
manuscript No.
(will be inserted by the editor)

Comments on: Multivariate Functional Outlier
Detection
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1 Introduction

First of all, we would like to congratulate M. Hubert, P. Rousseeuw and P.
Segaert for this very interesting and stimulating work. It is clear that func-
tional data are becoming ubiquitous in many disciplines and the development
of appropriate statistical techniques is clearly needed. Moreover, outliers are
very likely to occur in this type of data, where many measurements are taken
by applying mostly unsupervised procedures. The authors provide several tools
that can be successfully applied for detecting outliers when dealing with (even
multivariate) functional data. They are very intuitive graphical tools based on
suitable depth notions for functional data. We consider that these graphical
tools are clearly useful specially in the multivariate setting where it is virtu-
ally impossible to visualize directly data curves in order to detect anomalous
patterns.

In our comment, we will focus on explaining how trimming principles can
be also taken into account in the detection of functional outliers.

2 Trimming and functional outlier detection

Fixed a trimming level α, trimming methods try to discard the proportion
α of the “most outlying” observations in the sample. Additionally, trimming
can be seen as a way to provide some kind of depth notion in data sets. The
higher is the trimming level needed to remove an observation the higher is
its “depth”. Thus, (1 − α)-depth regions can be so defined by considering
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those observations that “survive” after applying an α proportion trimming
level. Of course, depending on the chosen trimming approach, some common
assumptions for the corresponding (1−α)-depth regions may be lost, as those
having to do with convexity or the fact that regions are nested for decreasing
α values.

Trimming ideas can also be applied when dealing with functional data.
In fact, many procedures designed to deal with functional data can be easily
adapted by including trimming in them. In this comment, we will just focus on
a very simple (and well-known) approach that relies on projecting curves onto
a space of functions generated by a functional basis {ϕ1, ..., ϕp}. When those
bases are properly chosen, this projection serves to reduce the dimensionality
and to smooth curves by removing disturbing noise. Additionally, this does
not require that curves are observed at the same evaluation points.

Given a single data curve {(tji , xi(t
j
i ))}

Ji
j=1 (result of recording curve xi at

t1i < t2i < ... < tJi
i ), we assume that

xi(t
j
i ) =

p∑
s=1

βs
i ϕs(t

j
i ) + εji , j = 1, ..., Ji, (1)

and where εji are some error terms.
Thus, by fitting n ordinary least squares regression to our n data curves

{xi}ni=1, we obtain n vectors of fitted coefficients {βi}ni=1 with βi = (β1
i , ..., β

p
i ).

For instance, cubic B-splines (with p− 4 interior knots), Fourier, (orthogonal)
polynomials, wavelets bases,... can be applied when xi are real-valued curves.
Multivariate regression in (??) and more sophisticated {ϕ1, ..., ϕp} are needed
when {xi}ni=1 are functions taking values in Rd.

From this finite-dimensional representation of the curves, we can then apply
standard trimming methods (as, for instance, the MCD or MVE) and those
trimmed βi coefficients are automatically translated into a set of trimmed xi

curves.
This trimming approach can be also applied for robust clustering. With

this in mind, trimmed k-means and cubic B-splines were considered in Garćıa-
Escudero and Gordaliza (2005). That approach with a large k value can also
provide more flexibility when trimming the {βi}ni=1 set of coefficients than the
single use of trimming based on ellipsoids (and addressing non-convexity issues
in this set).

Another possible extension of these ideas is motivated by the fact that
trimming a complete curve may be too drastic when we only have outlying
behavior during a short time interval (or only affecting few coefficients of the
chosen basis). This is the analogous to the “isolated outliers” case appearing
in the authors’ work. In this case, “cellwise” trimming (instead of “casewise”)
trimming is highly advised. This can be done by applying “snipping” trimming
methods as those described in Farcomeni (2014a, b).

Figure 1 shows a simple example illustrating the use of these trimming ideas
in a synthetic data set where a cubic B-splines basis is considered. Curves “1”
and “2” are completely trimmed ones as persistent/shift outliers and curves
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“3” and “4” are only locally trimmed (affected parts of the curves are high-
lighted by using “•” symbols). Note that we can use the terminology “local
trimming” there because, when using cubic B-splines, ϕs is only nonzero over
a span of at most five distinct knots.
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Fig. 1 Simulated functional data set and curves “fully” trimmed (1 and 2) and “locally”
trimmed (3 and 4).

The ideas presented in this comment are under current investigation and
more work is clearly needed but we firmly believe that trimming tools can be
also useful to detect outliers in functional data sets.
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