
 BACHELORARBEIT

Technikum Wien - Degree Program: Informations- und Kommunikationssysteme

Connecting an Arduino UNO to KNX

By: Leticia Vizán Tundidor

Student Number: ic14x001

Supervisor: Mag. DI Friedrich Praus

Wien, 26/01/2015

 1

Declaration

„I confirm that this paper is entirely my own work. All sources and quotations have been fully

acknowledged in the appropriate places with adequate footnotes and citations. Quotations

have been properly acknowledged and marked with appropriate punctuation. The works

consulted are listed in the bibliography. This paper has not been submitted to another

examination panel in the same or a similar form, and has not been published. I declare that the

present paper is identical to the version uploaded."

Vienna ,26/01/2015

Place, Date Signature

 2

Table of Contents

1 Introduction .. 3

1.1 Motivation ... 3

1.2 Scope of work ... 3

1.3 Outline .. 3

1.4 Serial Communication ... 4

1.4.1 SPI communication .. 4

1.4.2 UART communication ... 5

2 Arduino UNO ... 6

2.1 ATmega328 .. 7

2.2 SPI software on Arduino Uno .. 9

2.3 UART software on Arduino Uno .. 11

3 KNX protocol ... 13

3.1 Protocol definition ... 13

3.2 Characteristics .. 13

3.3 Group Address ... 15

4 BIM 13x ... 16

4.1 SPI software on BIM13x ... 16

4.2 UART software on BIM13x ... 17

5 Arduino Uno and BIM135 board connection. .. 19

5.1 SPI hardware connection. ... 19

5.2 UART hardware connection .. 20

6 Communication protocol between Arduino and BIM ... 22

6.1 Communication protocol over SPI ... 22

6.2 Communication protocol over UART ... 23

7 Proof of concept... 24

7.1 Arduino Uno Code .. 32

7.2 BIM 13x Code ... 32

7.3 Function modes .. 32

7.4 Results ... 43

8 Conclusion ... 45

A Abbreviation ... 46

B Bibliography... 47

 3

1 Introduction

The project outlines the communication between a BIM board, which supports KNX,

and a second microcontroller, which is an Arduino UNO.

Two ways of communication are supported: SPI and UART communications.

1.1 Motivation

The motivation for this project is to develop the communication between Arduino to

KNX. The aim is to know the value of the different modules implemented for other

students.

The data is sent from KNX and then collected via Arduino Uno. It is also possible send

data from Arduino to KNX for changing the value of the communication object.

1.2 Scope of work

The scope of this project is to implement communications between a BIM 132 board

(which supports KNX) and another microcontroller, which for this project was Arduino

UNO. The final goal is to be able to dispatch data to Arduino UNO from a BIM board

and vice versa. This data contained information about the value of the object

communication (related to different measures as lights, temperature, humidity…).;

which when changed resulted in a change of the corresponding value.

Depending on the requirements, two protocols of communication can be used. One

based on SPI communication or the other based on UART communication.

1.3 Outline
The thesis will start with a short introduction about SPI and UART communications,

followed by details about Arduino UNO and its communication. All internal registers

required for the communication and how to implement it are specified.

Before going into a description of the BIM board, KNX protocol is broadly explained.

After that communication over the BIM board is also explained.

The hardware connection between both boards defined, as well as the protocol

created, will also be explained.

 4

1.4 Serial Communication

The main difference between a synchronous interface (as SPI) and an asynchronous

one (as UART) is the way in which synchronization information is sent from transmitter

to receiver.

The synchronous peripherals need a physical line (cable) dedicated to the clock signal,

providing synchronization between the two devices. Asynchronous peripherals do not

use a clock signal; the synchronized information is extracted from the same data. Start

bit and stop are added, as well as a precise format for a fixed transfer rate.

1.4.1 SPI communication

SPI is the acronym of Serial Peripheral Interface. It is mainly used to transfer

information between two or more integrated circuits.

SPI is a full-duplex synchronous protocol. This indicates that data can be sent and

received simultaneously.

The bus interface of serial peripheral or bus SPI is a standard to control almost any

digital electronic device which is able to accept serial bit stream controlled by a clock.

SPI consists of a clock, data incoming, data outgoing and a selected pin, which enable

or disable the communication between both devices. Several SPI-compatible devices

can share communication wires however each device must have its own chip select

line.

When SPI communication starts, master microcontroller has complete control of it and

is able to settle SPI communication with the slave required. That means that slave

devices only can communicate when master allows it.

The lines of the SPI data communication are the following:

 Master In/Slave Out (MISO): this line is the input of the master

microcontroller and also the output of the slave microcontroller.

 Master Out/Slave In (MOSI): this line is the output from the master

microcontroller and also the input to the SPI slave.

 Serial Clock (SCK or SCLK): the line is the serial clock line. This line

designates when data on the MISO and MOSI are valid.

 Slave Select (SS): is the “chip select” line. There is one for each SPI

device. The master microcontroller imposes the SS line, for when the

device wants to communicate; the signal has to be turned to low. When

the signal of this pin is high the slave device will not respond to any SPI

communication on the other three pins.

 5

 [1], p.261

Once SPI protocol is known, it is necessary to know how hardware connection must be

joint. As we see in figure 1, all pins must be connected in both microcontrollers to the

same pin name.

Figure 1: SPI wire connection

 1.4.2 UART communication

UART is the acronym of Universal Asynchronous Receiver Transmitter. As with SPI, it

is mainly used to communicate two or more integrated circuits.

The UART takes bytes of data and transmits the individual bits in a sequential way. At

the destination, a second UART re-assembles the bits into complete bytes.

Serial transmission of data is cheaper because only one wire is required, in comparison

with parallel communication which uses several wires.

Synchronization data transmission takes place by putting first “start bit”, and then data

bits are sent usually between five and nine, always starting on the LSB, and finally, a

“stop bit”.

 It is important to emphasize that RX and TX pins in UART communication are

switched as seen in the following diagram.

Figure 2. UART wire connection

 CLK

 SPI MOSI

 Master MISO

 /SS

CLK

MOSI SPI

MISO Slave

/SS

 RX

 UART

 Master

 TX

RX

 UART

 Slave

TX

 6

2 Arduino UNO

Arduino UNO specification can be found on the official web site of Arduino. In the

below diagram, the main features are represented.

Figure 3. Arduino Board

Microcontroller ATmega328

Operating Voltage 5V

Input voltage (recommended) 7-12 V

Input Voltage (limits) 6-20 V

Digital I/O Pins 12 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pins 40 mA

DC current for 3.3V Pin 50 mA

Flash Memory 32 KB (ATmega328)

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

Table 1. Arduino Uno main characteristics [3]

 7

2.1 ATmega328

As stated before, ATmega328 is the microcontroller on which Arduino Uno is based.

ATmega328 has three registers that are of a great importance on a SPI

communication. They are SPI Control Register (SPCR), SPI Status Register (SPSR)

and SPI data Register (SPDR).

 SPI Control Register (SPCR)

In this register, all SPI communication configurations are specified, each bit

representing a different field of the communication.

The following displays the structure:

Figure 4. SPCR register structure. [4] p. 173

As figure 4 shows all bits have value 0 as default value. When SPI is used this register

has different values, depending if it is in slave or master mode.

-Master Mode:

 SPIE: the reason of SPI interrupts when bit SPIF in SPSR register is set.

SPE: is HIGH, in that way SPI mode is enabled. It has to be 1 in any operation

requiring SPI communication.

DORD: In this case it is settled as 0, that means the most significant bit (MSB)

is transmitted first.

MSTR: this bit is selected if master mode is on or off. For master mode must be

1. Besides, if /SS is configured at LOW input while MSTR is set, MSTR will be

cleared and SPFI in SPSR will become set.

 CPOL: default value is used (0). That means SCK is low when idle.

CPHA: Sample data when the value is 1 will set a falling edge on the data clock,

when 0 it will set a rising edge.

 8

SPR1 and SPR2: these bits control the SCK rate on the microcontroller

configured as master (they have no effect on the slave). It is left as default value

(0 0).

-Slave Mode:

As most parts of the registers stay in the same state when in master mode, to assure

that communication protocol is working in the same ´language´. In slave mode only

changes from master mode will be explained.

 MSTR: slave mode is defined when the bit value is 0.

[4], pp. 173-174

 SPI data Register (SPDR)

In this register data (1 byte) is saved, so it can be said that this register could be used

as a buffer. It is possible to read and write on it.

Data is read from this register, because when data is sent it is saved on here.

Before data is sent, users have to be careful of the way that transmission is configured,

because as can be seen in figure 5, 0-bit is LSB and 7-bit is MSB.

Figure 5. SPDR register structure. [4] p. 174

 SPI Status Register (SPSR)

This register indicates information about the transmission state. As in previous

registers explained, all bits default value are 0.

Although it is an 8-bit register, five of these bits are non-care state, which means that it

is not important if the value is 0 or 1.

As figure 6 shows, bits 7 and 6 only have read permission. This is due to the fact that

depending on the state of the transmission, bits will be represented in one way or

another, and memory changes them when a particular event happens.

 9

Figure 6. SPSR register structure. [4] p. 175

Three bits of interest are analyzed in the following.

 SPIF: when serial transfer is complete, SPI flag is set.

WCOL: sets when read and write actions in SPDR register try to access at the

same time

[4], pp. 175

2.2 SPI software on Arduino Uno

Arduino contains in its hardware more than one way to implement SPI communication.

As only Arduino Uno is used in this project, this will be the only reference.

It is possible to develop SPI by digital pins. In the following table the pin and its function

on SPI communication are referenced.

SPI function Arduino Uno Pin

MOSI 11

MISO 12

SCK 13

SS (slave) 10

Table 2: Arduino Uno SPI pins list.

Otherwise ICSP connector can be used to implement SPI communication.

Figure 7: ICSP header.

 10

Master-Slave communication

Master mode is supported by a specific Arduino library, so it has to be included in all

code related to the SPI protocol.

#include <SPI.h>

The following configuration could be changed by the next function calling, or by

changing the registers specified in paragraph 2.1.

Besides the order in which the bits are received it is important. Two ways are possible

MSBFIRST (most significant bit first) or LSBFIRST (less significant bit first). This can

be specified by inserting the next function:

SPI.setBitOrder()

If it is not inserted, it is the most significant bit as default. That is the specification

selected in this project.

It is possible to set data mode as well. This means the polarity and phase of the clock.

This is made by inserting the next function:

SPI.setDataMode()

Four modes are possible, but in this project default value is used, that means that the

clock is normally low and that the data is read in the transmission from low to high.

SPI.setClockDivider()

This configuration is specified on the EEPROM memory datasheet (see table 4).

And as can be seen MOSI, SCK and /SS must be inputs. However MISO has to be

defined by the user. It will be defined as output.

PIN Direction, Master SPI Direction, Slave SPI

MOSI Output Input

MISO Not defined User Defined

SCK Output Input

/SS Output Input

Table 3. SPI Pin Overrides [4] p. 168

 11

2.3 UART software on Arduino Uno

In the case of Arduino UNO there is only one available UART and it is duplexed to the

USB serial communication that is used for communicating to a computer, mainly for

programming and debugging.

The derivate problem of this is that some collisions can appear when the sketch is

been debugged and the UART connection with another electronic device (in our case

the BIM board) wants to be used.

In this case the connection between RX and TX pin could be as is shown in the

following figure.

Figure 8. Colliding UART communication lines [16] pp.227

The diagram above shows what would happen if both connection, the BIM board and

the computer, tried to transmit data to the Arduino at the same time.

Due to this situation, it is determined that Arduino cannot be programmed nor talking to

the computer while BIM is connected to the Arduino´s serial port.

To avoid this problem it was determined that a way around this, could be unplugging

the BIM shield every time Arduino need to be programmed.

[16] pp.226-227

Another possibility is to create a new software serial port. For that task

<SoftwareSerial.h> library must be referenced. The utility of this strategy is to declare

another two pins which now will be able to support the UART communication.

By using this, the collision is solved due to pin 0 and 1 (shared to the USB) are used to

communicate Arduino to a computer and the new ones, in this case, to communicate

Arduino to BIM.

 12

Using those new UART pins are not that much more complicated, you only have to

switch in all calls “Serial” for the name assigned to the new pin’s communication, In this

case it is “mySerail”. So, if the function calls to communicate Arduino to a computed is

Serial.begin(…), the function call to communicate Arduino to BIM is mySerial.begin(…).

In the following table it is referenced the pin and its function on UART communication

to BIM.

UART function Arduino Uno Pin

RX 5

TX 6

Table 4: Arduino Uno UART pins list.

For making UART communication supported on Arduino Uno, no library has to be

included (in SPI had to be included).

For making UART communication work, firstly, the speed of transmission must be

declared. This speed is represented in terms of bits per second (baud). For

communicating in this project 9600 bauds are used. As default is set: 8 data bits, no

parity, and one stop bit. For this it is necessary to include in the sketch the following

function call:

Serial.begin(speed);

When read on UART bus is necessary, the predefined function for that can be used.

This function returns the first byte of incoming serial data available, or -1 if there are no

data available.

Serial.read();

Besides this it is useful to know when Arduino is receiving data. For this task the next

function can be inserted. This function returns the number of bytes available to read.

Serial.available();

When it is necessary to write another function, it is predefined as well. The following

function prints data to the serial port on the base specified (format). Values permitted

are BIN(binary), OCT(octal), DEC (decimal),HEX(hexadecimal).

When it is inserted as print (), it returns the number of bytes written, though reading

that number is optional.

Serial.print (data, format);

There is an improvement of the previous function. It reachs the same characteristics as

Serial.print (), but also prints a carriage return character (‘\r’) and a newline character

(‘\n’). This function is Serial.println (data, format);

 13

3 KNX protocol

3.1 Protocol definition

A protocol is communication rules that permit information flows between equipment.

Normally these rules are classified as public or private. In this case KNX is an open

protocol to which everyone can access.

It is essential that if two or more devices have to be communicated, they have to

“speak the same language”.

KNX is a standard protocol because all its elements in the installation use a common

protocol to communicate. And it is worldwide because there are more than 120 country

partners.

“KNX Association is the creator and owner of the KNX technology – the worldwide

STANDARD for all applications in home and building control, ranging from lighting and

shutter control to various security systems, heating,

ventilation, air conditioning, monitoring, alarming, water

control, energy management, metering as well as

household appliances, audio and lots more. The

technology can be used in new as well as in existing home and buildings. “ [5]

In KNX system data transmit is done through a cable or bus connected to all devices.

The bus allows all components on home automation installation to be communicated,

in this way it is possible that any component can control another, independent of the

location or length between them.

3.2 Characteristics

KNX-EIB has 321 members in 34 countries. [5]

KNX uses a bus typology, that means KNX installation (figure 11) has some

advantages over any conventional connection (figure 10). The most remarkable benefit

is that using KNX the energy consumption can be reduced thanks to illumination and

heating, besides controlling the most consuming peaks of energy costs can be

reduced.

Also, planning the installation on KNX communication makes it possible to reduce

cabling. Besides this it is simpler to introduce some changes or even expand the

installation.

 14

It is also important that KNX association assure 100% compatibility of equipment.

Figure 10. Conventional installation

Figure 11 .KNX installation

As can be seen in the image above, KNX protocol has a distributed topology. This type

of system does not have a central unit. Every unit is smart and knows what to do. This

makes the system more reliable because if one unit fails, it does not affect the other

units and the system can keep working. [8] p.10-11

 15

KNX also can be implemented on diverse transmission media, each media can be

used in combination with others. These medias are: Twisted Pair (TP), Power Line

(PL), Radio Frequency (RF) and Ethernet (IP). [5]

In this project the communication media used is twisted pair.

- Twisted Pair (TP-1)

In this media KNX has a transmission speed defined as approximately 9600 bits/s. All

products works on the same bus, thats the way they exchange information.

Twisted pair is used to power devices and to transfer information, but it is not available

to power controlled devices as it can be with lights, heating and so on. Therefore there

has to be a connection to electricity grids.

3.3 Group Address

It can be considered as a virtual wired among system components.

When a sensor and an actuator are required to make a function the same group

address is assigned to both of them. It does not exist strong rules about it; except that

maximum numbers or addresses are 28.000.

The structure followed in this project is the one referenced as three-level addressing.

M M M M M Mi Mi Mi S S S S S S S S

Main group Subgroup

5 bit: 0 - 31 Middle group 8 bit : 0 - 255

 3 bit: 0 - 7

Figure 12. Group Address: 3 levels

- Main Group: functional area, basically make reference to the full installation

(e.g. 1=First floor, 2=second floor....)

- Middle Group: function inside that area (eg.0= lights, 1=blinds, 2=heating...)

- Subgroup: load or group of loads (e.g. 09= kitchen light, 20=living room heating)

Actuators can listen to several group addresses, as well as having several group

addresses. Sensors however can only send one group address per telegram.

[7] p.6-7

 16

4 BIM 13x

The board programmed is an evaluation board (EVB) that contains different debuggers

depending of the microcontroller which want to be programmed.

4.1 SPI software on BIM13x

The BIM board has a SPI communication as a feature of the controller.

On the hardware side, the board has a pin which plays the role of Clock on SPI

communication and pins which play the role of MOSI, MISO. For the Slave Selected

pin any digital I/O could be use, in this case pin 7 on Port7 will be used. [14] p.4

Concerning the software side, there are mainly two defined functions regulating SPI

communication.

The first function initializes the driver for transmitting data over SPI. It has the following

format:

void SPIInit (enum SPISpeed speed, BYTE CKDAP, BOOL MSBFirst)

Where:

- enum SPISpeed speed: has the value SPI_BAUD_9600, which indicates SPI

communication will have a speed of 9600 bauds.

- BYTE CKDAP: in this case has the value 0x00 which indicates clock is idle

high; data is valid if clock is high.

- BOOL MSBFirst: has the value TRUE, which means the first bit transmitted is

the most significant one.

 [13]p.24

The second one is the function used to send and receive data over SPI bus. It has the

following format:

BOOL SPISend (BYTE* pData, BYTE length)

Where:

- BYTE* pData: is a pointer that data wants to be transmitted over SPI and where

received data is stored.

- BYTE length: number of bytes sent over SPI

This function returns true is the exchange was successful and false if it was not.

[13] p.24

 17

4.2 UART software on BIM13x

For programming UART0 on the BIM board, there exists no predefined function as

happens on SPI. Instead it is necessary to know the register of the NEC78K0 /KE2

microcontroller used by this kind of serial communication.

 BRG0

The Baud rate of the transmission is specified as the modified register BRGC0 in

NEC78K0 /KE2 microcontroller. The aim is to have a baud rate of 9600 bauds.

Because this is the typical Arduino Uno speed.

Figure 13. BRGC0 register in NEC78K0 /KE2 microcontroller [17] p. 438

The aim is to have a baud rate of 9600 bauds.

It is known that hardware information such as fPRS=9,830,400 Hz.

We select:

- TPS01 =1;

- TPS01 =1;

That means fPRS has to be divided by 25 -> fXCLK0= fPRS/25 = 307,200 Hz.

Now a parameter “k” is determined by bits MDL04, MDL03, MDL02.MDL01, and

MDL00.

So the value selected is 10000 which gave us k=16. This means fXCLK0 has to be

divided by 16. With a result of 19,200 Hz.

As it is said on the datasheet: “the baud rate value is the output clock on the 5-bit

counter divided by 2”

Finally, we have a 9600 bits/s as baud rate value.

The register BRGCO has the value 11010000 in binary, which is 0xD0 in hexadecimal

which is the one to put in the function FT12Init (…);

[13] p.18 && [17] p.438-439

 18

 ASIM0

By this register the UART communication can be configured:

Figure 14. ASIMO register in NEC78K0 /KE2 microcontroller [17] p. 436

Where:

- POWER0: the value 1 is set, so enables the clock on the UART. It is

necessary if activating UART is desired.

- TXE0: the value 1 enables the transmission. 0 disables it.

- RXE0: the value 1 enables the transmission. 0 disables it.

- PS01 AND PS00: define the parity of the received and transmit data.

For no parity PS00=0 and PAS01=0.

- CL0: 1 set 8 bit per character. 0 set 7 bits.

- SLO: 1 set 2 stop bits, 0 set 1 stop bit.

So, finally our register ASIMO has the value 11100101 in binary, and 0xE5 in

hexadecimal which is the one to insert in the function FT12Init (…);

 [13] p.19 && [17] p.436-439

 TXS0

This 8-bit register is used to transmit data. When this register is complete the

transmission begins and data is sent over pin 14. It is an only-read register.

 RXB0

When the register RXS0 is full by the data received over pin 10, data are copied to

register RXB0 because RXS0 is an only-write memory, and users cannot have access

to it.

 19

5 Arduino Uno and BIM135 board connection.

In this paragraph the proper way to connect both boards physically will be discussed.

5.1 SPI hardware connection.

SPI hardware connection has to be done as specified in figure 1.

.

Digital I/O

BIM 135

Figure 15. Wire connection between BIM board and Arduino

BIM 13x

 GND (pin 24)

 MOSI (pin 14)

 MISO (pin 10)

 CLK (pin 16)

 SS (pin 7)

 20

Wire connections must be done paying special attention to connect MISO pin in

Arduino Board with MISO pin in BIM135. Once each datasheet is examined, it would

not be difficult to find the correct connections.

Basically connections have to be done on the same way that were specified in

paragraph one (SPI connection) especially on figure 1. SPI wire connection.

SPI pin Arduino Uno BIM135

MOSI 11 14

MISO 12 10

SCK 13 16

/SS 10 7

GND GND 24

Table 5. Pins connections between Arduino and BIM board on SPI communication.

5.2 UART hardware connection

Proceeding in a similar way than in SPI connection:

SPI pin Arduino Uno BIM135

RX 11 10

TX 12 14

GND GND 24

Table 6. Pins connections between Arduino and BIM board on UART communication.

 21

.

Digital I/O

BIM 135

Figure 16. Wire connection between BIM board and Arduino

BIM 13x

 GND (pin 24)

 TX (pin 14)

 RX (pin 10)

 22

6 Communication protocol between Arduino and

BIM

6.1 Communication protocol over SPI

Essentially, communication between the BIM board and Arduino has as goal exchange

information about state changes of different Group of Communication.

For making this communication understandable for both parts, it is necessary to create

a protocol to regulate the flow and interpretation of the information.

To create Protocol is simple. It´s based on send data on acknowledgement.

Sequence diagram:

 BIM 13X Arduino UNO

Figure 17. Sequence diagram of the communication protocol.

By seeing the figure above, we can appreciate that the logic of the protocol is quite

simple. Basically at least four bytes are sent over SPI bus. Firstly a command that

specifies to Arduino what to do with the following data sent. Secondly, the data

exchange specifies the identifier of the group of communication object that changed its

Command

Object

Value of the object

ACK

ACK

ACK

Time

ACK

num_bytes

 23

value. Then, the number of bytes that the value of the group of communication has.

Finally, Arduino know the value of the group of communication right before being

received.

After every data received, Arduino makes known to the BIM board that data was well

received by sending an acknowledgement message (defined as 0x01 on the protocol)

back. This acknowledgement message is dispatched after receiving new data. In this

way the BIM board knows data already sent was well received and can proceed to

send the next one.

Figure 18. Data sent over SPI

6.2 Communication protocol over UART

Basically this protocol works the same way as the protocol for SPI. The change is that

the acknowledgment now is not sent back.

There are two modes, write and read, basically, both protocols have the same structure

but in different ways.

 BIM 13X Arduino UNO

Figure 19. Sequence diagram of

the communication protocol over FT12.

Command Object Num_butes Value_Object

1 byte 1byte 1byte 1bye

Command

Object

num_bytes

Time

Value of the object

ACK

ACK

ACK

ACK

 24

7 Proof of concept

Physical connection between BIM board and PC

BIM M13x (bus interface module) is a module composed of a microcontroller NEC78K0

/ Kx2 containing in its memory API to communicate the KNX bus transceiver

associated with a TP-UART. The transceiver will fit the voltage levels between the card

and the KNX bus. BIM M13x modules comply with the KNX specification.

The evaluation board is programmed via the intermediary of MINICUBE2 from the IAR

Embedded System software. This allows the application developer to use the IAR tool,

which includes powerful debugging tools. All these development tools have been

installed on a virtual machine of Windows 7.

Evaluation board (EVB) is used to write the code for any application. EVB has the

largest memory of any of the BIM chips. This provides the option of writing the code

without memory restrictions and then choosing the correct BIM to put in the installation.

Memory restrictions of every BIM are in the figure below.

BIM Microcontroller Flash

M130 78F0534 8Kbyte for approx. 40 communication objects

M131 78F0535 16Kbyte for approx. 100 communication objects

M132 78F0537 48Kbyte for approx. 250 communication objects

M135 BIM M130 with extended temperature range -25 to +70°C

Figure 19. BIM M13x Bus interfaces modules

It is necessary assemble correctly all BIM software. It has to be done as it is shown in

the figure below.

Figure 20. How to connect BIM system.

Before making the physical connection, all running software must be installed before.

Firstly EVB must be connected to MINICUBE2. Although in the documentation

provided by the manufacturer it is said the external oscillator must be removed from the

connection. The 20 MHz external oscillator must be mounted.

 25

Figure 21. Oscillator mounted.

In the following figure it is presented how KNX-bus (which also powered the board) and

the connector from the MINICUBE2 must be mounted on EVB.

Figure 22. EVB connections

 26

Software

Here is represented a small guide about how to get started with the software used on

the KNX part.

Two programs are used to make this project work:

- BimTools: used mainly to create the communication objects.

- IAR Embedded Workbench: have compiler and debugger functions to develop

the code required.

Arduino is programmed on Arduino specific software, explained in paragraph 3.

1. BIM Tools

Once the program is running the next step is create the communication objects

required on a particular project.

- Firstly, “BIM Wizard”, which is situated in the toolbar of the bottom, should be

clicked.

- After that the screen in the figure below appears. We have to specify which

kind of BIM board we want to be programmed. In this case it is the BIM M132

board. Once this is decided, the location and the name of the project want to be

created have to be inserted. After that, to continue press on “Next”.

Figure 23. BIM Wizard screen. Location

 27

- Now it is time to declare how many communication objects are needed in our

project and which kind of data is each. For that task, only the name of the object

in the corresponding box and specified on the dropdown menu the kind of data

can be selected. In our project the kind of data will be “UINT1” because of the

addresses of the communication object are stipulate on one byte.

If more communication objects are necessary, select the green cross (menu options) to

add them. For continuing select “Next”.

Figure 24. BIM Wizard screen. Objects.

- After that a new screen appears, but in this screen it is not necessary change

anything. Just select “Create”.

 28

Figure 25. BIM Wizard screen. Entries.

- Now, the project is created. That means that in the folder specified a few default

documents necessary for star to program on “IAR Embedded Workbench”

appear.

[15] p.2

2. IAR Embedded Workbench

Once the project was created by BIM Tools we can start working on the code on IAR

Embedded Workbench.

Firstly we have to open the Workspace of what is wanted to work. For that the following

sequence must be done: File-> Open-> Workspace and then select the file with *.eww

extension.

 29

Figure 25. IAR Embedded Workbench.

Before starting the programming, the properties of debug operations must be set. For

that task, we can follow the Getting started paper of BIM at its paragraph “1.5. Set BIM

M13 Debug Operating System”

Figure 26. IAR Embedded Workbench space of work.

After that, the project has to be “Make” before it can be charged into BIM tool.

If previous steps were successful we just have to “Download and Debug” our code.

 30

Figure 27. Toolbar for debugging and uploading code.

Once the code was debugged and downloaded, it is time to make it running handling

the following toolbar.

Figure 28. Toolbar for running code.

[15] p. 3-4

3. Arduino software

Arduino UNO is programmed on specific software. It is very simple and intuitive to use.

After writing the code it is necessary to compile it by selecting the “Verify” button

representing in the figure below.

If the code was correctly compiled, it is required to upload it into the microcontroller.

For that it is necessary to select the type of the microcontroller used. This is done on:

Tools -> Board-> Arduino Uno.

Compile

Make

Toggle

Breakpoint
Download and

Debug

Reset
Break

Step over

Step into

Step into

Next

statement

Run to cursor

Go

Stop

debugging

 31

And also the USB port where the Arduino is connected: Tools -> Serial Port-> COM XX

Now the code can de uploaded into the board by selecting the bottom “”Upload”

represented in the figure below too.

Figure 29. Arduino Software.

Compile

Upload

 32

7.1 Arduino Uno Code

In this project Arduino microcontroller has to read data which is dispatched over SPI or

UART from the BIM board although it can be done on the other way.

That data is information read from different sensors in the Smart Home. It has to read

correctly the information dispatched, save it and show it properly

Besides this, the communication can happen in the opposite direction, dispatch data to

make the actuators change their state.

According to the protocol developed in the paragraph 6, Arduino receives three data

(command, object and value_obj) over SPI or UART and sends back the byte 0x01 as

confirmation that the previous data were correctly received.

7.2 BIM 13x Code

One of the goals of the BIM 13x part is to recognize when a Communication object

changes and what is its new value.

To make this task possible, every communication object is checked one by one. If one

of them is changed, the value for both is changed, the object and its new value are sent

over SPI or UART to Arduino UNO. Every value is sent after receiving a conformation

from Arduino indicating the preceding data was sent successfully.

The second part is to read information sent from Arduino Uno and interpret it to make

any actuator change to its value.

7.3 Function modes

As was mentioned before, there are two function modes on this project which involve

different utilities.

The first one is “Write Mode”; in this mode KNX send, via BIM board, to Arduino

information related to the state of the different objects of communication. This mode

has a command associated which length is one byte. This command has the following

format:

1 0 0 0 X X X X

The second mode sent from Arduino to KNX, via BIM, information related to the state

of any different objects. This mode has also a command that define this mode and has

the following shape:

0 0 0 0 X X X X

ID Object

ID Object

 33

Start

Initialize

variables

i=0

Num_bytes

>=1

NO

Object ‘i’

changed?

YES

Object 0 Object 1 … Object 34

Assigns correct

values to

variables:

command ,

object,

num_bytes,

value_object

Assigns correct

values to

variables:

command ,

object,

num_bytes,

value_object

Assigns correct

values to

variables:

command ,

object,

num_bytes,

value_object

…

command=0x80|object;

value_obj_1 =value_obj >> 8;

value_obj_2 =value_obj >> 16;

value_obj_3 =value_obj >> 24

value= value_obj;

value_1=value_obj_1;

value_2=value_obj_2;

value_3=value_obj_3;

YES

Send command over SPI

wait 20 ms

Send object over SPI

wait 30 ms

Send num_bytes over SPI

wait 20 ms

i <=

NUM_OF_COM

_OBJ

Send value over SPI

wait 30 ms

YES

Num_bytes

>=2

Send value_1 over SPI

wait 30 ms

YES

Num_bytes

>=3

Send value_2 over SPI

wait 30 ms

YES

Num_bytes

==4

Send value_3 over SPI

YES

i=i+1

NO

NO

NO

NO

SPI write Mode

BIM code

 34

SPI write Mode

ARDUINO code
Start

Initialize serial

communication

Initialize

variables

Read command

over SPI

SS

==LOW

NO

YES

Read object

over UART

Read num_bytes over

UART

YES

Read value_obj over SPI

wait 20 ms

Read value_obj_1 over SPI

wait 20 ms

Num_byte

>=1

YES

Num_byte

>=2

YES

Read value_obj_2 over SPI

wait 20 ms

Num_byte

>=3

YES

Read value_obj_3 over SPI

wait 20 ms

Num_byte

==4

Display value of the

object depending on

its byte size.

NO

NO

NO

NO

 35

UART write Mode

BIM code

Funtions

object_change_send_data()

Start

Initialize

variables

i=0

Num_bytes

>=1

NO

Object ‘i’

changed?

YES

Object 0 Object 1 … Object 34

Assigns correct

values to

variables:

command ,

object,

num_bytes,

value_object

Assigns correct

values to

variables:

command ,

object,

num_bytes,

value_object

Assigns correct

values to

variables:

command ,

object,

num_bytes,

value_object

…

command=0x80|object;

value_obj_1 =value_obj >> 8;

value_obj_2 =value_obj >> 16;

value_obj_3 =value_obj >> 24

value= value_obj;

value_1=value_obj_1;

value_2=value_obj_2;

value_3=value_obj_3;

YES

Send command over UART

wait 200 ms

Send object over UART

wait 200 ms

Send num_bytes over UART

wait 200 ms

i <=

NUM_OF_COM

_OBJ

Send value over UART

YES

Num_bytes

>=2

Send value_1 over UART

wait 200 ms

YES

Num_bytes

>=3

Send value_2 over UART

wait 200 ms

YES

Num_bytes

==4

Send value_3 over UART

wait 200 ms

YES

i=i+1

NO

NO

NO

NO

 36

UART write Mode

BIM code Start

Initialize

variables

Object_change_send_data()

Data=RXB0

STATE ==

TRUE

YES

Count==1 Count==2 Count==3

Command

=data

Object

=data

num_bytes

=data

value_rcv=data

num_bytes>

=1 &

count==4

YES

 count=0
final_value_rcv=value_
rcv

num_bytes

==1

YES

NO

value_rcv_1=data

num_bytes>

=2 &

count==5

YES

count=0;

final_value_rcv
=(value_rcv<<8
)+value_rcv_1;

num_bytes

==2

YES
NO

value_rcv_2=data

num_bytes>

=3 &

count==6

count=0;

final_value_rcv=
(value_rcv<<16) +
(value_rcv_1<<8)+
value_rcv_2;)+value_
rcv_1;

num_bytes

==3

YES

YES NO

NO

NO

NO

 37

value_rcv_3=data

num_bytes>

=4 &

count==7

count=0;

final_value_rcv
=(value_rcv<<8
)+value_rcv_1;

YES

Change state of the

communication

object specified
void int_UART_RX(void)

Start

 BYTE c;
 c = RXB0;
 STATE=TRUE;
 count++;

 38

UART Mode_Write

ARUDINO code

Start

Initialize serial

communication

Initialize

variables

Read command

over UART

Display

command

command

arriving

NO

YES

Read object

over UART

Display

object

object

arriving

NO

YES

Read num_bytes over

UART

Display

num_bytes

num_bytes

arriving

NO

YES

Read object

over UART

data

arriving

NO

YES

data

arriving

NO

Read value_obj

over UART

[1] [2]

 39

z

Num_byte

>=2

data

arriving

NO

YES

Read value_obj_1

over UART

Num_byte

>=3

Data

arriving

NO

YES

Read value_obj_2

over UART

Num_byte

==4

Data

arriving

NO

YES

Read value_obj_3

over UART

YES

YES

Display value of the

object depending on

its byte size.

[1]
[2]

 40

UART Mode_READ

ARUDINO code

Start

Initialize serial

communication

Initialize

variables

Read command from PC

Send commant to BIM

Display

command

command

arriving

Read object from PC

Send object to BIM

Display

object

Read command from PC

Send commant to BIM

Display

command

command

arriving

object

arriving

Read num_bytes from PC

Send num_bytes to BIM

Display

num_bytes

Num_byte

s arriving

Display

value_obj

num_bytes

arriving

num_bytes

>=1

Read value_obj from PC

Send value_obj to BIM

[1]

 41

z

Num_byte

>=2

data

arriving

NO

YES

Num_byte

>=3

Data

arriving

NO

YES

Num_byte

==4

Data

arriving

NO

YES

YES

YES

Display value of the

object depending on

its byte size.

[1]
[2]

Read value_obj_1 from PC

Send value_obj_1 to BIM

Read value_obj_2 from PC

Send value_obj_2 to BIM

Read value_obj_2 from PC

Send value_obj_2 to BIM

 42

UART main

ARUDINO code

Start

Initialize serial

communication

with BIM and PC

Receive

from from

PC

Read data

Mode_read();

Receive

from from

BIM

Read data

Mode_read();

YES

YES

NO

 43

7.4 Results

As a result of the developing of everything exposed in this memory, the following

results were found:

On the BIM part:

- Send data to Arduino related to a specified communication object (available on

SPI and UART communication). For prove this is working see figure 31.

- Receives data from Arduino about a concrete communication object and

change its state value on KNX. (available only on UART communication)

Figure 30. Prove communication from Arduino to BIM

On the Arduino part:

- Receives data from BIM and it can be seen in a “Monitor Serial” (available on

SPI and UART communication). In this figure it is implemented only for one

byte, but it can be done for one to four bytes.

 44

Figure 31. Prove communication from BIM to Arduino

- Sends data that it is introduced on “Monitor Serial and” (available only in

UART communication)

Figure 31. Prove communication from Arduino to BIM

 45

8 Conclusion

Sometimes it is important to have a well regulated home automation system and make

the state known by the user. And also make possible for the user to change the state of

the system if that is desired. This project has focused on completing those two tasks.

Communication between Arduino and KNX is done via SPI or UART (the most used).

In this process both microcontrollers exchange useful data for the system.

As result, Arduino can know the values of the communication objects in KNX and

change the state of some of them.

 46

A Abbreviation

BIM Bus Interface Module

CPOL Clock Polarity

DORD Data Order

EEPROM Electrically Erasable Programmable

Read-Only Memory

I/O Input/output

KNX Konnex

LSB Less Significant Bit

MISO Master In/Slave Out

MOSI Master Out/Slave In

MSB Most Significant Bit

MSTR Master/Slave Select

PL Power line

PWM Pulse Width Module

RF Radio Frequency

SCK or SCLK Serial Clock

SPCR SPI Control Register

SPDR SPI Data Register

SPE SPI Enable

SPHA Clock Phase

SPI Serial Peripheral Interface

SPIE SPI interrupt Enable

SPIF SPI interrupt Flag

SPR SPI Clock Rate Select

SPSR SPI Status Register

SS Slave Select

TP Twisted Pair

UART Universal Asynchronous Receiver and

Transmitter

WCOL Write COLlision Flag

 47

B Bibliography

[1] C. Steiner, 2005, The 8051/8052 Microcontroller. Architecture,Assembly

Language and Hardware Interfacing, Chapter 20. (page 261)

[2] R. Anderson, D. Cervo, Pro Arduino. Arduino expert topics and techniques

[3] Arduino website, Products-Arduino-Arduino Uno

Available: http://arduino.cc/en/Main/ArduinoBoardUno [Accessed: 25.10.2014]

[4] Atmel. Datasheet: ATmega48PA/88PA/168PA/328P, 10/2014

[5] Knx website, Available: www.knx.org [Accessed: 17.11.2014]

[6] H. Merz, T. Hansemann, C.Hübner, Building Automation. Communication

Systems with EIB/KNX, LON, and BACnet. 2009. Chapter 6

[7] KNX Communication - KNX Association. KNX Basic Course.

Available: http://www.knx.org/media/docs/KNX-Tutor-files/Summary/KNX-

Communication.pdf [Accessed: 18.11.2014]

[8] Buses, Protocols and Systems for Home and Building Automation [Online]

Available:

http://www.ib.cvut.cz/sites/default/files/Studijni_materialy/SZS/Buses,%20Protoc

ols%20and%20Systems%20for%20Home%20and%20Building%20Automation.

pdf [Accessed: 18.11.2014]

[9] Building automation with KNX and BIMs. 2012

Available: http://www.endrekatona.eu/BIM_Introduction [Accessed: 10.10.2014]

[10] Building automation based on KNX-BIMs: The development tool package. 2012

Available: http://www.endrekatona.eu/BIM_Introduction [Accessed: 10.10.2014]

[11] Building automation based on KNX-BIMs: The first application program. 2012.

Available: http://www.endrekatona.eu/BIM_Application_Program

[Accessed: 10.10.2014]

[12] Building automation based on KNX-BIMs: Programming the communication

 2012.

Available: http://www.endrekatona.eu/KNX_Communication

[Accessed: 10.10.2014]

http://www.knx.org/media/docs/KNX-Tutor-files/Summary/KNX-Communication.pdf
http://www.knx.org/media/docs/KNX-Tutor-files/Summary/KNX-Communication.pdf
http://www.ib.cvut.cz/sites/default/files/Studijni_materialy/SZS/Buses,%20Protocols%20and%20Systems%20for%20Home%20and%20Building%20Automation.pdf
http://www.ib.cvut.cz/sites/default/files/Studijni_materialy/SZS/Buses,%20Protocols%20and%20Systems%20for%20Home%20and%20Building%20Automation.pdf
http://www.ib.cvut.cz/sites/default/files/Studijni_materialy/SZS/Buses,%20Protocols%20and%20Systems%20for%20Home%20and%20Building%20Automation.pdf
http://www.endrekatona.eu/BIM_Introduction
http://www.endrekatona.eu/BIM_Introduction
http://www.endrekatona.eu/BIM_Application_Program
http://www.endrekatona.eu/KNX_Communication

 48

[13] API-Reference for Bus Interface Modules M130, M131, M132 and M135. KNX-

Processors 184/01, 184/11 and 184/21. Datasheet. 03/2014

[14] Technical Data for Bus Interface Modules M130, M131, M132 and M135. KNX-

Processors 184/01, 184/11 and 184/21. Datasheet. 03/2014

[15] Getting Started for Bus Interface Modules M130, M131, M132 and M135. KNX-

Processors 184/01, 184/11 and 184/21. Datasheet. 03/2014

[16] Blum, J, 2012, Exploring Arduino: Tools and Techniques for Engineering

Wizardry. Part III.

[17] Renesas. Datasheet. 78K0/Kx2 User’s Manual: Hardware. 8-Bit Single-Chip

Microcontrollers. 07/ 2010

