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Abstract

α-stable distributions are a wide family of probability distributions used in many
fields where probabilistic approaches are taken. However, the lack of closed analytical
expressions is a major drawback for their application. Currently, several tools have been
developed to numerically evaluate their density and distribution functions or estimate
their parameters, but available solutions either do not reach sufficient precision on their
evaluations or are too slow for several practical purposes. Moreover, they do not take full
advantage of the parallel processing capabilities of current multi-core machines. Other so-
lutions work only on a subset of the α-stable parameter space. In this paper we present a
C/C++ library and a MATLAB front-end that allows fully parallelized, fast and high pre-
cision evaluation of density, distribution and quantile functions (PDF, CDF and CDF−1

respectively), random variable generation and parameter estimation of α-stable distribu-
tions in their whole parameter space. The library provided can be easily integrated on
third party developments.
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1. Introduction

α-stable distributions are a wide family of probability distributions that allow adjustable
levels of heavy tails and skewness and include family includes Gaussian, Cauchy and Lévy
distributions as particular cases. They were first introduced by Lévy (1925). Since then,
α-stable distributions have been applied in many fields where probabilistic approaches are
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applied, such as hydrology (Mandelbrot and Wallis 1968), finances (Fama 1965; Borak et al.
2011), noise in communications channels (Arce 2005), network traffic analysis (Simmross-
Wattenberg et al. 2011) or medical image segmentation (Salas-Gonzalez et al. 2013).

The increasing interest on α-stable distributions is due, on the one hand, to the empirical
evidence that they properly describe the behavior of real data exhibiting impulsiveness or
strong asymmetries. On the other hand, the generalized central limit theorem (Samorodnitsky
and Taqqu 1994) states that the normalized sum of independent and identically distributed
(i.i.d.) random variables with finite or infinite variance converges, if it does, to an α-stable
distribution. This result provides theoretical support when the data under study can be
interpreted as the superposition of many independent sources.

The major drawback for the application of α-stable models is the lack of closed analytical
expressions for their PDF or CDF (except in particular cases), which makes the application
of numerical methods necessary to evaluate them. Besides, the non-existence of moments of
order two or higher (except in the Gaussian case) increases the difficulty in estimating their
parameters to fit real data. Several authors have addressed both the numerical evaluation
of the PDF or CDF of α-stable distributions (Nolan 1997; Mittnik et al. 1999a; Belov 2005;
Menn and Rachev 2006; Górska and Penson 2011) and the estimation of their parameters
(Fama and Roll 1971; Koutrouvelis 1980, 1981; McCulloch 1986; Mittnik et al. 1999b; Nolan
2001; Fan 2006; ?) and have proposed different methods and algorithms for these purposes
(details are discussed in section 2). Some authors also provide implementations of their
own or others’ methods, offering software solutions or packages in various common computer
languages (Nolan 2006; Veillete 2010; Liang and Chen 2013). However, some of these solutions
are not fully operational in their public domain versionsand cannot take advantage of multi-
core processors (Nolan 2006), have limited accuracy (Belov 2005; Menn and Rachev 2006) or
take too long doing computations for some practical applications (Veillete 2010; Liang and
Chen 2013).

In this paper we present a C/C++ library and a MATLAB (Inc. 2012) front-end that allows
parallelized, fast and high precision evaluation of density and distribution functions, random
variables generation and parameter estimation of α-stable distributions. The library can be
easily integrated on third party developments to be used by practitioners. Its utilization in
MATLAB is straightforward and allows taking advantage of both the high efficiency of the
compiled C/C++ code and the user friendly graphical interface and statistical tools of the
MATLAB environment.

The rest of the paper is organized as follows. In section 2, currently proposed algorithms
and methods to numerically evaluate the density and distribution functions of α-stable dis-
tributions are described, as well as reported methods to estimate their parameters. In section
3, the developed library and its functionalities are presented. The results obtained with the
library are discussed in section 4. In section 5.2, the usage the proposed library is described.
Finally, section 6 describes main conclusions and further work possibilities derived from this
work.

2. Numerical methods in α-stable distributions

Since, generally speaking, there are not closed expressions for them, α-stable distributions are
frequently described by their characteristic function Φ(t) = exp[Ψ(t)] as (Samorodnitsky and
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Taqqu 1994):

Ψ(t)=

{
−|σt|α

[
1− iβ tan

(
πα
2

)
sign(t)

]
+ iµt, α 6=1,

−|σt|
[
1 + iβ 2

π sign(t) ln (|t|)
]

+ iµt, α=1,
(1)

where

sign(t) =

 1, t > 0,
0, t = 0,
−1, t < 0.

The four parameters that govern the α-stable distributions appear in equation (1) and are
usually denoted as follows: the stability index α ∈ (0, 2], the skewness parameter β ∈ [−1, 1],
the scale parameter σ > 0 and the location parameter µ ∈ R. An α-stable distribution is said
standard if σ = 1 and µ = 0. When α = 2 the distribution becomes normal with standard
deviation σ/

√
2 and mean µ (β becomes irrelevant). The Cauchy distribution results from

setting α = 1 and β = 0 with scale parameter σ and locate parameter µ, and the Lévy
distribution when α = 0.5 and β = 1. These are the only cases for which the PDF can be
expressed analytically. In all other cases, PDF must be calculated numerically.

Next subsections discuss different methods proposed in the literature to obtain the PDF and
CDF, estimate the parameters of α-stable distributions and to generate samples of an α-stable
random variable.

2.1. Numerical computation of α-stable distributions

The PDF and characteristic function of any probability function are related via the Fourier
inversion formula given by

f(x) =
1

2π

∫ +∞

−∞
φ(t)e−itx dt =

1

2π

∫ +∞

−∞
eψ(t)−itx dt. (2)

When substituting expression (1) in (2) the resulting integral cannot be, in general, solved
analytically; therefore it must be evaluated by numerical methods. To this end, the well-
known Fast Fourier Transform (FFT) provides a fast algorithm to efficiently evaluate the
previous integral. Mittnik et al. (1999a), for instance, apply the FFT directly to calculate the
PDF. However, this approach suffers from several important drawbacks. First, the algorithm
provides the value of the integral on a set of evenly spaced points of evaluation. This is
not valid for some applications, where the PDF or CDF must be evaluated at some specific
set of points. A posterior step of interpolation is then required, which introduces additional
computational costs and reduces precision. Second, the method is only suitable for α close to
2, for which the tails of the distribution decay more quickly. When α is small, the tails decay
very slowly and the aliasing effect becomes more noticeable, thus reducing the achievable
precision. Eperimentally, the committed absolute error is in the order of 10−5, but relative
error goes as high as 10−2. Menn and Rachev (2006) propose a method based on a refinement
of the FFT to increase precision in the central part of the PDF. The tails of the distribution
are calculated via the Bergström asymptotic series expansion (Zolotarev 1986), which provides
an alternative expression as an infinite sum of decaying terms. This way they achieve relative
precision of about 10−4, but this precision strongly depends on the values of α and β and the
method is only applicable when α > 1.

Górska and Penson (2011) follow a different approach and obtain explicit expressions for the
PDF and CDF as series of generalized hypergeometric functions. However, the expressions
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involved in the calculation are expensive to evaluate and the results are only valid for some
rational values of the parameters α and β, so they are not valid for the whole parameters
space.

When compared with the FFT, direct integration of the expression in (2) by numerical quadra-
ture initially implies a higher computational cost, but evaluation can be performed at any
desired set of points without the need of additional interpolation steps and there is no restric-
tion on the values of the parameters of the distribution. This method has been implemented
by Nolan (1999)1. However when α is small the integrand oscillates very quickly and its
amplitude decays slowly along the infinite integration interval, which limits the achievable
precision although many evaluations of the integrand are used. According to the author, the
method results are valid only for α > 0.75 and it achieves a precision in the order of 10−6.
Similar results have been obtained later by Belov (2005), where the infinite integrand inter-
val is divided in two (one bounded and the other infinite) and two quadrature formulae are
applied.

In order to overcome the previous difficulties, Nolan (1997) obtains a new set of equations from
the original ones by means of a convenient analytic extension of the integrand to the complex
plane. This way, a continuous, bounded, non-oscillating integrand is obtained. Moreover, the
integration interval becomes finite. The expressions obtained allows the author to achieve, by
numerical quadrature, a relative accuracy in the order of 10−14 in most of the parameter space.
For numerical convenience, a slight different parametrization of the distribution is employed,
based on Zolotarev (1986) M parametrization . The modification introduced consists in a shift
of the distribution along the abscissa axis in order to avoid the discontinuity of the distribution
at α = 1. In this paper, we denote the change in parametrization by the subindex 0 and the
resulting characteristic function is given by Φ0(t) = exp[Ψ0(t)] where

Ψ0(t)=

{
−|σt|α

[
1+iβtan

(
πα
2

)
sign(t)

(
|σt|1−α−1

)]
+iµ0t, α 6=1,

−|σt|
[
1+iβ 2

π
sign(t) ln (|σt|)

]
+iµ0t, α=1.

(3)

The parameters α, β and σ keep their previous meaning while the original and modified
location parameters µ and µ0 are related according to

µ =

{
µ0 − β tan

(
απ
2

)
σ, α 6= 1,

µ0 − β 2
πσ ln(σ), α = 1.

(4)

With this modification, the resulting distribution is continuous in its four parameters, which
is convenient when estimating the parameters of the distribution or approximating its PDF
or CDF.

2.2. Parameter estimation of α-stable distributions

As previously explained, the lack of closed expressions for the PDF or CDF of α-stable dis-
tributions implies a major drawback to estimate their parameters. Therefore, the technique
employed for the estimation usually rely on numerical evaluations of these functions or, al-
ternatively, are based on other characteristics of the distributions.

Several methods can be found in the related literature. Hill (1975) proposes the estimation
of the α parameter by linear regression on the right tail of the data empirical distribution.

1Although finally published in 1999, this article is already cited in Nolan (1997) as a ”to appear in” reference,
so the described software therein is earlier to 1997
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However, in many practical cases the method is not applicable because of the high number of
samples needed to detect the tail behavior.

McCulloch (1986) proposes an algorithm to estimate the four parameters of the α-stable dis-
tribution simultaneously from sample quantiles and tabulated values. The resulting estimator
has a very low computational cost but a low accuracy as well. However, it can be conveniently
used as an initial estimation for other methods.

Koutrouvelis (1981) departs from the empirical characteristic function to, by means of recur-
sive linear regressions on its log-log plot, obtain estimators for α and σ in a first step and for
β and µ on a second one. The method implies a higher computational cost than the quantile
method, but yields more accurate results.

Maximum Likelihood (ML) estimation is considered the most accurate estimator available for
α-stable distributions (Borak et al. 2011). However, numerical methods to both approximate
the PDF and to maximize the likelihood of the sample must be used, which implies a very high
computational cost due to the numerous PDF evaluations required to maximize the likelihood
in the four-dimensional parameter space. However, increasing computer capabilities and the
use of precalculated values of the PDF allows the application of this method on certain
applications (Nolan 2001).

2.3. Generation of α-stable random variables

Given the lack of closed expressions for the CDF or its inverse (the quantile function), the
simulation of α-stable distributed random variables cannot be achieved easily from a uniformly
distributed random variable. Chambers et al. (1976) provided a direct method to generate
an α-stable random variable by means of the transformation of an exponential and a uniform
random variable. The method proposed lacks theoretical demonstration until Weron (1996)
gave an explicit proof and slightly modified the original expressions. The resulting method is
regarded as the fastest and the most accurate (Weron 2004).

Based on the methods described so far, currently several software tools are available. The
program STABLE (Nolan 2006) employs Nolan’s expressions (Nolan 1997) for the high pre-
cision computation of PDF, CDF and quantile function and maximum likelihood parameter
estimation. However, a fully operational version of the software is not publicly available.
Veillete (2010) has developed a MATLAB package that also applies Nolan’s expressions for
high precision PDF and CDF evaluation and Koutrouvelis (1981) method for parameters esti-
mation based on the characteristic function. However, the performance obtained is low when
trying to achieve high precision or when fitting a large data sample. A package with similar
features and characteristics has been reported by Liang and Chen (2013).

3. Algorithms and implementation

One purpose of the proposed library is to have a fast and accurate tool to numerically evaluate
the PDF and CDF of α-stable distributions. From the previous study, it may be concluded
that those methods that employ Nolan’s expressions gives the most accurate results. There-
fore, the developed library makes use them as well. However, these expressions have some
aspects than must be addressed. Firstly, the mathematical expressions involved in the cal-
culation are, in computational terms, expensive to evaluate. In second place, although the
integral involved in the calculations (a convenient transformation of equation (2) has some
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desirable properties, it is generally hard to approximate. Therefore some strategies have to
be elaborated in order to evaluate it accurately and efficiently.

3.1. Fast and accurate evaluation of Nolan’s expressions

Nolan’s expressions allow to calculate the PDF of a standard α-estable distribution with α 6= 1
as

fX(x;α, β) =



α

π(x− ζ)|α− 1|

∫ π/2

−θ0
hα,β(θ;x) dθ x > ζ

Γ(1 + 1
α) cos(θ0)

π(1 + ζ2)
1
2α

x = ζ

fX(−x;α,−β) x < ζ

(5)

where

ζ(α, β) = −β tan
(πα

2

)
θ0(α, β) =

1

α
arctan

(
β tan

(πα
2

))
hα,β(θ;x) = (x− ζ)

α
α−1 Vα,β(θ)e−(x−ζ)

α
α−1 Vα,β(θ)

Vα,β(θ) = (cos(αθ0))
1

α−1

(
cos(θ)

sin(α(θ0 + θ))

) α
α−1 cos(αθ0 + (α− 1) θ)

cos(θ)

(6)

When α = 1, the definition of the expressions changes to

fX(x; 1, β) =



∫ π/2

−π
2

h1,β(θ;x) dθ β 6= 0

1

π(1 + x2)
β = 0

(7)

where

h1,β(θ;x) = e
−πx

2β
V1,β(θ)

V (θ; 1, β) =
2

π

( π
2 + βθ

cos(θ)

)
e

1
β

(π
2

+βθ) tan(θ)
(8)

It is worth noticing that the change in the definition of the expressions above does not imply a
discontinuity in the PDF when α = 1. It can be demonstrated that the expressions for α 6= 1
tend to those for α = 1 when the stability index approaches to that value. For no standard
distributions, the PDF is calculated for the corresponding standard one (σ = 1 and µ0 = 0)
and then properly scaled and displaced according to

fX(x;α, β, σ, µ0) = 1
σfX

(x−µ0
σ ;α, β

)
FX(x;α, β, σ, µ0) = FX

(x−µ0
σ ;α, β

) (9)
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Figure 1: Integrand function h1.5,0.5(θ;x) for various values of x in linear (top) and logarithmic
(bottom) scales. As x grows, most of the area under the curve gets concentrated in a narrow
peak close to one extreme of the integration interval.

In figure 1 the function hα,β(θ;x) to be integrated is represented both in linear and logarithmic
scales.As the point of evaluation x of the PDF increases, the integrand becomes closer and
closer to a singular peak that concentrates most of the area under it. The same behaviour
occurs when x tends to ζ. The numerical method employed to evaluate the integral can, on
the one side, miss this peak and underestimate the integral and, on the other side, employ
most of the evaluations of the integrand at regions of the integration interval where it takes
very low values that contribute marginally to the final value of the integral increasing run
time. In order to concentrate the evaluations there where they are more relevant, the integral
is divided as represented in figure 2. Before integrating, the peak of hα,β(θ;x) is located
numerically. Then, a symmetric interval around the peak where the integrand holds above a
determined threshold is defined. The value of the threshold depends on the accuracy required
to evaluate the integral. This required accuracy can be easily adjusted by the user.

With the interval of integration properly divided, a first approximation to the final value of the
integral is obtained in the interval around the peak by applying Gauss-Kronrod quadrature
formulas (Press et al. 1994). Finally, the area under the rest of the integration interval is
calculated. Since an initial estimation of the final value of the integral is available already,
the area in these subintervals can be approximated only with necessary precision according
to its contribution related to the first approximation obtained or even neglected, avoiding
its calculation. As a result, the number of evaluations needed to approximate the integral
decreases improving run time.

When calculating the CDF, a similar approach is followed. In this case, the maximum of the
integrand is always in one extreme of the integration interval (see Nolan (1997) for details on
the expressions involved), so there is no need to find it numerically. To calculate the quantile
function, the CDF is numerically inverted. A initial guess of the value of the function is
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Figure 2: Subdivision of the integration interval in linear (top) and logarithmic scales (bot-
tom). The maximum of the integrand (θmax) and points for which h1.5,0.5(θ;x) croses a
threshold ε (θ1, θ2) are located. Then, a symmetric interval around θmax is detemined (θ3).
In this example α = 1.5, β = 0.5 and x = 6.

obtained by interpolation over tabulated CDF values and then a root finding algorithm is
applied. Routines employed for numerical quadrature and root finding are supplied by the
GNU Scientific Library (GSL) (Galassi et al. 2009).

3.2. Parallelization of the workload

The evaluation the PDF, CDF or CDF−1 at one point is completely independent from the
evaluation at a different point. Besides, in practical applications it will be required to evaluate
the functions in several points, as when estimating the α-stable parameters of given data with
a method based on the PDF or CDF of distribution. Therefore, the evaluation at different
points can be done in parallel. When called, the library functions distribute the points of
evaluation between several threads of execution. The number of available threads of execution
can be fixed manually or automatically determined. When computation finishes, the results
are gathered together. Parallelism has been implemented using Pthreads (Barney 2011), that
allows fine control on the threads creation and execution. The distributions can be calculated
in the original parameterization with characteristic function given by equation (1) or in the
modified one following equation (3).

3.3. Parameter estimation and random variable generation

Four different methods of parameter estimation of α-stable distribution are available in the
library. First, the McCulloch’s method (McCulloch 1986) allows very fast parameter estima-
tion, at the cost of lower accuracy. Second, the iterative Koutrouvelis method based on the
sample characteristic function (Koutrouvelis 1981) produce better estimations with longer
execution times. Third, maximum likelihood can be directly used. However, the elevated
computation cost of both numerical evaluation of the PDF and maximization in the four-
dimensional parameter space makes this method very slow when sample size is large. For
these cases, a modified ML approach is implemented, in which the maximization search is
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only performed in the 2-D α-β space. On each iteration of the maximization procedure, σ
and µ are estimated with McCulloch’s algorithm according to current α, β estimations.

The CMS method modified by Weron is used to simulate α-stable random variables. To this
end, a high quality uniform random numbers generator provided by the GSL is employed.

4. Results and performance

In this section, the results obtained by the developed library are exposed and discussed. The
analysis is focused on the precision and performance obtained when evaluating the PDF, CDF
of α-stable distribution.

4.1. Precisison results

Since no tabulated values for these function are available with enough precision in the liter-
ature, errors are measured against the numerical results provided by the program STABLE,
which has been used frequently in the literature as ground truth (Belov 2005; Weron 2004;
Menn and Rachev 2006). Error is expressed in relative terms and measured for different val-
ues of the parameters α and β. The parameters σ and µ are fixed to 1 and 0. The abscissa
axis is divided in several intervals and each interval is subdivided in an evenly distributed set
of points. Errors committed inside each interval are averaged. This way, the behavior at the
tails and in the central region of the distribution can be analyzed independently. The data
obtained for a set of α and β values is presented in tables 1 and 2 for the evaluation of the PDF
and CDF, respectively. The precision obtained both at the tails and at the central part of the
distribution is fairly high, being in many cases close to the hardware precision limit employed
in the calculations (about 10−16). The data obtained for a thinner sweep of the parameters
is summarized in figure 3. The data has been smoothed for convenient visualization with a
median filter of size three. When α < 1, the results obtained are in practice equivalent to
those obtained by the program STABLE. When α gets close to 1, the error increases. In fact,
Nolan’s expressions become singular and hard to integrate when α tends to one. However,
given the small relative error measured and the lack of exact values of the distribution, we
cannot determine witch software (the program STABLE used as reference or the proposed
library) is in fact deviating from the true values of the distribution. The error increases also
as α approaches to two (the gaussian case). This can be due to the faster decaying of the
tails of the distribution, therefore small absolute differences in the values obtained translate
into higher relative errors measured. Despite this, relative error stays in the order of 10−13.

4.2. Performance results

The performance of the library is measured as the number of evaluations of the PDF or CDF it
can execute per unit of time. To measure it, for a set of α and β values, 100 calls to the library
have been done, with 10000 evaluations of the PDF or CDF per call. The measurements are
repeated setting the required precision to different values. Results are compared with those
obtained with two available alternatives that achieve comparable precision: the program
STABLE and Veillete’s MATLAB functions. The tests have been performed in a machine with
four Quad-Core AMD Opteron(tm) Processor 8350 (16 cores in total) with a CPU frequency
of 2.0GHz.
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α β
x-axis interval

[−1000,−10) [−10, 10) (10, 1000]

0.25
0 7.1·10−16 6.5·10−16 7.1·10−16

0.5 1.5·10−15 1.0·10−15 6.9·10−16

1 −− 9.8·10−16 6.5·10−16

0.5
0 9.7·10−16 7.2·10−16 9.7·10−16

0.5 1.5·10−15 8.9·10−16 8.6·10−16

1 −− 8.9·10−16 7.2·10−16

0.75
0 3.7·10−15 8.1·10−16 3.7·10−15

0.5 7.5·10−15 1.1·10−15 2.6·10−15

1 −− 7.4·10−14 2, 2·10−15

1
0 6.4·10−16 7.1·10−16 6.4·10−16

0.5 6.7·10−13 2.0·10−15 8.1·10−13

1 −− 7.7·10−13 3.5·10−13

1.5
0 2.4·10−13 1.3·10−15 2.4·10−13

0.5 2.3·10−13 1.3·10−15 1.8·10−13

1 −− 4.3·10−13 7.9·10−14

Table 1: Relative error committed in the calculation of the PDF.

α β
x-axis interval

[−1000,−10) [−10, 10) (10, 1000]

0.25
0 6.0·10−15 1.4·10−15 7.1·10−16

0.5 1.2·10−14 2.2·10−15 7.7·10−16

1 −− 1.2·10−15 8.4·10−16

0.5
0 2.3·10−14 1.6·10−15 6.5·10−16

0.5 4.0·10−14 2.2·10−15 6.6·10−16

1 −− 6.4·10−16 2.7·10−16

0.75
0 8.5·10−14 1.8·10−15 6.3·10−16

0.5 1.6·10−13 2.7·10−15 6.3·10−16

1 −− 2.5·10−13 6.8·10−16

1
0 2.4·10−15 4.7·10−16 2.4·10−16

0.5 6.0·10−13 4.7·10−16 2.4·10−16

1 −− 5.7·10−14 1.8·10−13

1.5
0 8.1·10−13 2.2·10−15 8.1·10−16

0.5 6.2·10−13 2.7·10−15 8.1·10−16

1 −− 2.4·10−14 5.9·10−16

Table 2: Relative error committed in the calculation of the CDF.
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Figure 3: Averaged relative error committed in the calculation of the PDF (top) and CDF
(bottom) of a standard α-stable distribution.

Performance measurements obtained for α = 0.75 and β = 0.5 are presented in figure 4.
Results for other values of the parameters exhibit the same behavior, up to a scale factor.
When moderate errors are tolerable, Veillete’s MATLAB functions achieve a performance
higher than the one of both program STABLE and the C/C++ library developed. This
can be explained by the simpler quadrature method employed. However, when precision
requirements increase, the performance of the MATLAB solution quickly decreases becoming
much slower than the rest of methods, where performance is not so severely penalized. The
more precise quadrature method and the strategy of integration followed can explain this
behavior.

When using just one execution thread, the proposed library outperforms the program STABLE
by a factor of ∼1.5 for the evaluation of the PDF, although similar results are obtained when
evaluating the CDF. Finally, the parallel capability of the C/C++ library clearly outperforms
the program STABLE when multiple processing cores are available (as is often the case in
modern machines). For the CDF, the increase in performance with respect to the program
STABLE is approximately equal to the number of threads used. In the case of the PDF, this
increase is higher given the superior performance with one execution thread.

The results presented in figure 4 allows to estimate the to what extent the proposed library is
able to parallelize the workload. According to the Amdahl’s law ? the performance improve-
ment obtained as a function of the number of execution threads used is given by

GN =
1

1− p
+

p

N
(10)
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Figure 4: Performance of the calculation of PDF and CDF vs. required precision for various
numbers of threads of execution compared with two availible solutions. Median values and
95% confident intervals are represented.

where N is the number of threads and 0 < p < 1 represent the portion of the workload that
has been parallelized.

By numerically fitting the curve given by equation (10) as a function of N to the data
represented in figure 4, a estimation of the parallel fraction p is obtained. Results are shown
in table 3, with p between 0.94 (94%) and 0.98 (98%) depending on the value of α and β.

PDF CDF

α = 0.75
0.98 0.98

β = 0.5

α = 1.5
0.94 0.98

β = 0.5

Table 3: Fracciones de paralelismo del método paralelo estimadas para los valores de α y β
indicados.

5. Usage of libstable

5.1. Compiling the library

The developed library can be easily compiled from the source code with the make command.
Libstable depends on several numerical methods provided by the GSL, which must be installed
in the system. After compilation, both shared (libstable.so) and static (libstable.a)
versions of the library are produced. Several example programs to test the main functions of
the library are also provided and compiled against the static version of the library by default.
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Further documentation on the library functions can be find within the library distribution.

5.2. Usage in C/C++ developments

The next example program (example.c) illustrates how to use libstable to evaluate the PDF
of an α-stable distribution with given parameters and with 0 parameterization at a single
point x:

#include <stdio.h>

#include <stable_api.h>

int main (void)

{

double alpha = 1.25, beta = 0.5, sigma = 1.0, mu = 0.0;

int parame = 0;

double x = 10;

StableDist *dist = stable_create(alpha,beta,sigma,mu,param);

double pdf = stable_pdf_point(dist,x,NULL);

printf("PDF(%g;%1.2f,%1.2f,%1.2f,%1.2f) = %1.15e\n",

x,alpha,beta,sigma,mu,pdf);

stable_free(dist);

return 0;

}

The output of one execution of the example is:

PDF(10;1.25,0.50,1.00,0.00) = 3.225009046591384e-03

Compiling and linking

If libstable header files and compiled library are not located on the standard search path of
the compiler and linker respectively, their location must be provided as command line flag to
compile and link the previous program. The program must also be linked to the GSL and
system math libraries. Typical commands for compilation and static linking of a source file
example.c with the GNU C compiler gcc is

$ gcc -I/path/to/headers -c example.c

$ gcc example.o /path/to/libstable/libstable.a -lgsl -lgslcblas -lm

When linking with the shared version of the library, path to libstable.so must be provided
to the system’s dynamic linker, typically by defining the shell variable LD_LIBRARY_PATH. The
path to the shared library must also be provided when linking the program:

$ gcc -L/path/to/libstable example.o -lgsl -lgslcblas -lm -lstable

Setting general parameters

Some general parameters can be adjusted on the library, such as precision required or available
number of threads. This parameters are stored as global variables that can be read and
modified with given functions described at continuation.

In multi-core systems, the number of threads of execution used by the library can be set and
read by
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stable_set_THREADS((unsigned int) THR);

unsigned int THREADS = stable_get_THREADS();

Example program illustrates the use of main features of \pkg{libstable}. In first place, an $\alpha$-stable distribution is created with desired parameters. Once created, the distribution parameters can be easily changed:

\begin{Code}

stable_setparams(dist,alpha,beta,sigma,mu,param);

When generating random samples, the function

stable_rnd_seed(dist,seed);

initializes internal random generator can be initialized to a desired seed. This allows to
reproduce results across different executions.

5.3. Usage in MATLAB environment

6. Conclusions

In this paper, a C/C++ library and MATLAB front-end to work with α-stable distributions
have been presented. The method of evaluation of the PDF, CDF and quantile function
provided achieves a high precision, in most cases in the same order of magnitude than the
widely acknowledged ground truth STABLE program. Based on the methods provided by the
library, maximum likelihood and other estimation techniques based on the PDF can also be
realized in reasonable times. If desired, less accurate estimates can also be obtained with
much less time consumed.

The library developed implements parallelization techniques to carry out its computations.
Hence, it can take full advantage of current multi-core systems. Besides, the use of appro-
priate quadrature techniques and strategies of integration allow to achieve an increment in
performance with respect to current reference software when calculating the PDF with just
one thread. As an example, when 16 threads of execution are available, a 25 fold increase in
performance is achieved respect to current program STABLE (Nolan 2006) for PDF evaluation
on the same machine.

Since the tools provided are in library form, they can be easily integrated in third party
developments. The front-end provided allows to easily use the library from the user friendly
graphical interface of the MATLAB (Inc. 2012) environment without appreciable loss of effi-
ciency.
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