437923 

Table 5.2: Values used to perform an optimitation by the method of least squares 

The solution that best fits to the values is:  

𝛃𝟎 = (0,980; 6,30; 1,50) Eq. 5.105 

u x, t, 𝛃 = 0,980 · cos(6,30t + 1,50) Eq. 5.106 
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These values of the amplitude, frequency and phase delay minimize the sum: 

S 𝛃𝟎 =   wk − u x, k · T, 𝛃𝟎  2 =

11

k=1

0,04135 

Eq. 5.107 

 

The solution is shown in Image 5.13 

 

Image 5.13: Approximation of a sample of values to a sinusoidal wave. 

 

This method can be also used for any other kind of signals and it is not affected by the noise. 

After obtaining the signal that best fits to the values, it is easy to calculate any other parameters 

concerning this signal. 

 

5.7.  Elimination of the noise by using filters  

The purpose of this method is to eliminate any other signal or noise that has a frequency 

different than the one with which the pipe is being stimulated. After removing all the other 

components of the signal, it is possible to use one of the methods mentioned in this chapter. 

The kind of filters that will be used are lowpass filters and bandpass filters. The first one can 

be used to eliminate noise, since noise has much higher frequencies than the ones with which the 

pipe is stimulated. Therefore, with a lowpass filter, only the low frequencies are kept and the high 

frequencies are removed, eliminating the noise and obtaining a clearer signal. 

Besides, bandpass filters can be used to keep one range of frequencies and remove the rest 

ones. It can be used to select a part of the spectrum of a signal, such as a narrow band that includes 

the frequency with which the pipe is excited. By doing this, only the component with this frequency 
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will be kept and any other frequency will be removed, avoiding, thus, noise components and, 

sometimes, reflection components. 

For every kind of filter, there are a wide range of possibilities to obtain it. In this thesis, two 
different ways to obtain filters (FFR and IIR) are going to be used depending on the computing time, 
the phase shift originated by the applied filter, and the magnitude obtained in the frequency 
response.[24] 

The techniques for designing FIR, Frequency Impulse Response, filters are based on directly 

approximating the desired frequency response of the discrete-time system. For a FIR filter, Equiripple 

is the method that is going to be used, whose characteristics can be seen in the appendix B. 1. FIR 

Equiripple. This method will be used when the computing is not an important factor and the 

obtained method does not have a lot of coefficients. Therefore, it can be used when a bandpass filter 

of a wide band is needed or with a lowpass filter. [25] [26] 

IIR filter design is based on transformations of continuous-time IIR systems into discrete-time 
IIR systems. For an IIR filter type, Butterworth and Elliptic are among the better known design 
methods and will be the ones used in this thesis. Their characteristics can be checked on the 
appendices B. 2. IIR Butterworth and B. 3. IIR Elliptic. Elliptic method will be selected when the 
desired phase shift is small. Butterworth will be chosen when the frequencies out of the selected 
range are wanted to be removed with a really important factor, and when the phase shift that 
applying this filter originates in the original signal is not an important characteristic. [27] [28] 

The advantage of IIR filters compared with FIR ones is that they need smaller coefficients to 
perform the filter operations, that is to say, their order is lower. Therefore, IIR filters are executed 
faster and do not need extra memory. Nevertheless, the disadvantage of IIR filters is that their phase 
response is not lineal and can only be used when this information is not important. However, when 
applied an IIR Elliptic, its phase response is not lineal but its values are close to zero in the band 
selected. 

 

Image 5.14: Fourier transform of two waves without been filtered. 
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5.7.1 Example of using the filter to calculate the phase velocity with the method of phase 

shift 

To show an example of how this method works with waves formed by the superposition of 
different waves, the Fourier transform of two waves is going to be performed so as to calculate the 

phase shift. In Image 5.14, the two obtained waves for two probes are shown. Besides, the Fourier 
transform is displayed in the same image. It is clear that it is difficult to measure the phase shift with 
the obtained diagram. However, if the signals are filtered and only the frequency of 𝑓 = 450𝐻𝑧 is 
not filtered, the result of the phase shift when performing the Fourier transform is much clearer, as it 

can be seen in Image 5.15. The phase diagram does not have any noise and both signals follow the 
same curve but displaced in a finite value. 

 

Image 5.15: Fourier transform of two waves after been filtered. 

 

Image 5.16: Fourier transform of two noisy waves without filtering them. 
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Let us now have two noisy waves like the ones in the previous example, as the ones shown in 

Image 5.16. If the Fourier transform is applied to these two signals, the result of the phase diagram is 

not clear at all and make it difficult to measure any phase shifts. However, if a bandpass filter of 

𝑓 = 450𝐻𝑧 is applied, the two waves become exactly the same than the ones in the example 

without noise and it is now possible to measure the phase shift, as it can be seen in Image 5.17. 

 

Image 5.17: Fourier transform of two noisy waves after filtering them. 
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6.  Simulations 

6.1.  Straight pipe stimulated by plane source 

It has been simulated a straight elastic PVC pipe of the characteristics shown Table 6.1 with a 

plane source in one of its extremes. This source produces a sinusoidal wave pressure of a specific 

frequency, which is propagated through the pipe. The length of the pipe is changing depending on 

the stimulating frequency in order to avoid reflection effects. For this reason, the length of the pipe is 

going to verify that: 

L > 2 · λ = 2 ·
vp

f
 

Eq. 6.1 

As the phase velocity is going to have values about 500 m/s and the lowest frequency is 

going to be 300 Hz, the largest length will be: 

L < 2 ·
500

300
= 3,33m 

Eq. 6.2 

 

Density (𝜌) 
1380

𝑘𝑔

𝑚3
 

Young's modulus (𝐸) 5,787 · 109 𝑃𝑎 
Posisson's ratio (ν) 0,3 

Coefficient of thermal expansion (𝛼) 100 · 10−6 𝐾−1 
Relative permittivity (𝜀) 2,9 
Thermal conductivity (𝑘) 

0,1
𝑊

𝑚 · 𝐾
 

Table 6.1: Characteristics of the simulated PVC pipe. 

 

Image 6.1: Diagram of the simulated PVC water-filled pipe. 
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Image 6.2: 3D model result of the propagation of an acoustic pressure wave within a plastic pipe. 

However, this length can be reduced in higher frequencies and it will not be a problem if it is 

reduced in low frequencies because the condition for the length was to be bigger than two times the 

wavelength and being once bigger is enough. To illustrate how important the reflection effects are, in  

Image 6.2, it is possible to appreciate the propagation of the sound wave within the modeled pipe in 

t = 5,8738s for a frequency of f = 1000Hz. There are points in which the pressure is positive and 

other in which it is negative because the wave source is a sinusoidal wave that has positive and 

negative values. It is also important to mention that the pressure changes not only in the points that 

the sound wave have reached, but also in the next ones. In this image, the sound wave has not 

reached the end of the pipe and, therefore, there are not reflection effects. 

 

Image 6.3: 3D model of the stress caused by the propagation of an acoustic pressure wave within a plastic pipe. 

Besides, in Image 6.3 the stress caused by the propagation of the sound wave is shown. The 

points which have more stressed correspond to the ones in which the pressure is higher, as it can be 

seen by comparing this image with Image 6.2. In the points at which the wave has not arrived, the 

stress is close to zero. 
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Image 6.4: 3D model of the increase in the stress of a plastic pipe caused by the reflection of an acoustic pressure wave. 

Nevertheless, in Image 6.4, the stress in the elastic pipe in 𝑡 = 23,495𝑠 is displayed. At this 

point of the time, the sound wave has had time to travel along the pipe and be reflected on the 

ending wall of the pipe. Due to this reflection effect, the stress of the pipe is increased considerably 

reaching maximum values of 𝑝 = 16,5 𝑃𝑎, whereas without reflection, the maximum pressure values 

were 𝑝 = 10 𝑃𝑎. The reflection effects can produce measurement errors due to the interferences of 

different waves and, therefore, increase the values of both the pressure and the stress. For this 

reason, it is very important to take into account these reflection effects, as the changes in both 

pressure and stress values change significantly. 

Different probes have been set along the pipe in different positions in order to measure the 

phase velocity of the sound wave at different frequencies and to decide which positions are good to 

carry out this measurement. 

In order to measure the phase velocity of the sound wave, the values that the probes get are 

saved and adjusted to a sinusoidal wave by method of the least squares in following the next steps: 

1. Select a part of the wave that looks like a sinusoidal wave. 

2. Introduce a sinusoidal wave of the same frequency that the one which has 

been simulated with a amplitude similar to the one has been simulated. 

3. Calculate the error between this sinusoidal wave and the points obtained in 

the simulation by the following expression: 

ε =   pi − s ti  
2

n

i=1

 

Eq. 6.3 

 

4. Minimize the error calculated by changing the parameters of the sinusoidal 

wave. This is done by an iterative procedure by the tool Solver of Microsoft Office Excel 2010. 



 

Messtechnik und Leistungselektronik 
 

62 
 

As the distance among proves is known, it is possible to calculate the phase velocity of the 

sound wave at the simulated frequency as it was explained in the section Phase velocity by 

measuring the time elapse between the time in which the first probe reaches a certain value, and the 

time in which the second probe reaches that same value. 

The method just explained is going to be developed now with an example. 

There is a stimulating sinusoidal wave that produces one wave in every probe, which can be 

seen in Image 6.6. Afterwards, a time range from these waves is selected so that both waves look 

quite similar to a sinusoidal wave and, then, they are adjusted to a sinusoidal wave by the method of 

least squares. The part selected of the two waves and the adjustment is shown in Image 6.6. 

 

 

Image 6.5: Obtained values from two different probes. 

 

 

Image 6.6: Approximation of two obtained waves with the method of least squares. 

In this case, the two waves obtained with this method are: 

u1 = −0,029248 + 0,47983 sin(2π · 650 + 3,7434) Eq. 6.4 

u2 = −0,029938 + 0,47701 sin(2π · 650 + 2,8900) Eq. 6.5 

 

Therefore, the phase difference is:  
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𝜑 = 3,7434 − 2,8900 = 0,85338 rad Eq. 6.6 

Thus, the time difference is: 

𝑡 =
𝜑

2πf
=

0,85338

2π · 650
= 0,20895 ms 

Eq. 6.7 

 

𝑣𝑝 =
𝑑

𝑡
=

0,1m

0,20895 ms
= 478,58 m/s 

 

Eq. 6.8 

 

Image 6.7: Phase velocity on frequency dependency obtained with FEM simulation for a water-filled PVC pipe of D=11cm. 

Doing this for a wide range of frequencies, the phase velocity for these frequencies is shown 

in Image 6.7 and the exact values are displayed in Table 6.2. 

Frequency (Hz) Phase velocity (m/s) 

300 479,98 

350 490,41 

400 492,89 

450 481,65 

500 480,37 

550 478,78 

600 466,75 

650 478,58 

700 475,11 

750 472,59 

800 468,48 

850 467,76 

900 462,25 

Frequency (Hz) Phase velocity (m/s) 

950 464,5 

1000 464,29 

1050 463,7 

1100 462,98 

1150 459,22 

1200 458,58 

1250 455,99 

1300 452,95 

1350 452,21 

1400 451,28 

1450 449,28 

1500 447,52 

 

Table 6.2: Values of the phase velocity for different frequncies obtained by FEM simulation of a water-filled PVC pipe of 
D=11cm. 



 

Messtechnik und Leistungselektronik 
 

64 
 

 

Image 6.8: Obtained signals after filtering the acquired signals for two probes in FEM simulation with 0,2m of distance to 
each other when a water-filled PVC pipe of 0,22m of diameter is excited with a sinusoidal wave. 

In order to see what the result is when a different diameter is set, it has been simulated a 

pipe with the same characteristics than previously but with a diameter of 𝐷 = 0,22 𝑚. In this case, 

the method to calculate the phase velocity was not working properly and it was decided to measure 

the first peak of the first transient in the probes when the pipe is excited when it is excited with a 

sinusoidal wave like previously. Nevertheless, the acquired signals have also noise and it has been 

decided to use an IIR Butterworth lowpass filter so as to reduce it -noise has high frequency- because 

it does not have too much calculation time, the phase shift produced by it does not affect to the 

obtained signals because they are long enough, and after the cutoff frequency of the filter the 

components are reduced significantly. In Image 6.8, the acquired signals for two probes with a 

distance to each other of 𝑑 = 0,2𝑚 is displayed and the two points which are selected to measure 

the phase velocity are highlighted. Measuring the time elapse between these two points, it is 

possible to obtain the phase velocity since the distance is known. 

 

Image 6.9: Phase velocity obtained in FEM simulation for a water-filled PVC pipe of 0,22m of diameter. 

In Image 6.9 and in Table 6.3 the obtained values for the phase velocity for a PVC pipe of 

0,22m of diameter is displayed. These values are all of them close to 350 𝑚/𝑠 with a deviation of 
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about 5%. It is possible to see that the values are decreasing until the frequency of 1𝑘𝐻𝑧 but, after it, 

they start to increase until the end of the range of frequencies simulated. 

Frequency(Hz) Phase velocity(m/s) 

300 360,000 

350 362,069 

400 363,6364 

450 360,000 

500 357,1429 

550 351,0638 

600 349,5146 

650 348,2143 

700 347,1074 

750 343,5115 

800 340,4255 

850 337,7483 

Frequency(Hz) Phase velocity(m/s) 

900 335,4037 

950 335,2941 

1000 337,0787 

1050 336,8984 

1100 340,2062 

1150 341,5842 

1200 349,5146 

1250 353,7736 

1300 361,1111 

1350 368,1818 

1400 375,000 

 

Table 6.3: Exact values for phase velocity obtained in FEM simulation for a water-filled PVC pipe of 0,22m of diameter. 

Comparing the results obtained for the two different frequencies (Image 6.10), a constant 

gap of about 120 𝑚/𝑠 between them is seen. Besides, the phase velocity for the simulation done 

with the smaller diameter is always decreasing on frequency dependency, whereas the other is 

decreasing and then increasing. This could be produced to the existence of a first cutoff frequency 

for the bigger diameter in 1𝑘𝐻𝑧. This first cutoff frequency for the smaller diameter must be in 

higher frequencies and, thus, the phase velocity does not increase on these range of frequencies. 

 

Image 6.10: Phase velocity comparison between the obtained in FEM simulation for a water-filled PVC pipe of D=11cm 
and one of D=22cm. 

6.2.  Bent pipe stimulated by plane source 

The Image 6.11 shows the model of the pipe that is going to be proved so as to measure the 

phase velocity of the sound inside it. It has been highlighted in blue the surface that is going to play 

the role of exciter. This source is going to transmit a continuous sinusoidal wave for a specific time. 
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By changing the frequency of this wave, we are going to be able to draw the dispersion diagram of 

the phase velocity depending on the frequency.  

A lot of probes have been placed before and after the bending in order to obtain different 

waves and then choose the ones with which is easier to measure the phase velocity. 

 

Image 6.11: Model used to simulate a bent pipe. 

 

Image 6.12: Obtained wave before the bending. 

There is a difference of the shape wave before and after the bending. Before of the bending, 

the waves obtained by the sensors is clearly a sinusoidal wave, as it can be seen in Image 6.12, where 
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the excitation frequency was 𝑓 = 450𝐻𝑧 and the length of both sides of the pipe was 𝐿 = 1𝑚. In 

this case, the phase velocity can be easily calculated as it was done in the simulation section 6.1. by 

adjusting the two obtained waves (Image 6.15) to two sinusoidal waves resulting a phase velocity of 

𝑣𝑝 = 538,63 𝑚/𝑠. However, in order to be sure that the reflection is not affected to this result, it is 

possible to measure the phase difference a t the beginning of the wave, where the wave has not had 

enough time to travel to the first part of the pipe and reflect on the bending. By doing this, the result 

of the phase velocity is 𝑣𝑝 = 527,25 𝑚/𝑠. Therefore, both results are quite similar and it is possible 

to say that the reflection effects in this case do not affect considerably to the phase velocity and it is 

possible to measure the phase velocity as it was done in the section 6.1. The deviation in the second 

result for the phase velocity can be also produced due to the lack of sample points at the beginning 

of the signal. 

 

Image 6.13: Obtained wave after the bending. 

 

Continuing measuring the phase velocity for the different lengths, the results that are 

obtained are shown in Table 6.4 and in Image 6.14. It is possible to appreciate an increase in the 

phase velocity when the length rises. However, this increase is not really significantly as it is only 1%. 

Length  𝑚  Phase velocity  𝑚/𝑠  

1 538,63 
1,5 539,87 

2 539,51 

2,5 542,23 

3 543,79 
Table 6.4: Phase velocity before the bending on length dependency. 
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Nevertheless, if a look is taken after the bending, the wave is now not a sinusoidal wave, but 

a composition of waves, as it can be seen in Image 6.13. This composition of waves can be written as 

follows: 

𝑢 𝑡 = 𝐴1 cos 𝜔1𝑡 + 𝜑1 + 𝐴2cos(𝜔2𝑡 + 𝜑2) Eq. 6.9 

 

Image 6.14: Phase velocity before the bending on length dependency. 

 

Image 6.15: Signals obtained by two probes before the bending with a distance to each other of d=0,6m. 

Therefore, it will be possible to adjust the obtained wave to an addition of two waves with 

the method of least squares as it has been also done for the other simulations. The first frequency 𝜔1 

is going to be logically the excitation frequency, and the second frequency is unknown and a 
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relationship between it and the length of the pipe is going to be searched. The script and the 

functions that are going to be used for this aim are shown in the appendix A. 8.  

 

Image 6.16: Approximation to different waves for different values of the length of the pipe. Graph with the "second" 
frequency on length dependency. 

In Image 6.16 the obtained waves by simulation are displayed in blue, and the adjust waves 

in red. It is easy to see that the adjustment fits well. In the last graph of this image it is possible to see 

the "second" frequencies corresponding to the value 𝜔2/2𝜋. This values describe a curve reaching a 

maximum in the length of 𝐿 = 2𝑚. 

Note that the waves are obtained by different probes, but this fact does not affect to the 

final result as it has been also proved that this "second" frequency does not depend on the place of 

the probe. This is verified by measuring the "second" frequency for the same length and obtaining 

the same value in all the probes. 

In order to be sure that this "second" frequency is well calculated, a Fourier transform of the 

original waves is performed. By doing this, it is possible to see the peaks in the frequency spectrum 

so as to obtain which values of frequency predominate. Of course, there is going to be a peak in 

𝑓 = 450𝐻𝑧 and the second biggest peak will have to be the same value than the obtained by the 

previous method. 

The MATLAB script which is going to be used for this aim is shown in A. 9. Fourier transform 

for different waves for different lengths. 

In Image 6.17, the result of performing the Fourier transform is shown. There is a peak in 

𝑓 = 450𝐻𝑧 as it was expected and other peaks in different frequencies. In the last graph of this 

image, the frequency of second biggest peak is displayed with the length of the pipe. This graph is 

almost the same than the one obtained with the other method. The difference can be explained 

because the analyses of the Fourier transform is not performed with enough frequency values, thus 
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there are some missing frequencies and some of them are mixing together. Besides, it can also be 

explained because there can be more than one "second" frequency. 

 

Image 6.17: Fourier transform of different waves for different values of the length of the pipe. Graph with the "second" 
frequency on length dependency. 

 

Image 6.18: Change of the orientation of the acoustic pressure isosurfaces after the bending. 

An effect which is also important to notice is related to the propagation of acoustic pressure 

isosurfaces along the pipe. It has been seen that in a straight pipe they are perpendicular to the 

propagation of the sound. This effect is also possible to be appreciated before the bending of the 

pipe. However, after it, the isosurfaces are now parallel to the axial axis of the pipe. This effect is 

displayed in Image 6.18. It can be explained due to the multiple reflection that the wave suffers when 
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it crushes with the wall of the pipe in the bending. For further explanation about this effect in high 

frequencies, it can be read the reference [29]. 

 

In Image 6.19 the stress that the pipe suffers is shown. Before the bending of the pipe, it is 

possible to notice a torsional stress quite important that does not occur after the bending. This stress 

did not occur when the pipe was not bent. Therefore, an important study of the characteristics of the 

pipe should be taken in order to avoid any failures when the pipe is bent. 

 

Image 6.19: Stress of the bending pipe. 
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7.  Measurements 

7.1.  Selection of transducers 

Before starting measuring the propagation of sound waves inside the pipe filled with water, 

it is necessary to select which converters are going to be used in order to produce and measure these 

waves. For these reasons, different transducers are going to be used and their frequency responses 

(transfer function) are going to be calculated in order to decide which ones are the best ones. The 

measurement consists of two converters pasted on a plastic plate. One of the converter plays the 

role of exciter and the other of transducer. Note that the accurate word to define the converters that 

excites the plate converting the electricity in sound is exciter, and the one for the converter that 

receives the sound and converts it in electricity is transducer. 

The fastest way to calculate these frequency responses is to excite the medium with a chirp 

signal, since it contains a band of frequencies and, thus, it is possible to analyze a wide range of 

frequencies with just one signal. In Image 7.1 a chirp signal is shown. In this signal, the frequency 

changes on time dependency starting in 0Hz and finishing in 400Hz. Note that this is not the signal 

used to obtain the transfer functions of the converters since the converters reach higher frequencies, 

but an image of the real signal would be useless since it would not be clear at all. For this reason, it is 

better to shown an easy example of what is going to be used. 

 

Image 7.1: Chirp signal from 0 to 400Hz 

 

In images from Image 7.2 to Image 7.7, the result for the different tests are shown. In every 

test, there are two results. The one represented with a blue line and with the label with represents 

the experiment done with a sponge under the plate, whereas the one with the red line and with the 

label without represents the experiment done without this sponge. 
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The converters that are going to be used are: 

 Visaton EX 60 S - 8 Ohm (Appendix C. 2. EX 60 S - 8 Ohm)  

 Visaton BS 76 S - 8 Ohm (Appendix C. 1. BS 76 S - 8 Ohm) 

 Visaton EX 45 S - 8 Ohm (Appendix C. 3. EX 45 S - 8 Ohm) 

One of the things that is possible to appreciate is that the transfer function when one of the 

converters acts as exciter and the other as transducer is not the same than the converters act on the 

other way round. This is easy to explain taking into account the definition of a transfer function 

𝐻12(𝑠) of the Laplace transform of the input 𝐹1(𝑠) and the Laplace transform of the output 𝐹2(𝑠): 

 

𝐹1 𝑠 = 𝐻12 𝑠 · 𝐹2(𝑠) Eq. 7.1 

The inverse transfer function is then: 

𝐹2 𝑠 = 𝐻12
−1(𝑠) · 𝐹1 𝑠 = 𝐻21 𝑠 · 𝐹1(𝑠) Eq. 7.2 

So it is clear that 𝐻12 𝑠 ≠ 𝐻21 𝑠 = 𝐻12
−1(𝑠) and this is the reason why the two obtained 

transfer functions are different for every pair of converters. 

 

Image 7.2: Generator EX 60 S – Receiver EX 60 S 

 

Image 7.3: Generator BS 76 – Receiver BS 76 

Other thing that is possible to see when a look to the results is taken is that when the 

experiment is done without the sponge, the values for the Fourier transform are normally higher 

than with the sponge. This is possible due to absorption of sound that is done by the sponge and, 

thus, the sound propagation is not transmitted in such high values as just with the plate. It is possible 
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to appreciate that, in most of the cases, both curves have their relative maximum and minimum 

values in the same frequencies. 

Observing the graphs, it is possible to say that using the converter BS 76 is not a good idea 

because in all the transfer function that it is involved, the values of the Fourier transform are lower -

values of approximate 10−4 - than in any other case. For this reason, the converters that are going to 

be used are the EX 60 S and the EX 45 S, which cannot reach high frequencies though, but the thesis 

is focused in low frequencies.  

 

 

Image 7.4: Generator BS 76 – Receiver EX 60 S 

 

 

Image 7.5: Generator EX 60 S - Receiver BS 76 

 

 

Image 7.6: Generator EX 45 S – Receiver EX 60 S 
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Image 7.7: Generator EX 60 S – Receiver EX 45 S 

 

Image 7.8: Diagram of the PVC straight pipe used in the laboratory 

 

7.2.  Straight pipe 

7.2.1 Up exciter 

The source is going to be a sinusoidal wave, which is long enough to not take into account 

the transient effects. Comparing the phase of the two obtained waves in the hydrophones it is 

possible to calculate the phase velocity as the space between them is knows and is 𝑑 = 0,45𝑚.The 

PVC pipe which is going to be used is schematized in the Image 7.8, where the placement of the 

hydrophones and of the exciter is shown. It is a pipe of about 2m length. 

Up exciter 

Down exciter 

45 cm 

Hydrophones 
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An example of how the phase velocity is measured is shown now. The stimulating frequency 

in this case is  𝑓 = 700𝐻𝑧 s. In Image 7.9, the two obtained waves by the transducers are shown. It is 

possible to appreciate that there is a phase difference in between them. A transient effect is also 

easy to appreciate in the beginning of the wave, 𝑡 ≈ 0𝑠, and in the end of it, 𝑡 ≈ 0,15𝑠. For this 

reason, the part of the wave that is taken in order to measure the phase velocity is after the first 

transient effect and before the last one. This selected part is shown in Image 7.10, where the part 

selected for every wave is painted in red. 

 

Image 7.9: Measurement results when applying a continuous sinusoidal wave for a specific time. 

 

Image 7.10: Selected part of the measurement results to measure the phase velocity. 

In order to eliminate the noise of the measurements, the selected parts are adjusted by the 

method of least squares as it was explained in the section: 5.6.  The result of this adjustment is 
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possible to be seen in Image 7.11 and in Image 7.12 for the two hydrophones, respectively. In red the 

original wave is shown and in blue the adjusted wave. As the phase delay is known because the Eq. of 

the two adjusted waves is known, it is possible to calculate the time difference by: 

t =
φ

2πf
, 

Eq. 7.3 

 

whereφ is the phase delay and f the frequency of the stimulating wave. 

Once this time difference is known, the phase velocity is calculated by: 

vp =
d

t
 

Eq. 7.4 

 

Image 7.11: Adjustment of the selected part for the first hydrophone. 

 

Image 7.12: Adjustment of the selected part for the second hydrophone. 
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The values obtained using this method are shown in Table 7.1 and are compared to the 

values obtained in the FEM simulation in Image 7.13. The values are close to the ones obtained in the 

simulation but they have a considerable deviation. They should also follow a straight line but they 

curve formed by these values goes up and down all the time. This deviation from the simulation 

results is possible to be produced due to the multiple reflection effects that make the wave be a 

superposed of different waves. 

In order to avoid this effect, the water inside the pipe is going to be excited by a one-period-

sinusoidal-gaussian pulse. 

Frequency (Hz) Phase velocity (m/s) 

300 165,14 

350 439,771 

400 463,34 

450 508,0196 

500 554,595 

550 406,9785 

600 394,94 

650 390,9645 

700 416,28 

715 483,1907 

800 482,5313 

850 586,2908 

900 583,1331 

950 534,6228 
Table 7.1: Values for the phase velocity obtained by applying a continuous sinusoidal wave for a specif time. 

 

Image 7.13: Comparison of the measured phase velocity and the one obtained by FEM simulation. 
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7.2.2 Down exciter 

7.2.2.1 Long Gaussian pulse 

The pipe is going to be excited with a gaussian pulse of 100 periods from the exciter placed at 

the bottom. Then, the obtained waves in the hydrophones are going to look like the ones shown in 

Image 7.14. In this case, the pipe has been stimulated by a gaussian wave of 𝑓 = 500𝐻𝑧. In order to 

determine the group velocity of the transmitted signal, the obtained waves by the hydrophones are 

going to be processed. Firstly, the noise is going to be removed by using a low-pass filter, since the 

noise has higher frequencies than the one with which the pipe is stimulated. The result of the waves 

after been filtered can be seen in Image 7.15, where it is possible to appreciate that the signals are 

much clearer than before been filtered. Secondly, the envelope waves of the original ones are going 

to be calculated by using Hilbert transformation as it was done in 5.3.1 Calculation of the envelope 

wave by the Hilbert transform. However, it is known that the envelope wave has to have the shape of 

a gaussian bell, therefore, in order to have a better envelope wave, the calculated signal by Hilbert 

transform is going to be adjusted to this gaussian bell. This is to say, it is going to be adjusted by the 

least squares method to the following function: 

𝑓 𝑡 = 𝑎 · 𝑒𝑥𝑝  
1

2
·
 𝑡 − 𝑏 2

𝑐2
  

Eq. 7.5 

 

 Thus, the goal is to find the parameters 𝑎, 𝑏, and 𝑐 that make this function best fit to the 

obtained wave by Hilbert transform. The calculated envelope waves after this procedure for this 

specific case are shown in Image 7.16. 

 

Image 7.14: Obtained waves by the two probes 

When the envelope waves are found, it is possible to proceed with the method shown in 5.3. 

Group velocity by time delay of maximum of envelope wave. 
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Image 7.15: Obtained waves by the two probes after been filtered 

 

Image 7.16: Envelope wave for the two obtained waves 

The results, however, using this method are quite confusing due to the reflection effects that 

occur inside the pipe. The transmitted wave is too long for the used pipe and it is reflected at the 

beginning and at the bottom of the pipe. For this reason, the waves acquired by the hydrophones are 

a superposition of different waves and it is not possible to calculate neither the group velocity nor 

the phase velocity. 
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Image 7.17: Group velocity calculated by the method of the envelope wave for the straight pipe. 

Therefore, what is going to be used in order to avoid these reflection effects is a short 

gaussian pulse of only one period, so that the reflection effects can be discarded and do not play an 

important role as it will be shown in 7.2.2.2 Short Gaussian pulse.  

 

7.2.2.2 Short Gaussian pulse 

The pipe is going to be excited by a one-period-sinusoidal-gaussian pulse, so the velocity that 

can be measured is the group velocity, as there is only one period and it is not a truly sinusoidal 

wave. By measuring the time difference in which the wave reaches its maximum value in every 

hydrophone, it will be possible to measure the group velocity since the distance between the two 

hydrophones is known and is 𝑑 = 0,45𝑚. 

An example of how to proceed with this method is shown now. 

In Image 7.18 the two obtained waves by the hydrophones are shown, where it is easy to see 

the time difference mentioned above that is to be measured. It is also possible to appreciate the 

transient effects both before the wave and after the wave, which are added to the reflection effects. 

Due to this reason, only the time of the highest point is going to be measured to calculate the group 

velocity. 

Before measuring the time, it is a good idea to apply a low-pass filter to reduce the noise. It is 

not necessary to apply a band-pass filter since the noise has much higher frequencies than the 

stimulated signal and, therefore, it is only necessary to filter the high frequencies. The response of 

the filter which is going to be applied is shown in Image 7.19. In Image 7.20 the wave after been filter 

is shown. The noise has disappeared and the wave has been moved to bigger values in time. This 

effect does not affect to the measurement since both waves are moved the same distance because 

the same filter is applied. 

 



 

Messtechnik und Leistungselektronik 
 

82 
 

 

Image 7.18: Acquired waves when applying a short pulse wave. 

The MATLAB script used to process the signals and calculate the group velocity is shown in 

the appendix A. 11. Calculate group velocity from a short Gaussian pulse. 

 

Image 7.19: Filter used to eliminate the noise of the waves obtained. 

 

After calculating the time difference, it is possible to obtain the group velocity by: 

vg =
d

t
, 

Eq. 7.6 

 

where t is the time difference. 

The values obtained for the different frequencies are shown in Table 7.2. 
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Image 7.20: Waves obtained after filtering the acquired waves. 

 

Frequency (Hz) Group velocity (m/s) 

200 534,4418 

250 545,4545 

300 542,1687 

350 538,9222 

400 536,3528 

450 535,3956 

500 535,0773 

550 536,9928 

600 537,3134 

650 537,3134 

700 535,2046 

750 534,188 

800 531,6321 

850 528,5412 

900 527,7231 

950 526,932 

1000 528,169 
Table 7.2: Measured values of the phase velocity by applying a short pulse wave. 

In Image 7.21 a comparison between the results obtained in the FEM simulation for the 

group velocity and the measured one is shown. Both curves are quite the same, but the measured 

group velocity has bigger values. This effect can be due to the change of the properties of the 

material (PVC), which changes due to different parameters, such as temperature, humidity, stress 

caused by the installation and the water inside, etc. Changing these parameters and setting the 
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simulation with these ones, both curves should fit exactly. However, it is not possible to know a priori 

which values are those and the parameters set in the simulation were the ones by default for PVC. 

For waves that are propagated in a specific medium, there is a relation between the angular 

frequency ω and the wave number k, which is known as dispersion relation. When the frequency 

interval Δω with center in  ωm is small, it is possible to write: 

vg =
d𝜔

𝑑𝑘
=

𝑑 𝑘𝑣𝑝 

𝑑𝑘
= vp +  k

𝜕𝑣𝑝

𝜕𝑘
, 

Eq. 7.7 

 

where vp  is the phase velocity and 𝑓 is the frequency of the stimulating wave. The 

differentiation can be approximated to a division of differences as: 

vg = vp −  
∆𝑣𝑝

∆𝑓
 

Eq. 7.8 

 

This last equation was the one that was used to determine the group velocity in the 

simulation. 

 

 

Image 7.21: Comparison between the results obtained in the FEM simulation for the group velocity and the measured. 

 

7.3.  Bent pipe 

In order to investigate how the group velocity change when an acoustic pressure wave is 

transmitted in not a straight direction, but with different shapes, the next test is going to be formed 

by a bent pipe. The velocities are going to be measured both before the bending and after the 

bending so as to determine how the velocities change from the ones obtained in the straight pipe 

and if there are any changes before and after the bending. 

The hydrophones are placed in just one place of the pipe to a distance of 𝑑 = 0,45𝑚 to each 

other. However, it is going to be possible to measure both before and after the bending because two 

converters are going to be used. The first converter is going to be placed at the top of the pipe, and 
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the other one at the bottom. When the first one acts as exciter, the other one acts as transducer, and 

vice versa. By doing so, it is possible to measure signals "after" and "before" the bending. 

 

Image 7.22: Diagram of the PVC bent pipe used in the laboratory. 

7.3.1 Before the bending 

7.3.1.1 Short gaussian pulse 

As it was done in the section 7.2.2, a gaussian sinusoidal pulse wave is going to be applied so 

as to measure the group velocity because it avoided the reflection effects. However, as in the section 

7.3.1.2 the group velocity was calculated, now the group is velocity is going to be tried to be 

calculated. For this reason, a gaussian sinusoidal pulse of more than one period is going to be 

applied. However, in this case, due to proximity of the bending with the hydrophones, the reflection 

effects are very noticeable. Thus, when a pulse wave of frequency 𝑓 = 1𝑘𝐻𝑧 is applied, the result 

consists of a transient response and a multiple reflection, which is shown in Image 7.23. What is 

going to be done is split the signal in different frequencies according to its spectrum (Image 7.24) by 

using bandpass filters of the specific frequencies. 

The first split is going to be done is in the range of frequencies of 𝑓 ∈  1000, 1250  𝐻𝑧 by 

applying the filter whose frequency response is shown in Image 7.25. The result after filtering the 

original two signals is shown in Image 7.26. In Image 7.27, it is displayed the spectrum of the filtered 

signals, in which it is possible to see that all the frequencies out of the range of the filter are 

decreased and are really close to zero. 

Now that two clear signals are obtained, it is possible to determine the group velocity for this 

pressure wave. The method that is going to be used is the calculation of the group velocity by 

measuring the highest point of the envelope waves calculated by Hilbert transform and measuring 

Hydrophones 

Down exciter 

Up exciter 

45 cm 
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the time elapse (section 5.3. ) In Image 7.26 the envelope waves of the filtered signals are shown, 

and the highest point of waves is highlighted. The time difference between this two points let us 

calculate the group velocity since the distance between the two hydrophones is known. The result of 

the group velocity for this case is 𝑣𝑔 = 381,36 𝑚/𝑠. 

By doing this, using different filters, the result of the group velocity on frequency 
dependency is shown in Table 7.3. 

 

Image 7.23: Obtained signals in the hydrophones before the bending when applying a gaussian sinusoidal pulse wave of 
f=1kHz. 

 

Image 7.24: Fourier transform of the obtained signals in the hydrophones before the bending when applying a gaussian 
sinusoidal pulse wave of f=1kHz. 
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Image 7.25: Frequency response of IIR Butterwoth band-pass filter of the range 480-520Hz. 

 

 

Image 7.26: Envelope waves by using Hilbert transform of two filtered signals obtained by the hydrophones before the 
bending. 

 

Frequency (Hz) 120-130 360-385 480-520 660-685 1100-1200 

Group velocity (m/s) 166,67 82,7206 478,7234 292,2078 576,9231 

Table 7.3:  Group velocity on frequency dependency. 
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Image 7.27: Spectrum of the signal after filtering it with a band-pass filter. 

 

 

Image 7.28: Group velocity before the bending on frequency dependency. 

 

7.3.1.2 One-period sinusoidal pulse 

The stimulated signal is going to be a sinusoidal pulse which only has one period. The reason 

of using one only period is to avoid reflections and, thus, wrong results. Reflections play an important 

role within the pipe and they must be removed. When these reflections cannot be removed due to 

the impossibility to do so in the pipe, the other way of performing is trying to avoid its apparition and 

this is what is going to be tried to do in this section. 

In Image 7.29, the acquired signals by the transducers are shown. It is quite interesting to 

notice that although the pipe has been stimulated with just one period, the response has a lot of 

periods. This response must be caused mainly by the multiple reflection on the bending, since it is 
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not a straight surface and the transmitted signal is reflected many times on this edge and produces 

the superposition of different waves. When the signal is reflected on the bending, multiple waves are 

generated in different direction due to the angle of the bending. This effect causes that the 

secondary waves also are reflected on the boundary edges of the pipe, creating more secondary 

waves. These multiple periods are also caused by the final edges of the pipe, that is to say, the top 

and the bottom. 

 

Image 7.29: Obtained waves by the hydrophones before the bending when a one-period sinusoidal pulse is applied. 

 

Image 7.30: Obtained signals after filtering the waves acquired by the hydrophones before the bending when a one-
period sinusoidal pulse is applied. 

What is going to be measured so as to calculate the group velocity is the first peak of the 

acquired signals. By doing so, the multiple reflection effects are discarded because the wave does not 
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have time to travel until the bending and reflects. However, before measuring these peaks, a low 

pass filter is going to be used in order to remove the noise. In Image 7.30, the signals after been 

filtered are shown. It is possible to appreciate that these filtered waves do not have noise and, 

therefore, it is easier to work with them. 

In Image 7.30, the two points that are going to be used to measure for calculating the group 

velocity are highlighted. When these two points are known, it is easy to calculate the group velocity 

because the distance is known and it is done like in the straight pipe with Eq. 7.6. How to perform 

with MATLAB is shown in a script in the appendix A. 12. Group velocity before bending with one-

period sinusoidal pulse. 

The obtained group velocities on frequency dependency with this method are shown in 
Image 7.31 and in Table 7.4. 

 

Image 7.31: Group velocity on frequency dependency before the bending. 

Frequency(Hz) 
Group 

velocity(m/s) 

200 317,7966 

250 243,5065 

300 259,5156 

350 261,9325 

400 278,1211 

450 298,4085 

500 262,8505 

550 269,1388 
 

Frequency(Hz) 
Group 

velocity(m/s) 

600 262,2378 

650 273,7226 

700 275,0611 

750 307,7975 

800 301,2048 

850 327,0349 

900 322,3496 

950 329,429 

Table 7.4: Values for the group velocity on frequency dependency before the bending. 
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7.3.2 After the bending 

7.3.2.1 Short gaussian pulse 

The same process that was performed in the section 7.3.1.1. the converter but with the 

converters acting the other way round so as to measure the group velocity after the bending.  

In Image 7.32 the acquired signals by the hydrophones when a gaussian sinusoidal pulse of 

𝑓 = 500𝐻𝑧 is shown. In this case, it is possible to see the same multiple reflection effects that also 

occurred in the other experiments with the bent pipe. What is going to be done so as to remove 

these reflections is split the signal in different frequencies according to its spectrum Image 7.33 with 

a band pass filter as it was done in the section 7.3.1.1. 

In Image 7.33, the spectrum of the obtained signals are shown. It is also displayed the 

different frequency bands in which the spectrum is going to be split so as to measure the group 

velocity. 

In Image 7.34, the result of filtering the acquired signals with a band-pass filter for the band 

between 545 and 595Hz are shown. The two selected points to calculate the group velocity are 

highlighted. 

In Image 7.35 and in Table 7.5, the calculated values for the group velocity after the bending 

are shown. 

 

 

Image 7.32: Acquired signals by the transducers after the bending when a gaussian sinusoidal pulse wave of f=1kHz is 
applied. 
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Image 7.33: Spectrum of the acquired signals after the bending when a short gaussian pulse is applied. 

 

Image 7.34: Acquired signals after the bending after been filtered. Selected points to calculate the group velocity. 

 

Frequency (Hz) 163-190 545-595 775-875 880-970 1150-1175 1200-1350 

Group velocity after bending (m/s) 64,2857 548,7805 206,422 416,667 409,0909 750 

Table 7.5: Exact values for the group velocity on frequency dependency after the bending. 
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Image 7.35: Group velocity on frequency dependency after the bending. 

 

7.3.2.2 One-period sinusoidal pulse 

The same process that was performed in the section 7.3.1.2 One-period sinusoidal pulse but 

in this case, the converter that is going to work as exciter is the other one than in the previous 

section. For this reason, the hydrophones are placed "after" the bending. 

In Image 7.36 the acquired signals by the hydrophones when a one-period sinusoidal wave of 

frequency 𝑓 = 400𝐻𝑧 is shown. It is possible to see the same multiple reflection effects that were 

shown and explained in the section 7.3.1.2. Therefore, what is going to be measured is also the first 

peak of the signal in the first transient. 

 

Image 7.36: Obtained waves by the hydrophones after the bending when a one-period sinusoidal pulse is applied. 
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In Image 7.37 the obtained waves in this case after been filtered are shown. Besides, the two 

points that are used to measure the group velocity are highlighted. 

In Image 7.38 and in Table 7.6 the values obtained for the group velocity after the bending 

are displayed. 

 

Image 7.37: Obtained signals after filtering the waves acquired by the hydrophones after the bending when a one-period 
sinusoidal pulse is applied. 

 

 

 

Image 7.38: Group velocity on frequency dependency after the bending 
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Frequency (Hz) 
Group velocity 

(m/s) 

200 555,5556 

250 508,4746 

300 569,6203 

350 656,9343 

400 731,7073 

450 790,2639 

500 931,9664 

550 763,4753 

600 707,5138 

 

Frequency (Hz) 
Group velocity 

(m/s) 

650 689,6552 

700 636,0424 

750 694,9807 

800 629,3706 

850 614,7541 

900 601,6043 

950 559,7015 

1000 600 
 

Table 7.6: Exact values for the group velocity after the bending on frequency dependency. 

7.4.  Comparison 

In Image 7.39, the group velocities before and after the bending and the group velocity in the 

straight pipe which have been obtained during the experiments in this thesis are shown all together 

in order to compare the different curves. 

 

 

Image 7.39: Comparison among the group velocities after and before the bending of the pipe. 

To start with, what is really noticeable is that the group velocity before the bending and in 

the straight pipe look the same because they are always close to a same value. There is a gap that is 

approximately the same between the group velocity before the bending and in the straight pipe, 

which has a value of about 200m/s. However, the velocity in the straight pipe has a negative slope, 

whereas the one before the bending is positive. 

Comparing the velocities within the pipe, it is possible to see that the group velocity before 

the bending is much lower than after the bending. The two curves look quite different, since the one 

for the velocity after the bending starts with values of 500m/s for low frequencies, it increases until 

values of about 900m/s when the frequency is of 500Hz, and then it starts decreasing the velocity 

until the last values of the range of frequencies which has been tested. Furthermore, the first values 

of the group velocity after and before the bending must not be taken into account because in low 

frequencies the effect of the interferences with the net frequency and other noise is very noticeable. 
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The reason why the group velocity after the bending and the group velocity in the straight 

pipe have similar values could be due to the position of the pipe. The pipe tested has the same 

diameter in both experiments, but the sound reaches the hydrophones in the straight pipe and after 

the bending in the same way. That is to say, the position of this part of the pipe is vertical and the 

sound arrives from the bottom in both tests. Due to this fact, the velocity in both cases could have 

similar values. Besides, when the hydrophones are working to measure the velocity before the 

bending, the sound arrives from the top of the pipe and, thus, this fact could change the measured 

velocity. 
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8.  Conclusions 

Theoretical overview of acoustics, explanation of what group and phase velocities are and 

how to measure them discussing different methods and their application with MATLAB, simulations 

for PVC pipes with different diameters and different shapes (straight pipe and bent pipe), and 

validation of the obtained results by simulation by doing tests in the laboratory have been presented 

in this current thesis. 

It has been proved that even though there are many methods to measure group and phase 

velocities within pipes, not all of them can be used obtaining a good result. Almost all of them have 

problems when there is noise in the acquired signals and it is necessary to use a filter to reduce this 

noise. The only presented method which does not need a filter is the adjustment by least squares, 

but it also works better when a filter is applied. 

It has also been presented that when a short pipe is tested like the one used in this thesis, 

the reflection effects are very important and can make impossible to measure velocities. For this 

reason, in laboratory tests, it has been tried to avoid the reflection effects by measuring the 

velocities in the first peak of the first transient acquired by the hydrophones when a short pulse is 

applied. This method has resulted to be the only method that works well in every situation since it is 

not affected by reflection effects. When other signals were applied and phase velocity wanted to be 

measured, the reflection effects caused so much distortion in the acquired signals due to the 

interferences of different signals that the results obtained were wrong. It was tried to split the signal 

according to its spectrum in order to measure group velocity and phase velocity for different 

frequencies but it was not possible due to the mentioned fact. Therefore, the conclusion after 

performing the measurements in the lab is that the method that best works for measuring velocities 

is the one that measures the time delay between the first peak in the first transient in the two 

acquired signals by the hydrophones. 

The reflections were much more noticeable in the case of the bent pipe due to the fact that 

waves were reflected on the bending producing many secondary waves that were propagated within 

the pipe and creating interferences with the original signal. These secondary waves were not only 

superposed with this original signal, but also with the other secondary waves reflected on the 

boundaries of the pipe. For this reason, it has been more difficult to measure velocities in the bent 

pipe than in the straight pipe. However, when applying the method of the first peak in the first 

transient everything was working properly and the reflection effects did not cause any wrong results. 

8.1.  Further research 

In order to see if the results presented in this thesis after the measurements were affected 

for reflection effects, it would be a good idea to test pipes with different lengths. If the obtained 

velocity does not change when the length changes, it is possible to say that the reflection effects are 

not important in those measurements and that the obtained results are reliable. However, if these 

results change, it would be necessary to investigate a different method to measure velocities within a 

pipe. Nevertheless, it is quite likely that the results would not change when changing the length of 

the pipe since the tests were done in order to avoid these effects, but it is always important to verify 

the results with a different way. 
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As a pipe with a different diameter was also simulated, it would be interesting to measure 

velocities in a pipe with different diameters and compare the changes in order to find a law that 

relates the diameter of the pipe with the group and phase velocity. 

As this thesis was only focused in water-filled pipes, it would be possible line of further 

research to fill a pipe with different liquids such as oil, which is very used in the industry, or a mix of 

different components. Changing the filling liquid, the obtained results for velocities may change 

considerably since sound propagation velocity depends on the fluid in which it is propagated. 

Furthermore, this thesis has only presented the measurement of velocities at low 

frequencies, so it would be good to amplify the range of frequencies to higher ones and deal with the 

different modes that may occur in these frequencies. Besides, in the industry, many materials are 

used to construct pipes, so it would be also a further research to measure velocities in pipes of 

different materials and in non-elastic pipes to see the big change that may occur comparing this kind 

of pipes with the one used in this thesis. 

To sum up, much work is yet to be done, but the experiments and methods developed in this 

thesis may offer researchers a few small stepping stones on their path toward a better understanding 

of the curious compounds we call waveguides. 
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Appendix A. MATLAB Scripts 

A. 1. Propagation of a wave in a non-dispersive medium 

%% Movie that shows the move of a wave modulated in amplitude in a non-

%dispersive medium  

  
t=100; %time elapse that is going to be shown 
x=linspace(0,100,400); %definition of the x points 

  
for j = 1:t 
    %calculate the value of the wave 
    A=2*2*cos(0.25*j/10-(1/32)*x); 
    y=A.*cos(7.75*j/10-(31/32)*x); 
    %plot the graph in this moment 
    plot(x,y,'r'); 
    %create the movie 
    F(j)=getframe; 
end 
movie(F,5); %play the movie 

  
%% Plot the envelope of an amplitude modulated wave in one specific moment 

  
x=linspace(0,100,400); %definition of the x points 

  
%calculate the value of the wave and plot it 
A=2*2*cos(0.25*1-(1/32)*x); 
y=A.*cos(7.75*1-(31/32)*x); 
plot(x,y,'r') 
grid on 
hold on 

  
%evaluate the envelope wave and plot it 
y2=4*cos(0.25*1-(1/32)*x); 
plot(x,y2,'b') 

 

A. 2. Propagation of a wave in a dispersive medium 

%% Movie that shows the move of a wave modulated in amplitude in a 
% dispersive medium  

 
t=100; %time elapse that is going to be shown 
x=linspace(0,100,400); %definition of the x points 

  
for j = 1:t 
    %calculate the value of the wave 
    A=2*2*cos(0.25*j/10-(2/33)*x); 
    y=A.*cos(7.75*j/10-(31/33)*x); 
    %plot the graph in this moment 
    plot(x,y,'r'); 
    %create the movie 
    F(j)=getframe; 
end 
movie(F,5); %play the movie 
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A. 3. Noisy waves with which is not possible use the zero-crossing method 

%% Noisy waves with which is not possible to use the zero crossing 
% method 

  
t=0:0.001:3; %time elapse that is going to be shown 
y1=cos(10*t+5)+0.1*randn(size(t)); %first wave with gaussian noise 
y2=cos(10*t)+0.1*randn(size(t)); %second wave with gaussian noise 

  
%display both waves in the same plot 
plot(t,x) 
grid on 
hold on 
plot(t,y,'r') 

A. 4. Fourier transform 

function [Xmod, Xang] = fourier_selfmade(x) 
%Function that calculates the Fourier transform of a serial of values. 
%It returns the absolute value of the Fourier transform and its angle 

  
[~,N]=size(x); 
X=zeros(1,N); 

     
for j=0:N-1 
    for n=0:N-1 
        if (n==0) 
            X(j+1)=0+x(n+1)*exp(-2i*pi*j*n/N); 
        else 
            X(j+1)=X(j+1)+x(n+1)*exp(-2i*pi*j*n/N); 
        end 
    end 
end 

  
Xmod=abs(X); 
Xang=unwrap(angle(X))*180/pi; 

 
 

A. 5. Phase velocity with the method of phase shift 

%% Fourier transform of two waves to measure the phase velocity with the 
% method of the phase shift 

  
Fs=1000; %sample frequency 
t=0:1/Fs:0.2; %time elapse 

  
x=cos(2*pi*10*t); 
y=cos(2*pi*10*t+1.5); 

  
[Xmod, Xang] = fourier_selfmade(x); 
[Ymod, Yang] = fourier_selfmade(y); 

  
f=(0:N/2-1)*Fs/N; %range of frequencies that are going to be displayed 

  
%plot the three graphs for the two waves 
subplot(3,1,1), plot(t,x,'r'), hold on, plot(t,y,'b') 
subplot(3,1,2), plot(f,Xmod(1:N/2),'r'), hold on, plot(f,Ymod(1:N/2),'b') 
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subplot(3,1,3), plot(f,Xang(1:N/2),'r'), hold on, plot(f,Yang(1:N/2),'b') 

A. 6. Group velocity with two envelope waves 

%example of two envelope waves to calculate the group velocity 

  
t=-10:0.001:10; %time elapse 
x1=1; x2=10; %two different positions 

  
%calculation of the values 
A=2*2*cos(0.25*t-(2/33)*x1); %envelope for the first wave 
a=A.*cos(7.75*t-(31/33)*x1); %first wave 
B=2*2*cos(0.25*t-(2/33)*x2); %envelope for the second wave 
b=B.*cos(7.75*t-(31/33)*x2); %second wave 

  
%display the waves 
plot(t,a,'r') 
hold on, grid on 
plot(t,A,'r','linewidth',2) 
plot(t,b,'b') 
plot(t,B,'b','linewidth',2) 

 

A. 7. Group velocity with cross-correlation 

%calculate the cross-correlation of two waves so as to obtain the group 
%velocity 

  
m=4; %chosen m (it could be any) 
w=0.25; %angular frequency 
t=0:0.01:m*pi/(w*2); %time elapse 
x1=1; x2=10; %two different points 

  
%calculate the values of the waves 
A=2*2*cos(0.25*t-(2/33)*x1); %envelope for the first wave 
a=A.*cos(7.75*t-(31/33)*x1); %first wave 
B=2*2*cos(0.25*t-(2/33)*x2); %envelope for the second wave 
b=B.*cos(7.75*t-(31/33)*x2); %second wave 

  

  
%calculate the cross-correlation 
N=size(a); 
cxy=zeros(1,1000); 
p=0; 
for k=1:1000 
    for i=0:0.01:m*pi/(w*2) 
        cxy(k)=cxy(k)+2*2*cos(w*i-(2/33)*x1)*2*2*cos(w*i-(2/33)*x2-k/100); 
    end 
end 

  
[~,s]=max(cxy); %maximum value of the cross-correlation 

  
%draw all the waves 
subplot(2,1,1) 
plot(t,a,'r') 
hold on, grid on 
plot(t,A,'r','linewidth',2) 
plot(t,b,'b') 
plot(t,B,'b','linewidth',2) 
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%prove that the value in which the maximum of the cross-correlation is 
%reached is the correct one. Both envelopes must be the same. 
C=2*2*cos(w*t-(2/33)*x2-s/100); 
%draw the calculated wave according to the result of the cross-correlation 
plot(t,C,'g','linewidth',2), xlim([1 25]) 

  
%display the cross-correlation 
subplot(2,1,2), stem((1:1000)/100,cxy), grid on 

 

A. 8. Calculation of the relationship between the main frequency and the 

second one 

%Calculate and plot the relationship between the main frequency and the 

second one 
%Initial values 
f=450; A10=500; phi10=2; A20=400; w2=490; phi2=0; 
f0=[490 514 500 450 400];  

 
x0=[56 50 44 44 56]; %probes that are going to be used 

 
j=1; k=1; 

 
for i=2:3201:12806 

 
    x=a(i+500:1:i+3200,2); 
    y=a(i+500:1:i+3200,x0(j)); 

 
%initial values 
    w2=f0(j); 
    u0=[A10 phi10 A20 w2 phi2]; 

 
%finding the function that best fits the values 
    [u,f]=fminsearch(@(u) fobj(u,x,y),u0); 

 
    f2(j)=u(4); %vector of "second" frequencies 

 
%drawing 
    z=u(1)*cos(450*2*pi*x+u(2))+u(3)*cos(u(4)*2*pi*x+u(5)); 
    subplot(3,2,j) 
    plot(x,y,'b'), grid on, hold on, plot(x,z,'r'), title(k) 

    xlabel('Time (s)'), ylabel('Pressure (Pa)'); 
    j=j+1; 
    k=k+0.5; 

 
end 
subplot(3,2,6), plot(1:0.5:3,f2,'*'), grid on, xlabel('Length (m)'), 

ylabel('Frequency (Hz)') 

 

 

A. 8. 1. Functions used to find the adjustment 

function z=f01(u,x) 

%A1*cos(w1*t+phi1)+A2*cos(w2*t+phi2); 

 
z=u(1)*cos(450*2*pi*x+u(2))+u(3)*cos(u(4)*2*pi*x+u(5));  
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function z=fobj(u,x,ym) 

%method of least squares 

 
ycal=f01(u,x); 
z=sum((ym-ycal).^2); 
 

A. 9. Fourier transform for different waves for different lengths 

%% Fourier transform for different waves for different lengths 

  
a=xlsread('Name_of_the_file_with_results.xlsx'); 
j=1; %counter 

  
for i=2:3201:12806 
    Fs=1/(a(4,2)-a(3,2)); %sample frequency 
    t=a(i+500:1:i+3200,2);%row that has the time values 
    x=a(i+500:1:i+3200,x0(j));%row that has the values of the wave 

     
    [N,~]=size(x); 

     
    %calculate Fourier transform 
    [Xmod, Xang] = fourier_selfmade(x); 

     
    f=(0:N/2-1)*Fs/N; %range of frequencies that are going to be shown 

     
    %display the graph in every loop 
    subplot(3,2,j), plot(f,Xmod(1:N/2),'r'), hold on,xlim([0 1000]) 
    xlabel('Frequency (HZ)'), ylabel('Fourier transform') 

     
    j=j+1; 
end 

 
 

A. 9. Calculate the phase velocity from the measurements 

%%Calculate the phase velocity from the results obtained in measurement 

  
data_400=xlsread('Name_of_the_file_with_results.xlsx'); 
freq=700; %frequency of the exciter 

  
t=data_400(:,3); %row for the time 
x1=data_400(:,1); %row for the data of the first point 
x2=data_400(:,2); %row for the data of the second pint 
Fs=data_400(3,6); %sample frequency 

  
%draw the two obtained waves 
plot(t,x1,'b'), hold on, plot(t,x2,'r'), grid on, grid minor 
xlabel('time (s)'), ylabel('Pressure (Pa)') 

  
%open a different window to draw the two obtained waves in different plots 
%and the selected part to measure the phase velocity 
figure 
subplot(2,1,1), plot(t,x1,'b'), xlabel('time (s)'), ylabel('Pressure 

(Pa)') 
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subplot(2,1,2), plot(t,x2,'b'), xlabel('time (s)'), ylabel('Pressure 

(Pa)') 

  
%select the data after the first transient part and before the second one 
t=data_400(75000:1:130000,3); 
x1=data_400(75000:1:130000,1); 
x2=data_400(75000:1:130000,2); 

  
%draw the selected part of the waves 
subplot(2,1,1), hold on, plot(t,x1,'r') 
xlabel('time (s)'), ylabel('Pressure (Pa)') 
subplot(2,1,2), hold on, plot(t,x2,'r') 
xlabel('time (s)'), ylabel('Pressure (Pa)') 

  
%adjust the selected part to sinusoidal waves 
u0=[0    0.01  freq   -pi/2]; %initial value 

  
u1=adjust2sinus(u0,t,x1); 

  
u0=[0    0.015   freq pi]; 

  
u2=adjust2sinus(u0,t,x2); 

  

  
%calculate the waves that best fit to the obtained waves with the found 
%results 

  
x1adj=f01(u1,t); 
x2adj=f01(u2,t); 

  
%open two different windows to see how good the adjustment is 
figure 
plot(t,x1adj,'b'), hold on, plot(t,x1,'r') 
xlabel('time (s)'), ylabel('Pressure (Pa)') 

  
figure 
plot(t,x2adj,'b'), hold on, plot(t,x2,'r') 
xlabel('time (s)'), ylabel('Pressure (Pa)') 

  
%calculate the phase velocity 
phase_delay = u2(4)+2*pi-u1(4); 
time = phase_delay/(2*pi*freq); 
phase_velocity=0.45/time; 

  
%open a different window to draw the two adjusted waves and prove that 
%the results given are OK 
figure, plot(t,x1adj,'r'), hold on, grid on, grid minor 
plot(t,x2adj,'b'), xlabel('time (s)'), ylabel('Pressure (Pa)') 

 

 

A. 9. 1. Functions used to calculate the adjustment 

function u1=adjust2sinus(u0,t,x) 
%return the values of the sinusoidal wave that best fits to the given wave 

  
[u1,~]=fminsearch(@(u) fobj(u,t,x),u0); %find the values 
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%the angle has to be between -pi and +pi 
while (u1(4)>pi || u1(4)<-pi) 
    if (u1(4)>pi) 
       u1(4)=u1(4)-2*pi;  
    end 
    if (u1(4)<-pi) 
       u1(4)=u1(4)+2*pi;  
    end 
    u1(4); 
end 

 
 

function y=f01(u,t) 
%A+B*cos(2pi*f*t+phi) 

  
y = u(1)+u(2)*cos(2*pi*u(3)*t+u(4)); 

 
 

function z=fobj(u,t,ym) 
%method of least squares 

  
ycal=f01(u,t); 
z=sum((ym-ycal).^2); 

 
 

A. 10. Calculate group velocity from a long Gaussian pulse 

%Calculate group velocity from the results obtained stimulating the pipe 
% with a long Gaussian pulse 

  
results=xlsread('Name_of_the_file.xlsx'); 

  
x1=results(:,1); %column for the first probe 
x2=results(:,2); %column for the second probe 
t=results(:,3); %column for the time 
Fs=1/(t(3)-t(2)); %sample frequency 

  
%draw the two obtained waves 
figure,plot(t,x1,'r'), hold on, plot(t,x2,'b') 
xlabel('Time(s)'), ylabel('Pressure(Pa)') 

  
%filter the obtained waves to reduce the noise and display this result 
x1=filter(filter500,x1); 
x2=filter(filter500,x2); 
figure,plot(t,x1,'r'), hold on, plot(t,x2,'b') 
xlabel('Time(s)'), ylabel('Pressure(Pa)') 

  
%calculate the envelope of the filtered waves 
xan = hilbert(x1); %analytical signal for the first wave 
env1 = abs(xan); %envelope signal for the first wave 
xan2 = hilbert(x2); %analytical signal for the second wave 
env2 = abs(xan2); %envelope signal for the second wave 

  
%calculate the functions that best fit the envelope waves 
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u0=[0.08    0.2    0.05]; %initial values 
[u1,~]=fminsearch(@(u) fobj(u,t,env1),u0); 
u0=[1 1 1]; 
[u2,~]=fminsearch(@(u) fobj(u,t,env2),u0); 

  
f1=f01(u1,t); 
f2=f01(u2,t); 

  
%obtain the maximum values of the envelope to determine the group velocity 
[~,t1]=max(f1); 
[~,t2]=max(f2); 
t1=t(t1); 
t2=t(t2); 
time = t2-t1; 
group_velocity=0.45/time; 

  
%display the envelope waves and the filtered waves to see how good the 
%adjustment is 
figure 
subplot(2,1,1), plot(t,env1,'b'), hold on, plot(t,x1,'r') 
plot(t,f1,'LineWidth',2,'Color','g') 
xlabel('Time(s)'), ylabel('Pressure(Pa)') 

  
subplot(2,1,2), plot(t,env2,'b'), hold on, plot(t,x2,'r') 
plot(t,f2,'LineWidth',2,'Color','g') 
xlabel('Time(s)'), ylabel('Pressure(Pa)') 

 

A. 11. Calculate group velocity from a short Gaussian pulse 

%%Calculate group velocity from the results obtained stimulating the pipe 
% with a short Gaussian pulse 

  
results=xlsread('Name_of_the_file_with_results.xlsx'); 
x1=results(:,1); %column for the first probe 
x2=results(:,2); %column for the second probe 
t=results(:,3); %column for the time 

  
Fs=1/results(3,6); %sample frequency 

  
%draw the original signals 
figure, plot(t,x1,'r'), hold on, plot(t,x2,'b') 
xlabel('time (s)'),ylabel('Pressure (Pa)') 

  
%filter the original signals and display them 
x1=filter(filter500,x1); 
x2=filter(filter500,x2); 
figure, plot(t,x1,'r'), hold on, plot(t,x2,'b') 
xlabel('time (s)'),ylabel('Pressure (Pa)') 

  
%find the maximum values of the filtered signals 
[~,t1]=max(x1); 
t1=t(t1); 

  
[~,t2]=max(x2); 
t2=t(t2); 

  
%calculate the time delay between the maximum values 
time_delay=t2-t1; 
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%calculate the group velocity 
group_velocity=0.45/time_delay; 

A. 12. Group velocity before bending with one-period sinusoidal pulse 

%%Calculate phase velocity from the results obtained stimulating the pipe 
% with a one-period sinusoidal pulse 

  
results=xlsread('Name_of_the_file_with_results.xlsx'); 
x1=results(:,1); %column for the first probe 
x2=results(:,2); %column for the second probe 
t=results(:,3); %column for the time 

  
Fs=1/results(3,6); %sample frequency 

  
%draw the original signals 
figure, plot(t,x1,'r'), hold on, plot(t,x2,'b') 
xlabel('time (s)'),ylabel('Pressure (Pa)') 

  
%filter the original signals and display them 
x11=filter(filter_lowpass,x1); 
x22=filter(filter_lowpass,x2); 
figure, plot(t,x11,'r'), hold on, plot(t,x22,'b') 
xlabel('time (s)'),ylabel('Pressure (Pa)') 

  
%select the range in which the first transient is 
p=find(t>0.205 & t<0.21); 
p1=x11(p); 
p2=x22(p); 

  
%find the maximum values of the filtered signals 
[~,s1]=max(p1); 
t1=t(s1+p(1)) 

  
[~,s2]=max(p2); 
t2=t(s2+p(1)) 

  
%print the selected points 
plot(t1,x11(s1+p(1)),'r*') 
plot(t2,x22(s2+p(2)),'b*') 

  
%calculate the time delay between the maximum values 
time_delay=t1-t2 

  
%calculate the phase velocity 
phase_velocity=0.45/time_delay 
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Appendix B. Filters 

B. 1. FIR Equiripple 

The Equiripple method approaches filter design as an optimization problem in which the 
coefficient values are adjusted to create an optimal filter with ripples that are of equal height. This 
method uses the most efficient optimization procedure to minimize the transition width along with 
the stopband and passband ripple. 

The Equiripple method uses the Parks-McClellan algorithm to compute the filter such that its 

response 𝐻 𝑒𝑗2𝜋𝑓   represents the best approximation to the ideal frequency response 𝐻𝑑 𝑗2𝜋𝑓  in 

a manner that minimizes the maximum weighted approximation error (where Q() is the weighting 
function): 

ε j2πf = max
f∈[−0,5; 0,5]

 Q j2πf  𝐻𝑑 𝑗2𝜋𝑓 − 𝐻 𝑒𝑗2𝜋𝑓      Eq. 0.1 

 

In Image 0.1, the filter specifications for a bandpass filter are shown. It is necessary to specify 

different characteristics to obtain the filter with the MATLAB tool of filter design. In Image 0.2 the 

frequency response in magnitude is displayed for a bandpass filter for the frequencies between 500 

and 600 Hz. It is possible to appreciate that all the frequencies out of that band are removed with a 

factor of 80dB, and that there are ripples of equal height at it was said above. In Image 0.3 the 

frequency response in phase is shown and it is also possible to see these ripples out of the band 

selected. It is also possible to notice the linear response within the selected band. 

 

Image 0.1: Filter specifications for a bandpass filter. 
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Image 0.2: Magnitude diagram for a Equiripple bandpass filter between 500 and 600 Hz. 

 

 

Image 0.3: Phase diagram for a Equiripple bandpass filter between 500 and 600 Hz. 

 

Image 0.4: Filter specifications for a lowpass filter. 

 

In Image 0.4 the specifications needed to obtain a lowpass filter with the MATLAB too 

fdatool are displayed. It is necessary to specify the cutoff frequency and the magnitude of the factor 

in charge of removing the components out of the specified band. In Image 0.5 the frequency 
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response in magnitude is shown and in Image 0.6 the frequency response in phase is displayed. It is 

also possible to see the same characteristics than in the bandpass filter, but, in this case, the low 

frequencies are not going to be removed. 

 

Image 0.5: Magnitude diagram for a Equiripple lowpass filter for 2000 Hz. 

 

Image 0.6: Phase diagram for a Equiripple lowpass filter for 2000 Hz. 

 

B. 2. IIR Butterworth 

The Butterworth method of approximation provides a monotonic performance in the 
passband and the stopband. As the filter order is increased, the passband and stopband performance 
improves, with the transition from passband to stopband becoming sharper. The Butterworth 
method is best suited for design problems that focus on controlling passband and stopband ripple. 

A Butterworth lowpass filter with cutoff frequency 𝑓𝑐   and order 𝑛 is specified using the 
following equation: 

𝐴𝑛 𝑓2 =
1

1 +  
𝑓

𝑓𝑐
 

2𝑛  
Eq. 0.2 

 
In Image 0.7 and in Image 0.8 the frequency response in magnitude and in phase for a 

bandpass filter are displayed. It is important to notice that the factor of removal components is much 
bigger than in Equiripple. Also, the phase diagram is not linear. 
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Image 0.7: Magnitude diagram for a Butterworth bandpass filter between 500 and 600 Hz. 

 

Image 0.8: Phase diagram for a Butterworth bandpass filter between 500 and 600 Hz. 

In Image 0.9 and in Image 0.10 the frequency response in magnitude and in phase for a 
lowpass filter are displayed. The same characteristics than in the bandpass filter can be appreciated. 

 

 

Image 0.9: Magnitude diagram for a Butterworth lowpass filter for 2000 Hz. 
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Image 0.10: Phase diagram for a Butterworth lowpass filter for 2000 Hz. 

 

B. 3. IIR Elliptic 

The Elliptic method of approximation provides an Equiripple response in both the passband 
and the stopband. This method uses the smallest filter order for a transition from passband to 
stopband, but it does so at the cost of some ripple in both bands. As a result, when phase linearity is 
not an issue, the elliptic method results in a filter with the lowest-order and therefore the least 
computation overhead. 

An Elliptic filter is based on a mapping of the following function: 

𝑇2 𝜔 =
1

1 + 𝜀2𝑠𝑛2 𝜔, 𝑘 
 

Eq. 0.3 

 

In Image 0.11 and in Image 0.12 the frequency response for the magnitude is shown. It is 

clear that the ripple that appears is not the same as the one in Equiripple, as it only appears in the 

proximity of the cutoff frequencies. In Image 0.14 the frequency response for the phase is displayed. 

There is a clear non-linearity in this diagram. However, the values for the phase are smaller than in 

any other case. 

 

Image 0.11: Magnitude diagram for an Elliptic bandpass filter between 500 and 600 Hz. 

 



 

Messtechnik und Leistungselektronik 
 

114 
 

 

Image 0.12: Phase diagram for an Elliptic bandpass filter between 500 and 600 Hz. 

 

In Image 0.13 the frequency response for the magnitude for a lowpass filter is shown. There 

are ripples out of the band, which are not the same to each other. In Image 0.14 the frequency 

response for the phase is displayed. The values for this diagram are also much lower than in the rest 

of the cases and it could be possible to use this filter when a small phase shift is needed. 

 

Image 0.13: Magnitude diagram for an Elliptic lowpass filter for 2000 Hz. 

 

Image 0.14: Phase diagram for an Elliptic lowpass filter for 2000 Hz. 
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Appendix C. Datasheets



 

 

 

 

C. 1. BS 76 S - 8 Ohm 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



 

 

C. 2. EX 60 S - 8 Ohm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 



 

EX 45 S - 8 Ohm 

 

C. 3. EX 45 S - 8 Ohm 
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