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Introducción

Es un hecho bien conocido que las series divergentes aparecen de manera natural en nu-

merosos problemas relacionados con las ecuaciones funcionales, aunque estos problemas in-

volucren exclusivamente series convergentes. Quizás uno de los primeros ejemplos, histórica-

mente hablando, es el que proporciona L. Euler en su tratado De seriebus divergentibus [E].

En este art́ıculo, L. Euler estudia, entre otras cosas, la serie numérica

1− 1! + 2!− 3! + 4!− 5! + · · · =
∞∑
n=0

(−1)nn!, (0-1)

que llama serie hipergeométrica de Wallis. Para ello, propone hasta cuatro métodos diferen-

tes de sumación, entre ellos

1. Una iteración de las llamadas hoy transformaciones de Euler y el cálculo de la “suma

hasta el menor término”,

2. La introducción de un parámetro x adicional, lo cual nos lleva a considerar la serie de

potencias

x− x2 + 2x3 − 6x4 + 24x5 − 120x6 + · · · =
∞∑
n=0

(−1)nn!xn+1, (0-2)

que llamaremos serie de Euler y que resulta ser una solución de la ecuación diferencial

lineal

x2y′(x) + y(x) = x,

resoluble por variación de constantes. La solución de esta ecuación, evaluada en x = 1,

permite atribuir un valor a la suma de (0-1) (aproximadamente 0.59637164).

En el siglo XVIII estos razonamientos eran interesantes para intentar aproximar el valor de

algunas constantes matemáticas, como e ó π: lo importante era atribuir de manera coherente

un valor a la suma de este tipo de series sin limitarse a las nociones clásicas de convergencia

que se estudian en los primeros cursos de una carrera universitaria.

El interés f́ısico de las series divergentes se puso de manifiesto con los trabajos de G.G. Stokes

sobre la función de Airy: esta es una función que aparece en el estudio de las cáusticas en

óptica, tales como las del arcoiris. Históricamente, este fue el problema matemático que
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llevó a G.B. Airy a desarrollar esta función especial. Más precisamente, la función de Airy

se define por la siguiente expresión integral:

Ai(x) =
1

2π

∫ ∞

−∞
cos

(
xt+

t3

3

)
dt,

y es solución de la ecuación diferencial y′′(x) − xy(x) = 0. Uno de los métodos que se

estudian en cursos elementales para aproximar las soluciones de este tipo de ecuaciones, es

el desarrollo en serie de potencias de las mismas. En el caso de la función de Airy el radio

de convergencia de su serie de Taylor en el origen es infinito, lo cual aparentemente daŕıa el

problema por resuelto. Pero esta serie de potencias resulta ser de convergencia muy lenta,

motivo que la hace impracticable a los cálculos. G.G. Stokes tuvo la idea de desarrollar la

función Ai en el infinito, lo cual da como resultado una serie divergente en potencias de x1/2:

“sumando hasta el menor término”, dicha serie proporciona datos asombrosamente precisos

sobre la función de Airy. Un ejemplo f́ısico más moderno lo hallamos en el campo de la

electrodinámica cuántica: en el estudio del momento magnético del electrón aparece una

serie de potencias en la que cada término se calcula a partir de diagramas de Feynman. Esta

serie resulta ser divergente, y de nuevo la suma de algunos términos (se ignora cuál es el

menor término) proporciona valores muy cercanos a los experimentales. Pueden leer detalles

de esto, aśı como de estos problemas, en el art́ıculo de divulgación de J.P. Ramis [R1]. Para

una descripción más detallada también se puede consultar [R2].

Hemos mencionado en dos ocasiones la técnica de la “suma hasta el menor término”. En

numerosas series divergentes que aparecen en problemas f́ısicos, los primeros términos decre-

cen en valor absoluto, pero luego crecen indefinidamente. La técnica mencionada consiste

en truncar la serie en el momento en que los términos empiezan a crecer. Esta técnica es

llamada por H. Poincaré “sumación de los astrónomos”, en contraposición a la “sumación de

los geómetras” (series convergentes en el sentido moderno). Su justificación precisa requiere

el uso de las series de tipo Gevrey, tal y como comentaremos más adelante.

Es precisamente H. Poincaré quien da uno de los grandes impulsos a la teoŕıa de la sumación

de series divergentes, que diversos matemáticos de prestigio hab́ıan despreciado (para N.

Abel, eran una “invención del diablo”). Como en numerosos otros problemas de matemáticas,

y en palabras de J. Hadamard: “... el mejor y más corto camino entre dos verdades del

dominio real suele pasar por el dominio complejo” [H, pág. 123]. Aśı, H. Poincaré en su

trabajo [P] introduce a finales del siglo XIX la noción de desarrollo asintótico: una función

f , holomorfa en un sector V = V (a, b, r) = {x ∈ C|a < arg(x) < b, 0 < |x| < r}, admite una

serie f̂(x) =
∑∞

n=0 anx
n como desarrollo asintótico en el origen sobre V si para cada número

natural N y cada subsector W de V existe una constante CN (W ) tal que∣∣∣∣∣f(x)−
N−1∑
n=0

anx
n

∣∣∣∣∣ ≤ CN (W )|x|N ,

sobre W . Cabe notar que esta no es la definición original dada por H. Poincaré pero śı

resulta ser equivalente para funciones acotadas en cada subsector de V . Para los detalles de
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este hecho se puede consultar [FZ].

Los estudios de H. Poincaré, aśı como de otros matemáticos posteriores, se centran en las

series de potencias que aparecen como soluciones de sistemas de ecuaciones diferenciales

(lineales o no) holomorfas, en torno a los llamados puntos singulares. Centrándonos en el

caso lineal, nos referimos a sistemas de ecuaciones del tipo

xp+1y′(x) = A(x)y(x) + b(x),

donde y(x) = (y1(x), . . . , yn(x))
t ∈ O(D)n, A ∈ Mat(n × n,O(D)), b ∈ O(D)n, siendo D

un disco en torno de 0. En algunos textos clásicos, como [CL], estos puntos singulares se

clasifican en puntos de primera clase (si p = 0) y de segunda clase (si p > 0), lo cual determina

frecuentemente la naturaleza de las soluciones. Aludiendo a estas, los puntos singulares se

clasifican como regulares (reducibles a los puntos de primera clase) o irregulares. Es en estos

últimos tipos de ecuaciones en los que aparecen fenómenos de divergencia. Aśı H. Poincaré,

M. Hukuhara, H.L. Turritin y W. Wasow entre otros demuestran el siguiente resultado,

válido en el caso no lineal:

Teorema.(Teorema fundamental de los desarrollos asintóticos) Consideremos el sistema de

ecuaciones diferenciales holomorfas

xp+1y′(x) = F (x, y(x)), p ∈ N∗,

que admite el vector de series formales ŷ como solución, y en el que la matriz de la parte

lineal

A :=
∂F

∂y
(0,0),

es invertible. Si V es un sector de abertura a lo más π/p, existe una solución y(x) ∈ O(V )n

que admite a ŷ como desarrollo asintótico en V .

Una prueba de este hecho se puede consultar en [W1].

Este teorema permite dotar de cierto significado geométrico a la serie formal ŷ(x), inter-

pretándola como y(x). Pero esta función y(x) dista mucho de ser única, pues hay funciones

con desarrollo asintótico nulo que son soluciones de ecuaciones diferenciales.

Un nuevo y crucial impulso a la teoŕıa se produce a finales de los años 70 con los trabajos,

por una parte de J. Écalle, sobre las llamadas funciones resurgentes, y por otra parte, de J.P.

Ramis, quien introduce y sistematiza la noción de k−sumabilidad, la cual generaliza la noción

de sumabilidad dada por E. Borel en los años 20 [B]. La definición de desarrollo asintótico

dada por H. Poincaré fue precisada en los llamados desarrollos asintóticos s−Gevrey : en

ellos, la constante CN que alĺı aparece se sustituye por una del tipo

CANN !s,

explicitándose la dependencia de N . Resulta que si una serie formal ŷ(x) es el desarrollo

asintótico s−Gevrey, de una función y(x) definida en un sector V de abertura estrictamente
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superior a sπ, y(x) es la única función con esa propiedad, y es leǵıtimo llamarla la k−suma

de ŷ en V (aqúı k = 1/s, respetando las notaciones hoy habituales en la teoŕıa). En este

contexto el Teorema fundamental de los desarrollos asintóticos fue refinado por J.P. Ramis

y Y. Sibuya en 1989, como se enuncia a continuación.

Teorema. Consideremos el sistema de ecuaciones diferenciales holomorfas

xp+1y′(x) = F (x, y(x)), p ∈ N∗,

que admite el vector de series formales ŷ de tipo s−Gevrey como solución. Si V es un sector

de abertura a lo más min{πs, π/p}, existe una solución y(x) ∈ O(V )n que admite a ŷ como

desarrollo asintótico de tipo s−Gevrey en V .

La demostración completa de este resultado se puede consultar en [RS2].

Además de introducir la noción de serie k−sumable, J.P. Ramis enuncia un resultado sobre

la estructura formal de las soluciones de los sistemas lineales con singularidad irregular que

equivale a decir que toda solución formal se puede construir a partir de series k−sumables,

para diversos valores de k (los niveles de la ecuación). Resulta claro a partir de aqúı que no

toda serie formal solución de una ecuación diferencial holomorfa es k−sumable para un único

valor de k por lo que se introduce la noción de multisumabilidad en la que intervienen diversos

valores de k. La primera prueba de la multisumabilidad de las soluciones de ecuaciones

diferenciales lineales es dada por W. Balser, B.L.J. Braaksma, J.P. Ramis y Y. Sibuya en

[BBRS]. Posteriormente, B.L.J. Braaksma prueba un resultado similar para las ecuaciones

no lineales [Br].

Con esto, tenemos una respuesta parcial al problema de asignar una suma a las series formales

obtenidas como soluciones de ecuaciones diferenciales, pero esta respuesta no es constructiva.

En el citado texto de E. Borel [B] se describe determinada transformada integral, la hoy

llamada transformada de Borel, la cual, combinada con la transformada de Laplace permite

construir expĺıcitamente la suma en una dirección de una serie 1−sumable, caso de existir.

J.P. Ramis generaliza esta noción introduciendo la noción de k−transformada de Laplace y

Borel, las cuales permiten construir la k−suma de una serie k−sumable. Asimismo J. Écalle

define los operadores de aceleración. Con ayuda de ellos, si k1 > k2 > · · · > km > 0, y ŷ

es una serie (k1, ..., km)−multisumable en la dirección d, su suma en esta dirección puede

computarse como

Lk1 ◦ Ak1,k2 ◦ · · · ◦ Akm−1,km ◦ B̂km(ŷ(x)),

donde B̂km representa la km−transformada de Borel formal, Ak,k′ es el operador de ace-

leración de orden (k, k′), k > k′, y Lk1 es la k1−transformada de Laplace. Para que esta

maquinaria funcione, es necesario observar que los distintos niveles de k−sumabilidad son

incompatibles: si k ̸= k′ toda serie que sea simultáneamente k′−sumable y k−sumable ha

de ser necesariamente convergente.
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En este punto de la historia podemos citar las palabras de J.P. Ramis en [R1, pág. 139]:

“Que réserve le futur aux spécialistes des séries divergentes? Les principaux défis

concernent ce que l’on nomme les perturbations singulières.”

La primera dirección a la que se dirige la presente tesis es hacia los desarrollos asintóticos

asociados a problemas de perturbaciones singulares. Un sistema lineal singularmente per-

turbado es uno del tipo

εσ
∂y

∂x
(x, ε) = A(x, ε)y(x, ε),

dondeA(x, ε) es una matriz de funciones holomorfas en un entorno de (0, 0) ∈ C2. T́ıpicamen-

te una solución formal de este sistema depende del parámetro de perturbación singular ε, y

admite un desarrollo en serie de potencias en ε del tipo

y(x, ε) = y0(x) + y1(x)ε+ y2(x)ε
2 + · · · ,

con coeficientes yj(x) holomorfos en un disco común de convergencia, y divergente en ε. Se

plantea el problema de la sumabilidad en ε de las soluciones de dichos sistemas, problema al

que han contribuido numerosos autores. Citemos algunos logros destacados:

• M. Canalis-Durand prueba el carácter Gevrey de la solución formal de la ecuación de

Van der Pol perturbada [CD] y A. Fruchard y R. Schäfke prueban la sumabilidad en ε

de dicha solución [FS].

• En el caso general, las soluciones resultan ser no necesariamente k−sumables para

ningún valor de k. No obstante, M. Canalis-Durand, J.P. Ramis, R. Schäfke y Y.

Sibuya [CDRSS] muestran que, en condiciones de invertibilidad de la parte lineal (de

hecho, ellos consideran condiciones algo más generales), toda solución formal es de

tipo Gevrey y puede representarse como una función holomorfa y(x, ε) ∈ O(D × V ),

donde D es un disco en torno al origen y V es un sector, que admite como desarrollo

asintótico la serie formal solución.

Un problema adicional se encuentra cuando consideramos perturbaciones singulares de ecua-

ciones diferenciales con puntos singulares. Por ejemplo, podemos considerar la ecuación de

Schrödinger lineal singularmente perturbada

ε2
∂2y

∂x2
(x, ε) + P (x)y(x, ε) = 0,

donde P (x) es un polinomio. En este caso la singularidad en x está en el infinito, y la sin-

gularidad en el parámetro ε, en 0. Este tipo de ecuaciones y sistemas han sido considerados

por diversos autores, como W. Wasow [W2]. Para su tratamiento, parece necesario hacer

intervenir una noción de desarrollo asintótico en varias variables. La primera noción satisfac-

toria de esto se debe a H. Majima, quien en [Mj1] define la noción de función con desarrollo
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asintótico fuerte en un polisector (producto de sectores), la cual permite generalizar a la

que tenemos en una variable. La definición de H. Majima es técnica, pero admite diversas

equivalencias que la hacen más fácilmente tratable (ver por ejemplo [M2] y [M3]). En el texto

[Mj2] H. Majima trata diversos tipos de sistemas de ecuaciones perturbadas empleando esta

noción. Entre este tipo encontramos los sistemas de ecuaciones de la forma

εσxp+1 ∂y

∂x
(x, ε) = F (x, ε, y),

con F una función holomorfa en el origen. Bajo la hipótesis de invertibilidad de la parte

lineal de F en el origen, H. Majima prueba que hay soluciones holomorfas en polisectores

adecuados, admitiendo un desarrollo asintótico fuerte. Los polisectores que él considera están

contenidos en conjuntos de la forma

α < arg(xpεσ) < β,

con β − α < π. Esto induce a pensar que es factible encontrar una noción de desarrollo

asintótico en dos variables que haga intervenir la expresión xpεσ. Es lo que hacen M. Canalis-

Durand, J. Mozo Fernández y R. Schäfke en [CDMS], introduciendo la noción de desarrollo

asintótico monomial, aśı como de sumabilidad monomial. Ellos denominan a tales ecuaciones

sistemas doblemente singulares y prueban en particular el siguiente resultado:

Teorema. Considere el sistema de ecuaciones

εqxp+1 ∂y

∂x
(x, ε) = F (x, ε, y),

con p, q ∈ N∗, y en el que suponemos que la parte lineal (A := ∂F
∂y (0, 0, 0)) es invertible.

Entonces el sistema admite una única solución formal ŷ(x, ε), que es 1−sumable en xpεq.

De forma paralela, W. Balser y J. Mozo Fernández [BM] emplean transformadas de Borel y

Laplace en dos variables para, en el caso lineal, mostrar que las soluciones formales de los

sistemas anteriores son (s1, s2)−sumables, donde ps1+qs2 = 1. Ello permite la construcción

de la suma de las series formales solución de dichos sistemas perturbados, series en dos

variables.

No estaba clara la relación entre la sumabilidad monomial y la sumabilidad por medio de

transformadas de Borel-Laplace de [BM]. Asimismo se hace necesario tratar de considerar

sistemas con parte lineal no invertible, y desarrollar por tanto una noción de multisumabili-

dad monomial. Esta es la ĺınea en la que se desarrolla el presente trabajo. En él, además de

revisar y detallar la noción de sumabilidad con respecto a un monomio, y la de las transfor-

madas de Borel y Laplace generalizadas, se caracteriza la sumabilidad monomial en términos

de estas últimas. Con vistas a una definición de multisumabilidad monomial, la cual se pro-

pone en el Caṕıtulo 4 para un caso particular, se generalizan los operadores de aceleración y

se muestra la incompatibilidad de las nociones de sumabilidad con respecto a dos monomios

distintos, al estilo de los teoremas de J.P. Ramis antes mencionados.
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Se aplican las técnicas anteriores a los sistemas doblemente singulares, a un tipo especial de

ecuación diferencial parcial, aśı como a los sistemas de pfaffianos del tipo


εqxp+1 ∂y

∂x
= f1(x, ε, y),

xp
′
εq

′+1∂y

∂ε
= f2(x, ε, y).

Es interesante mencionar en este punto que estos sistemas son parte del objeto de estudio

de H. Majima en [Mj2], bajo la condición de integrabilidad completa de los mismos. Hemos

observado que dicha condición impone fuertes restricciones a dichos sistemas, que en la

práctica hace que su estudio se reduzca exclusivamente a casos triviales o muy degenerados,

hecho que al parecer no hab́ıa sido notado por H. Majima ni por otros autores. Detallamos

todo esto en el Caṕıtulo 3.

Resumen y resultados principales

De forma más concreta, pasamos a exponer el contenido de los cuatro caṕıtulos que componen

esta tesis, con mención expresa de los resultados más destacados obtenidos.

Caṕıtulo 1. Sumabilidad Monomial: El objetivo central del Caṕıtulo 1 es recordar y de-

sarrollar la noción de desarrollo asintótico y sumabilidad en un monomio en dos variables, tal

y como fue introducida por M. Canalis-Durand, J.Mozo Fernández y R. Schäfke en [CDMS].

En aras de lograr una exposición lo más autocontenida posible hemos dedicado la primera

sección de este caṕıtulo a recopilar los resultados fundamentales de la Teoŕıa de desarrollos

asintóticos y sumabilidad en una variable que necesitaremos a lo largo del texto. Trabajando

con series de potencias en una variable con coeficientes en un espacio de Banach complejo

recordamos la definición de desarrollo asintótico, desarrollos asintóticos de tipo Gevrey y

algunos resultados que equivalen a estas nociones (Proposición 1.1.1, Proposición 1.1.2 y

Corolario 1.1.3). Luego de enunciar los teoremas de Borel-Ritt y Gevrey-Borel-Ritt y el

Lema de Watson (pieza clave para definir sumabilidad como lo hace J.P. Ramis) recordamos

efectivamente la definición de k−sumabilidad, el método de Borel-Laplace para calcular

dichas sumas y el producto de convolución junto con todas las propiedades más relevantes.

También destacamos el celebrado Teorema de Ramis-Sibuya y los teoremas tauberianos so-

bre k−sumabilidad debidos a J.P. Ramis. La sección finaliza con un pequeño apunte sobre

desarrollos asintóticos en los que las series de potencias que intervienen no tienen necesaria-

mente números naturales como exponentes. Debemos mencionar que no hemos incluido el

uso de haces en la teoŕıa puesto que no se utilizará en el texto.

En la segunda sección del primer caṕıtulo abordamos la definición de desarrollo asintótico

en un monomio en dos variables x, ε. La razón de la notación de las variables yace en
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las aplicaciones, en el carácter de variable de perturbación que ejerce la segunda de ellas.

Aunque la extensión de la teoŕıa a series con coeficientes en un espacio de Banach complejo

y un número arbitrario de variables es factible y los resultados presentados en esta sección se

extienden de manera natural a este caso, nos hemos limitado al caso de series con coeficientes

complejos en dos variables por ser este más conciso y de menor costo técnico. La sección está

dividida en cuatro partes. En la primera de ellas establecemos la definición y propiedades

del conjunto de las series formales de tipo Gevrey y en particular del conjunto de las series

de tipo s−Gevrey en un monomio xpεq que denotamos por R̂
(p,q)
s . Se incluyen fórmulas

elementales obtenidas al escribir una serie como una serie en el monomio y aśı se aprovecha

para introducir los espacios de funciones donde ciertas series tienen sus coeficientes. Se

presta atención en cómo pasar de un monomio arbitrario al monomio simple xε, en el cual la

teoŕıa se escribe más fácilmente. Finalmente se estudia el efecto de introducir una variable z

con pesos de manera que reemplazamos el punto (x, ε) por (zs1/px, zs2/qε), donde s1, s2 son

números positivos tales que s1 + s2 = 1. Una vez establecido el contexto formal, pasamos al

contexto anaĺıtico en la segunda parte. Se definen los sectores en un monomio que son los

dominios fundamentales en la teoŕıa. Estos son conjuntos precisamente de la forma

Πp,q(a, b, r) = Sp,q(d, α, r) =
{
(x, ε) ∈ C2 | 0 < |x|p, |ε|q < r, a < arg(xpεq) < b

}
,

donde a, b ∈ R, α = b−a es la apertura del sector, d = (a+b)/2 es su bisectriz y 0 < r ≤ +∞
es su radio. Tras ver cómo podemos tratar funciones definidas sobre ellos para el caso de

p = q = 1 mediante el cambio de variable t = xε, se recuerda la definición de desarrollo

asintótico en el monomio xε. A partir de esta definición presentamos dos caracterizaciones

de la propiedad de poseer un desarrollo asintótico de este tipo: la primera usando la teoŕıa

en una variable, Proposición 1.2.11, y la segunda aproximando por funciones holomorfas,

Proposición 1.2.12. Usando las diferentes caracterizaciones se demuestra detalladamente que

esta noción de desarrollo asintótico es compatible con las operaciones algebraicas básicas aśı

como con la diferenciación respecto a cualquiera de las variables. Se caracteriza el hecho

de poseer un desarrollo asintótico de tipo s−Gevrey nulo en el monomio xε con tener un

decaimiento exponencial de orden 1/s en el monomio xε, en el sector monomial donde se

esté trabajando, Proposición 1.2.14. Con este se demuestra el Lema de Watson para el caso

monomial. Finalmente todas las consideraciones y resultados se extienden a un monomio

arbitrario xpεq. La sección finaliza con el enunciado de los teoremas de Borel-Ritt, Gevrey-

Borel-Ritt y el Teorema de Ramis-Sibuya para este tipo de desarrollos.

En la tercera parte de la segunda sección recordamos finalmente la noción de k−sumabilidad

en un monomio tanto en una dirección d como en general, sus propiedades básicas y cómo

calcular la suma pasando a una variable y aplicando el método de Borel-Laplace. En par-

ticular se deduce que R
(p,q)
1/k,d y R

(p,q)
1/k , que denotan el conjunto de series k−sumables en el

monomio xpεq en la dirección d y de series k−sumables en el monomio xpεq, respectivamente,

son álgebras diferenciales con las derivaciones usuales. Además damos una nueva caracte-

rización en la Proposición 1.2.30 de sumabilidad monomial en términos de ciertas subseries

obtenidas a partir de la serie que sumamos. También se incluye en la Proposición 1.2.31 el
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efecto de fijar una de las variables cuando se tiene un desarrollo asintótico monomial. Esta

parte finaliza con un ejemplo para ilustrar los razonamientos anteriores. En la cuarta y

última parte de la segunda sección proponemos tres fórmulas para calcular la suma de una

serie k−sumable en algún monomio, dada la dificultad en la práctica de utilizar directamente

el paso a una variable. Las Proposiciones 1.2.32 y 1.2.33 explican cómo sumar en x y en ε

para el caso p = q = 1 y el caso general, respectivamente. La Proposición 1.2.34 justifica

cómo sumar usando pesos en la variables.

La última sección de este caṕıtulo desarrolla propiedades de tipo tauberiano para la k−
sumabilidad monomial. Las dos primera y ya conocidas propiedades establecen que: la

ausencia de direcciones singulares (direcciones donde no se es sumable) implica convergencia,

Proposición 1.3.1, y si 0 < k < k′ entonces R
(p,q)
1/k ∩ R

(p,q)
1/k′ = C{x, ε}, Proposición 1.3.2.

Esta última propiedad admite una generalización para el caso de monomios diferentes y

es el resultado principal de este caṕıtulo. Para demostrarlo requerimos de varios pasos

intermedios. Primero comparamos sumabilidad en un monomio con sumabilidad en una de

sus potencias. En este sentido tenemos la siguiente proposición:

Proposición 1.3.3. Sea k > 0 un número real, p, q,M ∈ N∗ números naturales y d una

dirección. Entonces R
(p,q)
1/k,d = R

(Mp,Mq)
M/k,Md .

Pasando por un caso particular, Proposición 1.3.4, demostramos en su generalidad el si-

guiente resultado:

Teorema 1.3.5. Sean k, l > 0 números reales positivos y sean xpεq y xp
′
εq

′
dos monomios.

Los siguientes enunciados se verifican:

1. Si p/p′ = q/q′ = l/k entonces R
(p,q)
1/k = R

(p′,q′)
1/l .

2. Si p/p′ = q/q′ y q/q′ ̸= l/k entonces R
(p,q)
1/k ∩R(p′,q′)

1/l = C{x, ε}.

3. Si p/p′ ̸= q/q′ entonces R
(p,q)
1/k ∩R(p′,q′)

1/l = C{x, ε}.

con el que finalizamos el Caṕıtulo 1.

Caṕıtulo 2. Métodos de sumabilidad de Borel-Laplace monomiales: El propósito

de este caṕıtulo de tres secciones es desarrollar y sistematizar métodos de sumabilidad de

tipo Borel-Laplace en dos variables para caracterizar la sumabilidad monomial. Aśı en

la primera sección definimos la transformada de Borel B(p,q)
k,(s1,s2)

, la transformada de Laplace

L(p,q)
k,(s1,s2)

incluidas sus versiones formales y el producto de convolución ∗(p,q)k,(s1,s2)
asociados a un

monomio xpεq, un parámetro de sumabilidad k y pesos s1, s2 en las variables. Incluimos tres

subsecciones para tratar cada transformada, resp. operación por separado. Estos operadores

solo los aplicamos a funciones cuyo dominio sea un sector monomial. Todas las propiedades,

tales como el comportamiento respecto a desarrollos asintóticos, se focalizan en el caso en
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que dichos sectores sean en el mismo monomio xpεq. Sin embargo hemos incluido en cada

subsección una nota para describir brevemente qué pasa en el caso en que los monomios sean

distintos. Señalamos la siguiente interesante fórmula, pieza clave para una de las aplicaciones

que tratamos en el siguiente caṕıtulo:

Proposición 2.1.3. Considere una función acotada f ∈ O(Sp,q(d, π/k+2ϵ0, R0)). Entonces

B(p,q)
k,(s1,s2)

(
(xpεq)k

(
s1
p
x
∂f

∂x
+
s2
q
ε
∂f

∂ε

))
(ξ, υ) = k(ξpυq)kB(p,q)

k,(s1,s2)
(f)(ξ, υ),

para todos s1, s2 > 0 tales que s1 + s2 = 1.

También hemos incluido otras fórmulas de carácter presumible como en la Proposición 2.1.14

que muestra que los operadores de Borel y Laplace son inversos uno del otro (hecho que usa

la inyectividad de la transformada de Laplace, Lema 2.1.13) ó como en la Proposición 2.1.15

que afirma que la transformada de Laplace convierte la convolución en el producto usual.

En la segunda sección definimos un método de sumabilidad asociado a un monomio xpεq,

un parámetro de sumabilidad k, un peso de las variables s1, s2 y una dirección d, utilizando

las transformadas antes mencionadas y basados en las mismas ĺıneas que en la teoŕıa de una

variable: una serie f̂ es k − (s1, s2)−Borel sumable en el monomio xpεq en la dirección d si

esta es 1/k−Gevrey en xpεq, la serie B̂(p,q)
k,(s1,s2)

((xpεq)kf̂) se puede prolongar anaĺıticamente,

digamos φs1,s2 , a un sector monomial de la forma Sp,q(d, 2ϵ,+∞), ϵ > 0, y con crecimiento

exponencial del tipo

|φs1,s2(ξ, υ)| ≤ DeM max{|ξ|pk/s1 ,|υ|qk/s2},

para algunas constantes positivas D,M . Con esta definición y las propiedades desarrolla-

das hasta este punto hemos conseguido la caracterización que buscábamos de sumabilidad

monomial, la cual consideramos es uno de los resultados más relevantes del trabajo.

Teorema 2.2.1. Sea f̂ ∈ R̂
(p,q)
1/k una serie de tipo 1/k−Gevrey en el monomio xpεq. Entonces

es equivalente que:

1. f̂ ∈ R
(p,q)
1/k,d,

2. Existen s1, s2 > 0 con s1 + s2 = 1 tales que f̂ es k − (s1, s2)−Borel sumable en el

monomio xpεq en la dirección d.

3. Para todo s1, s2 > 0 con s1 + s2 = 1, f̂ es k − (s1, s2)−Borel sumable en el monomio

xpεq en dirección d.

En todos los casos las correspondientes sumas coinciden.

Concluimos esta sección utilizando esta caracterización para obtener pruebas alternativas de

algunos resultados obtenidos en el primer caṕıtulo. Finalizamos el caṕıtulo con la Sección
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2.3 donde exploramos el comportamiento básico de los desarrollos asintóticos monomiales de

tipo Gevrey bajo las explosiones de puntos en el plano complejo.

Caṕıtulo 3. Ecuaciones diferenciales anaĺıticas lineales singularmente pertur-

badas: Dedicamos este caṕıtulo a las aplicaciones de la sumabilidad monomial al estudio

de las soluciones formales de ciertos tipos de ecuaciones diferenciales. En la primera sección

trabajamos con ecuaciones doblemente singulares de la forma

εqxp+1 dy

dx
= A(x, ε)y(x, ε) + b(x, ε), (3-1)

donde p, q son números naturales positivos, y ∈ Cl, A ∈ Mat(l × l,C{x, ε}) y b ∈ C{x, ε}l.
Bajo la hipótesis de la invertibilidad de A(0, 0) recordamos la demostración del hecho que esta

ecuación posee una única solución formal, 1−Gevrey en el monomio xpεq, Proposición 3.1.2,

empleando las normas de Nagumo. Para las propiedades de sumabilidad hemos propuesto

una nueva demostración del siguiente teorema:

Teorema 3.1.4. La única solución formal ŷ de la ecuación (3-1) es 1−sumable en xpεq.

Las ideas detrás de dicha demostración no son nuevas. La esencia de las mismas se basa

en las demostraciones habituales: usar una transformada de Borel apropiada para estudiar

por el método del punto fijo las soluciones de la ecuación en convolución que resulta. Una

vez construidas dichas soluciones, invocar el Teorema de Ramis-Sibuya para obtener un

desarrollo asintótico y aśı deducir la sumabilidad. Mencionamos además que utilizando la

caracterización de sumabilidad monomial a través del método de Borel-Laplace explicado

en el Caṕıtulo 2 hemos mejorado el Teorema 3 en [BM], resultado que exponemos en el

Corolario 3.1.5.

Finalmente mencionamos que el Teorema 3.1.4 también es válido en el caso no lineal, aunque

para dicha situación nos hemos limitado solo a enunciar el resultado en el Teorema 3.1.6.

En la segunda sección, y como lo sugiere la fórmula obtenida en la Proposición 2.1.3, estu-

diamos las soluciones formales de la ecuación diferencial parcial

s1
p
εqxp+1 ∂y

∂x
+
s2
q
xpεq+1∂y

∂ε
= C(x, ε)y(x, ε) + γ(x, ε), (3-25)

donde p, q son números naturales positivos, s1, s2 son números reales positivos que satisfacen

s1 + s2 = 1 y C ∈ Mat(l × l,C{x, ε}), γ ∈ C{x, ε}l. Siguiendo las ideas aplicadas en la

sección anterior pero con las herramientas para sumabilidad monomial hemos obtenidos los

siguientes resultados:

Proposición 3.2.1. Considere la ecuación diferencial parcial (3-25). Si C(0, 0) es invertible

entonces (3-25) tiene una única solución formal ŷ ∈ C[[x, ε]]l. Además ŷ ∈ (R̂
(p,q)
1 )l.
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Teorema 3.2.2. Considere la ecuación (3-25). Si C(0, 0) es invertible entonces la única

solución formal ŷ dada por la proposición anterior es 1−summable en xpεq. Sus posibles

direcciones singulares son las direcciones que pasan por los valores propios de C(0, 0).

En la última sección pasamos al estudio de sistemas pfaffianos en dos variables de la forma
εqxp+1 ∂y

∂x
= f1(x, ε, y), (3-35a)

xp
′
εq

′+1∂y

∂ε
= f2(x, ε, y), (3-35b)

donde p, q, p′, q′ son números naturales positivos, y ∈ Cl, y f1, f2 son funciones anaĺıticas

definidas en una vecindad del origen en C × C × Cl. Recordamos que si f1(0, 0, 0) =

f2(0, 0, 0) = 0 y las funciones f1, f2 satisfacen sobre su dominio de definición:

−qxp′εq′f1(x, ε, y) + xp
′
εq

′+1∂f1
∂ε

(x, ε, y) +
∂f1
∂y

(x, ε, y)f2(x, ε, y) = (3-36)

−p′xpεqf2(x, ε, y) + xp+1εq
∂f2
∂x

(x, ε, y) +
∂f2
∂y

(x, ε, y)f1(x, ε, y),

el sistema pfaffiano se dice completamente integrable. Bajo esta hipótesis hemos deducido

la siguiente proposición sobre el comportamiento de los espectros de las partes lineales de f1
y f2 en el origen:

Proposición 3.3.1. Considere el sistema pfaffiano (3-35a), (3-35b). Si es completamente

integrable entonces las siguientes afirmaciones son válidas:

1. La matriz ∂f2
∂y (0, 0, 0) es nilpotente si p = p′ y q < q′, ó p′ = Np con N > 1, ó q′ = q y

p < p′ ó q′ =Mq con M > 1.

2. La matriz ∂f1
∂y (0, 0, 0) es nilpotente si p = p′ y q′ < q, ó p = N ′p′ con N ′ > 1, ó q′ = q

y p′ < p ó q =M ′q′ con M ′ > 1.

3. Si p = p′ y q = q′ para todo valor propio µ de ∂f2
∂y (0, 0, 0) existe un valor propio

λ de ∂f1
∂y (0, 0, 0) tal que qλ = pµ. El número λ es un valor propio de ∂f1

∂y (0, 0, 0),

cuando se restringe a su subespacio invariante Eµ = {v ∈ Cn|(∂f2∂y (0, 0, 0) − µI)kv =

0 para algún k ∈ N}.

Teniendo en cuenta estas restricciones, utilizando los resultados de la primera sección y

las propiedades tauberianas encontradas en el primer caṕıtulo hemos obtenido el siguiente

resultado sobre convergencia y sumabilidad de las soluciones de estos sistemas:

Teorema 3.3.3. Considere el sistema (3-35a), (3-35b). Las siguientes afirmaciones son

válidas:

1. Suponga que el sistema tiene una solución formal ŷ. Si ∂f1
∂y (0, 0, 0) y ∂f2

∂y (0, 0, 0) son

invertibles y xpεq ̸= xp
′
εq

′
entonces ŷ es convergente.
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2. Si el sistema es completamente integrable y ∂f1
∂y (0, 0, 0) es invertible entonces el sistema

tiene una única solución formal ŷ. Además ŷ es 1-sumable en xpεq.

3. Si el sistema es completamente integrable y ∂f2
∂y (0, 0, 0) es invertible entonces el sistema

tiene una única solución formal ŷ. Además ŷ es 1-sumable en xp
′
εq

′
.

Finalmente nos restringimos al caso lineal y en el que ambos monomios que aparecen en los

sistemas son iguales. Nos referimos a sistemas de la forma
εqxp+1 ∂y

∂x
= A(x, ε)y(x, ε) + a(x, ε), (3-48a)

xpεq+1∂y

∂ε
= B(x, ε)y(x, ε) + b(x, ε), (3-48b)

donde p, q son números naturales positivos, A,B ∈ Mat(l × l,C{x, ε}) y a, b ∈ C{x, ε}l.
En este contexto tenemos los siguientes resultados sobre convergencia y sumabilidad de sus

soluciones:

Proposición 3.3.4. Las siguientes afirmaciones son válidas:

1. Si el sistema (3-48a), (3-48b) es completamente integrable y A(0, 0) ó B(0, 0) es inver-

tible entonces el sistema (3-48a), (3-48b) tiene una única solución formal, 1−sumable

en xpεq.

2. Si el sistema tiene una solución formal ŷ y existen s1, s2 > 0 tales que s1 + s2 =

1 y s1/pA(0, 0) + s2/qB(0, 0) es invertible, entonces ŷ es 1−sumable en xpεq. Sus

posibles direcciones singulares son las direcciones que pasan por los valores propios de

s1/pA(0, 0) + s2/qB(0, 0).

Teorema 3.3.5. Considere el sistema (3-48a), (3-48b) y suponga que tiene una solución

formal ŷ. Denote por λ1(s), ..., λl(s) los valores propios de s
pA(0, 0) +

(1−s)
q B(0, 0), donde

0 ≤ s ≤ 1, y asuma que nunca son cero. Si para cada dirección d existe s ∈ [0, 1] tal que

arg(λj(s)) ̸= d para todo j = 1, ..., l entonces ŷ es convergente.

Caṕıtulo 4. Hacia multisumabilidad monomial: En el último caṕıtulo de esta tesis

mostramos los avances logrados hacia una buena noción de multisumabilidad monomial.

El caṕıtulo está dividido en tres secciones. En la primera recordamos los operadores de

aceleración y la noción de multisumabilidad en dos niveles para una variable, incluyendo

fórmulas importantes que serán usadas en la siguiente sección.

En la segunda sección definimos los operadores de aceleración que conectan un monomio xpεq,

un parámetro de sumabilidad k y un peso s1, s2 con otro monomio xp
′
εq

′
, otro parámetro de

sumabilidad l y otro peso s′1, s
′
2. Estos operadores los hemos obtenido a partir de calcular
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formalmente la composición de la transformada de Borel B(p′,q′)
l,(s′1,s

′
2)

con la transformada de

Laplace L(p,q)
k,(s1,s2)

.

Naturalmente existen condiciones sobre estos valores para realizar dicho cálculo, a saber:

s′1 =
s1p

′q

s2pq′ + s1p′q
, s′2 =

s2pq
′

s2pq′ + s1p′q
,

s1(p
′q − pq′) >

p

l
(qk − q′l), min

{
p

p′
,
q

q′

}
<
l

k
.

Aśı, si I = (p′, q′, p, q, l, k, s′1, s
′
2, s1, s2) donde dichos valores satisfacen las condiciones an-

teriores, tenemos el operador AI . De manera análoga al Caṕıtulo 2, desarrollamos todas

las propiedades de estos operadores de aceleración tales como comportamiento respecto a

desarrollos asintóticos monomiales y convolución.

Finalmente en la última sección proponemos una definición de multisumabilidad asociada

a dos monomios, dos parámetros de sumabilidad y dos pesos, motivados por el siguiente

resultado, análogo al de una variable y que hemos demostrado aplicando explosiones de

puntos en el plano complejo.

Teorema 4.3.1. Sean p0, ..., pr, q0, ..., qr números naturales positivos y sean k0, ..., kr
números reales positivos. Sean f̂j ∈ R

(pj ,qj)

1/kj
\ C{x, ε} series kj−sumable en el monomio

xpjεqj , para j = 1, ..., r, respectivamente. Entonces f̂0 = f̂1 + · · · + f̂r es k0−sumable en

xp0εq0 si y solo si k0p0 = kjpj y k0q0 = kjqj para todo j = 1, ..., r.

Finalizamos el caṕıtulo mostrando que la noción de multisumabilidad propuesta es estable

por sumas y productos y que es capaz de sumar series de la forma f̂ + ĝ, donde f̂ ∈ R
(p,q)
1/k y

ĝ ∈ R
(p′,q′)
1/l .

El tema dista mucho de estar cerrado. Numerosos problemas abiertos se plantean, de los

que citamos algunos de ellos:

1. Dar una definición completa de multisumabilidad monomial, que contemple no solo los

casos particulares tratados en esta memoria.

2. Demostrar que la propiedad de ser multisumable como aqúı lo hemos definido es inde-

pendiente de los pesos elegidos. Una v́ıa posible es extender el resultado de descom-

posición de W. Balser de series multisumables como suma de series sumables.

3. Estudio sistemático de los sistemas de ecuaciones lineales singularmente perturbados,

sin la hipótesis de invertibilidad de la parte lineal, aplicando operadores de aceleración

generalizados a varios niveles.
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4. Estudio más general de los sistemas lineales pfaffianos, ya sea con las restricciones que

impone la condición de integrabilidad completa o sin ella.

5. Estudio de la ecuación diferencial parcial (3-25) en el caso no lineal con o sin la hipótesis

de invertibilidad de la parte lineal.

6. Adaptación de las demostraciones aqúı contenidas al caso de varias variables.

7. Hacer uso de la teoŕıa de haces para desarrollar la teoŕıa de manera más intŕınseca.





Introduction

It is a well known fact that divergent series appear in a natural way in many problems related

with functional equations, even when those problems involve exclusively convergent series.

Perhaps one of the first historical examples is the one given by L. Euler in his work De

seriebus divergentibus [E]. In this paper L. Euler studied, among other things, the numerical

series

1− 1! + 2!− 3! + 4!− 5! + · · · =
∞∑
n=0

(−1)nn!, (0-1)

and called it the Wallis hypergeometric series. For its study, he proposes four different

methods of summation, including

1. An iteration of what are now called Euler transformations and the computation of the

“sum up to the least term”,

2. The introduction of an additional parameter x, what leads us to consider the power

series

x− x2 + 2x3 − 6x4 + 24x5 − 120x6 + · · · =
∞∑
n=0

(−1)nn!xn+1, (0-2)

that we will call Euler’s series and that turns out to be a solution of the linear diffe-

rential equation

x2y′(x) + y(x) = x,

solvable by variation of constants. The solution of this equation evaluated at x = 1,

allows to attribute a value to the sum of (0-1) (approximately 0.59637164).

In the 18th century those reasonings were interesting to attempt to approximate the value of

some mathematical constants, such as e or π: what mattered was to attribute in a coherent

way a value to the sum of this kind of series, without restricting to the classical notion of

convergence that nowadays is studied in the first courses of a university career.

The physical interest of divergent series was revealed with the works of G.G. Stokes on

Airy’s function: this is a function that appears in the study of caustics in optics, such as the
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rainbow. Historically, that was the mathematical problem that took G.B. Airy to develop

this special function. More precisely, Airy’s function is defined by the following integral

expression:

Ai(x) =
1

2π

∫ ∞

−∞
cos

(
xt+

t3

3

)
dt,

and it is a solution of the differential equation y′′(x)−xy(x) = 0. One of the methods studied

in elementary courses to approach the solutions of this kind of equations is to develop them

into power series. In the case of Airy’s function the radius of convergence of its Taylor series

at the origin is infinite, what apparently solves the problem. However this series has a very

slow convergence, a fact that makes it hardly useful for calculations. G.G. Stokes had the

idea of developing the function Ai at infinity, and obtained a divergent power series in x1/2:

“summing up to the last term”, that series gives surprisingly precise values of Airy’s function.

A more modern physical example can be found in the realm of quantic electrodynamics: in

the study of the magnetic moment of the electron appears a power series where every term

is calculated from Feynman’s diagrams. This series is divergent and again the sum of some

terms (the least term is still unknown) gives very close results to the experimental ones. The

reader may find details of this and related problems in the divulgence paper of J.P. Ramis

[R1]. For a more detailed description the reader may also consult [R2].

We have mentioned twice the technique of the “summation up to the last term”. For nu-

merous divergent series coming from physical problems, the first terms decrease in absolute

value, but then they grow indefinitely. The mentioned technique consists in truncating the

series at the moment when the terms start to grow. This technique was called by H. Poincaré

“summation of the astronomers”, in contrast with the “summation of the geometers” (con-

vergent series in the modern sense). The precise justification for this requires the use of

Gevrey type series, that we will comment further on.

It is precisely H. Poncaré who gives one of the greatest impulses to the theory of summation

of divergent series, that many prestigious mathematicians had neglected (for N. Abel those

were an “invention of the devil”). As in many mathematical problems and in words of

J. Hadamard: “...the shortest and best way between two truths of the real domain often

passes through the imaginary one” [H, page 123]. So it was H. Poincaré in his work [P] who

introduced at the end of the 19th century the notion of asymptotic expansion: a function

f , holomorphic in a sector V = V (a, b, r) = {x ∈ C|a < arg(x) < b, 0 < |x| < r}, admits

a power series f̂(x) =
∑∞

n=0 anx
n as asymptotic expansion at the origin on V if for each

natural number N and every subsector W of V there is a constant CN (W ) such that∣∣∣∣∣f(x)−
N−1∑
n=0

anx
n

∣∣∣∣∣ ≤ CN (W )|x|N ,

on W . We remark that this is not the original definition given by H. Poincaré but it turns

out to be equivalent for functions bounded in every subsector of V . For the details of this

fact the reader may consult [FZ].
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The works of H. Poincaré, as well as of many other mathematicians, focus in power series

that come from solutions of systems of holomorphic differential equations (linear or not),

around the so called singular points. Restricted to the linear case, we refer to systems of

equations of the form

xp+1y′(x) = A(x)y(x) + b(x),

where y(x) = (y1(x), . . . , yn(x))
t ∈ O(D)n, A ∈ Mat(n × n,O(D)), b ∈ O(D)n, where D

denotes a disc centered at 0. In some classical texts, for instance [CL], those points are

classified into first class (if p = 0) and second class (if p > 0), what usually determines

the nature of the solutions. Referring to those, the singular points are classified as regular

(reducible to points of first class) or irregular ones. It is for this last type of equations in

which divergence phenomena occur. Thus H. Poincaré, M. Hukuhara, H.L. Turritin and W.

Wasow among others show the following result, valid in the non-linear case:

Theorem.(Main Asymptotic Existence Theorem) Let us consider the system of holomorphic

differential equations

xp+1y′(x) = F (x, y(x)), p ∈ N∗,

that admits a vector of formal power series ŷ as solution and such that the matrix of the

linear part at the origin

A :=
∂F

∂y
(0,0),

is invertible. If V is a sector of opening at most π/p then there is a solution y(x) ∈ O(V )n

that admits ŷ as asymptotic expansion on V .

A proof of this fact can be found in [W1].

This theorem provides a geometric meaning to the power series ŷ(x), interpreting it as

y(x). But the function y(x) is far from being unique because there are functions with null

asymptotic expansion that are solutions of differential equations.

A new and crucial impulse to the theory was given at the late seventies with the works,

from one side by J. Écalle on the so called resurgent functions and from the other side by

J.P. Ramis who introduced and systematized the notion of k−summability, that generalizes

the notion of summability given by E. Borel in the twenties [B]. The notion of asymptotic

expansions was specialized in the so called asymptotic expansions of s−Gevrey type: in this

case the constant CN in the definition is given by one of the type

CANN !s,

making explicit the dependence on N . It turns out that if a formal power series ŷ(x) is the

s−Gevrey asymptotic expansion of a function y(x) defined in a sector V of opening strictly

greater than sπ then y(x) is the only function with this property and it is legitimated to

call it the k−sum of ŷ on V (here k = 1/s, as in nowadays notations in the theory). In
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this context the Main Asymptotic Existence Theorem was improved by J.P. Ramis and Y.

Sibuya in 1989, as we state below.

Theorem. Let us consider the system of holomorphic differential equations

xp+1y′(x) = F (x, y(x)), p ∈ N∗,

that admits a vector of formal power series ŷ of s−Gevrey type as a solution. If V is a

sector of opening at most min{πs, π/p} then there is a solution y(x) ∈ O(V )n that admits ŷ

as s−Gevrey asymptotic expansion on V .

The complete proof of this result can be consulted in [RS2].

Besides of introducing the notion of k−summable series, J.P. Ramis formulated a result

on the structure of the formal solutions of linear systems with irregular singularities being

equivalent to the statement that every formal solution can be built from k−summable series

for different values of k (the levels of the equation). It is clear from here that not every

formal solution of a holomorphic differential equation is k−summable for a unique value of

k and because of this the notion of multisummability is introduced where different values

of k intervene. The first proof of the multisummability of the solutions of linear differential

equations was given by W. Balser, B.L.J. Braaksma, J.P. Ramis and Y. Sibuya in [BBRS].

Later B.L.J. Braaksma proved a similar result for non-linear equations [Br].

With this we have a partial answer to the problem of assigning a sum to formal power series

obtained as solutions of differential equations, but this answer is not constructive. In the

referred text of E. Borel [B] it is described certain integral transformation, nowadays called

the Borel transform which combined with the Laplace transform allows one to build explicitly

the sum in a direction of a 1−summable series, when it exists. J.P. Ramis generalized this

notion introducing the k−Borel and k−Laplace transform, which makes possible to build

the k−sum of a k−summable series. Likewise J. Écalle defined the acceleration operators.

With their aid if k1 > k2 > · · · > km > 0 and ŷ is a (k1, ..., km)−multisummable series in a

direction d, its sum in that direction can be calculated as

Lk1 ◦ Ak1,k2 ◦ · · · ◦ Akm−1,km ◦ B̂km(ŷ(x)),

where B̂km represents the formal km−Borel transform, Ak,k′ is the acceleration operator of

order (k, k′), k > k′ and Lk1 is the k1−Laplace transform. In order for this machinery to

work it is necessary to note that different levels of summability are incompatible: if k ̸= k′

every power series k−summable and k′−summable is necessarily convergent.

At this point of the history we can quote the words of J.P. Ramis in [R1, page 139]:

“Que réserve le futur aux spécialistes des séries divergentes? Les principaux défis

concernent ce que l’on nomme les perturbations singulières.”
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The first direction where the present thesis points to is to asymptotic expansions associated

to singularly perturbed problems. A singularly perturbed linear system is one of the form

εσ
∂y

∂x
(x, ε) = A(x, ε)y(x, ε),

where A(x, ε) is a matrix of holomorphic functions in a neighborhood of (0, 0) ∈ C2. Usually

a formal solution of this system depends on the singular perturbation parameter ε and admits

an expansion into power series in ε of the form

y(x, ε) = y0(x) + y1(x)ε+ y2(x)ε
2 + · · · ,

with coefficients yj(x) holomorphic in a common disc of convergence and it is divergent in

ε. The problem of summability in ε of the solutions of such systems was posed and many

authors have contributed to it. We remark some important achievements:

• M. Canalis-Durand proved the Gevrey character of the formal solution of the singularly

perturbed Van der Pol’s equation [CD] and A. Fruchard and R. Schäfke proved its

summability in ε [FS].

• In the general case, the solutions are not necessarily k−summable for any value of

k. Nonetheless M. Canalis-Durand, J.P. Ramis, R. Schäfke and Y. Sibuya [CDRSS]

showed that under the condition of invertibility of the linear part (in fact, they consider

slightly more general conditions), every formal solution is of Gevrey type and can be

represented by a holomorphic function y(x, ε) ∈ O(D × V ), where D is a disc at the

origin and V is a sector, that admits as asymptotic expansion the formal power series

solution.

An additional problem is found when we consider singularly perturbed differential equa-

tions at singular points. For instance, we can consider the singularly perturbed Schrödinger

equation

ε2
∂2y

∂x2
(x, ε) + P (x)y(x, ε) = 0,

where P (x) is a polynomial. In that case the singularity in x is located at infinity and

the singularity in the parameter ε is at 0. This type of equations and systems have been

considered for many authors, for example W. Wasow [W2]. For their treatment it seems

necessary to use a notion of asymptotic expansions in many variables. The first satisfactory

notion was due to H. Majima, who in [Mj1] defined the concept of strongly asymptotically

developable functions in a polysector (product of sectors) which led to a generalization of

the concept in the one variable case. The definition of H. Majima is technical but admits

some equivalences that make it more easily tractable (see for instance [M2] and [M3]). In
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the text [Mj2] H. Majima considers many types of singularly perturbed systems of equations

employing this notion. Among them we find those of the form

εσxp+1 ∂y

∂x
(x, ε) = F (x, ε, y),

with F holomorphic at the origin. Under the hypothesis of invertibility of the linear part of F

at the origin H. Majima proved that there are holomorphic solutions in adequate polysectors,

admitting strong asymptotic expansions. The polysectors he considers are contained in sets

of the form

α < arg(xpεσ) < β,

with β−α < π. This lead to think that it is plausible to find a notion of asymptotic expansion

in two variables where the expression xpεσ intervenes. That is what M. Canalis-Durand,

J. Mozo Fernández and R. Schäfke did in [CDMS], introducing the concept of monomial

asymptotic expansion, as well as monomial summability. They called such equations doubly

singular systems and proved in particular the following statement:

Theorem. Consider the system of equations

εqxp+1 ∂y

∂x
(x, ε) = F (x, ε, y),

with p, q ∈ N∗, where we suppose that the linear part (A := ∂F
∂y (0, 0, 0)) is invertible. Then

the system admits a unique formal power solution ŷ(x, ε), 1−summable in xpεq.

In a parallel way, W. Balser and J. Mozo Fernández [BM] employed Borel and Laplace

transformations in two variables, in the linear case, to show that the solutions of the previous

systems are (s1, s2)−summable, where ps1 + qs2 = 1. This let them build the sum of the

formal power series in two variables of such singularly perturbed systems.

The relation between monomial summability and summability through Borel-Laplace trans-

forms in [BM] was not clear. In the same manner it is necessary to treat systems with non-

invertible linear part and to develop a notion of monomial multisummability. The present

work advances precisely in this direction. In it, besides of recalling and detailing the notion

of summability w.r.t. a monomial and the generalized Borel and Laplace transforms, the

characterization of monomial summability in terms of the last ones is given. For the sake

of a definition of monomial multisumability, which is proposed in Chapter 4 for a particu-

lar case, the acceleration operators are generalized and the incompatibility of the notions

of summability for different monomials is shown, in the same spirit of Ramis’s theorems,

mentioned above.
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The mentioned techniques are applied to doubly singular systems, to a special type of partial

differential equation and to Pfaffian systems of the form


εqxp+1 ∂y

∂x
= f1(x, ε, y),

xp
′
εq

′+1∂y

∂ε
= f2(x, ε, y).

At this point it is interesting to mention that those systems are part of the work of H.

Majima in [Mj2], under the hypothesis of complete integrability. We have observed that this

condition imposes strong restrictions to such systems and in the practice makes their study

to reduce exclusively to trivial cases or highly degenerate ones. This fact apparently had not

been noticed by H. Majima or by other authors. We detail all in Chapter 3.

More consistently, we detail now the contents of the four chapters that this thesis has, with

express mention of the main results obtained.

Chapter 1. Monomial Summability: The central aim of Chapter 1 is to recall and

develop the notion of asymptotic expansion in a monomial in two variables, such as it was

introduced by M. Canalis-Durand, J. Mozo Fernández and R. Schäfke in [CDMS]. In order

to have an exposition as self-contained as possible we have devoted the first section of this

chapter to collect the main results of the theory of asymptotic expansions and summability

in one variable that we will need along the text. Working with power series in one variable

with coefficients in a complex Banach space we recall the definition of asymptotic expan-

sions, asymptotic expansions of Gevrey type and some characterizations of these notions

(Proposition 1.1.1, Proposition 1.1.2 and Corollary 1.1.3). After formulating the Borel-Ritt

and Gevrey-Borel-Ritt theorems and Watson’s Lemma (key element to define summability

as J.P. Ramis does) we recall effectively the notion of k−summability, the Borel-Laplace

method to calculate such sums and the convolution product all together with their more

relevant properties. We also highlight the celebrated Ramis-Sibuya Theorem and the taube-

rian theorems of k−summability due to J.P. Ramis. The section ends with a brief note on

asymptotic expansions where the power series involved have not necessarily natural numbers

as exponents. We need to mention that we have not included the sheaf theoretical point of

view because we will not use it in the text.

In the second section we recall the definition of asymptotic expansion in a monomial in two

variables x, ε. The reason of this notation lies in the applications, in the role of perturbation

variable of the second one. Although the extension of the theory to series with coefficients in

a complex Banach space and in an arbitrary number of variables is possible and the results

presented here extend naturally, we have limited to the case of complex number coefficients

in two variables for being more concise and of less technical cost. The section is divided into

four parts. In the first one we establish the definition and properties of the set of formal

power series of Gevrey type and in particular of the set of series of type s−Gevrey in a

monomial xpεq that we denote by R̂
(p,q)
s . Elementary formulas, obtained when writing a
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power series in a monomial, are included and this process leads to introduce the spaces of

functions where certain series have its coefficients. We pay attention to how to pass from an

arbitrary monomial to the simple monomial xε, in which the theory is written more easily.

Finally we study the effect of introducing a variable z with weights in the way that the point

(x, ε) is replaced by (zs1/px, zs2/qε), where s1, s2 are positive numbers such that s1 + s2 = 1.

Once the formal setting is established we pass to the analytic one in the second part. We

define the sectors in a monomial that are the essential domains in the theory. These sets are

precisely given by

Πp,q(a, b, r) = Sp,q(d, α, r) =
{
(x, ε) ∈ C2 | 0 < |x|p, |ε|q < r, a < arg(xpεq) < b

}
,

where a, b ∈ R, α = b − a is the opening of the sector, d = (a + b)/2 is its bisectrix

and 0 < r ≤ +∞ is its radius. After seeing how we can treat functions defined on them

for the case p = q = 1 through the change of variable t = xε, we recall the definition

of asymptotic expansion in a monomial xε. From this definition we present two different

characterizations of the property of having such expansions: the first using the theory of one

variable, Proposition 1.2.11, and the second one by approximating by holomorphic functions,

Proposition 1.2.12. Using the different characterizations we prove in detail that this notion

of asymptotic expansion is compatible with the basic algebraic operations as well as with

derivation w.r.t. any of the variables. We characterize the fact of having a null s−Gevrey

asymptotic expansion in the monomial xε by exponential decay of order 1/s in the monomial

xε at the origin, Proposition 1.2.14. With the last property we prove the analogous version

of Watson’s Lemma for the monomial case. Finally all the considerations and results are

extended to an arbitrary monomial xpεq. We finish the section by formulating the Borel-Ritt,

Gevrey-Borel-Ritt and Ramis-Sibuya theorems for this kind of expansions.

In the third part we finally recall the concept of k−summability in a monomial in a direction

d as well as in general, the basic properties and how to calculate the sum by passing to one

variable and applying the Borel-Laplace method. In particular we deduce that R
(p,q)
1/k,d and

R
(p,q)
1/k , that stand for the set of k−summable series in the monomial xpεq in the direction d

and the k−summable series in the monomial xpεq, respectively, are differential algebras with

the usual derivations. Furthermore we give a new characterization in Proposition 1.2.30 of

monomial summability in terms of certain subseries obtained from the series we sum. We

also include in Proposition 1.2.31 the result of fixing one of the variables when we have a

monomial asymptotic expansion. This part ends with an example to illustrate the previous

reasoning. In the last part of the second section we propose three formulas to calculate the

sum of a k−summable series in a monomial due to the difficulty in practice to use directly

the pass to one variable. Propositions 1.2.32 and 1.2.33 explain how to sum in x and in ε

for the case p = q = 1 and in the general case, respectively. Proposition 1.2.34 justifies how

to sum using weights in the variables.

In the last section of this chapter we develop tauberian properties for summability in a mono-

mial. The first two already known properties establish that: absence of singular directions
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(directions where a series is not summable) implies convergence, Proposition 1.3.1 and if

0 < k < k′ then R
(p,q)
1/k ∩ R(p,q)

1/k′ = C{x, ε}, Proposition 1.3.2. This last property admits a

generalization for the case of two different monomials and it is the main result of this chap-

ter. To prove it we require of some intermediate steps. First we compare the summability

in a monomial with summability in a power of such monomial. In that sense we have the

following proposition:

Proposition 1.3.3. Let k > 0 be a real number, p, q,M ∈ N∗ be natural numbers and d a

direction. Then R
(p,q)
1/k,d = R

(Mp,Mq)
M/k,Md . .

Using a particular case, Proposition 1.3.4, we prove the following general result:

Theorem 1.3.5. Let k, l > 0 be positive real numbers and let xpεq and xp
′
εq

′
be two

monomials. The following statements are true:

1. If p/p′ = q/q′ = l/k then R
(p,q)
1/k = R

(p′,q′)
1/l .

2. If p/p′ = q/q′ and q/q′ ̸= l/k then R
(p,q)
1/k ∩R(p′,q′)

1/l = C{x, ε}.

3. If p/p′ ̸= q/q′ then R
(p,q)
1/k ∩R(p′,q′)

1/l = C{x, ε}.

with which we end Chapter 1.

Chapter 2. Monomial Borel-Laplace summation methods: The goal of this chapter

of three sections is to develop and systematize Borel-Laplace type summability methods in

two variables to give another characterization of monomial summability. Thus in the first

section we define the Borel transform B(p,q)
k,(s1,s2)

, the Laplace transform L(p,q)
k,(s1,s2)

including

their formal versions and the convolution product ∗(p,q)k,(s1,s2)
, all associated with a monomial

xpεq, a parameter of summability k and weights s1, s2 on the variables. We include three

subsections to treat separately each transformation, resp. operation. These operators are

only applied to functions whose domain is a sector in a monomial. All the properties, such

as the behavior w.r.t. asymptotic expansions, are focused in the case when the mentioned

sectors correspond to the same monomial xpεq. However we have included in each subsection

a brief note to describe the situation when the monomials are different. We point out the

following interesting formula, a key observation to one of the applications we discuss in the

next chapter:

Proposition 2.1.3. Consider a bounded function f ∈ O(Sp,q(d, π/k + 2ϵ0, R0)). Then

B(p,q)
k,(s1,s2)

(
(xpεq)k

(
s1
p
x
∂f

∂x
+
s2
q
ε
∂f

∂ε

))
(ξ, υ) = k(ξpυq)kB(p,q)

k,(s1,s2)
(f)(ξ, υ),

for any s1, s2 > 0 such that s1 + s2 = 1.
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We also have included other presumable formulas as in Proposition 2.1.14 that shows that

the Borel and Laplace operators are inverses one of each other (fact that uses the injectivity

of the Laplace transform, Lemma 2.1.13) or as in Proposition 2.1.15 that states that the

Laplace transform interchanges the convolution with the usual product.

In the second section we define a summability method associated with a monomial xpεq, a

parameter of summability k, a weight on the variables s1, s2 and a direction d, using the

aforementioned transforms and based in the same lines of the theory in one variable: a series

f̂ is k− (s1, s2)−Borel summable in the monomial xpεq in direction d if it is 1/k−Gevrey in

xpεq, the series B̂(p,q)
k,(s1,s2)

((xpεq)kf̂) can be analytically continued, say φs1,s2 , to a monomial

sector of the form Sp,q(d, 2ϵ,+∞), ϵ > 0, and with exponential growth of the form

|φs1,s2(ξ, υ)| ≤ DeM max{|ξ|pk/s1 ,|υ|qk/s2},

for some positive constants D,M . Based on this definition and the properties obtained so far

we have achieved the searched characterization of monomial summability, what we consider

is one of the most remarkable results of the work.

Theorem 2.2.1. Let f̂ ∈ R̂
(p,q)
1/k be a 1/k−Gevrey series in the monomial xpεq. Then the

following are equivalent:

1. f̂ ∈ R
(p,q)
1/k,d,

2. There are s1, s2 > 0 with s1+ s2 = 1 such that f̂ is k− (s1, s2)−Borel summable in the

monomial xpεq in direction d.

3. For all s1, s2 > 0 such that s1 + s2 = 1, f̂ is k − (s1, s2)−Borel summable in the

monomial xpεq in direction d.

In all cases the corresponding sums coincide.

We finish this section using this characterization to obtain alternative proofs of some results

we got in the first chapter. The present chapter ends with Section 2.3 where we explore the

basic behavior of monomial asymptotic expansions of Gevrey type under point blow-ups in

the complex plane.

Chapter 3. Singularly perturbed analytic linear differential equations: We devote

this chapter to the applications of monomial summability to the study of formal solutions

of certain type of differential equations. In the first section we work with doubly singular

differential equations of the form

εqxp+1 dy

dx
= A(x, ε)y(x, ε) + b(x, ε), (3-1)

where p, q are natural numbers, y ∈ Cl, A ∈ Mat(l × l,C{x, ε}) and b ∈ C{x, ε}l. Under

the hypothesis of invertibility of A(0, 0) we recall the proof that the equation has a unique
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formal solution and that it is 1−Gevrey in the monomial xpεq, Proposition 3.1.2, using the

Nagumo norms. For the monomial summability properties we have proposed an alternative

proof of the following theorem:

Theorem 3.1.4. The unique formal solution ŷ of equation (3-1) is 1−summable in xpεq.

The ideas behind the proof are not new. Their essence lies in the typical reasoning: to use

an adequate Borel transform to study the solutions of the associated convolution equation,

by the fixed point method. Once the solutions are obtained the Ramis-Sibuya theorem is

applied to get an asymptotic expansion and deduce summability. We mention that with the

characterization of monomial summability through the Borel-Laplace method explained in

Chapter 2 we have improved Theorem 3 in [BM], a result that we state in Corollary 3.1.5.

Finally we mention that Theorem 3.1.4 is also valid for the non-linear case, but for that

situation we have limited ourselves to enunciate the result in Theorem 3.1.6.

In the second section and as it is suggested by the formula contained in Proposition 2.1.3,

we study the formal solutions of the partial differential equation

s1
p
εqxp+1 ∂y

∂x
+
s2
q
xpεq+1∂y

∂ε
= C(x, ε)y(x, ε) + γ(x, ε), (3-25)

where p, q are positive natural numbers, s1, s2 are positive real numbers such that s1+s2 = 1

and C ∈ Mat(l × l,C{x, ε}), γ ∈ C{x, ε}l. Following the same ideas applied in the previous

section but with the tools of monomial summability we have obtained the following results:

Proposition 3.2.1. Consider the partial differential equation (3-25). If C(0, 0) is invertible

then (3-25) has a unique solution ŷ ∈ R̂l. Moreover ŷ ∈ (R̂
(p,q)
1 )l.

Theorem 3.2.2. Consider equation (3-25). If C(0, 0) is invertible then the unique formal

solution ŷ given by the previous proposition is 1−summable in xpεq. Its possible singular

directions are the directions passing through the eigenvalues of C(0, 0).

In the last section we pass to the study of Pfaffian systems in two variables of the form
εqxp+1 ∂y

∂x
= f1(x, ε, y), (3-35a)

xp
′
εq

′+1∂y

∂ε
= f2(x, ε, y), (3-35b)

where p, q, p′, q′ are positive natural numbers, y ∈ Cl, and f1, f2 are analytic functions in a

neighborhood of the origin in C × C × Cl. We recall that if f1(0, 0, 0) = f2(0, 0, 0) = 0 and

the functions f1, f2 satisfy on its domain of definition the equation:



28 Introduction

−qxp′εq′f1(x, ε, y) + xp
′
εq

′+1∂f1
∂ε

(x, ε, y) +
∂f1
∂y

(x, ε, y)f2(x, ε, y) = (3-36)

−p′xpεqf2(x, ε, y) + xp+1εq
∂f2
∂x

(x, ε, y) +
∂f2
∂y

(x, ε, y)f1(x, ε, y),

the pfaffian system is said to be completely integrable. Under this hypothesis we have

deduced the next proposition on the behavior of the spectra of the linear parts of f1 and f2
in the origin:

Proposition 3.3.1. Consider the Pfaffian system (3-35a), (3-35b). If it is completely

integrable then the following assertions hold:

1. The matrix ∂f2
∂y (0, 0, 0) is nilpotent if p = p′ and q < q′, or p′ = Np with N > 1, or

q′ = q and p < p′ or q′ =Mq with M > 1.

2. The matrix ∂f1
∂y (0, 0, 0) is nilpotent if p = p′ and q′ < q, or p = N ′p′ with N ′ > 1, or

q′ = q and p′ < p or q =M ′q′ with M ′ > 1.

3. If p = p′ and q = q′, for every eigenvalue µ of ∂f2
∂y (0, 0, 0) there is an eigenvalue λ

of ∂f1
∂y (0, 0, 0) such that qλ = pµ. The number λ is an eigenvalue of ∂f1

∂y (0, 0, 0), when

restricted to its invariant subspace Eµ = {v ∈ Cn|(∂f2∂y (0, 0, 0)−µI)
kv = 0 for some k ∈

N}.

Taking into account these restrictions, we have used the statements of the first section and

the tauberian properties found in the first chapter to obtain the following result on the

convergence and summability of the solutions of such systems:

Theorem 3.3.3. Consider the system (3-35a), (3-35b). The following assertions hold:

1. Suppose the system has a formal solution ŷ. If ∂f1
∂y (0, 0, 0) and

∂f2
∂y (0, 0, 0) are invertible

and xpεq ̸= xp
′
εq

′
then ŷ is convergent.

2. If the system is completely integrable and ∂f1
∂y (0, 0, 0) is invertible then the system has

a unique formal solution ŷ. Moreover ŷ is 1-summable in xpεq.

3. If the system is completely integrable and ∂f2
∂y (0, 0, 0) is invertible then the system has

a unique formal solution ŷ. Moreover ŷ is 1-summable in xp
′
εq

′
.

Finally we turn to the linear case and when the two monomials involved are the same. We

refer to systems of the form
εqxp+1 ∂y

∂x
= A(x, ε)y(x, ε) + a(x, ε), (3-48a)

xpεq+1∂y

∂ε
= B(x, ε)y(x, ε) + b(x, ε), (3-48b)
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where p, q are positive natural numbers, A,B ∈ Mat(l × l,C{x, ε}) and a, b ∈ C{x, ε}l. In

this context we have obtained the following results on convergence and summability of their

solution:

Proposition 3.3.4. The following assertions hold:

1. If the system (3-48a), (3-48b) is completely integrable and A(0, 0) or B(0, 0) is inverti-

ble then the system (3-48a), (3-48b) has a unique formal solution that is 1−summable

in xpεq.

2. If the system has a formal solution ŷ and there are s1, s2 > 0 such that s1+ s2 = 1 and

s1/pA(0, 0)+ s2/qB(0, 0) is invertible, then ŷ is 1−summable in xpεq. Its possible sin-

gular directions are those passing through the eigenvalues of s1/pA(0, 0)+ s2/qB(0, 0).

Theorem 3.3.5. Consider the system (3-48a), (3-48b) and suppose it has a formal solution

ŷ. Denote by λ1(s), ..., λl(s) the eigenvalues of s
pA(0, 0)+

(1−s)
q B(0, 0), where 0 ≤ s ≤ 1, and

assume that they are never zero. Then if for every direction d there is s ∈ [0, 1] such that

arg(λj(s)) ̸= d for all j = 1, ..., l then ŷ is convergent.

Chapter 4. Toward monomial multisummability: In the last chapter of this thesis we

show the progress towards an adequate notion of monomial multisummability. The chapter

is divided into three sections. In the first one we recall the acceleration operators and the

concept of multisummability for two levels in one variable, including important formulas

that will be used in the next section.

In the second section we define the acceleration operators that relate a monomial xpεq,

a parameter of summability k and weights s1, s2 with another monomial xp
′
εq

′
, another

parameter of summability l and other weights s′1, s
′
2. Those operators have been obtained

from the formal computation of the composition of the Borel transform B(p′,q′)
l,(s′1,s

′
2)

with the

Laplace transform L(p,q)
k,(s1,s2)

.

But of course there are conditions on those values to be able to make the computation,

namely:

s′1 =
s1p

′q

s2pq′ + s1p′q
, s′2 =

s2pq
′

s2pq′ + s1p′q
,

s1(p
′q − pq′) >

p

l
(qk − q′l), min

{
p

p′
,
q

q′

}
<
l

k
.

Then if I = (p′, q′, p, q, l, k, s′1, s
′
2, s1, s2), where those values satisfy the previous conditions,

we have an operator AI . As we did in Chapter 2, we develop all the expected properties
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of these acceleration operators such as the behavior w.r.t. monomial asymptotic expansions

and the convolution.

Finally in the last section we propose a definition of monomial multisummability associated

with two monomials, two parameters of summability and two pairs of weights, motivated

by the following result, analogous to the one in one variable and that we have proved using

point blow-ups.

Teorema 4.3.1. Let p0, ..., pr, q0, ..., qr be positive natural numbers and let k0, ..., kr be

positive real numbers. Let f̂j ∈ R
(pj ,qj)

1/kj
\ R be kj−summable power series in the monomial

xpjεqj , for j = 1, ..., r, respectively. Then f̂0 = f̂1 + · · ·+ f̂r is k0−summable in xp0εq0 if and

only if k0p0 = kjpj and k0q0 = kjqj for all j = 1, ..., r.

We finish this chapter showing that the proposed monomial multisummability concept is

stable under sums and products and that it is capable of summing series of the form f̂ + ĝ,

where f̂ ∈ R
(p,q)
1/k and ĝ ∈ R

(p′,q′)
1/l .

The subject is far from being closed. Many open problems are posed and we name some of

them:

1. Give a complete definition of monomial multisummability that includes not only the

particular cases treated here.

2. Prove that the property of being multisummable as we defined here is independent of

the chosen weights. A possible way of doing this is to extend the decomposition result

of W. Balser of multisummable series as sums of summable series.

3. Study systematically the singularly perturbed systems of differential equations without

the invertibility hypothesis of the linear part at the origin, applying the accelerator

operators generalized to many levels.

4. Study in greater generality the linear pfaffian systems with or without the restriction

of complete integrability.

5. Study of the partial differential equation (3-25) in the non-linear case with or without

the invertibility hypothesis of the linear part at the origin.

6. Adapt the proof given here to the case of many variables.

7. Make use of sheaf theory to develop the theory presented here in a more intrinsic way.
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The aim of this chapter is to recall and develop the notion of asymptotic expansions and

summability in a monomial in two variables as was introduced by M. Canalis-Durand, J.

Mozo Fernández and R. Schäfke in [CDMS]. In the mentioned paper the authors are moti-

vated by the summability properties that possess the formal power series solutions of certain

singularly perturbed systems of holomorphic differential equations that we will also discuss

in Chapter 3. The main idea that monomial summability describes is that a source of di-

vergence for some type of series comes from a monomial and then treating this monomial

as a new variable lead to a way to associate a sum to the series. Along the chapter we pro-

vide complete proofs of the statements related with monomial summability, in many cases

following the same lines as in the referred paper.

The chapter is divided into three sections. The first of them is devoted to recall the theory

of asymptotic expansions, Gevrey asymptotic expansions and k−summability via Ramis

definition and via the Bolel-Laplace method, for one complex variable and to put together

all the classical results that we will need in the forthcoming sections. It also establishes

the notations we will use through the text. The theory is developed for power series with

coefficients in a complex Banach space. We remark that we have only included the proofs of

Proposition 1.1.1, Proposition 1.1.2 and Corollary 1.1.3 since we did not find any reference

where the results are proved in the way we do here. Proposition 1.1.2 and Corollary 1.1.3,

surely well-known by the specialists, are not easily traceable in the literature.

The second section is the cornerstone of the chapter since establishes the concept of summa-

bility in a monomial in Ramis style. It contains four subsections in order of dependency. In

the first one all the necessary formal background is developed, i.e. we introduce the differen-

tial subalgebras of Gevrey series of the ring of formal power series in two variables as well as

useful formulas that will be used in the text. Special attention is played on the pass from an

arbitrary monomial to the simple monomial xε via ramification. Also the trick of introdu-

cing a new variable by weighting the previous variables is included. The second part of the

section treats with the analytic setting for asymptotic expansions in a monomial, i.e. with

the analytic maps we will work and its domains: the monomial sectors. With the monomial

sectors defined we pass to define asymptotic expansions and Gevrey asymptotic expansions

in a monomial, first for the simple monomial xε and then to an arbitrary monomial. Some

equivalent properties of having an asymptotic expansions in a monomial are provided, one

of them reducing the notion to the case of one complex variable (the monomial) providing

a bridge between the two theories. The stability of monomial asymptotic expansions under

the usual algebraic operations including differentiation and also the analogous to the cla-
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ssical theorems as Watson’s lemma and Ramis-Sibuya theorem are explored. In the third

section the definition of monomial summability is given joint with a way to calculate the

sum using the step into one variable. Also an equivalence of summability, not included in

[CDMS], using the so called components of a function is provided in Proposition 1.2.30. In

order to provide different ways to calculate the sum in a monomial of a series three different

formulas are included in the last subsection: one calculating the sum as a series in x, another

calculating the sum as a series in ε and the last one by weighting the variables.

The last section contains tauberian properties for monomial summability. The first and

already known is the fact that absence of singular directions implies convergence. The second

and new one is Theorem 1.3.5 that establishes that a divergent series cannot be summable

for two essentially different monomials. This theorem is proved analyzing the different order

relations between the exponents of the monomials and the parameters of summability.

1.1 Classical summability

The goal of this section is to quickly recall the well known facts of k−summability of Ramis

and to establish the notations we are going to use through the text. Most of the results are

taken from the books [B1] and [B2]. All the results exposed here are going be used in the

next section to be able to recall the notion of monomial summability in two variables.

We need to clarify that the Borel-Laplace method we use here is not precisely the same used

in the mentioned books and either in the classical literature. An issue that the classical

method faces is that when the formal k−Borel transform is applied, the exponents in the

series are not necessarily positive integers anymore: the transformation subtracts a k from

them. In the mentioned books this problem is remedied by modifying the integral trans-

formations involved. The disadvantage is that the formulas involving differentiation and

convolutions increase their complexity. We approach Borel-Laplace method by keeping the

classical integral transformations unmodified but instead of calculating the formal k−Borel

transform to a series we calculate the transform to the series times xk. At the end when

calculating the Laplace transform we divide by xk to compensate the initial change. Both

approaches are equivalent since the resulting function is the k−sum of the series in the sense

of Ramis. Unfortunately this process does not extend well to the case of multisummaility as

will be noticed in Chapter 4.

We will denote by N the set of natural numbers, Z the ring of integers, Q the field of rational

numbers, R the field of real numbers and C the field of complex numbers. N∗ will denote

the set of natural numbers without 0, R>0 will denote the set of positive real numbers and

R≥0 will denote the set of non-negative real numbers. For r > 0 and x0 ∈ C we will denote

by Dr(x0) the disc of radius r centered at x0 and by Dr(x0) its closure. If x0 = 0 we

will simply write Dr. Also we will set V = V (a, b, r) for the sector in C (or in C̃∗, the
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Riemann surface of the logarithm), centered at the origin with opening α = b−a > 0, radius

r (0 < r ≤ +∞) and bisecting direction d = (b + a)/2. We will eventually use also the

notation V (a, b, r) = S(d, α, r). If W is a subsector of V we will write W b V . We also call

sectorial regions to regions G such that there are real numbers d, α > 0 and 0 < r ≤ +∞ such

that G ⊂ S(d, α, r), and for every 0 < β < α one can find ρ > 0 such that S(d, β, ρ) ⊂ G.

As before, d is referred to the bisecting direction and α to the opening of G, respectively.

The cartesian product of sectors will be called polysector.

From now on we will work in a fixed but arbitrary complex Banach space E equipped with

a norm ∥ · ∥. We will denote by E[[x]] the C−vector space of formal power series in the

variable x with coefficients in E. We also let E{x} denote the subspace of convergent power

series and by E[[x]]s, s > 0, the subspace of s−Gevrey formal power series. Remember that

f̂ =
∑∞

n=0 anx
n is s−Gevrey if we can find positive constants C,A such that ∥an∥ ≤ CAnn!s,

for all n ∈ N. By Stirling’s formula we can replace the term n!s by Γ(1 + sn) or by nsn,

by changing the constants C,A. Note that when E is a Banach algebra1, E[[x]], E{x} and

E[[x]]s are algebras too. The space of analytic maps (resp. bounded analytic maps) defined

on V with values in E will be denoted by O(V,E) (resp. Ob(V,E)). The last space becomes

a Banach space with the supremum norm. Finally we will simply write O(Dr) = O(Dr,C)
(resp. Ob(Dr) = Ob(Dr,C)) for these particular cases.

Definition 1.1.1. Let f̂ =
∑∞

n=0 anx
n ∈ E[[x]] be a formal power series and V a sector. An

analytic map f ∈ O(V,E) is said to have f̂ as asymptotic expansion at 0 on V and we will

use the notation f ∼ f̂ on V , if for each of its proper subsectors W and each N ∈ N, there
exists asymptotic constants CN (W ) > 0 such that for all x ∈W we have:∥∥∥∥∥f(x)−

N−1∑
n=0

anx
n

∥∥∥∥∥ ≤ CN (W )|x|N . (1-1)

If we can take CN (W ) = C(W )A(W )NN !s, the asymptotic expansion is said to be of

s−Gevrey type and we will use the notation: f ∼s f̂ on V . We will also denote by A(V,E)

(resp. As(V,E)) the set of analytic maps defined on V with values in E that admits a formal

power series as asymptotic expansion on V (resp. asymptotic expansion on V of s−Gevrey

type).

If f ∼ f̂ on V , the coefficients of f̂ can be characterized as the limits lim x→0
x∈W

f (n)(x)
n! = an,

for any W b V , and the existence of this limits is equivalent to f̂ being the asymptotic

expansion of f on V . Besides we also have that ∥an∥ ≤ Cn(W ). In particular, if f ∼s f̂ on

V , then f̂ ∈ E[[x]]s. In this case, this is equivalent to the condition: for every W b V , there

are constants C,A > 0 such that supx∈W

∥∥∥f (n)(x)
n!

∥∥∥ ≤ CAnn!s, for any n ≥ 0. For classical

examples of asymptotic expansions of special functions the reader may consult the book [O].

1Recall that a Banach algebra is a Banach space E in which an operation of multiplication is defined, that

makes E an algebra and such that ∥ab∥ ≤ ∥a∥∥b∥, for all a, b ∈ E.
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Before we continue we need the following three characterization of asymptotic expansions

(and more importantly, of asymptotic expansions of s−Gevrey type) described in the next

propositions. The first one is taken from Exercise 1.(a), Section 4.5, Chapter 4, [B2].

Proposition 1.1.1. Let f ∈ O(V,E) be an analytic map defined on V and f̂ =
∑
anx

n ∈
E[[x]] be a formal power series. The following statements are equivalent:

1. f ∼ f̂ on V ,

2. Fix an integer p ≥ 1. For all M ∈ N of the form M = pN and every subsector W b V

there is CM (W ) such that (1-1) is valid for all x ∈W .

The result is also valid for s−Gevrey asymptotic expansions: f ∼s f̂ on V if and only if (2)

is fulfilled with CM (W ) = CAMM !s, for some C,A > 0 independent of M .

Proof. We only write the proof for the case of Gevrey asymptotic expansions. The general

case follows the same lines. The only non-trivial part is that (2) implies (1). We first show

that f̂ ∈ E[[x]]s. For m ∈ N, let N = [m/p] the integer part of m/p, so Np ≤ m < (N +1)p.

Using inequality (1-1) with Np and (N + 1)p and some W b V we get from triangle’s

inequality

∥∥aNp + aNp+1x+ ...+ aNp+p−1x
p−1
∥∥ ≤ CANp(Np)!s + CA(N+1)p((N + 1)p)!s|x|p,

for all x ∈ W . Now take x0, x1, ..., xp−1 ∈ W any p distinct points on W with a common

radius, say |xj | = R. We may suppose for simplicity that AR ≤ 1. Let U = (xji )0≤i,j≤p−1

the Vandermonde matrix associated with the points x0, x1, ..., xp−1. By using the norm ∥ · ∥1
of Ep given by ∥(z0, ..., zp−1)

t∥1 =
∑p−1

j=0 ∥zj∥, we conclude from the previous inequality that

∥aNp+j∥ ≤ ∥(aNp, aNp+1, ..., aNp+p−1)
t∥1

= ∥U−1U(aNp, aNp+1, ..., aNp+p−1)
t∥1

≤ ∥U−1∥1pCANp(Np)!s(1 +Ap(Np+ 1)s · · · (Np+ p)sRp)

≤ ∥U−1∥1pCANp(Np)!s(1 + (2p)sp)N ,

for all j = 0, 1, ..., p− 1. Here ∥U∥1 = supv∈Ep
∥Uv∥1
∥v∥1 stands for the associated matrix norm

of a matrix of complex numbers. We also have used the inequality Np+j ≤ p(N+1) < p2N .

The previous bound let us conclude that f̂ is s−Gevrey, say ∥an∥ ≤ DBnn!s, for all n ∈ N.
We also may take C ≤ D and max{1, A} ≤ B.

Now we show that f ∼s f̂ on V . Take W = W (a′, b′, r) b V , m ∈ N and let N = [m/p]. It

follows that for all x ∈W
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∥∥∥∥∥f(x)−
m−1∑
n=0

anx
n

∥∥∥∥∥ ≤ CA(N+1)p((N + 1)p)!s|x|(N+1)p +

(N+1)p−1∑
n=m

∥an∥|x|n

≤ DBmm!s|x|m
(N+1)p∑
n=m

Bn−mrn−m n!s

m!s

≤ DBmm!s|x|m2spNpsp
(N+1)p−m∑

k=0

(Br)k

≤ Dpsp(2sB)m
(Br)p+1 − 1

Br − 1
m!s|x|m,

as we wanted to prove.

Proposition 1.1.2. Let V be an open sector in C∗ and f ∈ O(V,E). Then f ∈ A(V,E) if

and only if there is r > 0 and a family of analytic maps fN ∈ O(Dr, E), N ≥ 1, satisfying

the condition:

1. For every subsector W of V and N ≥ 1 there is a constant CN (W ) such that

∥f(x)− fN (x)∥ ≤ CN (W )|x|N for all x ∈W ∩Dr,

Analogously, for s > 0, f ∈ As(V,E) if and only if there is r > 0 and a family of analytic

maps fN ∈ O(Dr, E), N ≥ 1, satisfying condition (1) with CN (W ) = CANN !s, for some

C,A depending only of W , and

2. There are constants B,D with supx∈Dr
∥fN (x)∥ ≤ DBNN !s, for all N ≥ 1.

Proof. As before, we only write the proof for the case of Gevrey asymptotic expansions. If

f ∈ As(V,E) and
∑∞

n=0 anx
n is its asymptotic expansion then the condition is fulfilled by

taking fN (x) =
∑N−1

k=0 akx
k. Conversely, suppose we have a family of such maps. Write them

using its Taylor’s expansion at the origin, say fN (x) =
∑∞

m=0 a
(N)
m xm. Note that condition

(2) and Cauchy’s inequalities implies that ∥a(N)
m ∥ ≤ DBNN !s/rm for allm,N ∈ N. For every

positive pair of integers N, k with k ≥ N consider the maps gN,k(x) = x−N (fN (x)− fk(x)).

Then the conditions on the fN imply that for any W b V and x ∈W ∩Dr we have:

∥gN,k(x)∥ ≤ CANN !s + CAkk!s|x|k−N .

In particular, the gN,k are bounded on W an thus they have a limit when x→ 0 in W . This

implies that a
(N)
m = a

(k)
m for all k ≥ N and m = 0, 1, ..., N − 1 and the gN,k are analytic on

Dr. Let am = limN→+∞ a
(N)
m = a

(m+1)
m and f̂ =

∑∞
m=0 amx

m. To see that f̂ is the s-Gevrey

asymptotic expansion of f it is sufficient to establish the inequalities (1-1) for W ∩Dρ with

ρ < r. Indeed, for any x ∈W ∩Dρ we get that
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∥∥∥∥∥f(x)−
N−1∑
m=0

amx
m

∥∥∥∥∥ ≤ ∥f(x)− fN (x)∥+

∥∥∥∥∥fN (x)−
N−1∑
m=0

amx
m

∥∥∥∥∥
=

(
CAN +

D

1− ρ/r

BN

rN

)
N !s|x|N .

This concludes the proof.

Using the same arguments of the previous proof joint with Proposition 1.1.1 we can obtain

another characterization of Gevrey asymptotic expansions. It will be used in the next section

(see Proposition 1.2.31).

Corollary 1.1.3. Let V be an open sector in C∗, f ∈ O(V,E) and p ∈ N∗ fixed. Then f ∈
As(V,E) if and only if there is r > 0 and a family of analytic maps fpN ∈ O(Dr, E), N ≥ 1,

satisfying the following conditions:

1. For every subsector W of V there are constants C,A > 0 such that ∥f(x)− fpN (x)∥ ≤
CApN (pN)!s|x|pN for all x ∈W ∩Dr,

2. There are constants B,D with supx∈Dr
∥fpN (x)∥ ≤ DBpN (pN)!s, for all N ∈ N.

Sometimes when one has to deal with ramifications (a change of variables t = xp) it is

useful to be able to express asymptotic expansions in x as asymptotic expansions in t and

conversely. Consider f̂ ∈ E[[x]] and decomposed uniquely as

f̂(x) =

p−1∑
j=0

xj f̂j(x
p),

where each f̂j can be recovered from f̂ by pxj f̂j(x
p) =

∑p−1
l=0 ω

l(p−j)f̂(ωlx), where ω is a

primitive pth root of unity.

This process can also be done for analytic maps. Indeed, take a function f ∈ O(∪0≤j<pVj , E),

with Vj = V (a+ 2πj/p, b+ 2πj/p, r). Note that the domain of f is a sector in the variable

xp, i.e., ∪0≤j<pVj = {x ∈ C|0 < |x|p < rp, ap < arg(xp) < bp}. Then f(x) =
∑p−1

j=0 x
jfj(x

p),

where each pxjfj(x
p) =

∑p−1
l=0 ω

l(p−j)f(ωlx) is defined on V = V (pa, pb, rp). Under these

considerations we can obtain the following proposition (see Corollary 2.3.14, [L]).

Proposition 1.1.4. Let f ∈ O(∪0≤j<pVj , E) be an analytic map and f̂ ∈ E[[x]]s as before.

Using the previous notation, it is equivalent:

1. For every j = 0, 1, ..., p− 1, f ∼s f̂ on Vj,
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2. For every j = 0, 1, ..., p− 1, fj ∼ps f̂j on V .

On the algebraic properties of asymptotic expansion we recall that A(V,E) and As(V,E)

are C−vector spaces, stable by the derivative d/dx and also C-algebras when E is a Banach

algebra. The uniqueness of the asymptotic expansion of a map let us consider the Taylor’s

map defined as JE : A(V,E) −→ E[[x]], JE(f) = f̂ if f ∼ f̂ on V , and its restriction

JE,s : As(V,E) −→ E[[x]]s to the case of s−Gevrey expansions. Both are linear maps,

commuting with d/dx, and morphisms of algebras when E is a Banach algebra. The kernel

of the above maps will be denoted by A0(V,E) and A0,s(V,E), respectively. For the last

one, those maps are characterized by having exponential decay at 0 of order k = 1/s. More

precisely, we say that f ∈ O(V,E) has exponential decay at 0 in V with order k if for every

W b V , there are constants B,C > 0 such that ∥f(x)∥ ≤ C exp(−B/|x|k) for all x ∈ W .

For future references we formulate this as a proposition.

Proposition 1.1.5. Take any s > 0. Then h ∈ A0,s(V,E) if and only if h has exponential

decay at 0 with order k = 1/s on V .

If V is a sector, the Taylor’s map induces exact sequences

0 −→ A0(V,E) −→A(V,E) −→ E[[x]] −→ 0,

0 −→ A0,s(V,E) −→As(V,E) −→ E[[x]]s −→ 0,

in the first case for an arbitrary sector, and in the second case only for V with opening less

than sπ. These facts are known as the Borel-Ritt and Gevrey-Borel-Ritt theorems and are

formulated below.

Theorem 1.1.6 (Borel-Ritt). Let f̂ ∈ E[[x]] be a formal power series. For every sector V ,

there exists f ∈ A(V,E) such that f ∼ f̂ on V .

Theorem 1.1.7 (Gevrey-Borel-Ritt). Let k > 0 and f̂ ∈ E[[x]]1/k. For every sector V of

opening less than π/k, there exists f ∈ A1/k(V,E) such that f ∼1/k f̂ on V .

The key point to be able to define the notion of k−summability is the following statement

known as Watson’s lemma, providing conditions on a sector for the Taylor’s map to be

injective.

Proposition 1.1.8 (Watson’s Lemma). Let s > 0 and V = V (a, b, r) be a sector with

opening b− a > sπ. Then A0,s(V,E) = {0}.
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In this context we will refer to sectors with opening greater than π/k as k-wide sectors and

those will be the domains of the sums of the k−summable series that we introduce below.

Definition 1.1.2. Let f̂ ∈ E[[x]] be a formal power series, take k > 0 and let d be a

direction.

1. The formal series f̂ is called k−summable on V = V (a, b, r) if b − a > π/k and there

exists a map f ∈ O(V,E) such that f ∼1/k f̂ on V .

2. The formal series f̂ is called k−summable in the direction d if there is a sector V

bisected by d such that f̂ is k−summable on V .

3. The formal series f̂ is called k−summable, if it is k−summable in every direction with

finitely many exceptions mod. 2π (the singular directions).

We will denote by E{x}1/k,d the set of k−summable series in direction d and by E{x}1/k
the set of k−summable series. It is clear that both are C−vector spaces, compatible with

the derivative and the product (in case of E being a Banach algebra).

One way to calculate explicitly the k−sum of a k−summable series f̂ is the Borel-Laplace

method. Here we will use the following version of the formal k-Borel transform:

B̂k :xkE[[x]] −→ E[[ξ]],
∞∑
n=0

anx
n+k 7−→

∞∑
n=0

an
Γ (1 + n/k)

ξn,

that establish an isomorphism between the above linear spaces and restricts to an isomor-

phism between xkE[[x]]1/k and E{ξ}. The analytic counterpart is as follows: for V =

S(d, π/k + 2ϵ0, R0), with 0 < ϵ0 < π/k, R0 > 0 and f ∈ Ob(V,E), the k-Borel transform of

f is defined by the integral formula:

Bkf(ξ) =
k

2πi

∫
γk

f(x)e(ξ/x)
k dx

xk+1
,

where γk denotes a path oriented positively, conformed by three pieces: an arc of circle of

radius R > 0, R < R0, and of two segments of length R respectively starting and arriving

to 0 of arguments d+ π/2k + ϵ′ and d− π/2k − ϵ′′, with 0 < ϵ′, ϵ′′ < ϵ0. Bkf is well-defined,

independent of R, ϵ′, ϵ′′ and analytic in the sector S(d, 2ϵ0,+∞) of infinite radius bisected by

d and opening 2ϵ0. Besides if f(x) = xλa for λ ∈ C and a ∈ E then its k−Borel transform

exists and is given by Bkf(ξ) =
ξλ−k

Γ(λ/k)a, justifying the definition of the formal version.

Among the properties of the Borel transform we emphasize the following two: First, if f is

bounded then Bk(f) has exponential growth of order at most k on its domain, i.e., for every

subsector of the domain there are constants C,B > 0 such that ∥Bk(f)(ξ)∥ ≤ CeB|ξ|k for all
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ξ in such subsector. Second, if f ∈ Ob(V,E) with V = S(d, α,R), α > π/k and f ∼s1 f̂ on

V then Bk(x
kf) ∼s2 B̂k(x

kf̂) on S(d, α − π/k,+∞), where s2 = s1 − 1/k if s1 > 1/k and

s2 = 0 otherwise.

The inverse of k−Borel transform is the k-Laplace transform defined as follows: consider d a

direction and g : [0, eid∞) → E a continuous function on the half-line in C with vertex at 0

and direction d. If g has exponential growth of order at most k on its domain, the k-Laplace

transform of f in the direction d is the function Lk,d(g) defined by:

Lk,d(g)(x) =

∫ eid∞

0
g(ξ)e−(ξ/x)kdξk.

This function is defined in a sectorial region of opening π/k bisected by d and x−kLk,d(g)(x)

is analytic there. If the domain of g contains a sector, d, d′ are directions in that sector and

|d− d′| < π/k then Lk,d(g) = Lk,d′(g) on the intersection of its corresponding domains.

For g(ξ) = ξλa, Re(λ) > 0 and a ∈ E, we have Lk,d(g)(x) = Γ (1 + λ/k)xλ+ka. Then the

formal k-Laplace transform is defined as the inverse of B̂k:

L̂k :E[[ξ]] −→ xkE[[x]]
∞∑
n=0

anξ
n 7−→

∞∑
n=0

anΓ (1 + n/k)xn+k.

Certainly, Lk,d is also the inverse of Bk, in the sense that if f ∈ Ob(V,E), where V =

S(d, π/k + 2ε0, R), 0 < ε0 < π/k, then Lk(Bk(f)) is well-defined and equal to f in the

intersection of their domains.

Finally, suppose g ∈ O(V,E), where V is a sector of infinite radius and opening α and that

g has exponential growth at most k on V . If g ∼s1 ĝ on V then x−kLk,d(g) ∼s2 x
−kL̂k(ĝ) in

the corresponding sectorial region of opening α+ π/k, where s2 = s1 + 1/k.

A last remarkable point on the k−Borel and k−Laplace transforms is their relation with the

k−convolution product. We recall that given f, g ∈ O(V,E), their k−convolution is defined

by

(f ∗k g)(x) =
∫ x

0
f((xk − tk)1/k)g(t)d(tk) = xk

∫ 1

0
f(xt1/k)g(x(1− t)1/k)dt,

and give as a result an element of O(V,E). The k−convolution is a bilinear, commutative

and associative binary operation on O(V,E). As a particular case, using the Beta function,

we obtain the special values

xλ−k

Γ
(
λ
k

) ∗k xµ−k

Γ
(µ
k

) =
xλ+µ−k

Γ
(
λ+µ
k

) , for all Re(λ),Re(µ) > 0.
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The relation mention above joint with some other properties useful for the analysis of diffe-

rential and difference equations are listed in the next the proposition, for future references.

Proposition 1.1.9. 1. Bk(f · g) = Bk(f) ∗k Bk(g) and Lk(F ∗k G) = Lk(F ) · Lk(G), for

all functions f, g, F,G where the expressions are meaningful.

2. Bk

(
xk+1 df

dx

)
(ζ) = kζkBk(f)(ζ) and Lk(kζ

kF )(x) = xk+1 d
dx(Lk(F ))(x), for all func-

tions f, F where the expressions are meaningful.

3. Bk

(
f
(

z
(1−czk)1/k

))
(ζ) = ecζ

kBk(f)(ζ), for all c ∈ C and all functions f where the

expressions are meaningful.

With the previous considerations we are able to explain the Borel-Laplace method: in order to

sum f̂ ∈ E[[x]]1/k, one consider the convergent power series B̂k(x
kf̂)(ξ). Choosing a direction

d one attempts to make analytic continuation φ(ξ) to a small sector W bisected by d. If this

is possible and φ has exponential growth of order at most k on W , i.e., ∥φ(ξ)∥ ≤ CeB|ξ|k for

some constants B,C and all ξ ∈ W , then f̂ is said to be k-Borel summable in direction d

and its sum is defined by

f(x) =
1

xk

∫ eid∞

0
φ(ξ)e−(ξ/x)kdξk =

1

xk
Lk,d(φ)(x).

Thanks to the good behavior of the Borel and Laplace transformations w.r.t. Gevrey asymp-

totic expansion we can easily justify the following theorem.

Theorem 1.1.10 (Ramis). A power series f̂ ∈ E[[x]] is k−Borel summable in a direction

d if and only if it is k−summable in the direction d and both sums coincide.

One of the main tools in the theory of asymptotic expansions, very useful for instance in

applications to differential equations, is the celebrated theorem due to J.P. Ramis and Y.

Sibuya stated below. One proof of this result can be achieved with the Cauchy-Heine’s

transform.

Theorem 1.1.11 (Ramis-Sibuya). Let (Vi)i∈I be a finite good covering of a punctured neigh-

borhood of 0 in C by open sectors and (fi,i+1)i∈I be a collection of bounded analytic maps

on (Vi)i∈I , respectively, admitting an exponential decay at 0 of order 1/s, for some s > 0.

Then there exists a collection (fi)i∈I of analytic maps on (Vi)i∈I , with fi ∈ As(Vi, E) such

that fi,i+1 = fi+1 − fi. Moreover, the fi admit the same asymptotic expansion f̂ of Gevrey

order s.
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The last results we will need are the following tauberian conditions on k−summability. The

first is that the absence of singular directions implies convergence and the second relates

different levels of summability.

Proposition 1.1.12. Let k > 0 and f̂ ∈ E[[x]]1/k be a 1/k−Gevrey formal power series. If

f̂ is k−summable in every direction then f̂ is convergent.

Theorem 1.1.13 (Ramis). Let 0 < k < k′ be positive numbers. Then E[[x]]1/k′ ∩E{x}1/k =

E{x}1/k′ ∩ E{x}1/k = E{x}.

So far we have only considered formal power series with non-negative integer exponents, but

it is possible to extend the results to series with others exponents. Here we follow [Mal] and

we describe the case when the set of exponents G satisfy the conditions:

1. 0 ∈ G,

2. G is a discrete semigroup of R≥0, and we enumerate its elements by λn, n ∈ N, with
λ0 = 0 < λ1 < ... < λn < λn+1 < ..., and limn→+∞ λn = +∞,

3. There is C > 0 such that λn+1 − λn ≤ C for all n ∈ N.

Actually condition (3) is superfluous: note that supn∈N λn+1 − λn = λ1, as a consequence

of (1) and (2). The typical example of such G is a semigroup generated by a finite number

of positive real numbers µ1, ..., µr, i.e., every element of G has the form
∑r

k=1 nkµk with

nk ∈ N. In this case the optimal value of C is min{µ1, ..., µr}.

We will denote by E[[xG]] the space of formal power series with coefficients in E and ex-

ponents in G. Any element of this space is an expression of the form f̂ =
∑

λ∈G aλx
λ,

with aλ ∈ E. We will also write E{xG} and E[[xG]]s for the subspaces of convergent and

s−Gevrey formal power series with exponents in G, respectively. Then f̂ is convergent if

there are constants C,A > 0 such that |aλ| < CAλ for all λ ∈ G and it is of s−Gevrey type if

there are constants C,A > 0 such that |aλ| < CAλΓ(1+ sλ), for all λ ∈ G. The sets E[[xG]],

E{xG} and E[[xG]]s are C−vector spaces, stable by derivative xd/dx (term by term) and

also algebras when E is a Banach algebra (here it is used that G is a semigroup).

The analytic meaning of elements of E{xG} is the following: if
∑∞

n=0 aλnx
λn is convergent

and |aλn | ≤ CAλn , by the Weierstraß M-test, it defines an analytic function in any sector of

opening less than 2π (condition to chose a determination of the maps xλn) and radius less

than 1/A.
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Finally we can generalize asymptotic expansions using the above type of series. A possible

definition that f ∈ O(V,E) admits f̂ ∈ E[[xG]] as asymptotic expansion on V , with V of

opening less than 2π is that there is a determination of the xλ on V , such that for every

W b V and λ ∈ G, there are constants Cλ(W ) with∥∥∥∥∥∥∥f(x)−
∑
µ<λ
µ∈G

aµx
µ

∥∥∥∥∥∥∥ ≤ Cλ(W )|x|λ,

for all x ∈ W . The asymptotic will be of s-Gevrey type if Cλ(W ) = CAλΓ(1 + sλ) for

some C,A > 0 and in that case necessarily f̂ ∈ E[[xG]]s. We remark that if there is p ∈ N∗

such that G ⊂ 1
pN then the above notion corresponds to asymptotic in the variable x1/p, via

Proposition 1.1.4.

In this context, maps with null k−Gevrey asymptotic expansion are again those which has ex-

ponential decay (here is where condition (3) onG is used). Similar results as Watson’s lemma,

Borel-Ritt and Borel-Ritt-Gevrey theorems hold. Then the notion of k−summable series

makes sense, up to the restriction k > 1/2. The formal k−Borel transform

B̂k : xkE[[xG]] → E[[ξG]] extends naturally by B̂k(x
k+λa) = ξλa/Γ(1 + λ/k), a ∈ E. Finally

the Borel-Laplace summation method adapts as follows: f̂ is k−summable in a direction d

if and only if B̂k(f̂) ∈ E{ξG} extends analytically as φ to a sector of infinite radius bisected

by d, with exponential growth at most k. Then the k−sum is obtained via the k−Laplace

transform of φ.

We want to finish the survey with one example taken from [Sa], to illustrate the theory.

Example 1.1.1 (Poincaré). Fix w ∈ C with 0 ≤ |w| < 1 and consider the series of mero-

morphic functions of x:

ϕ(x) =

∞∑
k=0

ϕk(x), ϕk(x) =
wk

1 + kx
. (1-2)

Restrict to the non-trivial case |w| > 0. For |x| > 1/N , N ≥ 1, ϕ0 + ϕ1 + · · · + ϕN is

meromorphic with simple poles at −1, −1/2,...,−1/N , and for k ≥ N+1, |ϕk(x)| ≤ |w|k
k|x+1/k| ≤(

1
N − 1

N+1

)−1 |w|k
k , whence the uniform convergence and the analyticity of ϕN+1+ϕN+2+· · ·

in this domain. In conclusion ϕ is meromorphic in C∗ with a simple pole at every point of

the form −1/k, with k ∈ N∗.

When x approaches 0, ϕ give rise to a divergent series: since ϕk(x) = wk
∑∞

n=0(−1)nknxn,

for |x| < 1/k, when we formally interchange the sums in (1-2) we get:

ϕ̂(x) =

∞∑
n=0

(−1)nbnx
n, bn =

∞∑
k=0

knwk.
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Note that every bn is a convergent numerical series. However ϕ̂ is divergent: in fact it is

1−Gevrey. To prove this assertion, seen bn as a function of w and setting w = es,Re(s) < 0,

we see that bn =
(
w d

dw

)n
(b0) =

(
d
ds

)n ( 1
1−es

)
. Then we can recognize the formal 1−Borel

transform of xϕ̂(x) as the Taylor’s formula of b0 in the variable s:

B̂1(xϕ̂(x))(ξ) =

∞∑
n=0

(−1)nbn
n!

ξn =
1

1− es−ξ
=

eξ

eξ − es
= φ(ξ).

The radius of convergence of the series is dist(s, 2πiZ) and φ can be extended to a meromor-

phic in C with simple poles at s+ 2πiZ.

Now we check the exponential growth of φ. First, if we take σ ∈ (0,−Re(s)) and ξ satisfies

Re(ξ) ≥ −σ, then |φ(ξ)| ≤ A(σ), with A(σ) = (1− eRe(s)+σ)−1.

For δ > 0, let Cδ = {ξ ∈ C|dist(ξ, s + 2πiZ) ≥ δ}. Since |φ(ξ)| = eRe(ξ)/F (ξ) where

F (ξ) = |eξ − es|, and F is 2πi−periodic, positive on Cδ, F (ξ) → +∞ as Re(ξ) → +∞ and

F (ξ) → |w| as Re(ξ) → −∞, we can take R > 0 with F (ξ) ≥ |w|/2 if Re(ξ) ≥ R. Then,

|φ(ξ)| ≤ BeRe(ξ),

with B = B(δ) = max{2/|w|, 1/M(δ)}, and M(δ) = inf{F (ξ)|ξ ∈ Cδ, |Re(ξ)| ≤ R, |Im(ξ)| ≤
π} is a well-defined positive number, by compactness.

The above considerations show that φ̂ is 1−summable in every direction in (−π/2, π/2) ∪∪
k∈Z(arg(ωk), arg(ωk+1)), where ωk = s− 2πik. Since φ has infinitely many poles, φ̂ is not

1−summable.

We can see that the 1−sum of ϕ̂ in the direction 0 is precisely ϕ. By the general theory we

know that this sum is given by

ϕ̃(x) =
1

x

∫ +∞

0

eξ−ξ/x

eξ − w
dξ,

and it is defined for Re(x) > 0. If we fix x > 0 and consider the previous function as a function

g(w) of w, g is analytic in |w| < 1. Then a calculation shows that g(k)(0)/k! = 1
1+kx . By

Taylor’s formula we see that g(w) =
∑∞

k=0 g
(k)(0)wk/k! = ϕ(x). Since x > 0 was arbitrary,

it follows by the identity principle that ϕ̃(x) = ϕ(x) for Re(x) > 0.

1.2 Monomial summability

To establish the notion of monomial summability some previous considerations must be

made. In particular, we must settle the type of series we will work with as well as the kind
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of functions and domains that will play the role of its sums. Those are particular goals

behind Subsections 1.2.1 and Subsection 1.2.2. After a brief recall of point blow-ups in

C2 the concept of asymptotic expansion and Gevrey asymptotic expansion in a monomial

is exposed. Going into detailed proofs we show the compatibility of this notions with the

standard algebraic operations and differentiation. Functions with null s−Gevrey monomial

asymptotic expansion are characterized by having exponential decay of order 1/s at the

origin in the monomial. Analogous versions to Watson’s lemma, Borel-Ritt and Borel-Ritt-

Gevrey theorems as well as the Ramis-Sibuya theorem are also included. With the previous

tools the definition of monomial summability and its properties are achieved. The section

ends with different ways to calculate these sums, all proposed in Subsection 1.2.4. We note

that although it is possible to develop the theory for power series with coefficients in an

arbitrary complex Banach space E as in [CDMS], we have opted by restrict our attention to

the case E = C.

1.2.1 Formal setting

We will denote by R̂ = C[[x, ε]] the C−algebra of formal power series in the variables x, ε

and by R = C{x, ε} the algebra of germs of analytic functions at the origin of C2, i.e., the

algebra of convergent power series. Both become differential rings with subring of constants

C, when considering the usual derivations ∂/∂x and ∂/∂ε. We start by recalling some of

its subalgebras that will play an important role on the notes. We remark that the following

definitions can be carried on over the formal power series in any number of variables but we

restrict ourselves to the case of just two since it is the only one we will use here.

Definition 1.2.1. Let s1, s2 non-negative real numbers. A formal power series f̂ ∈ R̂ is said

to be (s1, s2)−Gevrey if we can find constants C,A such that if f̂ =
∑
an,mx

nεm then

|an,m| ≤ CAn+mn!s1m!s2 ,

for all n,m ∈ N∗. The set of (s1, s2)−Gevrey formal power series will be denoted by R̂(s1,s2).

It is straightforward to check that R̂(s1,s2) is a differential subalgebra of R̂. It is also closed

by composition. Note in particular that R̂(0,0) = C{x, ε}. Other property we note is the

following contention:

R̂(s1,s2) ∩ R̂(s′1,s
′
2)

⊆ R̂(s′′1 ,s
′′
2 )
, (1-3)

valid for every (s′′1, s
′′
2) ∈ R2 on the segment joining (s1, s2) with (s′1, s

′
2). This follows from

the inequality

min{a, b} ≤ atb1−t ≤ max{a, b}, (1-4)

valid for any a, b > 0 and 0 ≤ t ≤ 1.
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Another set that will be used in the text is the union of subalgebras S =
∪

r>0 Sr, where

Sr = Ob(Dr)[[x]]∩Ob(Dr)[[ε]]. Then f̂ ∈ S if and only if when we write f̂ =
∑∞

n=0 fn∗(ε)x
n =∑∞

n=0 f∗n(x)ε
n, all the fn∗ and f∗n have a common radius of convergence and are bounded.

In particular C{x, ε} ⊂ S.

Our main interest in this chapter is to present a theory of summability in a monomial. The

goal is to sum some type of series that in some sense have a divergence in dimension one

“parameterized” analytically (by a monomial). We first consider the monomial xε, for which

the results are easier to write, and then we move on to a general monomial based on the

previous results.

Given f̂ ∈ S, using the monomial xε and a recursive division process w.r.t. xε by ordering

the terms of f̂ by total degree, we can write it uniquely as

f̂(x, ε) =
∞∑
n=0

(bn(x) + cn(ε))(xε)
n,

where bn, cn ∈ Ob(Dr) for some r > 0 and cn(0) = 0 for all n ∈ N. More explicitly, if

f̂ =
∑
an,mx

nεm, then bn(x) =
∑∞

m=0 an+m,nx
m and cn(ε) =

∑∞
m=1 an,n+mε

m. Of course,

this formulas also hold for any element of R̂ but with bn and cn just formal power series. The

hypothesis of f̂ ∈ S is a necessary and sufficient condition to ensure that bn, cn ∈ Ob(Dr) for

some r > 0. We note, for future purposes, that

fn∗(ε) =
n∑

m=0

an,mε
m + εncn(ε), f∗m(x) =

m−1∑
n=0

an,mx
n + xmbm(ε). (1-5)

The previous process allow us to define the map T̂ : S → E [[t]], T̂ (f̂) =
∑

(bn(x) + cn(ε))t
n,

where E is the union of the following spaces of analytic functions

E =
∪
r>0

Er, Er = {b(x) + c(ε) | b, c ∈ Ob(Dr) and c(0) = 0}.

Note that every Er becomes a Banach space with the supremum norm but unfortunately it

is not a Banach algebra with the usual product (it is not closed under this operation). For

every r > 0, T̂ |Sr is an isomorphism of vector spaces between Sr and Er[[t]]. We also remark

that f̂ ∈ C{x, ε} if and only if T̂ (f̂) ∈ E{t}.

Definition 1.2.2. Let s be a non-negative real number. A formal power series f̂ ∈ S
is said to be s−Gevrey in the monomial xε if for some r > 0, T̂ (f̂) ∈ Er[[t]] and it is a

s−Gevrey series in t. The set of s−Gevrey series in the monomial xε will be denoted by

R̂
(1,1)
s = C[[x, ε]](1,1)s .

According to the previous definition we see that T̂ maps R̂
(1,1)
s into E [[t]]s =

∪
r>0 Er[[t]]s.

We can characterize more explicitly, in terms of the coefficients of a series, the fact of being

s−Gevrey in the monomial xε, as it is shown in the next proposition.
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Proposition 1.2.1. Let s be a non-negative real number. For a series f̂ ∈ R̂ it is equivalent:

1. f̂ ∈ R̂
(1,1)
s ,

2. f̂ ∈ R̂(s,0) ∩ R̂(0,s),

3. If f̂ =
∑
an,mx

nεm, then |an,m| ≤ CAn+mmin{n!s,m!s} for some constants C,A, for

all n,m ∈ N∗.

The proof uses Cauchy’s formulas and it is left to the reader. Using item (2) of the previous

proposition the following statement is clear.

Proposition 1.2.2. For any s ≥ 0, R̂
(1,1)
s is a differential subalgebra of R̂.

We can perform similar constructions replacing xε by any other monomial xpεq, with p, q ∈
N∗. Starting with f̂ ∈ S and using successive divisions by xpεq (or equivalently using the

filtration of R̂ by the sequence of ideals (xpεq)k, k ∈ N), we can write it uniquely as

f̂ =
∞∑
n=0

fn(x, ε)(x
pεq)n,

where fn(x, ε) ∈ E(p,q), and E(p,q) is the following union of spaces of analytic functions

E(p,q) =
∪
r>0

E(p,q)
r ,

E(p,q)
r =

{
q−1∑
l=0

εlhl(x) +

p−1∑
m=0

xmgm(ε)

∣∣∣∣∣ hl, gm ∈ Ob(Dr), g
(j)
m (0) = 0, 0 ≤ m < p, 0 ≤ j < q

}
.

Note that E(1,1) = E . As before we take only elements in S to ensure that for some r > 0,

every fn belongs to Ob(Dr). Each E(p,q)
r becomes a Banach space with the supremum norm

∥f∥r = sup|x|,|ε|<r |f(x, ε)| (again it is not a Banach algebra with the usual product).

The previous expressions, if f̂ =
∑
an,mx

nεm, are given explicitly by:

fn(x, ε) =

q−1∑
j=0

( ∞∑
m=0

anp+m,nq+jx
m

)
εj +

p−1∑
m=0

 ∞∑
j=q

anp+m,nq+jε
j

xm. (1-6)

We define the map T̂p,q : S → E(p,q)[[t]], as T̂p,q(f̂) =
∑∞

n=0 fn(x, ε)t
n. As before, for every

r > 0, T̂p,q|Sr is an isomorphism of vector spaces between Sr and E(p,q)
r [[t]]. Also T̂1,1 = T̂ .
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Definition 1.2.3. Let s be a non-negative real number. A formal power series f̂ ∈ S is

said to be s−Gevrey in the monomial xpεq if for some r > 0, T̂p,q(f̂) ∈ E(p,q)
r [[t]] and it is a

s−Gevrey series in t. The set of s−Gevrey series in the monomial xpεq will be denoted by

R̂
(p,q)
s = C[[x, ε]](p,q)s .

The analogous version of Proposition 1.2.1 for the monomial xpεq reads as follows.

Proposition 1.2.3. Let s ≥ 0 a non-negative real number. For a series f̂ ∈ R̂ the following

assertions are equivalent:

1. f̂ ∈ R̂
(p,q)
s ,

2. f̂ ∈ R̂(s/p,0) ∩ R̂(0,s/q),

3. If f̂ =
∑
an,mx

nεm then |an,m| ≤ CAn+mmin{n!s/p,m!s/q} for some constants C,A,

for all n,m ∈ N∗ .

Proof. Statements (2) and (3) are clearly equivalent. It only remains to proof the equivalence

between (1) and (3). Suppose first that f̂ =
∑
an,mx

nεm ∈ R̂
(p,q)
s . Since T̂p,q(f̂) is a s-Gevrey

series there are constants C,A with ∥fn∥r ≤ CAnn!s, for some r > 0 and for all n. Using

this bound together with expressions (1-6) and Cauchy’s formulas it follows that there are

constants D,B with

|anp+k,nq+j | ≤ DBnp+k+nq+jn!s,

for all n, k, j ∈ N. Since n! ≤ (np)!1/p ≤ (np+ k)!1/p and n! ≤ (nq)!1/q ≤ (nq + j)!1/q we get

|anp+k,nq+j | ≤ DBnp+k+nq+j min{(np+ k)!s/p, (nq + j)!s/q} as desired.

Conversely, suppose that the coefficients of f̂ satisfies |an,m| ≤ CAn+mmin{n!s/p,m!s/q} for

some C,A. We can directly estimate the growth of the fn by means of the expression (1-6):

if |x|, |ε| < r and rA < 1 we get

|fn(x, ε)| ≤
q−1∑
j=0

rjCAnp+nq+j (nq + j)!s/q

1− rA
+

p−1∑
m=0

rmCAnp+nq+m (rA)q(np+m)!s/p

1− rA
.

By Stirling’s formula we know that limn→+∞
(np)!1/p

pnn! = 0 for any natural number p ≥ 2. We

can conclude that there are K,B > 0 such that |fn(x, ε)| ≤ KBnn!s for all |x|, |ε| < r, as we

wanted to prove.

It particular, by taking s = 0, the above proposition tell us that f̂ ∈ C{x, ε} if and only if

T̂p,q(f̂) ∈ E(p,q){t}. Another important property, that follows from item (2), is the following.

Proposition 1.2.4. For any s ≥ 0, R̂
(p,q)
s is a subalgebra of R̂.
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Proposition 1.2.3 also let us relate the Gevrey type in a monomial in terms of another

monomial. More concretely we have the following assertion.

Corollary 1.2.5. If f̂ ∈ R̂
(p′,q′)
s then T̂p,q(f̂) is a max{p/p′, q/q′}s−Gevrey series.

Proof. If we write f̂ =
∑
an,mx

nεm, we can take constants C,A > 0 such that |an,m| ≤
CAn+mmin{n!1/p′ ,m!1/q

′}s for all n,m ∈ N. Similar calculations as in the proof of Propo-

sition 1.2.3 let us conclude that for |x|, |ε| ≤ r < 1/A there are constants K,B > such that

for all n ∈ N

sup
|x|,|ε|≤r

|fn(x, ε)| ≤ KBnn!max{p/p′,q/q′}s,

as we wanted to prove.

Remark 1.2.6. Fix p, q ∈ N∗. Then any formal power series f̂ ∈ R̂ can be written uniquely

as

f̂(x, ε) =
∑
0≤i<p
0≤j<q

xiεj f̂i,j(x
p, εq). (1-7)

We will say eventually that f̂ij is the (i, j)−component of f̂ in the decomposition (1-7).

Explicitly if f̂ =
∑

n,m≥0 an,mx
nεm then f̂ij(x

p, εq) =
∑

k,r≥0 akp+i,rq+jx
pkεqr. But we can

also determine the f̂i,j by solving the system of linear equations

f̂(ωmx, νlε) =
∑
0≤i<p
0≤j<q

ωmiνljxiεj f̂i,j(x
p, εq),

where ω, ν are primitive pth and qth roots of unity, respectively, and m = 0, 1, ..., p− 1, l =

0, 1, ..., q − 1. Indeed we can obtain the expressions

xiεj f̂i,j(x
p, εq) =

1

pq

∑
0≤m<p
0≤l<q

ωm(p−i)νl(q−j)f̂(ωmx, νlε). (1-8)

Note that the coefficients Λ = (ωmiνlj) ∈ GL(pq,C) in the above expression are independent

of the chosen f̂ .

Finally from the previous decomposition of f̂ we obtain the formula

T̂p,q(f̂)(t)(x, ε) =
∑
0≤i<p
0≤j<q

xiεjT̂1,1(f̂ij)(t)(x
p, εq), (1-9)

where the maps T̂1,1 are taking in the variables ζ = xp, η = εq.
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We now state a lemma that let us relate the fact of being s−Gevrey in the monomial xpεq

with being s−Gevrey in ζη, ζ = xp, η = εq. The proof follows using bounds similar to the

ones used in the proof of Proposition 1.2.3 and it is left to the reader.

Lemma 1.2.7. Let s ≥ 0 be a non-negative number and p, q ∈ N∗. Let f̂ ∈ R̂ and write it

uniquely as f̂(x, ε) =
∑

0≤i<p
0≤j<q

xiεj f̂i,j(x
p, εq). Then f̂(x, ε) ∈ R̂

(p,q)
s if and only if f̂ij(ζ, η) ∈

C[[ζ, η]](1,1)s for all i = 0, 1, ..., p− 1, j = 0, 1, ..., q − 1.

To finish this section we point out some properties of series obtained from weighting the

variables x and ε and that will be essential in our treatment of tauberian properties of

monomial summability in this chapter. Consider real parameters s1, s2 > 0 such that s1 +

s2 = 1 and a new variable z ∈ C. It induces the morphism of C−algebras

ιG : C[[x, ε]] −→ C[x, ε][[zG]],

f̂(x, ε) 7−→ ιG(f̂)(x, ε)(z) = f̂(zs1/px, zs2/qε),

where G = G
(p,q)
s1,s2 := {ns1/p + ms2/q | n,m ∈ N} denotes the discrete semigroup of R≥0

generated by s1/p and s2/q. G is the image of N2 by the map ℓ(n,m) = ns1/p+ms2/q. We

remark that ℓ is injective if and only if s1/s2 ̸∈ Q if and only if s1 ̸∈ Q.

We can find the Gevrey nature of ιG(f̂)(x, ε) from the corresponding of f̂ . As it is expected,

if f̂ is a s−Gevrey series in xpεq, then ιG(f̂)(x, ε) is s−Gevrey in z. More generally, we have

an analogous result of Corollary 1.2.5, relating two monomials.

Proposition 1.2.8. Let s1, s2 be positive real numbers such that s1 + s2 = 1 and let G =

G
(p,q)
s1,s2. If f̂ ∈ R̂

(p′,q′)
s then for every (x, ε) ∈ C2, ιG(f̂)(x, ε)(z) is a max{p/p′, q/q′}s−Gevrey

series in z.

Proof. Let f̂ =
∑
an,mx

nεm be a s−Gevrey series in xp
′
εq

′
. Then there are constants

B̃, D̃ ≥ 0 such that |an,m| ≤ D̃B̃n+mmin{n!s/p′ ,m!s/q
′} for all n,m. By (1-4) and Stirling’s

formula we know that

|an,m| ≤ D̃B̃n+mn!s1s/p
′
m!s2s/q

′

≤ D̃B̃n+mn!s1smax{p/p′,q/q′}/pm!s2smax{p/p′,q/q′}/q

≤ DBn+mΓ

(
1 +

ns1
p
smax{p/p′, q/q′}

)
Γ

(
1 +

ms2
q
smax{p/p′, q/q′}

)
≤ DBn+mΓ

(
1 + smax{p/p′, q/q′} (ns1/p+ms2/q)

)
,
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for some constants B,D > 0. This implies that for every fixed (x, ε) ∈ C2, ιG(f̂)(x, ε) is

smax{p/p′, q/q′} in z.

The previous considerations show in particular that if f̂ is convergent then ιG(f̂)(x, ε) is

convergent, for all (x, ε) ∈ C2. Conversely, the problem of establishing sufficient conditions

to ensure the convergence of f̂ from the convergence of the series ιG(f̂)(x, ε), for (x, ε) in

an adequate set can be seen as a particular case of the following more general problem:

given a series f̂(x1, ..., xn, x) =
∑∞

m=0 Pm(x1, ..., xn)x
m ∈ C[x1, ..., xn][[x]], where deg(Pm) ≤

Am+B, for some A > 0, B ≥ 0, establish conditions on a set C ⊂ Cn to prove the convergence

of f̂ from the convergence of f̂(a1, ..., an, x) for all (a1, ..., an) ∈ C. If C is open or of positive

Lebesgue measure or non pluri-polar (in the sense of potential theory) then the answer is

positive. For more information, see [Ri]. For our purposes, the following proposition will

suffice.

Proposition 1.2.9. Let f̂ ∈ R̂ be a formal power series, s1, s2 positive real numbers such

that s1 + s2 = 1 and p, q ∈ N∗. Also set G = G
(p,q)
s1,s2. If there is an open set U ⊂ C2 such

that ιG(f̂)(x, ε) ∈ C{zG} for all (x, ε) ∈ U then f̂ ∈ R.

Proof. If f̂ =
∑
an,mx

nεm then ιG(f̂)(x, ε)(z) =
∑

λ∈G Pλ(x, ε)z
λ, where

Pλ(x, ε) =
∑

ℓ(n,m)=λ

an,mx
nεm.

We consider first the case where s1 ̸∈ Q, i.e. ℓ is injective. Then every Pλ has only one

summand. If we take (x0, ε0) ∈ U , x0 ̸= 0, ε0 ̸= 0, the convergence of ιG(f̂)(x0, ε0) means

that there are constants C,A > 0 such that |an,mxn0εm0 | < CAns1/p+ms2/q for all n,m ∈ N.
Then it is clear that f̂ converges.

For the case s1 ∈ Q we need to find uniform bounds for the Pλ in some open set. This can

be done as follows: we know that for every (x, ε) ∈ U there are constants C(x,ε), A(x,ε) > 0

such that |Pλ(x, ε)| ≤ C(x,ε)A
λ
(x,ε) for all λ ∈ G. This implies that the closed sets

FN =
{
(x, ε) ∈ U | |Pλ(x, ε)| ≤ Nλ for all λ ∈ G

}
,

where N ∈ N, cover U . By Baire’s category theorem, at least one of these closed sets has

non-empty interior.

In consequence, we can take K ∈ N, (x0, ε0) ∈ U , and r > 0 with Dr(x0) × Dr(ε0) ⊂ U

such that |Pλ(x, ε)| ≤ Kλ for all (x, ε) ∈ Dr(x0)×Dr(ε0) and for all λ ∈ G. Since r can be

arbitrarily small we may suppose that r < 2|x0|, 2|ε0|.
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Fix λ ∈ G. If we expand Pλ around (x0, ε0), say Pλ(x, ε) =
∑N,M

n,m=0 bn,m(x− x0)
n(ε− ε0)

m,

it follows from Cauchy’s formulas that |bn,m| ≤ Kλ/rn+m for all 0 ≤ n ≤ N and 0 ≤ m ≤
M , where N = max{n ∈ N|ℓ(n,m) = λ for some m} and M = max{m ∈ N|ℓ(n,m) =

λ for some n} (depending on λ).

Finally we can bound the coefficients an,m as follows: take any (n,m) ∈ N2 and let λ =

ℓ(n,m). Then

|an,m| =

∣∣∣∣∣∣
N−n,M−m∑
k=0,l=0

(
n+ k

n

)(
m+ l

m

)
bn+k,m+l(−x0)k(−ε0)l

∣∣∣∣∣∣
≤

N−n,M−m∑
k=0,l=0

2n+k+m+l Kλ

rn+k+m+l
|x0|k|ε0|l

= Kℓ(n,m)

(
2

r

)n+m((2|x0|/r)N−n+1 − 1

2|x0|/r − 1

)(
(2|ε0|/r)M−m+1 − 1

2|ε0|/r − 1

)
.

Since ℓ(n,m) = ℓ(N,m′) = ℓ(n′,M), for some n′,m′ ∈ N then N − n ≤ m(s2p/s1q) and

M −m ≤ n(s1q/s2p). This let us conclude that there are large enough constants B,D such

that |an,m| ≤ DBn+m for all n,m ∈ N, so f̂ is convergent.

1.2.2 Analytic setting

To be able to sum series of S we need to determine the domains where the sum will be

defined. A relevant way in which the monomial plays a predominant role in the analytic

context is that the domains will be sectors in the monomial. We first analyze how to work

with analytic functions defined over these domains using point blow-ups. Then the notion of

asymptotic expansion and Gevrey asymptotic expansion in the monomial xε is introduced.

We provide two different characterizations of these notions, one using the change of variables

t = xε and passing to the one variable case, with power series in an adequate complex Ba-

nach space and other using approximations with analytic functions. After establishing the

compatibility of the monomial asymptotic expansions with the standard algebraic operations

and differentiation we carry on again the definition and the mentioned results with an ar-

bitrary monomial xpεq. The subsection ends formulating the similar versions of Watson’s

lemma, Borel-Ritt, Borel-Ritt-Gevrey and Ramis-Sibuya theorems.

Definition 1.2.4. Fix p, q ∈ N∗. We will call a sector in the monomial xpεq a set defined as

Πp,q = Πp,q(a, b, r) =
{
(x, ε) ∈ C2 | 0 < |x|p < r, 0 < |ε|q < r, a < arg(xpεq) < b

}
,
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where a, b ∈ R with a < b and r > 0. The number r is called the radius, b − a the opening

and (b+ a)/2 the bisecting direction of the sector, respectively. Occasionally we will use the

notation Π(a′, b′, r′) b Π(a, b, r) to indicate that Π(a′, b′, r′) is a subsector of Π(a, b, r), that

is, if a < a′ < b′ < b and 0 < r′ < r.

We will also use the notation Sp,q(d, α, r) = Πp,q(d− α/2, d+ α/2, r) to denote the sector in

the monomial xpεq with bisecting direction d, opening α and radius r.

Observe that if (x, ε) ∈ Πp,q(a, b, r) then t = xpεq ∈ V (a, b, r2). Also for any a′ < b′ and

a′′ < b′′ with a < pa′ + qa′′ < pb′ + qb′′ < b we see that V (a′, b′, r1/p) × V (a′′, b′′, r1/q) ⊂
Πp,q(a, b, r).

As in the formal setting we focus first in the case of p = q = 1. To take care of analytic

functions on a sector in the monomial we may use the charts of the classical blow-up at the

origin in C2. For sake of completeness we recall this notion, of common usage in algebraic

geometry.

Consider the point P = (0, 0) ∈ C2, and let EP the following variety

EP = {((x1, x2), [y1, y2]) ∈ C2 × P1
C | x1y2 = x2y1},

with the projection π : EP → C2 over the first coordinate. Let us observe that if (x1, x2) ∈ C2

then

π−1(x1, x2) =

{
((x1, x2), [x1, x2]) if (x1, x2) ̸= P,

{(0, 0)} × P1
C if (x1, x2) = P.

(EP , π) is called the blow-up of the origin in C2: the origin has been removed and replaced

by a projective line. Each pair of this projective line corresponds to a direction from P .

Indeed, consider the straight line L = {(λx1, λx2) ∈ C2|λ ∈ C}. As π−1(λx1, λx2) =

((λx1, λx2), [x1, x2]) if λ ̸= 0, π−1(L \ P ) cuts the projective line in ((0, 0), [x1, x2]). This

projective line will be called the exceptional divisor.

EP is a bidimensional variety covered by two charts, that we shall describe. Consider P1
C =

C1 ∪ C2, where C1 = {[y1, 1] ∈ P1
C | y1 ∈ C} and C2 = {[1, y2] ∈ P1

C | y2 ∈ C}. Then

EP ∩ (C2 × C1) = {((x2y1, x2), [y1, 1]) ∈ EP | (x2, y1) ∈ C2},
EP ∩ (C2 × C2) = {((x1, x1y2), [1, y2]) ∈ EP | (x1, y2) ∈ C2},

both parameterized by C2. The projection π, in this charts is represented as

π(x2, y1) = (x2y1, x2) in the first chart,

π(x1, y2) = (x1, x1y2) in the second chart.
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For the sake of simplifying notation, since in our case the coordinates are (x, ε), we shall

consider the two charts of the blow-up with projections π1(x, ε) = (xε, ε), π2(x, ε) = (x, xε).

Then for a sector Π(a, b, r) = Π1,1(a, b, r) we see that

π1(Π(a, b, r)) =

{
(t, ε) ∈ C2 | 0 < |t| < r2,

|t|
r
< |ε| < r and a < arg(t) < b

}
,

π2(Π(a, b, r)) =

{
(x, t) ∈ C2 | 0 < |t| < r2,

|t|
r
< |x| < r and a < arg(t) < b

}
.

We will write the results only for π1 = π. Analogous considerations follow for π2 due to

the symmetric role between x and ε above. Let f ∈ O(Π(a, b, r)) be an analytic function.

It induces an analytic function on π(Π(a, b, r)) given by (t, ε) 7−→ f(t/ε, ε). For fixed t

with 0 < |t| < r2 the function ε 7−→ f(t/ε, ε) is analytic and single-valued in the annulus
|t|
r < |ε| < r and thus it has a convergent Laurent series expansion on ε:

f

(
t

ε
, ε

)
=
∑
n∈Z

fn(t)ε
n, (1-10)

where the functions fn are given by:

fn(t) =
1

2πi

∫
|ω|=ρ

f
(
t
ω , ω

)
ωn+1

dω, (1-11)

for |t|/r < ρ < r. In particular fn ∈ O(V (a, b, r2)) and its derivative is given by

f ′n(t) =
1

2πi

∫
|ω|=ρ

∂f
∂x

(
t
ω , ω

)
ωn+2

dω. (1-12)

We can relate the growth order of f with the growth of the fn by using formula (1-11). More

precisely we have the following proposition.

Proposition 1.2.10. Let f ∈ O(Π(a, b, r)) be an analytic function. Suppose that |f(x, ε)| ≤
K(|xε|) for any (x, ε) ∈ Π(a′, b′, ρ) b Π(a, b, r) and some function K : (0, ρ2) → R>0. Then

for t ∈ V (a′, b′, ρ2):

1. If n ∈ N, |fn(t)| ≤
K(|t|)
ρn

,

2. If n ≥ 1, |f−n(t)| ≤
|t|nK(|t|)

ρn
.

In particular, if r = ρ = +∞ then f(x, ε) = f0(xε), for all (x, ε) ∈ Π(a′, b′,+∞).

Proof. The inequalities follow directly from Cauchy’s formulas. To prove the last part, note

that fixing t ∈ V , the inequalities are valid for any ρ > |t|1/2. Letting ρ→ +∞ we conclude

that fn(t) ≡ 0 for all n ̸= 0. The result follows from equality (1-10).
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With the previous considerations we are ready to introduce the notion of asymptotic expan-

sion in the monomial xε.

Definition 1.2.5. Let f be an analytic function on Π = Π(a, b, r) and f̂ ∈ R̂. We will

say that f has f̂ as asymptotic expansion at the origin in xε and we will use the notation

f ∼(1,1) f̂ on Π(a, b, r) if: there exists 0 < r′ ≤ r such that T̂ f̂ =
∑

(bn + cn)t
n ∈ Er′ [[t]] and

for every Π̃ = Π(a′, b′, ρ) b Π with 0 < ρ < r′ and N ∈ N there is a constant CN (Π̃) > 0

such that for all (x, ε) ∈ Π̃:∣∣∣∣∣f(x, ε)−
N−1∑
n=0

(bn(x) + cn(ε))(xε)
n

∣∣∣∣∣ ≤ CN (Π̃)|xε|N . (1-13)

The asymptotic expansion is said to be of s−Gevrey type if we can find C(Π̃), A(Π̃) inde-

pendent of N such that CN (Π̃) = C(Π̃)A(Π̃)NN !s. In this case we will use the notation:

f ∼(1,1)
s f̂ on Π(a, b, r). We will denote by A(1,1)(Π) the set of analytic functions defined on

Π that admits an asymptotic expansion in the monomial xε on Π and by A(1,1)
s (Π) the set

of analytic functions defined on Π that admits an asymptotic expansion of s−Gevrey type

in the monomial xε on Π.

We note that we are only using formal series in S. It follows from Proposition 1.2.10 that if

f ∼(1,1) f̂ on Π(a, b, r) then every fm(t) and f−m(t)/tm, m ∈ N, associated with f by formula

(1-11), admits an asymptotic expansion on V (a, b, r′2). More precisely, ifW = V (a′, b′, ρ2) b
V (a, b, r′2) then for every t ∈W :

∣∣∣∣∣fm(t)−
N−1∑
n=0

an,n+mt
n

∣∣∣∣∣ ≤ CN (Π̃)
|t|N

ρm
, (1-14)∣∣∣∣∣f−m(t)

tm
−

N−1∑
n=0

an+m,nt
n

∣∣∣∣∣ ≤ CN (Π̃)
|t|N

ρm
, (1-15)

where Π̃ = Π(a′, b′, ρ). In particular if f ∼(1,1)
s f̂ on Π(a, b, r) every fm(t) and f−m(t)/tm,

m ∈ N, admits an s−Gevrey asymptotic expansion on V (a, b, r′2), with the same asymptotic

constants for all m ∈ Z.

We are going to express the notion of asymptotic expansion in the monomial xε in terms of

the classical notion of asymptotic expansion in an adequate Banach space.

Any f ∈ O(Π(a, b, r)) bounded in some subsector Π(a′, b′, ρ) induces an analytic function

T (f)ρ : V (a′, b′, ρ2) → Eρ′ for all ρ′ < ρ, by means of the decomposition (1-10):

T (f)ρ(t)(x, ε) =

∞∑
m=0

f−m(t)

tm
xm +

∞∑
m=1

fm(t)εm. (1-16)
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The above expression is well-defined since f is bounded on Π(a′, b′, ρ): if |f(x, ε)| ≤ C, by

Proposition 1.2.10 we see that |fm(t)| ≤ C/ρm and |f−m(t)/tm| ≤ C/ρm for all t ∈ V (a′, b′, ρ)

and T (f)ρ(t)(x, ε) is absolutely convergent and bounded for |x|, |ε| < ρ. Note that f is

determined by T (f)ρ since T (f)ρ(xε)(x, ε) = f(x, ε).

Proposition 1.2.11. Let f be an analytic function on Π(a, b, r), f̂ =
∑
an,mx

nεm ∈ R̂ and

0 < r′ ≤ r such that T̂ f̂ ∈ Er′ [[t]]. The following statements are equivalent:

1. f ∼(1,1) f̂ on Π(a, b, r),

2. For every 0 < ρ < r′, T (f)ρ ∼ T̂ f̂ on V (a, b, ρ2).

The same result is valid for asymptotic expansions of s−Gevrey type. In the last case, if

f ∼(1,1)
s f̂ on Π(a, b, r), then f̂ ∈ R̂

(1,1)
s .

Proof. We prove that (1) implies (2) The converse is trivial (just put t = xε). T (f)ρ is

well-defined for 0 < ρ < r′ because f is bounded in every subsector of Π(a, b, r). Let

W = V (a′, b′, ρ′2) b V (a′′, b′′, ρ′′2) b V (a, b, ρ2) with ρ′ < ρ′′ < ρ. Then using the bounds

(1-14) and (1-15) we see that for t ∈W and |x|, |ε| < ρ′′:∣∣∣∣∣T (f)ρ(t)(x, ε)−
N−1∑
n=0

(bn(x) + cn(ε))t
n

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

m=0

(
f−m(t)

tm
−

N−1∑
n=0

an+m,nt
n

)
xm +

∞∑
m=1

(
fm(t)−

N−1∑
n=0

an,n+mt
n

)
εm

∣∣∣∣∣
≤

∞∑
m=0

CN (Π̃)
|t|N

ρ′′m
|x|m +

∞∑
m=1

CN (Π̃)
|t|N

ρ′′m
|ε|m

≤ CN (Π̃)

(
1

1− |x|/ρ′′
+

1

1− |ε|/ρ′′

)
|t|N ,

where Π̃ = Π(a′′, b′′, ρ′′). Then taking the supremum for |x|, |ε| ≤ ρ′ we obtain the bound∥∥∥∥∥T (f)ρ(t)−
N−1∑
n=0

(bn + cn)t
n

∥∥∥∥∥
ρ′

≤ 2CN (Π̃)

1− ρ′/ρ′′
|t|N ,

as we wanted to prove.

We also can conclude that ∥bn + cn∥ρ′ ≤ 2Cn(Π̃)
1−ρ′/ρ′′ , for all n ∈ N, proving the last part of the

statement.

The previous proposition let us define the Taylor’s map for asymptotic expansion in the

monomial xε. The map is defined as J = J (1,1) : A(1,1)(Π) → S, J(f) = f̂ , if f ∼(1,1) f̂ on

Π, and it is the only map that makes the following diagram commutative:
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A(1,1)(Π)
J−−−−→ S

T

y yT̂

A(V, E) J−−−−→ E [[t]]

where V = V (a, b, r2) if Π = Π(a, b, r), A(V, E) =
∪

r>0A(V, Er), J = JE is the classical

Taylor’s map and T = T1,1 is defined through (1-16).

For the s−Gevrey asymptotic expansions in xε we also have the Taylor’s map obtained by

restriction Js = J
(1,1)
s : A(1,1)

s (Π) → R̂
(1,1)
s , and it is the only map that makes the following

diagram commutative:

A(1,1)
s (Π)

Js−−−−→ R̂
(1,1)
s

T

y yT̂

As(V, E)
J−−−−→ E [[t]]s

For asymptotic expansions in a monomial, there is also an analog version of Proposition 1.1.2

which reads as follows.

Proposition 1.2.12. Let f ∈ O(Π) be an analytic function. The following assertions are

equivalent:

1. f ∈ A(1,1)(Π),

2. There is r > 0 and a family of bounded analytic functions fN ∈ Ob(D
2
r), N ≥ 1, such

that for every subsector Π̃ of Π there is a constant AN (Π̃) > 0 such that

|f(x, ε)− fN (x, ε)| ≤ AN (Π̃)|xε|N ,

for all (x, ε) ∈ Π̃ ∩D2
r .

Analogously, f ∈ A(1,1)
s (Π) if and only if (2) is satisfied with AN (Π̃) = CANN !s for some

C,A independent of N and additionally there are constants B,D such that ∥fN∥r ≤ DBNN !s

for all N ≥ 1.

Proof. We write the proof only for the case of Gevrey asymptotic expansions. If f ∼(1,1)
s f̂

on Π, and T̂ (f̂) =
∑

(bn + cn)t
n ∈ Er[[t]]s, with this r > 0, it is enough to take fN (x, ε) =∑N−1

n=0 (bn(x) + cn(ε))(xε)
n and the conclusion follows from Definition 1.2.5.

To prove the converse implication write each fN (x, ε) =
∑
a
(N)
n,mxnεm =

∑∞
n=0(bN,n(x) +

cN,n(ε))(xε)
n, as its Taylor’s expansion at the origin valid for |x|, |ε| < r. Note that the con-

dition imposed over the fN and Cauchy’s inequalities implies that |a(N)
n,m| ≤ DBNN !s/rn+m

for all n,m,N ∈ N. Writing the decomposition of the fN as in (1-10) we see that
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fN (t/ε, ε) =
∑
k∈Z

fN,k(t)ε
k, fN,k =

∞∑
n=0

a
(N)
n,n+kt

n,
fN,−k(t)

tk
=

∞∑
n=0

a
(N)
n+k,nt

n.

Then for every Π̃ = Π(a′, b′, ρ) b Π and t ∈ W (a′, b′, ρ) it follows from the hypothesis and

Proposition 1.2.10 that

|fk(t)− fN,k(t)| ,
∣∣∣∣f−k(t)

tk
−
fN,−k(t)

tk

∣∣∣∣ ≤ CANN !s

ρk
|t|N . (1-17)

Reasoning as in the proof of Proposition 1.1.2 we may conclude that a
(N)
n,n+k = a

(M)
n,n+k and

a
(N)
n+k,n = a

(M)
n+k,n for all k ≥ 0, M ≥ N and n = 0, 1, ..., N − 1. This implies that bN,n = bM,n

and cN,n = cM,n for all M ≥ N and n = 0, 1, ..., N − 1.

Define f̂ =
∑
an,mx

nεm =
∑∞

n=0(bn(x) + cn(ε))(xε)
n, where bn = bn+1,n and cn = cn+1,n.

In other words, f̂ is the limit of the Taylor’s series of the fN in the m−topology of R̂, where

m is the ideal generated by x and ε. It is clear that for (x, ε) ∈ Π̃ ∩D2
ρ with 0 < ρ < r we

have

∣∣∣∣∣f(x, ε)−
N−1∑
n=0

(bn(x) + cn(ε))(xε)
n

∣∣∣∣∣ ≤ CANN !s|xε|N +

∣∣∣∣∣∣
∞∑

n,m=N

a(N)
n,mx

nεm

∣∣∣∣∣∣
≤
(
CAN +

D

(1− ρ/r)2
BN

r2N

)
N !s|xε|N .

This proves that f ∼(1,1)
s f̂ on Π.

The next step in the study of this type of asymptotic expansions is to study its stability by the

usual operations of addition, multiplication and differentiation. This is not straightforward

since T and T̂ do not behave well under derivatives and of course either with multiplication,

since there is no natural product on the range of the maps.

Proposition 1.2.13. Let Π be a sector in the monomial xε and s > 0. Then A(1,1)(Π) and

A(1,1)
s (Π) are differential subalgebras of O(Π) and the Taylor’s maps J and Js are homomor-

phisms of differential algebras.

Proof. The compatibility with sums and scalar products follows at once from Definition 1.2.5.

To prove the compatibility with derivations we only do it for the case of ∂/∂x: the proof

for ∂/∂ε is the same replacing x by ε, i.e., using the chart π2 of the blow-up of the origin

and analogous considerations. Suppose that f ∼(1,1) f̂ =
∑
an,mx

nεm on Π = Π(a, b, r)

and T̂ (f̂) ∈ Er′ [[t]]. To show that ∂f
∂x ∼(1,1) ∂f̂

∂x =
∑

(n + 1)an+1,mx
nεm on Π we show that

item (2) of Proposition 1.2.11 holds. First, it follows from equation (1-12) that the Laurent

expansion for ∂f
∂x is given by
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∂f

∂x

(
t

ε
, ε

)
=
∑
m∈Z

f ′m−1(t)ε
m.

For 0 < ρ̃ < ρ < r′ and W = V (a′, b′, ρ̃2) b V (a, b, ρ) take subsectors with W b W̃ b
V (a′′, b′′, ρ′′2) b V (a, b, ρ2) and α > 0 such that D(t, α|t|) ⊂ W̃ for all t ∈ W . Note that we

can take α as small as we want by enlarging the opening of W̃ . Then for t ∈ W it follows,

from inequalities (1-14) and (1-15) applied to V (a′′, b′′, ρ′′2) and Cauchy’s formulas, that

∣∣∣∣∣f ′m(t)−
N∑

n=0

nan,n+mt
n−1

∣∣∣∣∣ =
∣∣∣∣∣ 1

2πi

∫
|w−t|=α|t|

fm(w)−
∑N

n=0 an,n+mw
n

(w − t)2
dw

∣∣∣∣∣
≤CN+1(Π)

(α+ 1)N+1

α

|t|N

ρm
,

and analogously∣∣∣∣∣f ′−m(t)−
N∑

n=0

(n+m)an+m,nt
n+m−1

∣∣∣∣∣ ≤ CN+1(Π)
(α+ 1)N+m+1

α

|t|N+m

ρm
,

where Π = Π(a′′, b′′, ρ′′). Finally if we take α such that ρ̃ ≤ ρ′′

α+1 and |x|, |ε| < ρ̃, we get the

bound

∣∣∣∣∣T
(
∂f

∂x

)
ρ

(t)(x, ε)−
N−1∑
n=0

( ∞∑
m=0

(n+m+ 1)an+m+1,nx
m +

∞∑
m=1

(n+ 1)an+1,n+mε
m

)
tn

∣∣∣∣∣ ≤∣∣∣∣∣
∞∑

m=0

(
f ′−m−1(t)

tm
−

N−1∑
n=0

(n+m+ 1)an+m+1,nt
n

)
xm+

∞∑
m=1

(
f ′m−1(t)−

N−1∑
n=0

(n+ 1)an+1,n+mt
n

)
εm

∣∣∣∣∣
≤
(
CN (Π)

αρ′′
(α+ 1)N+1 1

1− (α+ 1)ρ̃/ρ′′
+
ρ′′

α
CN+1(Π)(α+ 1)N+1 1

1− ρ̃/ρ′′

)
|t|N .

This shows that T (∂f/∂x)ρ ∼ T̂ (∂f̂/∂x) on V (a, b, ρ2), as we wanted to prove. The previous

proof also works for the case of s−Gevrey asymptotic expansions since the previous bounds

remains of s−Gevrey type.

To prove the compatibility with multiplication we use the previous proposition. Suppose

that f ∼(1,1) f̂ and g ∼(1,1) ĝ on Π, f̂ , ĝ ∈ Er[[t]] and let (fn), (gn) two families of functions

in Ob(D
2
r) such that for every Π̃ b Π and N ∈ N there are constants AN (Π̃), BN (Π̃) such

that |f(x, ε) − fN (x, ε)| ≤ AN (Π̃)|xε|N , |g(x, ε) − gN (x, ε)| ≤ BN (Π̃)|xε|N , for all (x, ε) ∈
Π̃ ∩D(0, r). Then we see that for all (x, ε) ∈ Π̃ ∩D2

r we have

|f(x, ε)g(x, ε)− fN (x, ε)gN (x, ε)| ≤ (∥g∥rAN (Π̃) + ∥fN∥rBN (Π̃))|xε|N .
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Since limits in the m−topology commute with the usual product, we see that J(fg) =

f̂ ĝ and the proof is complete. For the s−Gevrey case we may take AN (Π̃) = C1A
N
1 N !s,

BN (Π̃) = C2A
N
2 N !s, ∥fN∥r ≤ D1B

N
1 N !s and ∥gN∥r ≤ D2B

N
2 N !s, for certain constants

Aj , Bj , Cj , Dj , j = 1, 2 and all N ∈ N. We already know that fg ∼(1,1) f̂ ĝ on Π. To ensure

that the asymptotic is of s−Gevrey type we apply again Proposition 1.2.12 with the family

of functions defined by

hN =

N∑
n=1

(fn − fn−1)gN−n, f0 = g0 = 0.

Then the growth of these function is s−Gevrey and from the identity

fg − hN = (f − fN )g +

N∑
n=1

(fn − fn−1)(g − gN−n),

we easily conclude adequate s−Gevrey bounds for this expression.

As in the classical case we can characterize when a function has null asymptotic expansion

in xε in terms of its decrease at the origin. More specifically we have the following result.

Proposition 1.2.14. Let Π = Π(a, b, r) be a sector in xε and f ∈ O(Π). Then f ∈ A(1,1)
s

and Js(f) = 0 if and only if for all Π̃ b Π there are C,B > 0 such that for (x, ε) ∈ Π̃:

|f(x, ε)| ≤ C exp
(
−B/|xε|1/s

)
.

When f satisfies this type of bounds we will say that f has exponential decay of order 1/s in

the monomial xε at the origin.

Proof. Suppose that Js(f) = 0. Then T (f)ρ ∼s 0 on V = V (a, b, ρ2) for all 0 < ρ < r. By the

classical result (Proposition 1.1.5) we know that for every subsector W = V (a′, b′, ρ′2) b V

there are constants C,B with ∥T (f)(t)∥ρ′ ≤ C exp
(
−B/|t|1/s

)
for all t ∈ W . Then if Π̃ =

Π(a′, b′, ρ) and (x, ε) ∈ Π̃, xε ∈W and then |f(x, ε)| = |T (f)(xε)(x, ε)| ≤ C exp
(
−B/|xε|1/s

)
as we wanted to prove.

Conversely, suppose that f has exponential decay of order 1/s in the monomial xε at the

origin. We show that T (f)ρ has exponential decay of order 1/s at the origin. For ρ < r and

subsectors Π̃ = Π(a′, b′, ρ′) b Π(a′′, b′′, ρ′′) b Π(a, b, ρ) there are C,B > 0 with |f(x, ε)| ≤
C exp

(
−B/|xε|1/s

)
for all (x, ε) ∈ Π(a′′, b′′, ρ′′). Using Proposition 1.2.10 we obtain the

bounds

|fm(t)|,
∣∣∣∣f−m(t)

tm

∣∣∣∣ ≤ C

ρ′′m
exp

(
−B/|t|1/s

)
,

for all m ∈ N and t ∈ V (a′′, b′′, ρ′′2). Then if t ∈ V (a′, b′, ρ′2) we easily get
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∥T (f)ρ(t)(x, ε)∥ρ′ ≤
2C

1− ρ′/ρ′′
exp

(
−B/|t|1/s

)
,

proving that T (f)ρ ∼s 0 on V (a, b, ρ2).

Proposition 1.2.15 (Watson’s Lemma for xε). Let Π = Π(a, b, r) be a sector in xε, with

opening b− a > sπ and f ∈ A(1,1)
s (Π) with Js(f) = 0. Then f ≡ 0.

Proof. By Proposition 1.2.14, we know that, in a subsector Π̃ with opening larger than sπ,

|f(x, ε)| ≤ C exp
(
−B/|xε|1/s

)
. By Proposition 1.2.10 and classical Watson’s Lemma 1.1.8

we conclude that fn ≡ 0 for all n ∈ Z, so f ≡ 0 as desired.

We continue this section describing the corresponding results about asymptotic expansions

in a general monomial xpεq. We begin by defining this notion and obtaining an equivalent

version in terms of asymptotic expansion in a monomial ζη in order to recover easily the

properties.

Definition 1.2.6. Let f be an analytic function on Πp,q(a, b, r) and f̂ ∈ R̂. We will say that

f has f̂ as asymptotic expansion at the origin in xpεq and we will use the notation f ∼(p,q) f̂

on Πp,q(a, b, r) if: there exists 0 < r′ ≤ r such that T̂p,qf̂ =
∑
fnt

n ∈ E(p,q)
r′ [[t]] and for every

Π̃p,q = Πp,q(a
′, b′, ρ) b Πp,q with 0 < ρ < r′ and N ∈ N there is a constant CN (Π̃p,q) > 0

such that for (x, ε) ∈ Π̃p,q:∣∣∣∣∣f(x, ε)−
N−1∑
n=0

fn(x, ε)(x
pεq)n

∣∣∣∣∣ ≤ CN (Π̃p,q)|xpεq|N . (1-18)

The asymptotic expansion is said to be of s−Gevrey type if additionally

1. It is possible to chose CN (Π̃p,q) = C(Π̃p,q)A(Π̃p,q)
NN !s for some C(Π̃p,q), A(Π̃p,q) in-

dependent of N .

2. f̂ ∈ R̂
(p,q)
s .

In this case we will use the notation: f ∼(p,q)
s f̂ on Πp,q(a, b, r). We will denote by A(p,q)(Πp,q)

the set of analytic functions defined on Πp,q that admits an asymptotic expansion in the

monomial xpεq on Πp,q and by A(p,q)
s (Πp,q) the set of analytic functions defined on Πp,q that

admits an asymptotic expansion of s−Gevrey type in the monomial xpεq on Πp,q.

Remark 1.2.16. In contrast to the case of s−Gevrey asymptotic expansions in the mono-

mial xε, here we require by definition that formal series which are s−Gevrey asymptotic

expansions in a monomial xpεq of analytic functions, to be s−Gevrey in the monomial xpεq.
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Remark 1.2.17. The decomposition for formal power series explained in Remark 1.2.6, is

valid for analytic functions f ∈ O(Πp,q(a, b, r)) too. Indeed, note that (x, ε) ∈ Πp,q(a, b, r) if

and only if (ωx, νε) ∈ Πp,q(a, b, r), for ω and ν pth and qth roots of unity, respectively. Then

formula (1-8) is valid in this context and clearly if ζ = xp, η = εq, fij(ζ, η) ∈ O(Π1,1(a, b, r))

for every i = 0, 1, ..., p− 1, j = 0, 1, ..., q − 1.

We note that if f satisfies a bound of type |f(x, ε)| ≤ K(|xpεq|) for all (x, ε) ∈ Πp,q(a, b, r)

and for some function K : (0, r) → R then for all i, j:

|fij(ζ, η)| ≤
K(|ζη|)

|ζ|i/p|η|j/q
, (1-19)

for all (ζ, η) ∈ Π1,1(a, b, r). Conversely, if |fij(ζ, η)| ≤ Kij(|ζη|) for all (ζ, η) ∈ Π1,1(a, b, r)

and some functions Kij : (0, r) → R then

|f(x, ε)| ≤
∑
0≤i<p
0≤j<q

|x|i|ε|jKij(|xpεq|), (1-20)

for all (x, ε) ∈ Πp,q(a, b, r).

Proposition 1.2.18. Let Πp,q = Πp,q(a, b, r) be a sector in xpεq, f(x, ε) ∈ O(Πp,q). Using

the above notation, the following statements are equivalent:

1. f(x, ε) ∈ A(p,q)(Πp,q),

2. fij(ζ, η) ∈ A(1,1)(Π1,1(a, b, r)) for every i = 0, 1, ..., p− 1, j = 0, 1, ..., q − 1.

The same result is valid for asymptotic expansions of s-Gevrey type.

Proof. Suppose that f ∼(p,q) f̂ on Πp,q and T̂p,q(f̂) ∈ E(p,q)
r′ [[t]] . We know from formula (1-9)

that if f̂ =
∑

0≤i<p
0≤j<q

xiεj f̂ij(x
p, εq) =

∑∞
n=0 fn(x, ε)(x

pεq)n then the fn and f̂ij are related by

fn(x, ε) =
∑
0≤i<p
0≤j<q

xiεj(bijn(x
p) + cijn(ε

q)), f̂ij(x
p, εq) =

∞∑
n=0

(bijn(x
p) + cijn(ε

q))(xpεq)n.

We are going to show that fij ∼(1,1) f̂ij on Π1,1(a, b, r) for every possible i and j. From

hypothesis we know that for Π̃p,q = Πp,q(a
′, b′, ρ) b Πp,q with 0 < ρ < r′, and N ∈ N there

is CN (Π̃p,q) > 0 with∣∣∣∣∣f(x, ε)−
N−1∑
n=0

fn(x, ε)(x
pεq)n

∣∣∣∣∣ ≤ CN (Π̃p,q)|xpεq|N ,
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for all (x, ε) ∈ Π̃p,q. Then, for the same (x, ε), using formula (1-19) in Remark 1.2.17 it is

clear that ∣∣∣∣∣fij(ζ, η)−
N−1∑
n=0

(bijn(ζ) + cijn(η))(ζη)
n

∣∣∣∣∣ ≤ CN (Π̃pq)|ζ|N−i/p|η|N−j/q,

for all (ζ, η) ∈ Π1,1(a
′, b′, ρ). Then, using this bound for N and N + 1 we get

∣∣∣∣∣fij(ζ, η)−
N−1∑
n=0

(bijn(ζ) + cijn(η))(ζη)
n

∣∣∣∣∣ ≤ (CN+1(Π̃pq)ρ
1−i/pρ1−j/q + ∥bijN + cijN∥ρ

)
|ζη|N .

This concludes the proof in this case. Note that if f ∼(p,q)
s f̂ , f̂ is a s−Gevrey series in

xpεq. This implies that there are constants B,D > such that ∥bijn + cijn∥ρ ≤ DBnn!s for

all n ∈ N. This shows that the bounds obtained in the proof remains of s−Gevrey type.

To prove the converse implication, assume that fij ∼(1,1) f̂ij on Π1,1 = Π1,1(a, b, r), with

f̂ij(ζ, η) =
∑∞

n=0(bijn(ζ)+ cijn(η))(ζη)
n and T̂1,1(f̂ij) ∈ E(1,1)

r′ij
[[t]]. Then for every i, j, Π̃1,1 =

Π1,1(a
′, b′, ρ) b Π1,1 with 0 < ρ < r′ = min{r′ij}, and N ∈ N there is a constant CijN (Π̃1,1)

such that for all (ζ, η) ∈ Π̃1,1 we have∣∣∣∣∣fij(ζ, η)−
N−1∑
n=0

(bijn(ζ) + cijn(η))(ζη)
n

∣∣∣∣∣ ≤ CijN (Π̃1,1)|ζη|N .

Let f̂ =
∑

0≤i<p
0≤j<q

xiεj f̂i,j(x
p, εq) be the corresponding formal power series. Then T̂p,q(f̂) ∈

E(p,q)
r′ [[t]] and it follows from inequality (1-20) that for all (x, ε) ∈ Πp,q(a

′, b′, ρ)

∣∣∣∣∣f(x, ε)−
N−1∑
n=0

fn(x, ε)(x
pεq)n

∣∣∣∣∣ ≤
 ∑

0≤i<p
0≤j<q

ρi+jCijN (Π̃1,1)

 |xpεq|N ,

as we wanted to prove. In the s−Gevrey case the previous bounds are clearly of s−Gevrey

type too.

We want to introduce now the corresponding map Tp,q, as in the case of the monomial xε.

A possible way to do this and avoid ramifications is the following: given f ∈ O(Πp,q(a, b, r))

bounded in some subsector Πp,q(a
′, b′, ρ), we decompose f(x, ε) =

∑
0≤i<p
0≤j<q

xiεjfij(x
p, εq),

with fij ∈ O(Π1,1(a, b, r)), as in Remark 1.2.17. Now, for every i, j, T1,1(fij)ρ was defined as

T1,1(fij)ρ(t)(ζ, η) =

∞∑
m=0

fij,−m(t)

tm
ζm +

∞∑
m=1

fij,m(t)ηm,

if fij(t/η, η) =
∑

m∈Z fij,m(t)ηm is the convergent Laurent expansion of fij in the annulus

|t|/ρ < |η| < ρ. Now, based on formula (1-9) we define
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Tp,q(f)ρ(t)(x, ε) =
∑
0≤i<p
0≤j<q

xiεjT1,1(fij)ρ(t)(x
p, εq) (1-21)

=

q−1∑
j=0

εj

( ∞∑
m=0

p−1∑
i=0

fij,−m(t)

tm
xpm+i

)
+

p−1∑
i=0

xi

 ∞∑
m=1

q−1∑
j=0

fij,m(t)εqm+j

 .

(1-22)

As in the case of xε, the function f is completely determined by the map Tp,q(f)ρ because

Tp,q(f)ρ(x
pεq)(x, ε) = f(x, ε).

In this context, we have a similar result as the one stated in Proposition 1.2.10 relating the

growth of f with the growths of the previous fij,m.

Proposition 1.2.19. Let f ∈ O(Πp,q(a, b, r)) be an analytic function. Suppose that |f(x, ε)| ≤
K(|xpεq|) for any (x, ε) ∈ Πp,q(a

′, b′, ρ) b Πp,q(a, b, r) and some function K : (0, ρ2) → R>0.

Then for t ∈ V (a′, b′, ρ2) and every 0 ≤ i < p and 0 ≤ j < q the following bounds hold:

1. If m ∈ N, |fij,m(t)| ≤ K(|t|)
|t|i/pρm+j/q−i/p

,

2. If m ≥ 1, |fij,−m(t)| ≤ |t|mK(|t|)
|t|j/qρm+i/p−j/q

.

In particular, if r = ρ = +∞ then f(x, ε) = f00(x
pεq), for all (x, ε) ∈ Πp,q(a

′, b′,+∞).

Proof. The inequalities follow directly from inequalities (1-19) and Cauchy’s formulas. To

prove the last part, note that by changing the function K we can assume that p and q are

relative primes. Then fixing t ∈ V , the inequalities are valid for any ρ > |t|1/2. If m ≥ 1

then m + j/q − i/p ≥ 1 and m + i/p − j/q ≥ 1 and we can let ρ → +∞ and conclude that

fij,m(t) ≡ 0 for all possible i, j. If m = 0 then j/q = i/p if and only if i = j = 0. Thus the

result follows by letting ρ→ +∞ to see that fij,0(t) ≡ 0 for all i, j except for i = j = 0.

We can characterize as before the property of having an asymptotic expansion in xpεq in

terms of classic asymptotic expansion in some Banach space. Indeed, we have the following

analog to Proposition 1.2.11, which is an immediate consequence of Proposition 1.2.18 and

Proposition 1.2.11.

Proposition 1.2.20. Let f ∈ O(Πp,q(a, b, r)) be an analytic function, f̂ ∈ R̂ and 0 < r′ ≤ r

such that T̂p,qf̂ ∈ E(p,q)
r′ [[t]]. The following statements are equivalent:

1. f ∼(p,q) f̂ on Πp,q(a, b, r),

2. For every 0 < ρ < r′, Tp,q(f)ρ ∼ T̂p,q(f̂) on V (a, b, ρ2).
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The same result is valid for asymptotic expansions of s−Gevrey type.

As before, this allows us to define the Taylor’s map for asymptotic expansions in the mono-

mial xpεq. The map is given by Jp,q : A(p,q)(Πp,q) → S, Jp,q(f) = f̂ if f ∼(p,q) f̂ on Πp,q,

and it is the only map that makes the following diagram commutative:

A(p,q)(Πp,q)
Jp,q

−−−−→ S

Tp,q

y yT̂p,q

A(V, E(p,q))
J−−−−→ E(p,q)[[t]]

where V = V (a, b, r2) if Πp,q = Πp,q(a, b, r), A(V, E(p,q)) =
∪

r>0A(V, E(p,q)
r ), J = JE(p,q) is

the classical Taylor’s map and Tp,q is defined through (1-21).

For the s−Gevrey asymptotic expansions in xpεq we also have the Taylor’s map obtained

by restriction Jp,q
s : A(p,q)

s (Πp,q) → R̂
(p,q)
s , and it is the only map that makes the following

diagram commutative:

A(p,q)
s (Πp,q)

Js−−−−→ R̂
(p,q)
s

Tp,q

y yT̂p,q

As(V, E(p,q))
J−−−−→ E(p,q)[[t]]s

An alternative way to prove that a function has asymptotic expansion in the monomial xpεq

is by the aid of analytic maps that approximate the functions adequately. The result is

described in the next proposition, and it is the generalization of Proposition 1.2.12 for any

monomial. The proof is similar to the one of Proposition 1.2.12: every (i, j)−component

of the given functions is analyzed to obtaining bounds similar to the ones corresponding to

(1-17) but in this case from Proposition 1.2.19. The last part of the proof remains unchanged

and will not be included here.

Proposition 1.2.21. Let f ∈ O(Πp,q) be an analytic function. The following assertions are

equivalent:

1. f ∈ A(p,q)(Πp,q),

2. There is r > 0 and a family of bounded analytic functions fN ∈ Ob(D
2
r), N ≥ 1, such

that for every subsector Π̃p,q of Πp,q there is a constant AN (Π̃p,q) > 0 such that

|f(x, ε)− fN (x, ε)| ≤ AN (Π̃p,q)|xpεq|N ,

for all (x, ε) ∈ Π̃p,q ∩D2
r .

Analogously, f ∈ A(p,q)
s (Πp,q) if and only if (2) is satisfied with AN (Π̃p,q) = CANN !s for some

C,A independent of N and additionally there are constants B,D such that ∥fN∥r ≤ DBNN !s

for all N ≥ 1.
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We also have the compatibility of asymptotic expansion in xpεq with the basic algebraic

operations.

Proposition 1.2.22. Let Πp,q = Πp,q(a, b, r) be a sector in the monomial xpεq. Then

A(p,q)(Πp,q) is a differential subalgebra of O(Πp,q) and the Taylor’s map Jp,q is an homo-

morphism of differential algebras.

Proof. The proof can be easily obtained from Proposition 1.2.13 and Proposition 1.2.18. For

sums the proof is immediate. For derivatives, for instance to ∂/∂x, if f ∈ A(p,q)(Πp,q) and

it decompose as f(x, ε) =
∑

0≤i<p
0≤j<q

xiεjfi,j(x
p, εq) then the decomposition for ∂f/∂x is given

by:

∑
0≤i<p−1
0≤j<q

(
(i+ 1)fi+1,j(x

p, εq) + pxp
∂fi+1,j

∂x
(xp, εq)

)
xiεj +

q−1∑
j=0

(
p
∂f0,j
∂x

(xp, εq)

)
xp−1εj .

Since every (i, j)−component of ∂f/∂x belongs to A(1,1)(Π1,1(a, b, r)) (because it is a diffe-

rential algebra), it follows that ∂f/∂x ∈ A(p,q)(Πp,q). For products the proof follows the

same idea: take into account that the (i, j)−components of a product fg can be obtained as

sums of products of the components of f and g.

Finally, a characterization of functions with null asymptotic expansion in xpεq is given in

the next proposition, and it is a consequence of Proposition 1.2.14 and inequalities (1-20)

and (1-19).

Proposition 1.2.23. Let Πp,q = Πp,q(a, b, r) be a sector in xpεq and f ∈ O(Πp,q). Then

f ∈ A(p,q)
s (Πp,q) and Jp,q

s (f) = 0 if and only if for all Π̃p,q b Πp,q there are C,B > 0 such

that for (x, ε) ∈ Π̃p,q:

|f(x, ε)| ≤ C exp
(
−B/|xpεq|1/s

)
.

When f satisfies this type of bounds we will say that f has exponential decay of order 1/s in

the monomial xpεq at the origin.

Proposition 1.2.24 (Watson’s Lemma for xpεq). Let Πp,q(a, b, r) be a sector in xpεq, with

opening b− a > sπ and f ∈ A(p,q)
s (Πp,q(a, b, r)) with J

p,q
s (f) = 0. Then f ≡ 0.

It is also worth to mention the analog to Borel-Ritt’s and Borel-Ritt-Gevrey’s theorems for

this kind of asymptotic expansions.

Theorem 1.2.25 (Borel-Ritt Theorem for xpεq). Given any f̂ ∈ S and any Πp,q sector in

the monomial xpεq, there is f ∈ O(Πp,q) with f ∼(p,q) f̂ on Πp,q.
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Theorem 1.2.26 (Gevrey-Borel-Ritt Theorem for xpεq). Given any f̂ ∈ R̂
(p,q)
s and any

sector Πp,q(a, b, r) in the monomial xpεq with opening b− a < sπ, there is f ∈ O(Πp,q) with

f ∼(p,q)
s f̂ on Πp,q.

To finish this section we formulate and prove one of the main tools to obtain what we will

call summability in a monomial: the Ramis-Sibuya Theorem for asymptotic expansions in a

monomial.

Theorem 1.2.27 (Ramis-Sibuya Theorem for xpεq). Suppose that a finite family of sectors

Πj = Πp,q(aj , bj , r), 1 ≤ j ≤ m, form a covering of D2
r \ {xε = 0}. Given fj : Πj → C

bounded and analytic, assume that for every subsector Π̃ of Πj1 ∩Πj2 (when not empty) there

are constants γ(Π̃), C(Π̃) such that

|fj1(x, ε)− fj2(x, ε)| ≤ C(Π̃) exp
(
−γ(Π̃)/|xpεq|1/s

)
,

for (x, ε) ∈ Π̃. Then the functions fj have a common asymptotic expansion in xpεq on Πj

of s−Gevrey type, respectively.

Proof. Since every fj is bounded on Πj , Tp,q(fj)ρ is bounded on Vj = V (aj , bj , r
2), for

all 0 < ρ < r. For every pair j1, j2 such that Πji ∩ Πj2 ̸= ∅, Proposition 1.2.23 shows that

fj1−fj2 ∼(p,q)
s 0 on Πji∩Πj2 = Π(a, b, r). Then for every 0 < ρ < r, Tp,q(fj1)ρ−Tp,q(fj2)ρ ∼s

0 on V (a, b, ρ2). Since the Πj cover D2
r \ {xε = 0} the sectors Vj = V (aj , bj , r

2) cover

Dr2 \ {0}. Then by the classical Ramis-Sibuya Theorem, the functions Tp,q(fj)ρ admit a

common asymptotic expansion F̂ ∈ Ep,q[[t]]s on Vj of s−Gevrey type. Then it is clear that

fj ∼(p,q)
s T̂−1

p,q (F̂ ) on Πj .

1.2.3 Summability in a monomial

As in the classical case, thanks to Watson’s Lemma 1.2.24 we can finally define the natural

notion of summability in a monomial xpεq in Ramis style.

Definition 1.2.7. Let k > 0 and f̂ ∈ S be given. We say that f̂ is k−summable in the

monomial xpεq in the direction d ∈ S1 if there is a sector Πp,q(a, b, r) bisected by d with

opening b− a > π/k and f ∈ O(Πp,q(a, b, r)) with f ∼(p,q)
1/k f̂ on Πp,q(a, b, r).

We simply say that f̂ is k−summable in the monomial xpεq if it is k−summable in the

monomial xpεq in every direction d ∈ S1, with finitely many exceptions mod. 2π.

The set of k−summable series in xpεq in the direction d will be denoted by R
(p,q)
1/k,d and the

set of k−summable series in xpεq will be denoted by R
(p,q)
1/k .
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As an immediate consequence of Proposition 1.2.22 we obtain:

Proposition 1.2.28. Let k > 0 and d ∈ S1 be given. Then R
(p,q)
1/k,d and R

(p,q)
1/k are differential

subalgebras of R̂
(p,q)
1/k .

It is clear from Proposition 1.2.20 that f̂ is k−summable in xpεq (resp. k−summable in

direction d) if and only if T̂p,q(f̂) is k−summable (resp. k−summable in direction d). With

this characterization we may apply known theorems of summability in our context. The

first consequence of this observation is that we can use the classical Borel-Laplace method

of summation to obtain “explicit formulas” for the sum. Indeed, in order to sum f̂ ∈ R
(p,q)
1/k,d

we first sum T̂p,q(f̂)(t)(x, ε) and then we replace t by xpεq. According to Theorem 1.1.10, we

first apply the formal Borel transformation B̂k : tkE(p,q)[[t]]1/k → E(p,q){ξ} to tkT̂p,q(f̂), we

make analytic continuation and check the exponential growth in the variable ξ and finally

we apply the Laplace transform in direction d, Lk,d. Thus we have obtained the following

proposition.

Proposition 1.2.29. Let f̂ ∈ Sr, for some r > 0. Then f̂ is k−summable in the mono-

mial xpεq in direction d if and only if B̂k(t
kT̂p,q(f̂))(ξ)(x, ε) can be continued analytically as

φ(x, ε, ξ) on Dr ×Dr × S(d, α,+∞), for some α > 0, with exponential growth at most k in

ξ, uniform in x and ε. In this case the k−sum of f̂ is given by

f(x, ε) =
1

xkpεkq

∫ eid∞

0
φ(x, ε, ξ)e−(ξ/xpεq)kdξk =

1

xkpεkq
Lk,d(φ)(x, ε, x

pεq).

Given f̂ , k−summable in xpεq in a direction d, when using the decomposition of f̂ as in

Remark 1.2.17 we note that by Proposition 1.2.18 and its proof f̂ is k−summable in xpεq

in direction d with sum f if and only all its components f̂ij are k−summable in ζη, ζ =

xp, η = εq in direction d with sum fij and the components of the k-sum are the k−sums of

the components, that is, f(x, ε) =
∑
xiεjfij(x

p, εq). An alternative proof is offered by the

Borel-Laplace method of the previous proposition: if f̂(x, ε) =
∑
xiεj f̂ij(x

p, εq), by equation

(1-9) we see that:

B̂k(t
kT̂p,q(f̂))(ξ)(x, ε) =

∑
i,j

xiεjB̂k(t
kT̂1,1(f̂ij))(ξ)(x

p, εq). (1-23)

Since analytic continuation is compatible with standard operations, B̂k(t
kT̂p,q) can be con-

tinued analytically as φ(x, ε, ξ) on Dr×Dr×S(d, α,+∞) if and only if every B̂k(t
kT̂1,1(f̂ij))

can be continued analytically as φij(x, ε, ξ) on Dr × Dr × S(d, α,+∞) and φ(x, ε, ξ) =∑
xiεjφij(x, ε, ξ). Also it is clear that φ has exponential growth at most k in ξ, uniform

in x and ε if and only if every φij does it. Since the Laplace transform is linear, the result

follows.
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We now turn back to the case of p = q = 1. Let f̂ =
∑
an,mx

nεm ∈ S and suppose it is

k−summable in xε in direction d with sum f , say defined over Π(a, b, r). Inequalities (1-15)

and (1-14) show that the series f̂−m(t)/tm =
∑∞

n=0 an+m,nt
n and f̂m(t) =

∑∞
n=0 an,n+mt

n

are also k−summable in direction d with sums f−m(t)/tm and fm(t) respectively, defined on

V (a, b, r2) and the series
∑∞

m=0
f−m(t)

tm xn +
∑∞

m=1 fm(t)εm converges for all |x|, |ε| < r and

has sum T (f)(t)(x, ε).

We want to give a characterization of f̂ being k−summable in xε in a direction d in terms

of the series f̂−m(t)/tm and f̂m(t). We note that the corresponding formal Borel transforms

of T̂1,1(f̂) and the previous series are related by the formula

B̂k(t
kT̂1,1f̂)(ξ)(x, ε) =

∞∑
m=0

B̂k

(
tk
f−m(t)

tm

)
(ξ)xm +

∞∑
m=1

B̂k

(
tkfm(t)

)
(ξ)εm.

From this expression it is clear that the formal k−Borel transform of tkT̂1,1f̂ can be analyti-

cally continued, say as φ(x, ε, ξ) on Dr×Dr×S(d, α,+∞) for some α > 0 if and only if every

B̂k

(
tk f−m(t)

tm

)
and B̂k

(
tkfm(t)

)
can be analytically continued as φ−m(ξ)/ξm and φm(t) on

S(d, α,+∞) respectively, and

φ(x, ε, ξ) =

∞∑
m=0

φ−m(ξ)

ξm
xm +

∞∑
m=1

φm(ξ)εm,

for all |x|, |ε| < r. By the other hand, if φ(x, ε, ξ) has exponential growth at most k in ξ,

uniform in x and ε, say |φ(x, ε, ξ)| ≤ KeB|ξ|k , then by Cauchy’s inequalities it follows that

∣∣∣∣φ−m(ξ)

ξm

∣∣∣∣ = ∣∣∣∣ 1m!

∂mφ

∂xm
(0, ε, ξ)

∣∣∣∣ ≤ K

ρm
eB|ξ|k , |φm(ξ)| =

∣∣∣∣ 1m!

∂mφ

∂εm
(x, 0, ξ)

∣∣∣∣ ≤ K

ρm
eB|ξ|k .

for all 0 < ρ < r and all m ∈ N. This not only says that the functions φ−m(ξ)
ξm and φm(ξ)

have exponential growth at most k in S(d, α,+∞), but also have a common type and the

bounding constant K/ρm. Conversely, if the functions φ−m(ξ)
ξm and φm(ξ) satisfy the above

inequalities it follows that

|φ(x, ε, ξ)| ≤ 2K

1− ρ′/ρ
eB|ξ|k ,

for |x|, |ε| < ρ′ < ρ, for all ρ < r.

For a general monomial xpεq and a formal series f̂ =
∑

i,j x
iεj f̂ij(x

p, εq) ∈ S, we can apply

the above reasoning to each of its components f̂i,j . Note that for every possible pair i, j,

the corresponding series to f̂ij are f̂ij,−m(t)/tm =
∑∞

n=0 anp+mp+i,nq+jt
n and f̂ij,m(t) =∑∞

n=0 anp+i,nq+mq+jt
n. With this notation we can state the following result.
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Proposition 1.2.30. Let f̂ ∈ Sr, for some r > 0 and put f̂(x, ε) =
∑

i,j x
iεj f̂ij(x

p, εq).

Then f̂ is k−summable in xpεq in the direction d if and only if the following properties holds

1. There is α > 0 such that all the formal series B̂k

(
tkf̂ij,−m(t)/tm

)
and B̂k

(
tkf̂ij,m(t)

)
admits analytic continuation, say φij,−m(ξ)/ξm and φij,m(ξ), to S(d, α,+∞).

2. There are constants K,B > 0 such that all the functions φij,−m(ξ)/ξm and φij,m(ξ)

satisfy |φij,−m(ξ)/ξm| ≤ K
ρm e

B|ξ|k , |φij,m(ξ)| ≤ K
ρm e

B|ξ|k , for all ξ ∈ S(d, α,+∞) and

all 0 < ρ < r.

To finish this section we note that a natural question is what happens when we fix one the

variables in the monomial asymptotic expansions. We can see that the asymptotic property

remains valid for the non-fixed variable. More precisely we have the following result, whose

proof is an immediate consequence of Corollary 1.1.3.

Proposition 1.2.31. Let Πp,q = Πp,q(a, b, r) be a monomial sector, f ∈ O(Πp,q) and f̂ ∈ S
such that f ∼(p,q)

s f̂ on Πp,q. Then there is ρ > 0 such that for all ε0 with |ε0| < ρ the map

fε0(x) = f(x, ε0) admits f̂ε0(x) = f̂(x, ε0) ∈ C[[x]] as s/p−Gevrey asymptotic expansion on

V (a/p − arg(εq0)/p, b/p − arg(εq0)/p, ρ). In particular, if f̂ is k−summable in xpεq in some

direction d then f̂ε0 is kp−summable in direction d/p− arg(εq0)/p.

We finish this section with an example of monomial summability based on Example 1.1.1.

Example 1.2.1. Consider the series f̂ =
∑

n,m≥0 an,mx
nεm where an,m = (−|n−m|)min{n,m}

and a0,0 = 0. We want to study its 1−summability in xε. To calculate T̂1,1(f̂) note that:

b0(x) =

∞∑
m=1

xm, bn(x) = (−1)n
∞∑

m=0

mnxm, cn(ε) = (−1)n
∞∑

m=1

mnεm.

Then we obtain its formal 1−Borel transform by

B̂1(tT̂1,1(f̂)(t))(ξ)(x, ε) =
∞∑
n=0

(bn(x) + cn(ε))
ξn

n!
=

1

1− xe−ξ
+

1

1− εe−ξ
− 2 = φ(x, ε, ξ).

For a fixed (x, ε) with |x|, |ε| < 1, the radius of convergence of the above series is the minimum

between dist(u, 2πiZ) and dist(v, 2πiZ), where x = eu, ε = ev and Re(u),Re(v) < 0. The

domain of definition of the analytic continuation φ is the set conformed by all the triples

(x, ε, ξ) ∈ C3 such that eξ ̸= x and eξ ̸= ε. On the other hand we see that f̂0(t) = 0 and for

any m ∈ N∗,

f̂m(t) = f̂−m(t)/tm =

∞∑
n=0

(−1)nmntn =
1

1 +mt
, |t| < 1/m,

and its corresponding formal 1-Borel transforms are:
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φm(ξ) =
φ−m(ξ)

ξm
= e−ξm,

that have exponential growth 0 and are all bounded by 1 if Re(ξ) > 0. Also if we fix

0 < ρ < r < 1 and restrict φ to the domain Dρ×Dρ×{ξ ∈ C|Re(ξ) ≥ log(r)} it follows that

|φ(x, ε, ξ)| ≤ 2
1−ρ/r on that set. In conclusion, it follows from Proposition 1.2.30 that f̂ is

1−summable only in every direction d of (−π/2, π/2). To calculate its 1−sum, for instance

in direction d = 0, we see that the 1−sum in direction d of T̂1,1(f̂) in the space Eρ is given

by

1

t

∫ +∞

0

(
1

eξ − x
+

1

eξ − ε

)
eξ−ξ/tdξ − 2 =

∞∑
n=1

xn + εn

1 + nt
.

So the 1−sum f in xε of f̂ in direction d = 0 is obtained by changing t = xε in the above

expression, and has domain of definition {(x, ε) ∈ C | |x|, |ε| < 1 and xε ̸= −1/n, n ∈ N∗}.

1.2.4 Some formulas for the sum

As usual we first focus in the case p = q = 1. On the problem of computing the sum of

a k−summable series in a monomial f̂ , the first issue we face is to calculate the expression

T̂1,1(f̂). This is not always so easy, so it would be advantageous to have alternative ways to

calculate the sum. We will see that in adequate polysectors (products of sectors) this can

be done by writing f̂ as a series on x with coefficients functions of ε or as a series in ε with

coefficients functions of x.

Suppose f̂ =
∑
an,mx

nεm is 1/k−Gevrey in xε, i.e. there are constants B,D with |an,m| ≤
DBn+mmin{n!1/k,m!1/k}. When we write f̂ =

∑∞
n=0(bn(x)+cn(ε))(xε)

n =
∑∞

n=0 fn∗(ε)x
n =∑∞

m=0 f∗m(x)εm, every fn∗(ε) and f∗m(x) has radius of convergence at least 1/B and f̂ ∈
Ob(Dr)[[x]]1/k ∩ Ob(Dr)[[ε]]1/k for r < 1/B. Then the k−Borel transforms in x and in ε of

f̂ , respectively, defined as:

B̂(1,1)
k,(1,0)(x

kf̂)(ξ1, ε) =

∞∑
n=0

fn∗(ε)

Γ (1 + n/k)
ξn1 , B̂(1,1)

k,(0,1)(ε
kf̂)(x, ξ2) =

∞∑
m=0

f∗m(x)

Γ (1 +m/k)
ξm2 ,

are convergent for |ε| < 1/B, |ξ1| < 1/Bk1/k and |x| < 1/B,|ξ2| < 1/Bk1/k, respectively.

The notation used here will be clear in the next chapter.

Now assume that f̂ is k−summable in xε in direction d with sum f defined on Π(a, b, r), with

d = (a+ b)/2 and b− a > π/k. Consider sectors V1 = V (a′, b′, ρ) and V2 = V (a′′, b′′, ρ) with

V1×V2 ⊂ Π(a, b, r), that is, a ≤ a′+a′′ < b′+ b′′ ≤ b and ρ < r. Then f defines two analytic

functions f1 : V1 −→ Ob(V2) and f2 : V2 −→ Ob(V1) given by x 7−→ f1(x)(ε) = f(x, ε) and

ε 7−→ f2(ε)(x) = f(x, ε), respectively.
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If we take V1 with π/k < b′ − a′ < b − a, we can always take V2 satisfying b′′ < b − b′

and a − a′ < a′′, i.e., V1 is a k−wide sector and V2 is a small one. We now can see that

f1 ∈ O(V1,Ob(V2)) is the classical k−sum of f̂ on the sector V1, in the space Ob(V2). Indeed,

taking any W b V1, W × V2 is always contained in a subsector Π̃ of Π. So if x ∈ W and

ε ∈ V2, applying formulas (1-13) (with CN (Π̃) = CANN !1/k) and (1-5) we obtain:

∣∣∣∣∣f1(x)(ε)−
N−1∑
n=0

fn∗(ε)x
n

∣∣∣∣∣ =
∣∣∣∣∣f(x, ε)−

N−1∑
n=0

(
n∑

m=0

an,mx
nεm + cn(ε)x

nεn

)∣∣∣∣∣
=

∣∣∣∣∣f(x, ε)−
N−1∑
n=0

(bn(x) + cn(ε))(xε)
n +

N−1∑
m=0

∞∑
n=N

an,mx
nεm

∣∣∣∣∣
≤ CANN !1/k|xε|N +

N−1∑
m=0

∞∑
n=N

DBn+mm!1/k|x|n|ε|m

≤

(
C(Aρ)N +D

N−1∑
m=0

(Bρ)m
BN

1−Bρ

)
N !1/k|x|N .

The same calculations works for ε, that is, taking V2 as a k−wide sector and V1 as a small one

we see that f2 ∈ O(V2,Ob(V1)) is k−summable on V2. Comparing with the Borel-Laplace

transform method we obtain the following proposition.

Proposition 1.2.32. Let f̂ be a k−summable series in xε on Π with sum f . Consider

V1 = V (a′, b′, ρ) and V2 = V (a′′, b′′, ρ) sectors in C with V1 × V2 ⊂ Π. Then

1. If V1 is a k−wide sector, f̂ ∈ Ob(V2)[[x]] is k−summable on V1 with sum

f(x, ε) = f1(x)(ε) =
1

xk

∫ eid
′∞

0
ψ1(ξ1, ε)e

−(ξ1/x)kdξk1 ,

where ψ1(ξ1, ε) is the analytic continuation of B̂(1,1)
k,(1,0)(x

kf̂) to S((b′+ a′)/2, α1,+∞)×
Dρ, for some α1 > 0 and some direction d′ on S((b′ + a′)/2, α1,+∞).

2. If V2 is a k−wide sector, f̂ ∈ Ob(V1)[[ε]] is k−summable on V2 with sum

f(x, ε) = f2(ε)(x) =
1

εk

∫ eid
′′∞

0
ψ2(x, ξ2)e

−(ξ2/ε)kdξk2 ,

where ψ2(x, ξ2) is the analytic continuation of B̂(1,1)
k,(0,1)(ε

kf̂) to Dρ×S((b′′+a′′)/2, α2,+∞),

for some α2 > 0 and some direction d′′ on S((b′′ + a′′)/2, α2,+∞).

The previous proposition generalizes to any monomial by means of Proposition 1.2.18. In-

deed, let f̂ be a k−summable series in xpεq on Πp,q = Πp,q(a, b, r), b− a > π/k, with sum f .
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Since f̂ is 1/k−Gevrey in the monomial xpεq then f̂ ∈ Ob(Dr)[[x]]1/pk ∩ Ob(Dr)[[ε]]1/qk, for

some r > 0. Here we use the k−Borel transforms in xp and in εq of f̂ , respectively, defined

as:

B̂(p,q)
k,(1,0)(x

pkf̂)(ξ1, ε) =

∞∑
n=0

fn∗(ε)

Γ (1 + n/pk)
ξn1 , B̂(p,q)

k,(0,1)(ε
qkf̂)(x, ξ2) =

∞∑
m=0

f∗m(x)

Γ (1 +m/qk)
ξm2 ,

that turn out to be convergent in some polydiscs.

As before, consider sectors V1 = V (a′, b′, ρ1/p), V2 = V (a′′, b′′, ρ1/q) in xp, εq, respectively,

satisfying V1×V2 ⊂ Πp,q and consider the functions f1 : V1 −→ Ob(V2) and f2 : V2 −→ Ob(V1)

that f naturally defines. If ζ = xp and η = εq then the sectors

Ṽ1 = {ζ ∈ C | 0 < |ζ| < ρ, pa′ < arg(ζ) < pb′},

Ṽ2 = {η ∈ C | 0 < |η| < ρ, qa′′ < arg(η) < qb′′},

in the new variables, satisfy Ṽ1 × Ṽ2 ⊂ Π1,1(a, b, r).

When we decompose f and f̂ as f =
∑

i,j x
iεjfij(x

p, εq) and f̂ =
∑

i,j x
iεj f̂ij(x

p, εq) respec-

tively, we know by Proposition 1.2.18 that fij ∼(1,1)
1/k f̂ij on Π1,1(a, b, r), for all 0 ≤ i < p and

0 ≤ j < q. Then we can apply the previous proposition to every f̂ij and via Proposition

1.1.4 to obtain the following formulas.

Proposition 1.2.33. Let f̂ be a k−summable series in xpεq on Πp,q with sum f . Consider

V1 = V (a′, b′, ρ1/p) and V2 = V (a′′, b′′, ρ1/q) sectors in C with V1 × V2 ⊂ Πp,q. Then

1. If V1 is a pk−wide sector, f̂ ∈ Ob(V2)[[x]] is pk−summable on V1 with sum

f(x, ε) = f1(x)(ε) =
1

xpk

∫ eid
′∞

0
ψ1(ξ1, ε)e

−(ξ1/x)pkdξpk1 ,

where ψ1(ξ1, ε) is the analytic continuation of B̂(p,q)
k,(1,0)(x

pkf̂) to a product of the form

S((b′+a′)/2, α1,+∞)×Dρ1/q , for some α1 and some direction d′ on S((b′+a′)/2, α1,+∞).

Besides, the i−component of xpkf1(x) is given by

q−1∑
j=0

εj
∫ eid

′∞

0
ψij,1(ζ1, ε

q)e−(ζ1/xp)kdζk1 ,

where ψij,1 is the analytic continuation of B̂(1,1)
k,(1,0)(ζ

kf̂ij) to S((pb
′+pa′)/2, pα1,+∞)×

Dρ.

2. If V2 is a qk−wide sector, f̂ ∈ Ob(V1)[[ε]] is qk−summable on V2 with sum

f(x, ε) = f2(ε)(x) =
1

εqk

∫ eid
′′∞

0
ψ2(x, ξ2)e

−(ξ2/ε)qkdξqk2 ,
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where ψ2(x, ξ2) is the analytic continuation of B̂(p,q)
k,(0,1)(ε

qkf̂) to a product of the form

Dρ1/p × S((b′′ + a′′)/2, α2,+∞), for some α2 and some direction d′′ on the domain

S((b′′ + a′′)/2, α2,+∞). Besides, the j−component of εqkf2(ε) is given by

p−1∑
i=0

xi
∫ eid

′∞

0
ψij,2(x

p, ζ2)e
−(ζ2/εq)kdζk2 ,

where ψij,2 is the analytic continuation of B̂(1,1)
k,(0,1)(η

kf̂ij) to Dρ×S((qb′′+qa′′)/2, qα2,+∞).

Example 1.2.2. This example is taken from [CDMS]. Consider the singularly perturbed

linear differential equation

εx2y′ = (1 + x)y − xε,

where y ∈ C. We will see in Chapter 3 that it has a unique formal solution ŷ ∈ R̂ that is 1-

summable in xε (see Theorem 3.1.4). However we can show here directly that ŷ is 1−Gevrey

in xε.

The formal solution can be easily calculated by inserting the expression ŷ =
∑∞

n=0 yn∗(ε)x
n

into the equation and solving recursively. The solution is given explicitly by

ŷ = ε

∞∑
n=0

n∏
l=1

(lε− 1)xn+1,

and it reduces to a polynomial in x when ε = 1/N , for N ∈ N∗. If |ε| < R then a direct

rough estimation shows that

sup
|ε|<R

|yn+1∗(ε)| ≤ R(R+ 1)nnn,

for all n ≥ 0, what shows that ŷ is 1−Gevrey in x.

If we write ŷ =
∑∞

n=0 y∗m(x)εm, it follows from the differential equation that

y∗m(x) =
xm

(1 + x)2m−1
Pm(x),

where Pm ∈ Z[x]. In fact, P0(x) = 0, P1(x) = 1, for m ≥ 2 the polynomial Pm has degree

m−2 with leading term (−1)m, Pm(0) = (m−1)! and if we write Pm(x) =
∑m−2

l=0 (−1)la
(m)
l xl,

then a
(m)
l ≥ 0 and they satisfy the recursion formula a

(m+1)
l = (m + l)a

(m)
l + (m − l)a

(m)
l−1 ,

valid for all m ≥ 2 and 0 ≤ l ≤ m − 2. It follows by induction that a
(m)
l ≤ 2m−3(m − 1)! if

m ≥ 3. If we take |x| < ρ < 1 then it is immediate to check that

sup
|x|<ρ

|y∗m(x)| ≤ 1

2

(
2ρ

(1− ρ)2

)m

(m− 1)!,

for all m ≥ 1, what shows that ŷ is 1−Gevrey in ε.
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To obtain a formula for the 1−sum in xε of ŷ we can use Proposition 1.2.32. Indeed, a

calculation using the binomial series shows that

B̂(1,1)
1,(1,0)(xŷ)(ξ1, ε) = ε

∞∑
n=1

n−1∏
l=1

(lε− 1)
ξn1
n!

= −ε(1− εξ1)
1/ε,

and the function in the right side is well-defined for εξ1 ̸= 1 and ε ̸= 0. Then the 1−sum is

given in adequate polysectors by the formula

f(x, ε) =
−ε
x

∫ eid∞

0
(1− eξ1)

1/εe−ξ1/xdξ1 =

∫ ei(d+arg(ε))∞

0
(1− s)1/ε−1e−s/xεds,

but it has the disadvantage of having the fraction 1/ε.

There is still another way we may calculate the sum of a series, k−summable in some

monomial. This time we introduce a new variable by weighting the variables x and ε, as in

the end of Section 1.2.1. For the case p = q = 1, consider real parameters s1, s2 > 0 such

that s1+ s2 = 1, a new variable z ∈ C and the morphism ιG, where G = G
(1,1)
s1,s2 = {ℓ(n,m) =

ns1 +ms2|n,m ∈ N}.

Suppose that f ∼(1,1)
1/k f̂ =

∑
an,mx

nεm on a monomial sector Π = Π1,1(a, b, r). Consider

constants B′, D′ such that |an,m| ≤ D′B′n+mmin{Γ(1+ n/k),Γ(1+m/k)}, for all n,m. For

a fixed (x, ε) ∈ Π with |x|, |ε| < 1/B′, consider the sector V = V (a− arg(xε), b− arg(xε), r̃),

where r̃ = min{1, (r/|x|)1/s1 , (r/|ε|)1/s2}. It follows that (zs1x, zs2ε) ∈ Π for all z ∈ V .

For a subsector W b V we can always find Π̃ b Π such that (zs1x, zs2ε) ∈ Π̃ for all z ∈ W .

Then by hypothesis there are constants C,A > 0 such that

∣∣∣∣∣f(zs1x, zs2ε)−
N−1∑
n=0

(bn(z
s1x) + cn(z

s2ε))(xε)nzn

∣∣∣∣∣ ≤ CANΓ (1 +N/k) |xε|N |z|N , (1-24)

for all N ∈ N and z ∈ W . We can use this inequalities to show that f(zs1x, zs2ε) admits

ιG(f̂) as asymptotic expansion of 1/k−Gevrey type in V (in general, in non-integer powers

of z). To show this, we use the notation IM = {(n,m) ∈ N2 | n ≤ M or m ≤ M}, where
M ∈ N and Jλ0 = {(n,m) ∈ N2|ℓ(n,m) < λ0} for λ0 ∈ G.

Let λ0 ∈ G and let N = [λ0] be its integer part. Note that if ℓ(n,m) < λ0 then min{n,m} ≤
N . This shows that Jλ0 ⊂ IN . Then if z ∈W , it follows from inequality (1-24) that

∣∣∣∣∣∣∣f(zs1x, zs2ε)−
∑

0≤λ<λ0
λ∈G

∑
ℓ(n,m)=λ

an,mx
nεmzλ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣f(zs1x, zs2ε)−

∑
(n,m)∈Jλ0

an,mx
nεmzns1+ms2

∣∣∣∣∣∣
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=

∣∣∣∣∣∣f(zs1x, zs2ε)−
∑

(n,m)∈IN

an,mx
nεmzns1+ms2 +

∑
(n,m)∈IN\Jλ0

an,mx
nεmzns1+ms2

∣∣∣∣∣∣
≤ CAN+1Γ (1 + (N + 1)/k) |xε|N+1|z|N+1 +

∑
(n,m)∈IN\Jλ0

|an,m||x|n|ε|m|z|ns1+ms2

≤ KLλ0Γ(1 + λ0/k)|z|λ0 ,

for K,L large enough constants. To justify the last inequality note if (n,m) ∈ IN \ Jλ0 then

|an,m|/B′n+mΓ(1 + N/k) is bounded and |z|ns1+ms2 < |z|λ0 because |z| < 1. In the first

summand we also have |z|N+1 < |z|λ0 since λ0 < N + 1. The conclusion follows observing

that we can replace Γ(1+N/k) and Γ(1+(N+1)/k) by Γ(1+λ0/k) by enlarging, if necessary,

the previous constants.

The previous considerations extend to the case of any monomial xpεq. Considering again

s1, s2 > 0 with s1+s2 = 1, but this time we consider the semigroup of R≥0 generated by s1/p

and s2/q and the morphism given by f̂(x, ε) 7→ f̂(zs1/px, zs2/qε). The asymptotic behavior

is similar to the previous case and we state the result in the following proposition.

Proposition 1.2.34. Let s1, s2 > 0 with s1+s2 = 1. Suppose that f ∼(p,q)
1/k f̂ on Πp,q(a, b, r).

Then there is ρ > 0 such that for any fixed (x0, ε0) ∈ Πp,q(a, b, r) with |x0|, |ε0| ≤ ρ, the map

f(zs1/px0, z
s2/qε0) admits f̂(zs1/px0, z

s2/qε0) as asymptotic expansion of 1/k−Gevrey type in

the sector V (a− arg(xp0ε
q
0), b− arg(xp0ε

q
0), r̃), where r̃ = min{1, (r/|x0|p)1/s1 , (r/|ε0|q)1/s2}.

The proof follows using Proposition 1.2.18 and the previous case p = q = 1. We remark

that since in general s1 is not necessarily a rational number, the asymptotic expansion must

be understood as explained at the end of Section 1.1. When s1 is rational, the previous

proposition can be understood in the usual sense, up to a ramification (via Proposition

1.1.4).

In particular, the previous proposition implies that when f̂ is k−summable in xpεq in di-

rection d with sum f , for points (x0, ε0) with small enough radius, f̂(zs1/px0, z
s2/qε0) is

k−summable in direction d− arg(xp0ε
q
0) with sum f(zs1/px0, z

s2/qε0), and in particular,

f(zs1/px0, z
s2/qε0) =

1

zk

∫ eid∞

0
φx0,ε0(ζ)e

−(ζ/z)kdζk, (1-25)

where φx0,ε0 is the analytic continuation to a sector bisected by d, of

B̂k(z
kιG(x0, ε0)(f̂)(z))(ζ) =

∑
λ∈G

∑
ns1/p+ms2/q=λ

an,mx
n
0ε

m
0

ζλ

Γ(1 + λ/k)
,

the formal k−Borel transform of zkιG(x0, ε0)(f̂).



76 Monomial Summability

1.3 Tauberian theorems for monomial summability

The goal of this section is to describe some tauberian theorems for monomial summability

as well as relating different levels of summability for different monomials in order to be able

to establish in future works a correct definition for a type of monomial multisummability.

As for a fixed monomial, summability in the monomial is equivalent to summability in the

classical sense, we obtain analogous results as in Section 1.1. The first classic result is that

the absence of singular directions is a tauberian condition.

Proposition 1.3.1. If f̂ ∈ R
(p,q)
1/k has no singular directions then f̂ ∈ R.

Proof. Since d is a singular direction of f̂ if and only it is for T̂p,q(f̂), we conclude that

T̂p,q(f̂) has no singular directions and by Proposition 1.1.12 it is convergent. It follows from

Proposition 1.2.3 that f̂ is also convergent.

The second one says that being summable in a monomial for different levels implies conver-

gence.

Proposition 1.3.2. Let 0 < k < k′ be positive real numbers. Then for any monomial xpεq

we have R
(p,q)
1/k ∩R(p,q)

1/k′ = R
(p,q)
1/k ∩ R̂(p,q)

1/k′ = R.

Following the same ideas that in the proof of Proposition 1.1.1 we can relate summability in

a monomial with summability in some power of this monomial.

Proposition 1.3.3. Let k > 0 be a real number, p, q,M ∈ N∗ be natural numbers and d a

direction. Then R
(p,q)
1/k,d = R

(Mp,Mq)
M/k,Md .

Proof. Let f̂ ∈ S be a formal power series. We can assume that M ≥ 1. Note that if we

write T̂p,q(f̂)(t)(x, ε) =
∑∞

n=0 fn(x, ε)t
n then

T̂Mp,Mq(f̂)(s)(x, ε) =

∞∑
n=0

gn(x, ε)s
n, gn(x, ε) =

M−1∑
j=0

fMn+j(x, ε)(x
pεq)j .

Suppose that f̂ ∈ R
(p,q)
1/k,d. Then there is f ∈ O(Πp,q(a, b, r)) such that f ∼(p,q)

1/k f̂ on

Πp,q(a, b, r) = ΠMp,Mq(Ma,Mb, rM ), where d = (b + a)/2 and b − a > π/k. Using the

previous decomposition, inequality (1-18) of the definition for N = ML,L ∈ N and the

limit limn→+∞
(Mn)!1/M

Mnn! = 0 we obtain that f ∼(Mp,Mq)
M/k f̂ on ΠMp,Mq(Ma,Mb, rM ), that is,

f̂ ∈ R
(Mp,Mq)
M/k,Md .
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Conversely, if f ∼(Mp,Mq)
M/k f̂ on ΠMp,Mq(Ma,Mb, rM ) = Πp,q(a, b, r), by definition and the

previous expressions we see that for all Π̃Mp,Mq = Πp,q(a
′, b′, ρ) andN ∈ N there are constants

C,A such that for all (x, ε) ∈ Πp,q we have∣∣∣∣∣f(x, ε)−
MN−1∑
n=0

fn(x, ε)(x
pεq)n

∣∣∣∣∣ ≤ CAMNN !M/k|xpεq|MN .

Now if we write f and the fn as explained in Remark 1.2.17, say f(x, ε) =
∑

i,j x
iεjfij(x

p, εq)

and fn(x, ε) =
∑

i,j x
iεj(bij,n(x

p) + cij,n(ε
q)), inequality (1-19) shows that∣∣∣∣∣fij(x, ε)−

MN−1∑
n=0

(bij,n(x
p) + cij,p(ε

q))(xpεq)n

∣∣∣∣∣ ≤ CAMNN !M/k |xpεq|MN

|x|i|ε|j
, (1-26)

for all possible i, j and (x, ε) ∈ Πp,q. Since f̂ ∈ R̂
(Mp,Mq)
M/k , there is 0 < r′ < r and constants

B,D such that ∣∣∣∣∣
M−1∑
l=0

(bij,Mn+l(x
p) + cij,Mn+l(ε

q))(xpεq)l

∣∣∣∣∣ ≤ DBnn!M/k,

for all possible i, j and |x|, |ε| < r′. Using this bounds and (1-26) for N + 1 we see that

∣∣∣∣∣fij(x, ε)−
MN−1∑
n=0

(bij,n(x
p) + cij,p(ε

q))(xpεq)n

∣∣∣∣∣ ≤
CAM(N+1)(N + 1)!M/k|xpεq|MN |x|Mp−i|ε|Mq−j +DBNN !M/k|xpεq|MN

≤ KLNN !M/k|xpεq|MN ,

for all possible i, j and (x, ε) ∈ Πp,q, where K,L are large enough constants.

If 0 < ρ′ < ρ < r′ and |x|p, |ε|q < ρ′ it is straightforward to check that

∥∥∥∥∥Tp,q(f)ρ(t)−
MN−1∑
n=0

fnt
n

∥∥∥∥∥
ρ′

≤
2
(∑

i,j ρ
i+j
)

1− ρ′/ρ
KLN (MN)!1/k|t|MN ,

for all t ∈ V (a′, b′, ρ2) andN ∈ N. An application of Proposition 1.1.1 shows that Tp,q(f)ρ ∼1/k

T̂p,q(f̂) on V (a, b, r2), for all 0 < ρ < r′. By Proposition 1.2.20, we finally conclude that

f ∼(p,q)
1/k f̂ on Πp,q(a, b, r), as we wanted to prove.

Using Proposition 1.2.34, we can treat a particular case of a summable series in two different

monomials.

Proposition 1.3.4. Let k, l > 0 be positive real numbers and let xpεq and xp
′
εq

′
two mono-

mials. Suppose that k ̸= l and min{p/p′, q/q′} < 1 < max{p/p′, q/q′}. Then R(p,q)
1/k ∩R(p′,q′)

1/l =

R.



78 Monomial Summability

Proof. The hypothesis min{p/p′, q/q′} < 1 < max{p/p′, q/q′} is a necessary and sufficient

condition to ensure that the system of equations

s1 + s2 = 1, s1/p = s′1/p
′,

s′1 + s′2 = 1, s2/q = s′2/q
′,

has a unique solution conformed by positive numbers. Indeed, the solution is s1 = p(q′ −
q)/(p′q−pq′), s′1 = p′(q′− q)/(p′q−pq′), s2 = q(p′−p)/(p′q−pq′), s′2 = q′(p′−p)/(p′q−pq′).

Let f̂ ∈ R
(p,q)
1/k ∩R(p′,q′)

1/l . From Proposition 1.2.34 we obtain a radius ρ > 0 such that for any

fixed (x0, ε0) ∈ D
2
ρ, the formal series f̂(zs1/px0, z

s2/qε0) = f̂(zs
′
1/p

′
x0, z

s′2/q
′
ε0) in z

1/|p′q−pq′|

is both k−summable and l−summable in z. Since k ̸= l, by Theorem 1.1.13 we conclude

that f̂(zs1/px0, z
s2/qε0) is convergent. Then using Proposition 1.2.9 we can conclude that f̂

is convergent.

At this point we are ready to formulate and prove the main result so far, comparing summable

series in different monomials.

Theorem 1.3.5. Let k, l > 0 be positive real numbers and let xpεq and xp
′
εq

′
be two mono-

mials. The following statements are true:

1. If p/p′ = q/q′ = l/k then R
(p,q)
1/k = R

(p′,q′)
1/l .

2. If p/p′ = q/q′ and q/q′ ̸= l/k then R
(p,q)
1/k ∩R(p′,q′)

1/l = R.

3. If p/p′ ̸= q/q′ then R
(p,q)
1/k ∩R(p′,q′)

1/l = R.

Proof. We split the proof in cases. First consider the case p/p′ = q/q′. If d = g.c.d.(p, q)

and p = dp′′, q = dq′′ then p′ = np′′, q′ = nq′′ where n = q′/q′′ = p′/p′′ ∈ N. By Proposition

1.3.3 we see that

R
(p,q)
1/k = R

(p′′,q′′)
1/dk and R

(p′,q′)
1/l = R

(p′′,q′′)
1/nl .

Then the cases (1) and (2) follows from Proposition 1.3.2.

For the case p/p′ ̸= q/q′ we consider three possibilities:

Case I. Suppose max{p/p′, q/q′} < l/k. If f̂ ∈ R
(p,q)
1/k ∩ R

(p′,q′)
1/l ⊂ R

(p,q)
1/k ∩ R̂

(p′,q′)
1/l , we con-

clude by Corollary 1.2.5 that T̂p,q(f̂) is a max{p/p′, q/q′}/l−Gevrey series. Since T̂p,q(f̂) is

k−summable, by Theorem 1.1.13 we conclude that T̂p,q(f̂) and therefore f̂ are convergent.

Case II. Suppose l/k < min{p/p′, q/q′}. This is equivalent to the condition max{p′/p, q′/q} <
k/l so this case follows from case (I).
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Case III. Suppose min{p/p′, q/q′} ≤ l/k ≤ max{p/p′, q/q′}. Choose a, b ∈ N∗ such that

l/k ̸= a/b and min{p/p′, q/q′} < a/b < max{p/p′, q/q′}, or equivalently

min{bp/ap′, bq/aq′} < 1 < max{bp/ap′, bq/aq′}.

Since R
(p,q)
1/k = R

(bp,bq)
b/k and R

(p′,q′)
1/l = R

(ap′,aq′)
a/l , this case follows from Proposition 1.3.4.





2 Monomial Borel-Laplace summation

methods

In the previous chapter we have recalled the notion of monomial summability as presented

originally in the paper [CDMS] and we have developed many of its properties. As we have

seen many of them depend on the theory of one variable, since the notion of monomial su-

mmability can be expressed in terms of classical summability (see Proposition 1.2.11 and

Proposition 1.2.20). However so far we have no similar tools to the Borel-Laplace method

to study it. The aim of this chapter is to develop such methods. The idea behind them

is to weight the variables adequately and generalize the formulas in the classical case. The

formulas defining the Borel and Laplace transforms used here are essentially the same in-

troduced in the paper [B3] for the case of two variables. The underlying difference between

them is the domain of the functions we work with, being adequate connected sets of poly-

sectors in the mentioned paper and monomial sectors used here. Many of the formulas we

provide here are already used (sometimes implicitly) in the paper [BM] in the treatment of

summability of formal power series solutions of singularly perturbed linear systems of ordi-

nary differential equations given by the authors. In particular they show that those solutions

are (s1, s2)−summable, for adequate values of (s1, s2), where this notion of summability is

defined precisely using the generalized Borel and Laplace transforms. Once again it is not

clear that the domains they consider are sectors in a monomial.

The chapter is divided into three sections. In the first one we define the Borel and Laplace

transformations associated to a monomial, a weight in the variables and a parameter of su-

mmability, as well as its formal counterparts. Many properties of those transformations are

studied, for instance proving that they are inverses one of each other and its behavior w.r.t.

Gevrey asymptotic monomial expansions. An interesting affair is that the Borel transform

converts a certain vector field into multiplication by the monomial employed. Even many

of the properties are natural, the proofs are partly technical and include many calculations.

The section ends introducing a convolution product compatible with the previous transfor-

mations, i.e. the Laplace transform convert the convolution into the usual product.

Then the method of summability associated with each Borel and Laplace transform is pro-

posed in the second section, following the definitions in the classical case. The main result

at that point is that this apparent new method of summability is equivalent to monomial

summability. That is the content of Theorem 2.2.1. This new equivalence clarify the relation

between monomial summability and (s1, s2)−summability explained in the first paragraph.

The section concludes commenting alternative ways to prove properties obtained in the pre-
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vious chapter, using the Borel-Laplace method. Finally the matter that concerns us in the

last section is the behavior of monomial summability under point blow-ups. We only provide

an elementary result that shows the stability of monomial summability under point blow-ups.

2.1 Monomial Borel and Laplace transforms

The goal of this section is to define the Borel transform, the Laplace transform and the

convolution product associated with a monomial, a weight of the variables and a parameter

of summability. These integral transformations will help us to provide a new way to cha-

racterize summability in a monomial. To achieve this purpose it is necessary to develop the

fundamental properties of these transformation such as their action on formal power series

and their action on Gevrey asymptotic expansions on monomial sectors.

2.1.1 Borel transform

Definition 2.1.1. Let s1, s2 > 0 such that s1 + s2 = 1. The k−Borel transform associated

to the monomial xpεq with weight (s1, s2) of a function f is defined by the formula

B(p,q)
k,(s1,s2)

(f)(ξ, υ) =
(ξpυq)−k

2πi

∫
γ
f(ξu−s1/pk, υu−s2/qk)eudu,

where γ denotes a Hankel path.

In order to make the above formula meaningful, we are going to restrict our attention

to analytic and bounded functions f defined on monomial sectors in xpεq of the form

Sp,q(d, π/k + 2ϵ0, R0), where 0 < ϵ0 < π/k. In this case, B(p,q)
k,(s1,s2)

(f) will be defined and

analytic on the sector Sp,q(d, 2ϵ0,+∞). Indeed, if (ξ, υ) ∈ Sp,q(d, 2ϵ0,+∞), take any ϵ such

that (ξ, υ) ∈ Sp,q(d, 2ϵ,+∞) and 0 < ϵ < ϵ0. Then take the integral along the path γ oriented

positively and given by: the arc of a circle centered at 0 and radius

R > max{(|ξ|p/R0)
k/s1 , (|υ|q/R0)

k/s2},

with endpoints corresponding to the directions −π/2 − k(ϵ0 − ϵ) and π/2 + k(ϵ0 − ϵ) and

the semi-lines of those directions from this arc to ∞. If u goes along this path we see that

(ξu−s1/pk, υu−s2/qk) ∈ Sp,q(d, π/k + 2ϵ0, R0) and the integral converges, due to boundedness

of f and to the exponential term tending to 0 in those directions. The result is independent

of ϵ and R due to Cauchy’s theorem.

We note in particular that if f(x, ε) = xλεµ, λ, µ ∈ C, then it follows from Hankel’s formula

for the Gamma function that
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B(p,q)
k,(s1,s2)

(f)(ξ, υ) =
ξλ−pkυµ−qk

Γ
(
λs1/p+µs2/q

k

) . (2-1)

The previous formula let us introduce the formal k−Borel transform associated to the mono-

mial xpεq with weight (s1, s2), defined naturally by

B̂(p,q)
k,(s1,s2)

: xpkεqkC[[x, ε]] −→ C[[ξ, υ]]∑
n,m≥0

an,mx
n+pkεm+qk 7→

∑
n,m≥0

an,m

Γ
(
1 + ns1/p+ms2/q

k

)ξnυm.
It follows that B̂(p,q)

k,(s1,s2)
establish a linear isomorphism between xpkεqkR̂(s1/pk,s2/qk) and

C{ξ, υ}. In particular, we see from (1-3) that the image of xpkεqkR̂
(p,q)
1/k is contained in

C{ξ, υ}.

The reader may note that with the previous definitions we recover the formal Borel transforms

in xp and εq introduced in Section 1.2.4 as particular cases by letting s1 = 1, s2 = 0 and

s1 = 0, s2 = 1. However we don’t treat that cases here because in the analytic setting the

domains of the functions involver change drastically from the product of a sector and a disc

to monomial sectors.

Remark 2.1.1. If f0 ∈ O(V ), V = S(d, π/k + 2ϵ0, R
2
0), is bounded then f(x, ε) = f0(x

pεq)

defines a bounded analytic function on Sp,q(d, π/k + 2ϵ0, R0) and in this case

B(p,q)
k,(s1,s2)

(f)(ξ, υ) = Bk(f0)(ξ
pυq),

for all s1, s2 > 0 such that s1 + s2 = 1. In other words, the k−Borel transform associated

to the monomial xpεq with weight (s1, s2) reduces to a k−Borel transform for functions

depending only on xpεq.We point out that the same considerations and the previous formula

remain valid for the formal counterpart.

Remark 2.1.2. In relation with the process of weighting the variables introduced in the

previous chapter, we can relate the forgoing Borel transform with the classical one as follows:

consider a bounded function f ∈ O(Sp,q), Sp,q = Sp,q(d, π/k+2ϵ0, R0), a point (x0, ε0) ∈ Sp,q
and s1, s2 > 0 with s1+s2 = 1. If we set f̃(z) = f(zs1/px0, z

s2/qε0) then f̃ defines a bounded

function on S(d− arg(xp0ε
q
0), π/k+ 2ϵ0, R̃0), R̃0 = min{(R0/|x0|p)1/s1 , (R0/|ε0|q)1/s2} and in

this case

(xp0ε
q
0)

kB(p,q)
k,(s1,s2)

(f)(ζs1/px0, ζ
s2/qε0) = Bk(f̃)(ζ). (2-2)

Note that here B(p,q)
k,(s1,s2)

(f) is only calculated on points (ξ, υ) where ξp/s1/υq/s2 is constant

(the constant given by x
p/s1
0 /ε

q/s2
0 ).
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As in the case of one variable, the formal as well as the analytic Borel transforms satisfy

an interesting property sending a certain vector field into multiplying by a power of the

monomial. Indeed, the vector field rises naturally if we take the derivative of the integrand

w.r.t. the variable u in the above definition. This statement we state it as a proposition that

will be very useful in the applications to differential equations in the following chapter. The

proof is straightforward.

Proposition 2.1.3. Consider a bounded function f ∈ O(Sp,q(d, π/k + 2ϵ0, R0)). Then

B(p,q)
k,(s1,s2)

(
(xpεq)k

(
s1
p
x
∂f

∂x
+
s2
q
ε
∂f

∂ε

))
(ξ, υ) = k(ξpυq)kB(p,q)

k,(s1,s2)
(f)(ξ, υ),

for any s1, s2 > 0 such that s1 + s2 = 1.

Proposition 2.1.4. Consider a bounded function f ∈ O(Sp,q(d, π/k + 2ϵ0, R0)) and t ∈ C.
Then

B(p,q)
k,(s1,s2)

(
f

(
x

(1− t(xpεq)k)s1/pk
,

ε

(1− t(xpεq)k)s2/qk

))
(ξ, υ) = et(ξ

pυq)kB(p,q)
k,(s1,s2)

(f)(ξ, υ),

for any s1, s2 > 0 such that s1 + s2 = 1.

The formulas in the previous propositions are naturally related: the flow of the vector field

X = (xpεq)k

k

(
s1
p x

∂
∂x + s2

q ε
∂
∂ε

)
is precisely given by

(x, ε, t) 7−→
(

x

(1− t(xpεq)k)s1/pk
,

ε

(1− t(xpεq)k)s2/qk

)
.

Then we can deduce Proposition 2.1.3 from Proposition 2.1.4 by differentiating w.r.t. t and

evaluating at t = 0. These calculations can be justified using the linearity of the Borel

transform, the boundedness of the function f and the Dominated Convergence Theorem.

Besides in the variable t = xpεq the vector field X reduces to tk+1

k
∂
∂t , a fact that relates the

previous propositions with items (2) and (3) of Proposition 1.1.9.

In regard to the behavior of the Borel transform w.r.t the map T̂p,q, we formulate the next

remark that will be useful in the forthcoming sections.

Remark 2.1.5. Let f̂ ∈ S be a formal power series and φ̂s1,s2 = B̂(p,q)
k,(s1,s2)

((xpεq)kf̂). Let us

write f̂ =
∑
an,mx

nεm, T̂p,q(f̂) =
∑

n≥0 fnt
n and T̂p,q(φ̂s1,s2) =

∑
n≥0 φnτ

n. Then fn and

φn are related by

φn(ξ, υ) = (ξpυq)−nB(p,q)
k,(s1,s2)

((xpεq)n+kfn)

=

q−1∑
j=0

∞∑
m=0

anp+m,nq+j

Γ
(
1 + n

k + s1m
pk + s2j

qk

)ξmυj + p−1∑
m=0

∞∑
j=q

anp+m,nq+j

Γ
(
1 + n

k + s1m
pk + s2j

qk

)ξmυj .
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Since f̂ ∈ S we know that all the fn are analytic in a common disc D2
ρ. Then we can conclude

that the φn are all entire functions. We can go further and check from the last expression

that there are constants L,M ′ > 0 independent of n, but depending on ρ such that

|φn(ξ, υ)| ≤
L∥fn∥ρ
Γ
(
1 + n

k

)eM ′ max{|ξ|pk/s1 ,|υ|qk/s2}, (2-3)

for all (ξ, υ) ∈ C2 and all n ∈ N. Here ∥fn∥ρ = sup(ξ,υ)∈D2
ρ
|fn(ξ, υ)|.

We collect in the following proposition the main properties of this Borel transform, such

as the exponential growth and its behavior w.r.t. monomial asymptotic expansions. We

remark that the first two parts of the following proposition are properties similar to the

classical Borel transform. However statement (3) below provides asymptotic bounds plus an

exponential term that will help us understand how to use the forthcoming Laplace transform.

The proof of (3) is based in a proof of the behavior of a generalization of the Borel transform

for many variables taken from [S].

Proposition 2.1.6. Let xpεq be a monomial and l > 0 be a positive real number. Consider

f ∈ O(Sp,q), Sp,q = Sp,q(d, π/k + 2ϵ0, R0) as before. Then the following statements hold:

1. If f is bounded in each monomial subsector of Sp,q, then g = B(p,q)
k,(s1,s2)

((xpεq)kf) is

analytic on Sp,q(d, 2ϵ0,+∞), and for every subsector Πp,q b Sp,q(d, 2ϵ0,+∞) of infinite

radius there are constants C,M > 0 such that

|g(ξ, υ)| ≤ CeM max{|ξ|pk/s1 ,|υ|qk/s2},

for all (ξ, υ) ∈ Πp,q.

2. If f ∼(p,q)
1/l f̂ on Sp,q and ĝ = B̂(p,q)

k,(s1,s2)
((xpεq)kf̂) =

∑
n≥0 gn(ξ, υ)(ξ

pυq)n then

g ∼(p,q)
1/κ ĝ,

on Sp,q(d, 2ϵ0,+∞), where 1/κ = 1/l − 1/k if l ≤ k and 1/κ = 0 otherwise.

3. Furthermore, if the hypotheses of (2) hold, then for every monomial subsector Πp,q b
Sp,q(d, 2ϵ0,+∞) of infinite radius there are constants B,D,M > 0 such that

∣∣∣∣∣g(ξ, υ)−
N−1∑
n=0

gn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ DBNΓ(1 +N/κ)|ξpυq|NeM max{|ξ|pk/s1 ,|υ|qk/s2},

for all (ξ, υ) ∈ Πp,q.
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Proof. First note that it is enough to establish the bounds for sector of the form Sp,q(d, 2ϵ
′, r),

with 0 < ϵ′ < ϵ0 and 0 < r ≤ +∞. Also it is enough to prove statements (2) and (3) because

statement (1) can be seen as a particular case of (3) by setting N = 0. The key point of the

proof relies on choose adequately the radius of the arc of the path γ in the definition. Let

γ = γ1 + γ2 − γ3 given by:

i. γ1 parameterized by γ1(ρ) = ρei(π/2+k(ϵ−ϵ′)/2), ρ ≥ R,

ii. γ2 parameterized by γ2(θ) = Reiθ, |θ| ≤ π/2 + k(ϵ− ϵ′)/2,

iii. γ3 parameterized by γ3(ρ) = ρe−i(π/2+k(ϵ−ϵ′)/2), ρ ≥ R,

where 0 < ϵ′ < ϵ < ϵ0 and R will be chosen appropriately so that if (ξ, υ) ∈ Sp,q(d, 2ϵ
′, r)

then (ξu−s1/pk, υu−s2/qk) ∈ Sp,q(d, π/k + 2ϵ, R0/2) for all u on γ.

Note that if T̂p,q(f̂) =
∑

n≥0 fn(x, ε)t
n then

gn(ξ, υ) = (ξpυq)−nB̂(p,q)
k,(s1,s2)

((xpεq)k+nfn)).

Also without loss of generality we can assume that the fn are analytic on DR0(0)
2.

We know that, by hypothesis (2) there are constants C,A > 0 such that∣∣∣∣∣f(x, ε)−
N−1∑
n=0

fn(x, ε)(x
pεq)n

∣∣∣∣∣ ≤ CANΓ(1 +N/l)|xpεq|N , (2-4)

for all (x, ε) ∈ Sp,q(d, π/k + 2ϵ, R0/2) and all N ∈ N.

If we set a = sin(k(ϵ− ϵ′)/2)/2 and with R to be chosen and using inequality (2-4), a direct

estimate shows that for all (ξ, υ) ∈ Sp,q(d, 2ϵ
′, r) and all N ∈ N we have

∣∣∣∣∣g(ξ, υ)−
N−1∑
n=0

gn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣
=

∣∣∣∣∣ 1

2πi

∫
γ

(
f(ξu−s1/pk, υu−s2/qk)−

N−1∑
n=0

fn(ξu
−s1/pk, υu−s2/qk)(ξpυq)nu−n/k

)
eu

u
du

∣∣∣∣∣
≤ C

a
ANΓ(1 +N/l)

|ξpυq|N

RN/k

(
e−2aR

R
+ eR

)
. (2-5)

For N = 0 we are denoting C = Cϵ = sup{|f(x, ε)| | (x, ε) ∈ Sp,q(d, π/k + 2ϵ, R0/2)} < +∞.

To prove statement (2) (i.e. for r < +∞) it is enough to take any fixed r0 > 0 and choose

R ≥ max{(2r0/R0)
k/s1 , (2r0/R0)

k/s2}. Since it is enough to establish the corresponding

bounds for large N we can suppose N is large enough and take R = N/k. Then it follows

from Stirling’s formula that there are constants C̃, Ã > 0 such that
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∣∣∣∣∣g(ξ, υ)−
N−1∑
n=0

gn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ C̃ÃN Γ(1 +N/l)

Γ(1 +N/k)
|ξpυq|N ,

for all (ξ, υ) ∈ Sp,q(d, 2ϵ
′, r0). One last application of Stirling’s formula leads us to the result.

To prove statement (3) we just need to bound (2-5) for (ξ, υ) ∈ Sp,q(d, 2ϵ
′,+∞)\Sp,q(d, 2ϵ′, r0).

Take R1 and R2 with R1, R2 < R0/2 and let R(ξ, υ) = max{(|ξ|p/R1)
k/s1 , (|υ|q/R2)

k/s2}.
The following inequalities are clear ((2-6) follows from (1-4)):

|ξpυq|k

Rk
1R

k
2

≤ R(ξ, υ), (2-6)

R(ξ, υ) ≤
(
|ξ|p

R1

)k/s1

+

(
|υ|p

R2

)k/s2

≤ 2R(ξ, υ). (2-7)

If we use R = R(ξ, υ), inequality (2-5) is valid for those (ξ, υ). Using (2-6) and (2-7) it is

straightforward to check that (2-5) is bounded by

C

a
ANΓ(1 +N/l)RN

1 R
N
2

(
e−a(|ξ|p/R1)

k/s1

(|ξ|p/R1)
k

+ e(|ξ|
p/R1)

k/s1

)(
e−a(|υ|q/R2)

k/s2

(|υ|q/R2)
k

+ e(|υ|
q/R2)

k/s2

)
.

(2-8)

Then it is enough to prove that for k, a, s > 0 and ρ > r0 > 0 there exist constants L,K,M ′ >

0 such that for τ > r0 and N ∈ N we have

h(N, τ) := inf
0<t<ρ

tN

(
e−a(τ/t)k/s

(τ/t)k
+ e(τ/t)

k/s

)
≤ LKN

Γ(1 +Ns/k)
τNeM

′τk/s . (2-9)

Indeed, if t = τ
(

k
sN

)s/k
< ρ we can use this t to bound

h(N, τ) ≤ τN
(
k

sN

)sN/k
(
e−asN/k

(sN/k)s
+ esN/k

)
,

and an application of Stirling’s formula lead to the result in this case. On the other hand, if

τ
(

k
sN

)s/k ≤ ρ, that is, if rN0 ≤ ρN ≤ τN
(

k
sN

)sN/k
, we can use t = r0 to get

h(N, τ) ≤ 2rN0 e
(τ/r0)k/s ≤ 2τN

(
k

sN

)sN/k

eM
′τk/s ,

where M ′ = 1/r
k/s
0 . Again, an application of Stirling’s formula let us conclude (2-9).

Finally, returning to inequality (2-8), since R1 and R2 can be arbitrarily small, inequality

(2-9) can be applied to τ = |ξ|p, s = s1 and to τ = |υ|q, s = s2 to conclude that there are

large enough constants D̃, B̃ > 0 such that
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∣∣∣∣∣g(ξ, υ)−
N−1∑
n=0

gn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ D̃B̃N Γ(1 +N/l)

Γ(1 + s1N/k)Γ(1 + s2N/k)
|ξpυq|NeM(|ξ|pk/s1+|υ|qk/s2 ),

for all (ξ, υ) ∈ Sp,q(d, 2ϵ
′,+∞) \ Sp,q(d, 2ϵ′, r0) and M = max{1/rk/s10 , 1/r

k/s2
0 }. Since s1 +

s2 = 1 we can use Stirling’s formula to finally conclude the result.

Remark 2.1.7. In this section we have considered the k−Borel transform associated to a

monomial xpεq with weight (s1, s2) of functions defined on monomial sectors in the same

monomial, with adequate opening. We can also analyze the case when the domain of the

functions is a monomial sector, for another monomial. More specifically, let f ∈ Sp,q(d, α,R0)

be a bounded analytic function and let us try to apply B(p′,q′)
l,(s′1,s

′
2)

to f , where l > 0 and

s′1 + s′2 = 1, s′1, s
′
2 > 0.

Following the definition of the Borel transform, we see that if

α =
1

l

(
s′1
p

p′
+ s′2

q

q′

)
+ 2ϵ0, 0 < ϵ0 <

1

l

(
s′1
p

p′
+ s′2

q

q′

)
,

and if we take a Hankel path with a radius |u| > max

{
|ξ|p

′l/s′1

R
p′l/ps′1
0

, |υ|
q′l/s′2

R
q′l/qs′2
0

}
and arguments

satisfying |arg(u)| < π
2 + ϵ0l

(
s′1

p
p′ + s′2

q
q′

)−1
, then B(p′,q′)

l,(s′1,s
′
2)
(f) is defined and analytic on

Sp,q(d, 2ϵ0,+∞).

We can adapt Proposition 2.1.6 to this case. If f is taken as before then we can calculate g =

B(p′,q′)
l,(s′1,s

′
2)
((xp

′
εq

′
)lf) and it will have exponential growth of the form CeM max{|ξ|p

′l/s′1 ,|υ|q
′l/s′2}.

If additionally f ∼(p,q)
1/k f̂ on Sp,q(d, α,R0), α as before, and ĝ = B̂(p′,q′)

l,(s′1,s
′
2)
((xp

′
εq

′
)lf̂) =∑

n≥0 gn(ξ, υ)(ξ
pυq)n then

g ∼(p,q)
1/κ ĝ,

on Sp,q(d, 2ϵ0,+∞), where 1/κ = 1/k − 1/l (s′1p/p
′ + s′2q/q

′) if this quantity is positive or

1/κ = 0 otherwise (in the last case, ĝ is convergent). Furthermore, for every monomial

subsector Πp,q b Sp,q(d, 2ϵ0,+∞) of infinite radius there are constants B,D,M > 0 such

that ∣∣∣∣∣g(ξ, υ)−
N−1∑
n=0

gn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ DBNΓ(1 +N/κ)|ξpυq|NeM max{|ξ|p
′l/s′1 ,|υ|q

′l/s′2},

for all (ξ, υ) ∈ Πp,q.

The proof of the above statements is, up to minor modifications, the same as the proof of

Proposition 2.1.6 and it will not be included here.
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2.1.2 Laplace transform

Definition 2.1.2. Let s1, s2 > 0 such that s1 + s2 = 1 and α ∈ R such that |α| < π/2. The

k−Laplace transform associated to the monomial xpεq with weight (s1, s2) in direction α of

a function f is defined by the formula

L(p,q)
k,α,(s1,s2)

(f)(x, ε) = (xpεq)k
∫ eiα∞

0
f(xus1/pk, εus2/qk)e−udu.

We are going to restrict our attention to analytic functions f defined in monomial sectors

of the form Πp,q(a, b,+∞). One may be tempted to impose an exponential growth on f

of order k in the monomial xpεq, i.e., to suppose that |f(ξ, υ)| ≤ CeB|xpεq |k on the sector

Πp,q(a, b,+∞). But since the sector has infinite radius we would conclude from Proposition

1.2.19 that f is a function depending on xpεq and this will restrict our scope significantly.

Instead and as it is suggested by the corresponding Borel transform, a natural condition to

impose on f is having an exponential growth of the form

|f(ξ, υ)| ≤ CeBmax{|ξ|pk/s1 ,|υ|qk/s2}, (2-10)

valid for all (ξ, υ) ∈ Πp,q(a, b,+∞) and some constants B,C > 0. In particular f is bounded

at the origin. In such case, L(p,q)
k,α,(s1,s2)

(f) is defined and analytic on the domain Dk,α(a, b, B)

defined by the conditions

a− α/k < arg(xpεq) < b− α/k, Bmax{|x|pk/s1 , |ε|qk/s2} < cosα.

Note that by changing the constant B in (2-10) we can replace the term max{|ξ|pk/s1 , |υ|qk/s2}
by |ξ|pk/s1 + |υ|qk/s2 and vice versa. We also note that by changing the direction α by β we

obtain an analytic continuation of L(p,q)
k,α,(s1,s2)

(f) when the corresponding domains intersects,

i.e. when |β−α| < k(b−a), a fact that follows directly from Cauchy’s theorem. This process

leads to an analytic function L(p,q)
k,(s1,s2)

(f) defined in the region∪
|α|<π/2

Dk,α(a, b, B).

As an example we can consider f(x, ε) = xλεµ, λ, µ ∈ C, Re(λ),Re(µ) > 0. Then using the

integral formula for the Gamma function we obtain the expression

L(p,q)
k,(s1,s2)

(f)(x, ε) = Γ

(
1 +

λs1/p+ µs2/q

k

)
xλ+pkεµ+qk. (2-11)
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As before we define the formal k−Laplace transform associated to the monomial xpεq with

weight (s1, s2), as

L̂(p,q)
k,(s1,s2)

: C[[ξ, υ]] −→ xpkεqkC[[x, ε]]∑
n,m≥0

an,mξ
nυm 7→

∑
n,m≥0

an,mΓ

(
1 +

ns1/p+ms2/q

k

)
xn+pkεm+qk.

We see that L̂(p,q)
k,(s1,s2)

is nothing but the inverse of B̂(p,q)
k,(s1,s2)

. We will prove later the analytic

counterpart, i.e., L(p,q)
k,(s1,s2)

and B(p,q)
k,(s1,s2)

are inverse one of another. Before we do that we

need some information about series such that the formal and analytic Laplace transforms

coincide an establish the analogous remarks to Remark 2.1.1 and Remark 2.1.2.

Remark 2.1.8. If f0 ∈ O(V ), V = V (a, b,+∞), has exponential growth of order at most

k on V , say |f0(ζ)| ≤ CeB|ζ|k then f(ξ, υ) = f0(ξ
pυq) defines an analytic function on

Πp,q(a, b,+∞), due to inequality (1-4) it has exponential growth as in (2-10) for all s1, s2 > 0

such that s1 + s2 = 1 and in this case

L(p,q)
k,(s1,s2)

(f)(x, ε) = Lk(f0)(x
pεq).

Expressly, the k−Laplace transform associated to the monomial xpεq with weight (s1, s2)

reduces to a k−Laplace transform for functions depending only on xpεq. We mention that

the same considerations and formula remain valid for the formal counterpart.

Remark 2.1.9. Consider a function f ∈ O(Πp,q), Πp,q = Πp,q(a, b,+∞), with exponential

growth as in (2-10). Fix a point (ξ0, υ0) ∈ Πp,q and weights s1, s2 > 0 with s1 + s2 = 1. If

we set f̃(ζ) = f(ζs1/pξ0, ζ
s2/qυ0) for ζ ∈ V = V (a−arg(xp0ε

q
0), b−arg(xp0ε

q
0),+∞) then f̃ has

exponential growth of order at most k on V and in this case

(ξp0υ
q
0)

−kL(p,q)
k,(s1,s2)

(f)(zs1/pξ0, z
s2/qυ0) = Lk(f̃)(z). (2-12)

As usual the expression on the left is only calculated on points (x, ε) where xp/s1/εq/s2 is

constant.

Remark 2.1.10. Let f̂ =
∑

n,m≥0 an,mξ
nυm =

∑
n≥0 fn(ξ, υ)(ξ

pυq)n be a formal power

series. A necessary and sufficient condition on f̂ so that L̂(p,q)
k,(s1,s2)

(f̂) is a convergent power

series, is that there are constants C,A > 0 such that

|an,m| ≤ CAn+m

Γ
(
1 + ns1/p+ms2/q

k

) ,
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for all n,m ≥ 0. This is equivalent to say that f̂ defines an entire function f with an

exponential growth of the form (2-10). Then 1
(xpεq)k

L(p,q)
k,(s1,s2)

(f) exists, it is analytic in a

polydisc at the origin, and it has 1
(xpεq)k

L̂(p,q)
k,(s1,s2)

(f̂) as Taylor’s series at the origin.

Now assume that there are constants l, B,D,M > 0 such that the family of maps fn are

entire and satisfy the bounds

|fn(ξ, υ)| ≤ DBnΓ
(
1 +

n

l

)
eM max{|ξ|pk/s1 ,|υ|qk/s2}, (2-13)

for all (ξ, υ) ∈ C2. This is equivalent to require that the coefficient of f̂ satisfy bounds of

type

|anp+m,nq+j | ≤ KLnp+nq+m+j Γ
(
1 + n

l

)
Γ
(
1 + s1m

pk + s2j
qk

) ,
for all n,m, j ∈ N with m < p or j < q (recall formula (1-6)) and some constants K,L > 0 .

Thus we can conclude that f̂ ∈ C[[ξ, υ]](p,q)1/l , 1
(xpεq)k

L̂(p,q)
k,(s1,s2)

(f̂) ∈ C[[x, ε]](p,q)1/l+1/k, all the

maps L(p,q)
k,(s1,s2)

(fn) are analytic in a common polydisc centered at the origin and

L̂(p,q)
k,(s1,s2)

(f̂) =
∑
n≥0

L(p,q)
k,(s1,s2)

((ξpυq)nfn).

We focus now in the behavior of the Laplace transform w.r.t. monomial asymptotic expan-

sions. The reader may note that the hypotheses required may seem restrictive, but in fact

those appear naturally when we compare with maps coming from the Borel transform.

Proposition 2.1.11. Let f ∈ O(Πp,q(a, b,+∞)) be an analytic function. Suppose that the

following statements hold:

1. f ∼(p,q)
1/l f̂ on Πp,q = Πp,q(a, b,+∞), for some 0 < l ≤ +∞.

2. If T̂p,q(f̂) =
∑

n≥0 fnt
n, then every fn is an entire function and there are constants

B,D,K > 0 such that

|fn(ξ, υ)| ≤ DBnΓ
(
1 +

n

l

)
eKmax{|ξ|pk/s1 ,|υ|qk/s2},

for all n ∈ N and for all (ξ, υ) ∈ C2.

3. For every monomial subsector Π̃p,q b Πp,q there are constants C,A,M > 0 such that

for all N ∈ N

∣∣∣∣∣f(ξ, υ)−
N−1∑
n=0

fn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ CANΓ(1 +N/l)|ξpυq|NeM max{|ξ|pk/s1 ,|υ|qk/s2},
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for all (ξ, υ) ∈ Π̃p,q.

Then 1
(xpεq)k

L(p,q)
k,(s1,s2)

(f) ∼(p,q)
1/k+1/l

1
(xpεq)k

L̂(p,q)
k,(s1,s2)

(f̂) on
∪

|α|<π/2Dk,α(a, b,M).

Proof. To simplify notation we are going to write R(ξ, υ) = M max{|ξ|pk/s1 , |υ|qk/s2}. We

note that hypothesis (3) for N = 0 is interpreted as f having exponential growth as in (2-10).

Let h(x, ε) = 1
(xpεq)k

L(p,q)
k,(s1,s2)

(f)(x, ε) and write T̂p,q

(
1

(xpεq)k
L̂(p,q)
k,(s1,s2)

(f̂)
)

=
∑

n≥0 hnτ
n.

Then, as a consequence of statement (2), we can use the last part of remark 2.1.10 to

conclude that

hn(x, ε)(x
pεq)n =

1

(xpεq)k
L(p,q)
k,(s1,s2)

((ξpυq)nfn),

and additionally that 1
(xpεq)k

L̂(p,q)
k,(s1,s2)

(f̂) is (1/k + 1/l)−Gevrey in the monomial xpεq.

Now fix α such that |α| < π/2. It is enough to prove the result for subsectors contained in

Dk,α(a, b,M). If we take one of those proper subsectors Πp,q, we can find δ > 0 small enough

such that

R(x, ε) < cosα− δ,

for all (x, ε) ∈ Πp,q. Now let Π̃p,q b Πp,q such that (xus1/pk, εus2/qk) ∈ Π̃p,q if (x, ε) ∈ Πp,q

and u is on the semi-line [0, eiα∞). Using statement (3) for Π̃p,q we see that

∣∣∣∣∣h(x, ε)−
N−1∑
n=0

hn(x, ε)(x
pεq)n

∣∣∣∣∣ =∣∣∣∣∣
∫ eiα∞

0

(
f(xus1/pk, εus2/qk)−

N−1∑
n=0

fn(xu
s1/pk, εus2/qk)(xpεq)nun/k

)
e−udu

∣∣∣∣∣
≤
∫ +∞

0
CANΓ(1 +N/l)|xpεq|NρN/ke−δρdρ

=
C

δ

AN

δN/k
Γ(1 +N/l)Γ(1 +N/k)|xpεq|N ,

for all (x, ε) ∈ Πp,q. We can conclude that 1
(xpεq)k

L(p,q)
k,(s1,s2)

(f) ∼(p,q)
1/k+1/l

1
(xpεq)k

L̂(p,q)
k,(s1,s2)

(f̂) on∪
|α|<π/2Dk,α(a, b,M) as we wanted to show.

Remark 2.1.12. As in the previous section, we can also consider the Laplace transform for

a monomial and some weights but applied to functions whose domain is another monomial.

More specifically, let f ∈ Πp,q(a, b,+∞) be an analytic function and let us try to apply

L(p′,q′)
l,(s′1,s

′
2)

to f , where l > 0 and s′1 + s′2 = 1, s′1, s
′
2 > 0.
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If we require that f has exponential growth |f(ξ, υ)| ≤ CeBmax{|ξ|p
′l/s′1 ,|υ|q

′l/s′2}, then for each

α with |α| < π/2, L(p′,q′)
l,α,(s′1,s

′
2)
(f) will be defined and analytic in the region given by

Bmax{|x|p′l/s′1 , |ε|q′l/s′2} < cos(α),

a− 1

l

(
s′1
p

p′
+ s′2

q

q′

)
α < arg(xpεq) < b− 1

l

(
s′1
p

p′
+ s′2

q

q′

)
α,

and varying α we obtain an analytic function defined in the union of those regions.

If additionally f ∼(p,q)
1/k f̂ on Πp,q = Πp,q(a, b,+∞), and f̂ satisfy the requirements:

1. If T̂p,q(f̂) =
∑

n≥0 fnt
n, then every fn is an entire function and there are constants

B,D,K > 0 such that

|fn(ξ, υ)| ≤ DBnΓ
(
1 +

n

k

)
eKmax{|ξ|p

′l/s′1 ,|υ|q
′l/s′2},

for all n ∈ N and for all (ξ, υ) ∈ C2.

2. For every monomial subsector Π̃p,q b Πp,q there are constants C,A,M > 0 such that

for all N ∈ N

∣∣∣∣∣f(ξ, υ)−
N−1∑
n=0

fn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ CANΓ(1 +N/k)|ξpυq|NeM max{|ξ|p
′l/s′1 ,|υ|q

′l/s′2},

for all (ξ, υ) ∈ Π̃p,q.

then we can conclude that 1
(xp′εq′ )l

L(p′,q′)
l,(s′1,s

′
2)
(f) ∼(p,q)

1/k+1/l(s′1p/p
′+s′2q/q

′)
1

(xp′εq′ )l
L̂(p′,q′)
l,(s′1,s

′
2)
(f̂) on

the corresponding monomial sector in xpεq. The proof of the above statements is, up to

minor modifications, the same as the proof of Proposition 2.1.11 and it will not be included.

We finish this section proving that the Borel and Laplace transforms, introduced above,

are inverse one to the other. To do so, we need the following lemma corresponding to the

injectivity of the Laplace transform.

Lemma 2.1.13. Let f ∈ O(Πp,q(a, b,+∞)) be an analytic function satisfying the bounds

|f(ξ, υ)| ≤ CeBmax{|ξ|pk/s1 ,|υ|qk/s2} on its domain, for some positive constants C,B. If

L(p,q)
k,(s1,s2)

(f) ≡ 0 then f ≡ 0.
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Proof. Take any n ∈ N∗. In the integral expression defining L(p,q)
k,0,(s1,s2)

(f) perform the change

of variable e−u = τn, 0 < τ ≤ 1. Then from hypothesis we obtain the equality∫ 1

0
f
(
x (ln(1/τn))s1/pk , ε (ln(1/τn))s2/qk

)
τn−1dτ = 0,

valid for all (x, ε) satisfying a < arg(xpeq) < b and Bs1/k|x|p < 1, Bs2/k|ε|q < 1. Fix one

point (x0, ε0) satisfying those conditions. To show that f(x0, ε0) = 0 note that the points

(x0/(2n)
s1/pk, ε0/(2n)

s2/qk) also satisfy the previous requirements and as a consequence we

obtain that ∫ 1

0
g(τ)τn−2dτ = 0, for all n ∈ N∗,

where g(τ) = τf
(
x0 (ln(1/τ)/2)

s1/pk , ε0 (ln(1/τ)/2)
s2/qk

)
, for 0 < τ ≤ 1. From the growth

conditions on f we see that |g(τ)| ≤ Cτ1/2. Then taking g(0) = 0, g defines a complex-

valued continuous function on the interval [0, 1]. By Weierstraß approximation theorem

we can find a sequence of polynomials (Pm(τ))m∈N that converges uniformly to g on [0, 1].

Since we have shown that
∫ 1
0 g(τ)P (τ)dτ = 0 for any polynomial P , we conclude that∫ 1

0 Re(g)(τ)2dτ =
∫ 1
0 Im(g)(τ)2dτ = 0. It follows by continuity that g(τ) ≡ 0. Finally

evaluating g at τ = e−2 we see that f(x0, ε0) = 0 as we wanted to show.

Proposition 2.1.14. Let k > 0 be a positive real number and d be a direction. Let f ∈
O(Sp,q(d, π/k + 2ϵ0, R0)) be a bounded analytic function, where 0 < ϵ0 < π/k and R0 > 0.

Then

L(p,q)
k,(s1,s2)

B(p,q)
k,(s1,s2)

((xpεq)kf)(x, ε) = (xpεq)kf(x, ε),

for all (x, ε) in the intersection of the domains.

Conversely, if g ∈ O(Πp,q(a, b,+∞)) in an analytic function with exponential growth of the

form |g(ξ, υ)| ≤ CeBmax{|ξ|pk/s1 ,|υ|qk/s2} then

B(p,q)
k,(s1,s2)

L(p,q)
k,(s1,s2)

(g)(ξ, υ) = g(ξ, υ),

for all (ξ, υ) in the intersection of the domains.

Proof. Set g = B(p,q)
k,(s1,s2)

((xpεq)kf) and take 0 < ϵ′ < ϵ0. By Proposition 2.1.6 we can ensure

the existence of a constant C > 0 such that |g(ξ, υ)| ≤ CeR(ξ,υ), where

R(ξ, υ) = max{(2|ξ|p/R0)
k/s1 , (2|υ|q/R0)

k/s2},

for all (ξ, υ) ∈ Sp,q(d, 2ϵ
′,+∞). For a fixed α with |α| < π/2, we see that L(p,q)

k,α,(s1,s2)
(g) is

well-defined and analytic for (x, ε) satisfying
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|arg(xpεq)− d+ α/k| < ϵ′, R(x, ϵ) < cosα. (2-14)

Following the definitions we see that for those (x, ε)

L(p,q)
k,(s1,s2)

(g)(x, ε) =
(xpεq)k

2πi

∫ eiα∞

0

∫
γ
f(xus1/pkv−s1/pk, εus2/qkv−s2/qk)

ev−u

v
dvdu,

where for each u on [0, eiα∞), γ can be taken as γ = −γ3 + γ2 + γ1 with: γ1(ρ) =

ρei(π/2+k(ϵ0−ϵ′)/2), γ3(ρ) = ρe−i(π/2+k(ϵ0−ϵ′)/2), ρ ≥ R(xus1/p, εus2/q) = R(x, ε)|u| and γ2(θ) =
R(x, ε)|u|eiθ, |θ| ≤ π/2 + k(ϵ0 − ϵ′)/2.

For a fixed u, we can perform the change of variables w = uv−1 in the inner integral.

Then γ is transformed into γ̃ = γ̃3 + γ̃2 − γ̃1 where γ̃1(r) = rei(α−π/2−k(ϵ0−ϵ′)/2), γ̃3(r) =

rei(α+π/2+k(ϵ0−ϵ′)/2), 0 < r ≤ 1/R(x, ε) and γ̃2(θ) = ei(α−θ)/R(x, ε), |θ| ≤ π/2 + k(ϵ0 − ϵ′)/2.

We remark the following properties of γ̃:

i. γ̃ is independent of u.

ii.. If w is on γ̃ then Re(eiα/w) < cosα . Indeed, if w is on γ̃2 then Re(eiα/w) =

R(x, ε) cos θ < R(x, ε) < cosα due to restrictions (2-14). If w is on γ̃1 or γ̃3 then

Re(eiα/w) = − sin(k(ϵ0 − ϵ)/2)/r < 0 < cosα.

iii. The point 1 is inside the interior of the region bounded by γ̃.

With the change of variables we obtain that

L(p,q)
k,(s1,s2)

(g)(x, ε) =
(xpεq)k

2πi

∫ eiα∞

0

∫
−γ̃
f(xws1/pk, εws2/qk)eu/w−udw

w
du.

Since γ̃ is independent of u, we can apply Fubini’s theorem to interchange the order of the

integrals, then use (ii) to calculate the inner integral and use (iii) and the Residue theorem

(and a limiting process) to conclude that

L(p,q)
k,(s1,s2)

(g)(x, ε) =
(xpεq)k

2πi

∫
−γ̃
f(xws1/pk, εws2/qk)

(∫ eiα∞

0
eu/w−udu

)
dw

w

=
(xpεq)k

2πi

∫
−γ̃

f(xws1/pk, εws2/qk)

w − 1
dw

= (xpεq)kf(x, ε),

as we wanted to prove.

The last part of the proposition follows immediately from the previous lemma.
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2.1.3 The convolution product

In our context there is also a convolution between functions, that shares similar properties

with the classical one, and that we develop in the following lines.

Definition 2.1.3. Let k, s1, s2 be positive real numbers such that s1 + s2 = 1 and let f, g ∈
O(Πp,q) be analytic functions on a monomial sector in xpεq. The k − (s1, s2)−convolution

product of between f and g in the monomial xpεq is defined through the formula

(f ∗(p,q)k,(s,s2)
g)(x, ε) = (xpεq)k

∫ 1

0
f(xτ s1/pk, ετ s2/qk)g(x(1− τ)s1/pk, ε(1− τ)s2/qk)dτ.

It is clear from the above formula that f ∗(p,q)k,(s,s2)
g is also an analytic function defined on Πp,q.

Also it follows from the above definition and some calculations that this binary operation is

linear in each variable, commutative and associative.

As an example, we can calculate with the aid of the Beta function the convolution between

two monomials plus an exponential term in (xpεq)k: if c ∈ C and λ1, λ2, µ1, µ2 ∈ C have

positive real part then

xλ1εµ1ec(x
pεq)k

Γ
(

s1
pkλ1 +

s2
qkµ1 + 1

) ∗(p,q)k,(s1,s2)

xλ2εµ2ec(x
pεq)k

Γ
(

s1
pkλ2 +

s2
qkµ2 + 1

) =
xλ1+λ2+pkεµ1+µ2+qkec(x

pεq)k

Γ
(

s1
pk (λ1 + λ2) +

s2
qk (µ1 + µ2) + 2

) .

We highlight in the next proposition the main property of the convolution: the k−Laplace

transform associated to the monomial xpεq with weight (s1, s2) transform this convolution

into the usual product.

Proposition 2.1.15. Let f, g ∈ O(Πp,q) be analytic functions on a monomial sector in xpεq

of infinite radius. Suppose that f, g have exponential growth as in (2-10), say

|f(x, ε)| ≤ C1e
B1R(x,ε), |g(x, ε)| ≤ C2e

B2R(x,ε), R(x, ε) = max{|x|pk/s1 , |ε|qk/s2},

for all (x, ε) ∈ Πp,q and some positive constants C1, C2, B1, B2. Then f ∗(p,q)k,(s,s2)
g has also

exponential growth as in (2-10), its k−Laplace transform associated to the monomial xpεq

with weight (s1, s2) is well-defined and satisfies

L(p,q)
k,(s1,s2)

(f ∗(p,q)k,(s,s2)
g)(x, ε) = L(p,q)

k,(s1,s2)
(f)(x, ε) · L(p,q)

k,(s1,s2)
(g)(x, ε).

Analogously, if F,G ∈ O(Sp,q(d, π/k + 2ϵ, R0)) are analytic functions then

B(p,q)
k,(s1,s2)

(F ·G)(ξ, υ) = B(p,q)
k,(s1,s2)

(F )(ξ, υ) ∗(p,q)k,(s,s2)
B(p,q)
k,(s1,s2)

(G)(ξ, υ).
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Proof. Since B(p,q)
k,(s1,s2)

and L(p,q)
k,(s1,s2)

are inverses of each other, it suffices to prove the first

part of the proposition. Set h = f ∗(p,q)k,(s,s2)
g. Using the exponential growth of f and g it

follows immediately that

|h(x, ε)| ≤ C1C2|xpεq|keBR(x,ε) ≤ C1C2R(x, ε)e
BR(x,ε),

where B = max{B1, B2}. This proves the first statement. To verify the second one, note

that

L(p,q)
k,α,(s1,s2)

(h)(x, ε) = (xpεq)k
∫ eiα∞

0
h(xus1/pk, εus2/qk)e−udu

=(xpεq)2k
∫ eiα∞

0

∫ 1

0
f(x(uτ)s1/pk, ε(uτ)s2/qk)g(x(u(1− τ))s1/pk, ε(u(1− τ))s2/qk)ue−udτdu

=(xpεq)2k
∫ eiα∞

0

∫ eiα∞

0
f(xvs1/pk, εvs2/qk)g(xws1/pk, εws2/qk)e−(v+w)dvdw

=L(p,q)
k,(s1,s2)

(f)(x, ε) · L(p,q)
k,(s1,s2)

(g)(x, ε),

where we just performed the change of variables v = uτ , w = u(1 − τ), or equivalently

u = v + w, τ = v/(v + w) that establishes a diffeomorphism between (0, eiα∞) × (0, 1)

and (0, eiα∞) × (0, eiα∞) and used that udτdu = dvdw. This concludes the proof of the

result.

2.2 Monomial Borel-Laplace summation methods

The goal behind the study of the Borel and Laplace transforms of the previous section is

to give another characterization of monomial summability. As in the classical case we can

define a summation method based in the above Borel and Laplace transforms and we will

see that it turns out to be equivalent to monomial summability.

Definition 2.2.1. Let k > 0 be a positive number, s1, s2 > 0 such that s1+ s2 = 1 and xpεq

a monomial. Let f̂ be a 1/k−Gevrey series in xpεq and set φ̂s1,s2 = B̂(p,q)
k,(s1,s2)

((xpεq)kf̂). We

will say that f̂ is k − (s1, s2)−Borel summable in the monomial xpεq in direction d if φ̂s1,s2

can be analytically continued, say as φs1,s2 , to a monomial sector of the form Sp,q(d, 2ϵ,+∞)
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having an exponential growth of the form |φs1,s2(ξ, υ)| ≤ DeM max{|ξ|pk/s1 ,|υ|qk/s2} for some

constants D,M > 0. In this case the k− (s1, s2)−Borel sum of f̂ in direction d is defined as

f(x, ε) =
1

(xpεq)k
L(p,q)
k,(s1,s2)

(φs1,s2)(x, ε).

Let us compare this notion with a k−summability in a monomial xpεq in a direction d.

Indeed, fix any s1, s2 > 0 such that s1 + s2 = 1 and let f̂ ∈ R
(p,q)
1/k,d be a formal power series,

k−summable in the direction d, in the monomial xpεq. Let f ∈ O(Sp,q(d, π/k+2ϵ, R0)) be an

analytic function such that f ∼(p,q)
1/k f̂ on Sp,q(d, π/k+2ϵ, R0). Set φs1,s2 = B(p,q)

k,(s1,s2)
((xpεq)kf)

and φ̂s1,s2 = B̂(p,q)
k,(s1,s2)

((xpεq)kf̂).

Since f̂ is 1/k−Gevrey in xpεq, we see that by the contention (1-3), φ̂s1,s2 is a convergent

power series, say on D2
r . We can apply statement (2) of Proposition 2.1.6 to conclude

that φs1,s2 ∼(p,q)
0 φ̂s1,s2 on Sp,q(d, 2ϵ,+∞). This two properties imply that φs1,s2 coincides

with the sum of φ̂s1,s2 in the intersection Sp,q(d, 2ϵ,+∞) ∩ D2
r . Since φs1,s2 is defined on

Sp,q(d, 2ϵ,+∞) and has exponential growth as in (2-10), we can express those facts by saying

that the sum of φ̂s1,s2 can be analytically continued with exponential growth as in (2-10)

to Sp,q(d, 2ϵ,+∞). Therefore f̂ is k − (s1, s2)−Borel summable in the monomial xpεq in

direction d and thanks to Proposition 2.1.14 both sums coincide.

Conversely, let f̂ be k − (s1, s2)−Borel summable in the monomial xpεq in direction d and

let φs1,s2 be the analytic continuation of φ̂s1,s2 to Sp,q(d, 2ε,+∞), with exponential growth

|φs1,s2(ξ, υ)| ≤ D′eM
′R(ξ,υ) as in the previous definition. Here as usual we write R(ξ, υ) =

max{|ξ|pk/s1 , |υ|qk/s2}. Also write T̂p,q(φ̂s1,s2) =
∑

n≥0 φnτ
n. Since we are taking f̂ to be

1/k−Gevrey in xpεq, we can conclude from Remark 2.1.5 that all the φn are entire functions

and there are constants D,B,M > 0 such that

|φn(ξ, υ)| ≤ DBneMR(ξ,υ),

for all (ξ, υ) ∈ C2 and all n ∈ N. By enlarging the constants we may assume that D = D′

and M =M ′.

To be able to use the Laplace transform and in particular to apply Proposition 2.1.11, it is

enough to prove that there are constants C,A,M > 0 such that for all N ∈ N we have∣∣∣∣∣φs1,s2(ξ, υ)−
N−1∑
n=0

φn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ CAN |ξpυq|NeMR(ξ,υ), (2-15)

for all (ξ, υ) ∈ Sp,d(d, 2ϵ,+∞).

Indeed, since φ̂s1,s2 is the convergent Taylor’s series of φs1,s2 at (0, 0) then (2-15) is satisfied

for all |ξ|, |υ| ≤ R for some R > 0. Additionally, due to the growth of the functions φn, the
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series
∑

n≥0 φn(ξ, υ)(ξ
pυq)n converges in every compact set where B|ξpυq)| < 1. Then φs1,s2

can be analytically continued there through this series. It follows that if B|ξpυq| < 1/2 then

inequality (2-15) is also satisfied.

Now, if (ξ, υ) ∈ Sp,d(d, 2ϵ,+∞) the previous inequalities show that∣∣∣∣∣φs1,s2(ξ, υ)−
N−1∑
n=0

φn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ DeMR(ξ,υ) +
N−1∑
n=0

DBn|ξpυq|neMR(ξ,υ).

If 1/2 ≤ B|ξ|p|υ|q ≤ 2 the last expression is bounded by

DeMR(ξ,υ) +D(2N − 1)eMR(ξ,υ) = D2NeMR(ξ,υ) ≤ D(4B)N |ξpυq|NeMR(ξ,υ).

On the other hand, if B|ξ|p|υ|q > 2, we can bound by

DeMR(ξ,υ) +D
BN |ξpυq|N − 1

B|ξpυq| − 1
eMR(ξ,υ) < DBN |ξpυq|NeMR(ξ,υ),

as we wanted to show.

Therefore we are in conditions to apply Proposition 2.1.11 to φs1,s2 , φ̂s1,s2 and 1/l = 0 to

obtain that

f(x, ε) =
1

(xpεq)k
L(p,q)
k,(s1,s2)

(φs1,s2) ∼
(p,q)
1/k

1

(xpεq)k
L̂(p,q)
k,(s1,s2)

(φ̂s1,s2) = f̂ ,

on
∪

|α|<π/2Dk,α(d− ϵ, d+ ϵ,M). In conclusion, f̂ is k−summable in xpεq in direction d and

the k−sum can be found through the k−Laplace transform in xpεq with weight (s1, s2) of

the analytic continuation of φ̂s1,s2 to a sector in xpεq bisected by d of infinite radius.

These considerations, joint to Proposition 2.1.14, prove the following theorem.

Theorem 2.2.1. Let f̂ ∈ R̂
(p,q)
1/k be a 1/k−Gevrey series in the monomial xpεq. Then it is

equivalent:

1. f̂ ∈ R
(p,q)
1/k,d,

2. There are s1, s2 > 0 with s1+ s2 = 1 such that f̂ is k− (s1, s2)−Borel summable in the

monomial xpεq in direction d.

3. For all s1, s2 > 0 such that s1 + s2 = 1, f̂ is k − (s1, s2)−Borel summable in the

monomial xpεq in direction d.

In all cases the corresponding sums coincide.
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To finish this section we can provide a new proofs of formula (1-25) at the end of Section

1.2.4, of Proposition 1.3.1 and Proposition 1.3.3 using the monomial Borel-Laplace methods.

Recall that formula (1-25) provides a way to calculate the k−sum in xpεq in direction d of

a series f̂ ∈ R
(p,q)
1/k,d by weighting the variables. Let f be the sum of f̂ in direction d defined

in say Sp,q = Sp,q(d, ϵ, r) , take (x0, ε0) ∈ Sp,q and s1, s2 > 0 with s1 + s2 = 1. Consider the

variable z varying on S(d − arg(xp0ε
q), ϵ, r̃), r̃ = min{(r/|x0|p)1/s1 , (r/|ε0|q)1/s2}. We know

by Theorem 2.2.1 that f can be calculated as

f(x, ε) =
1

(xpεq)k
L(p,q)
k,(s1,s2)

(φs1,s2),

where φs1,s2 is the analytic continuation of B̂(p,q)
k,(s1,s2)

((xpεq)kf̂) to a monomial sector bisected

by d of infinite radius the required exponential growth. Then using formula (2-2) in Remark

2.1.2 we can conclude that B̂k(z
kf̂(zs1/px0, z

s2/qε0))(ζ) can be analytically continued with

exponential at most k to a sector bisected by d−arg(xp0ε
q
0) of infinite radius by the expression

φx0,ε0(ζ) = φs1,s2(ζ
s1/px0, ζ

s2/qε0). Then using formula (2-12) in Remark 2.1.9 we conclude

that

f(zs1/px0, z
s2/qε) =

1

zk(xp0ε
q
0)

k
L(p,q)
k,(s1,s2)

(φs1,s2)(z
s1/px0, z

s2/qε)

=
1

zk
Lk(φx0,ε0)(z),

as we wanted to show. This reasoning prove that the method of finding the sum by weighting

the variables as explained in the end of Section 1.2.4 is generalized and strengthen by the

monomial Borel-Laplace methods, since the first one only calculate the sum when xp/s1/εq/s2

is constant.

The following reasoning is adapted from [M1]. Recall that Proposition 1.3.1 stated that if

f̂ ∈ R
(p,q)
1/k has no singular directions then f̂ ∈ R. Indeed, if f̂ =

∑
an,mx

mεm has no singular

directions for k-summability in xpεq, then by the previous theorem B̂(p,q)
k,(s1,s2)

((xpεq)kf̂) defines

is an entire function with exponential growth CeM(|ξ|pk/s1+|υ|qk/s2 ), for some constants C,M >

0. Then using Cauchy estimates, we see that for all R1, R2 > 0 and all n,m ∈ N we have∣∣∣∣∣∣ an,m

Γ
(
1 + ns1

pk + ms2
qk

)
∣∣∣∣∣∣ ≤ C

eMR
pk/s1
1

Rn
1

eMR
qk/s2
2

Rm
2

.

Since the map x 7→ eMxl
/xn, l > 0, attains a minimum at x = (n/Ml)1/l, if we choose

R1 = (ns1/Mpk)s1/pk and R2 = (ms2/Mqk)s2/qk, we see that

|an,m| ≤ C

[(
2Mepk

ns1

)ns1/pk

Γ

(
1 +

ns1
pk

)][(
2Meqk

ms2

)ms2/qk

Γ

(
1 +

ms2
qk

)]
.
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Then an application of Stirling’s formula in each term in brackets leads us to the conclusion.

Note we have used the inequality Γ(1 + a+ b) ≤ 2a+bΓ(1 + a)Γ(1 + b), valid for all a, b > 0.

Finally, Proposition 1.3.3 established that R
(p,q)
1/k,d = R

(Mp,Mq)
M/k,Md for all p, q,M ∈ N∗ and all

directions d. The assertions also follows from the previous theorem by noting that for any

s1, s2 > 0 such that s1 + s2 = 1 we have

B(p,q)
k,(s1,s2)

= B(Mp,Mq)
k/M,(s1,s2)

, L(p,q)
k,(s1,s2)

= L(Mp,Mq)
k/M,(s1,s2)

, (2-16)

as well as for the corresponding formal transformations.

2.3 Monomial summability and blow-ups

In this section we shall explore the behavior of monomial asymptotic expansions under

point blow-ups. We only analyze what happens when we compose a given series of some

Gevrey type in a monomial or summable in a monomial with the usual charts of the blow-

up of the origin in C2. As expected the value of the Gevrey type and the parameter of

summability is conserved but the monomial change depending on the chart. This result will

be a fundamental tool that provides examples of non-summable series for any parameter and

any monomial, see Chapter 4.

As in Section 1.2.2, we consider the charts of the classical blow-up at the origin of C2:

π1, π2 : C2 → C2, given by π1(x, ε) = (xε, ε) and π2(x, ε) = (x, xε).

Lemma 2.3.1. Let f̂ ∈ R̂ be a formal power series. Then the following assertions are true:

1. f̂ ∈ R if and only if f̂ ◦ π1 ∈ R if and only if f̂ ◦ π2 ∈ R.

2. f̂ ∈ R̂
(p,q)
s if and only if f̂ ◦ π1 ∈ R̂

(p,p+q)
s and f̂ ◦ π2 ∈ R̂

(p+q,q)
s .

Proof. We only prove the nontrivial implication in the second statement. Let f̂ =
∑
an,mx

nεn

and write f̂(xε, ε) =
∑
a′n,mx

nεm where a′n,m = 0 if m < n and a′n,m = an,m−n if m ≥ n.

Assuming there are constants C,A > 0 such that |an,m| ≤ CAn+mmin{n!s/p,m!s/q}, for all
n,m ∈ N, then by inequality (1-4)

|a′n,m| ≤ CAmmin{n!s/p, (m− n)!s/q} ≤ CAmn!st/p(m− n)!s(1−t)/q,

for m ≤ n and for all t such that 0 ≤ t ≤ 1. If we take t = p/(p+ q) then

|a′n,m| ≤ CAmn!s/(p+q)(m− n)!s/(p+q) ≤ CAmm!s/(p+q).
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This inequality let us conclude that f̂ ◦ π1 ∈ R̂
(p,p+q)
s , as we wanted to show. The proof for

π2 is analogous.

Proposition 2.3.2. Let f̂ ∈ R
(p,q)
1/k,d be a k−summable series in xpεq in direction d with sum

f . Then f̂ ◦ π1 ∈ R
(p,p+q)
1/k,d , f̂ ◦ π2 ∈ R

(p+q,q)
1/k,d and have sums f ◦ π1, f ◦ π2, respectively.

Proof. Despite the fact that using the characterization of having asymptotic expansion in

xpεq given by Proposition 1.2.21 the proof follows immediately (if (fN ) is the family of

analytic bounded functions that provide the asymptotic expansion to f then (fN ◦ πj) will
provide the asymptotic expansion to f ◦ πj , j = 1, 2), we want to give a proof based on the

monomial Borel-Laplace methods.

We only write the proof for π1, the proof for π2 can be done in the same way. Consider s1, s2
real numbers such that 0 < s1, s2 < 1 and s1+s2 = 1. If we also request that s1 > p/(p+ q),

or equivalently s2 < q/(p+ q), then

s′1 =
p+ q

q
s1 −

p

q
, s′2 =

p+ q

q
s2, (2-17)

will satisfy 0 < s′1, s
′
2 < 1 and s′1+ s

′
2 = 1. With these numbers it is straightforward to check

that

B̂(p,p+q)
k,(s′1,s

′
2)
((xpεp+q)kf̂(xε, ε))(ξ, υ) = B̂(p,q)

k,(s1,s2)
((xpεq)kf̂(x, ε))(ξυ, υ).

If f̂ is k−summable in xpεq in direction d, then by Theorem 2.2.1, it is k − (s1, s2)−Borel

summable in the monomial xpεq in direction d, for all s1, s2 > 0 with s1+s2 = 1. Fix (s1, s2)

satisfying the conditions of the previous paragraph. If φ̂s1,s2 = B̂(p,q)
k,(s1,s2)

((xpεq)kf̂(x, ε)),

then it can be analytically continued, say as φs1,s2 , to a monomial sector of the form

Sp,q(d, 2ϵ,+∞) having an exponential growth |φs1,s2(ξ, υ)| ≤ DeM max{|ξ|pk/s1 ,|υ|qk/s2}.

Set ψ̂s′1,s
′
2
= B̂(p,p+q)

k,(s′1,s
′
2)
((xpεp+q)kf̂(xε, ε)), where s′1 and s′2 are given by equation (2-17). We

remark that (ξ, υ) ∈ Sp,p+q(d, 2ϵ,+∞) if and only if (ξυ, υ) ∈ Sp,q(d, 2ϵ,+∞) (there are no

restriction on the norm of the points). Since ψ̂s′1,s
′
2
(ξ, υ) = φ̂s1,s2(ξυ, υ), it follows that ψ̂s′1,s

′
2

can be analytically continued to Sp,p+q(d, 2ϵ,+∞), by the formula ψs′1,s
′
2
(ξ, υ) = φs1,s2(ξυ, υ).

To determine the exponential growth of ψs′1,s
′
2
, we may use inequality (1-4) to see that

|ξυ|pk/s1 ≤ max{|ξ|pk/s1t, |υ|pk/s1(1−t)},

for all 0 < t < 1. If we take t0 = 1 − ps2/qs1, the condition impose on s1 implies that

0 < t0 < 1, and with this value we see from (2-17) that

|ξυ|pk/s1 ≤ max{|ξ|pk/s′1 , |υ|(p+q)k/s′2}.
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Thus ψs′1,s
′
2
satisfies

|ψs′1,s
′
2
(ξ, υ)| ≤DeM(|ξυ|pk/s1+|υ|qk/s2)

≤De2M
(
|ξ|pk/s

′
1+|υ|(p+q)k/s′2

)
,

for all (ξ, υ) ∈ Sp,p+q(d, 2ϵ,+∞). The previous reasoning joint with Lemma 2.3.1 prove that

f̂(xε, ε) is k−(s′1, s
′
2)−summable in the monomial xpεp+q in direction d and therefore f̂(xε, ε)

is k−summable in the monomial xpεp+q in direction d.

Since the corresponding sum f of f̂ can be calculated as f(x, ε) = 1
(xpεq)k

L(p,q)
k,(s1,s2)

(φs1,s2)(x, ε)

then the k − (s′1, s
′
2)−Borel sum in the monomial xpεp+q of f̂ ◦ π1 and therefore its k−sum

in the monomial xpεp+q is given by

1

(xpεp+q)k
L(p,p+q)
k,(s′1,s

′
2)
(ψs′1,s

′
2
)(x, ε) =

∫ eiα∞

0
ψs′1,s

′
2
(xus

′
1/pk, εus2/(p+q)k)e−udu

=

∫ eiα∞

0
φs1,s2(xεu

1/k(s′1/p+s′2/(p+q)), εus2/(p+q)k)e−udu

=

∫ eiα∞

0
φs1,s2(xεu

s1/pk, εus2/(p+q)k)e−udu

= f(xε, ε) = f ◦ π1(x, ε),

as we wanted to show.

We want to finish this section giving a quick applications of blow-ups by proving again one

of the cases of tauberian Theorem 1.3.5. The idea used here will be applied later again in

Theorem 4.3.1 to generalize tauberian Theorem 1.3.5 and will provide examples of series not

k−summable in a monomial for any monomial and any k > 0.

Let k, l > 0 be positive real numbers and let xpεq and xp
′
εq

′
two monomials. As in case

(3) of the theorem, suppose that p/p′ ̸= q/q′. We want to prove that if f̂ ∈ R
(p,q)
1/k ∩ R(p′,q′)

1/l

then f̂ is convergent. If max{p/p′, q/q′} < l/k or l/k < min{p/p′, q/q′} the theorem was

proved using the maps T̂p,q or T̂p′,q′ and classical tauberian Theorem 1.1.13. The remaining

case min{p/p′, q/q′} ≤ l/k ≤ max{p/p′, q/q′} can be reduced using blow-ups to one of the

previous cases. Indeed, to fix ideas suppose that p/p′ < l/k ≤ q/q′. Then take N ∈ N∗ such

that
qk − q′l

p′l − pk
< N,

and consider the series f̂ ◦ πN2 . By Proposition 2.3.2 we conclude that f̂ ◦ πN2 ∈ R
(p,Np+q)
1/k ∩

R
(p′,Np′+q′)
1/l . But the new monomials satisfy max{p/p′, Np + q/Np′ + q′} < l/k and by the

previous case we conclude that f̂ ◦ πN2 is convergent. Then by Lemma 2.3.1 f̂ is convergent

as we wanted to prove.





3 Singularly perturbed analytic linear

differential equations

In the present chapter we propose some applications of monomial summability and the

tauberian theorems obtained in the previous chapters. As has been mentioned along the text,

summability in a monomial is useful in the study of formal solutions of certain singularly

perturbed problems. We remark that we will only treat problems related with differential

equations.

The content of the first section and an essential application is the study of summability

properties of formal solutions of a class of singularly perturbed systems of linear ordinary

differential equations with holomorphic coefficients. It is mandatory in the sense that it was

the initial motivation of the authors of [CDMS] to introduce the concept of summability in a

monomial. We will not follow here the lines of that paper but instead we approach the pro-

blem by following [BM], restricting our attention to linear systems. The goal is to prove that

the solutions of those systems are 1−summable in the corresponding monomial, under the

crucial hypothesis of having invertible constant linear part. Ultimately the proof we provide

is based in the Banach’s fixed point theorem and the Ramis-Sibuya theorem for monomial

summability and has no new ideas in it. Withal it is a self-contained exposition with a well

detailed proof. We have however strengthened Theorem 3 in [BM] on (s1, s2)−summability

of the solutions explained there by using the characterization of summability in a monomial

in terms of the Borel-Laplace method detailed in the last chapter.

As an application of the formula described in Proposition 2.1.3 we pass in the second section

to study the partial differential equation with holomorphic coefficients naturally associated

with a monomial and a weight of the variables and depending linearly of the unknown.

Once again if the constant linear part is invertible the equation will have a unique solution,

1−summable in the given monomial. Since the mentioned formula transforms the associated

vector field into multiplication by the monomial, the scheme of proof used before can be used

once more to provide a correct proof: convert the differential equation into a convolution

equation and study its solutions.

The last application we include in the text is the study of formal solutions of pfaffian systems

in two independent variables, in such a way that every equation separately corresponds to

a singularly perturbed ordinary differential equations with holomorphic coefficients, as the

ones studied in the first section but not necessarily linear. A usual condition on those systems

is the well-known integrability condition that relates the single equations. We start cente-
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ring our attention in the consequences of such a system to be completely integrable, more

particularly in the behavior of their linear parts. In order to obtain results of convergence

of solutions we have concluded that generically we cannot assume the completely integrable

condition. Indeed, if we want that two different monomial intervene in the equations then

the corresponding linear parts will be generically highly degenerated, making impossible the

application of the tauberian theorems and the monomial summability results of the first

section. We conclude the section with the case of linear pfaffian systems with the same

monomial intervening in both equations obtaining monomial summability properties and

convergence in a determinate case when the integrability condition is not assumed.

3.1 Monomial summability of solutions of some doubly singular

differential equations

The aim of this section is to study the summability properties of formal solutions of a

certain class of systems of linear ordinary differential equations with an irregular singularity

in the independent variable and additionally a singularity coming from a parameter. More

specifically, we are going to consider systems of the form

εqxp+1 dy

dx
= A(x, ε)y(x, ε) + b(x, ε), (3-1)

where p, q ∈ N∗, y ∈ Cl, A ∈ Mat(l× l,C{x, ε}), b ∈ C{x, ε}l. Such systems are denominated

doubly singular systems of ordinary linear differential equations. We are going to show that

under generic conditions, viz. A(0, 0) being invertible, there is a unique formal solution of the

above system and it is 1−summable in the monomial xpεq. This result is know, even for the

nonlinear case, and a proof can be found in [CDMS]. Nonetheless, we provide an elementary

proof in the linear case based in the ideas contained in [BM]. Additionally we recover and

strengthen some results exposed there, for instance, the 1 − (s1, s2)−Borel summability in

the monomial xpεq of the solutions, for any s1, s2 > 0 with s1 + s2 = 1.

Consider the system (3-1). Under the above hypotheses, we can choose r > 0 such that

A ∈ Mat(l × l,Ob(D
2
r)) and b ∈ Ob(D

2
r)

l and expand those maps into power series in two,

resp. one variables, say

A(x, ε) =
∑

n,m≥0

An,mx
mεm =

∑
n≥0

An∗(ε)x
n =

∑
m≥0

A∗m(x)εm,

b(x, ε) =
∑

n,m≥0

bn,mx
mεm =

∑
n≥0

bn∗(ε)x
n =

∑
m≥0

b∗m(x)εm,

where all of them are convergent for |x|, |ε| < r and An∗, A∗m ∈ Mat(l×l,Ob(Dr)), bn∗, b∗m ∈
Ob(Dr)

l for all n,m ∈ N.
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The proof of existence and uniqueness of formal solutions ŷ ∈ R̂l of equation (3-1) is classical

and it can be done directly inserting the unknown ŷ in the equation and finding recursively

its coefficients. For the study of its Gevrey order we will require the use of a family of norms

and some inequalities that are included for references in the next remark.

Remark 3.1.1. We recall that for any f ∈ O(Dr) and n ∈ N, the Nagumo norm of order n

of f is defined as

∥f∥n = sup
|z|<r

|f(z)|(r − |z|)n.

Of course, the norm depends also of r but the dependence will be avoided if the context is

clear. Also the value can be +∞. This family of norms satisfies the following properties

∥f + g∥n ≤ ∥f∥n + ∥g∥n, ∥fg∥n+m ≤ ∥f∥n∥g∥m, ∥f ′∥n+1 ≤ e(n+ 1)∥f∥n, (3-2)

that make it useful for applications in differential equations. For a proof of these properties,

the reader may consult [CDRSS].

We will also use the following inequality satisfied by the Gamma function:

Γ(1 + α)Γ(1 + β) ≤ Γ(1 + α+ β), (3-3)

and valid for all α, β > 0, and the limit

lim
N→+∞

(Ns+ b)bΓ(1 +Ns)

Γ(1 +Ns+ b)
= 1, (3-4)

that is obtained by Stirling’s formula, where b > 0 is a real number.

Proposition 3.1.2. Consider the differential equation (3-1). If A(0, 0) is invertible then

(3-1) has a unique formal solution ŷ ∈ R̂l. Moreover ŷ ∈ (R̂
(p,q)
1 )l.

Proof. Let us write the unknown formal solution ŷ as

ŷ(x, ε) =
∑

n,m≥0

yn,mx
mεm =

∑
n≥0

yn∗(ε)x
n =

∑
m≥0

y∗m(x)εm. (3-5)

The existence and uniqueness of ŷ follows directly from replacing the expressions in (3-5) into

equation (3-1). Indeed, if we expand respect to x and ε, we obtain the recurrence equations

(n− p)yn−p,m−q =
n∑

i=0

m∑
j=0

An−i,m−jyi,j + bn,m, (3-6)

for all n,m ∈ N. Here and below we set all coefficients with negative indexes as 0. Since

A0,0 = A(0, 0) is invertible, the coefficients yn,m are uniquely determined by these equations.

Analogously, if we expand in x, we have
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(n− p)εqyn−p∗(ε) =

n∑
i=0

An−i∗(ε)yi∗(ε) + bn∗(ε), (3-7)

for all n ∈ N. In this case we see that A0∗(ε) is also invertible for |ε| < r′ ≤ r. By reducing

r if necessary we may suppose that r′ = r. Again, we obtain that the coefficients yn∗ are

uniquely determined by these equations and are analytic on Dr. Finally, if we expand in ε

we obtain the family of differential equations

xp+1y′∗m−q(x) =

m∑
j=0

A∗m−j(x)y∗j(x) + b∗m(x), (3-8)

for all m ∈ N. As before we may suppose that A∗0(x) is invertible for |x| < r. We see that

the coefficients y∗m are uniquely determined by the previous recurrence and are analytic on

Dr.

In order to determine the Gevrey order of the entries of ŷ in x we use the Nagumo’s norm of

order 0, and we just write ∥g∥ = ∥g∥0 = sup|z|<R |g(z)| if g ∈ Ob(DR). Take any 0 < R < r

and write c = ∥A−1
0∗ ∥, zn = ∥yn∗∥, an = ∥An∗∥ and fn = ∥bn∗∥. If follows from equation

(3-7) that these numbers satisfy the inequalities

zn ≤ c

(
(n− p)Rqzn−p +

n−1∑
i=0

an−jzj + fn

)
. (3-9)

If we define recursively wn by w0 = z0 and

wn = c

(
(n− p)Rqwn−p +

n−1∑
i=0

an−iwi + fn

)
, (3-10)

for all n ≥ 1, then from (3-9) and induction we see that 0 ≤ zn ≤ wn for all n ∈ N. If we

define the auxiliary series ŵ(τ) =
∑

n≥0wnτ
n, a(τ) =

∑
n≥1 anτ

n and f(τ) =
∑

n≥0 fnτ
n,

then a, f ∈ C{τ} and equation (3-10) shows that ŵ satisfies the differential equation

cRqτp+1dw

dτ
= (1− ca(τ))w(τ)− cf(τ). (3-11)

Since a(0) = 0, by classical results, this equation has a unique formal solution and it is

1/p−Gevrey in τ . In conclusion, there are positive constants K,M such that

zn ≤ wn ≤ KMnn!1/p,

for all n ∈ N. From Cauchy’s formula we obtain the bounds

|yn,m| ≤ K
Mn

Rm
n!1/p,

for all n,m ∈ N. This shows that ŷ ∈ (R̂(1/p,0))
l.
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To conclude the proof it remains to estimate the Gevrey order of ŷ in ε. As before, take any

0 < R < r and write c = ∥A−1
∗0 ∥0, zn = ∥y∗n∥n, an = ∥A∗n∥n and fn = ∥b∗n∥n, where ∥ · ∥n

stands for the Nagumo norm of order n. If follows from equation (3-8) and the properties

(3-2) that these numbers satisfy the inequalities

zm ≤ c

eRp+q(m− q + 1)zm−q +

m−1∑
j=0

am−jzj + fm

 . (3-12)

Dividing by Γ(1 +m/q) = m/qΓ(m/q), using the inequality (3-3) and m − q + 1 ≤ 2m, we

can conclude that

zm

Γ
(
1 + m

q

) ≤ c

2eqRp+q zm−q

Γ
(
m
q

) +

m−1∑
j=0

am−j

Γ
(
1 + m−j

q

) zj

Γ
(
1 + j

q

) +
fm

Γ
(
1 + m

q

)
 , (3-13)

for m ∈ N. Define recursively wm by w0 = z0 and

wm = c

2eqRp+qwm−q +

m−1∑
j=0

am−j

Γ
(
1 + m−j

q

)wj +
fm

Γ
(
1 + m

q

)
 . (3-14)

It follows from (3-13) and by induction that zm/Γ
(
1 + m

q

)
≤ wm for all m ∈ N. Using

the series ŵ(τ) =
∑

m≥0wmτ
m, a(τ) =

∑
m≥1 am/Γ(1 +

m
q )τ

m and f(τ) =
∑

m≥0 fm/Γ(1 +

m/q)τm, we see that a, f ∈ O(C), and from equation (3-14) it follows that ŵ satisfies the

functional equation

w(τ) = c(2eqRp+qτ qw(τ) + a(τ)w(τ) + f(τ)). (3-15)

Since a(0) = 0, this equation has a unique analytic solution at 0 and it must be ŵ. Then

there are positive constants C,D such that

wm ≤ CDm,

for all m ∈ N. Using Cauchy’s formula for ρ < R we obtain the bounds

|yn,m| ≤ C
Dm

(R− ρ)mρn
Γ

(
1 +

m

q

)
,

valid for all n,m ∈ N. Therefore ŷ ∈ (R̂(0,1/q))
l. It follows from Proposition 1.2.3 that

ŷ ∈ (R̂
(p,q)
1 )l, as we wanted to prove.
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As in [BM], we start the analysis of the summability of ŷ by studding the behavior and

properties of its p−Borel transform in the variable x. The use of this variable is justified re-

calling formulas (1) and (2) in Proposition 1.1.9, since they allow us to pass from a differential

equation involving xp+1∂/∂x to a convolution equation.

From now on we assume that A(0, 0) is invertible. We know from Proposition 3.1.2 that ŷ

is a 1/p−Gevrey series in x with coefficients in Ob(DR)
l, for 0 < R < r. Then the series

B̂p(x
pŷ)(ζ, ε) =

∑
n≥0

yn∗(ε)

Γ(1 + n/p)
ζn,

defines an analytic function for |ζ| < ρ, |ε| < R, for some ρ > 0.

Since ŷ satisfies equation (3-1), then ŵ(x, ε) = xpŷ(x, ε) satisfies the equation

εqxp+1dw

dx
= (pεqxpI +A(x, ε))w(x, ε) + xpb(x, ε), (3-16)

where I = Il denotes the identity matrix of size l. If we apply the p−Borel transform to this

equation, we see that F = B̂p(ŵ) is a solution of the corresponding convolution equation

(pζpεqI −A0∗(ε))F (ζ, ε) = Bp(Ã) ∗p F (ζ, ε) + g(ζ, ε), (3-17)

where Ã(x, ε) = pεqxpI +A(x, ε)−A0∗(ε) and g = Bp(x
pb). Furthermore we can write

g(ζ, ε) =
∑
n≥0

bn∗(ε)

Γ(1 + n/p)
ζn, Bp(Ã)(ζ, ε) =

∑
n≥1

An∗(ε)

Γ(n/p)
ζn−p, (3-18)

where An∗(ε) = An∗(ε) for n ̸= p and Ap∗(ε) = Ap∗(ε) + pεqI.

We wish to restrict our attention to a domain where we can invert the matrix pζpεqI−A0∗(ε).

Let λ1, ..., λl be the eigenvalues of A0∗(0) repeated according to their multiplicity and recall

that they are all non-zero by assumption. Also let λj(ε), j = 1, ..., l, stand for the eigenvalues

of A0∗(ε). Those are algebraic functions of ε and λj(0) = λj . Using these notations, the

matrix pζpεqI − A0∗(ε) is singular for the points (ζ, ε) satisfying pζpεq = λj(ε) for some

j = 1, ..., n.

We can choose δ > 0 small enough such that δ < |λj |, j = 1, ..., l and such that the open

sets |pζpεq − λj | < δ do not intersect if λj1 ̸= λj2 . We will refer to such δ as admissible. It
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is also possible to choose a positive number R(δ) < R such that |λj(ε) − λj | ≤ δ/2 for all

j = 1, ..., l and |ε| < R(δ). Consider the closed set defined by

Ωδ = {(ζ, ε) ∈ C2 | |ε| ≤ R(δ), |pζpεq − λj | ≥ δ for all j = 1, ..., l}.

It satisfies the following properties:

1. It contains the polydisc at the origin Dρ1 ×Dρ2 for ρ1, ρ2 > 0 satisfying ρ2 ≤ R(δ) and

pρp1ρ
q
2 < min

1≤j≤l
|λj | − δ.

2. We have |pζpεq −λj(ε)| ≥ δ/2 for all (ζ, ε) ∈ Ωδ. Therefore the matrix pζpεqI−A0∗(ε)

is invertible on Ωδ.

3. We can find a number M =M(δ) > 0 such that∥∥∥(pζpεqI −A0∗(ε))
−1
∥∥∥ ≤M, for all (ζ, ε) ∈ Ωδ.

Working on Ωδ, we see that finding solutions of certain type of the convolution equation

(3-17) is equivalent to find a fixed point of the operator H given by

H(F )(ζ, ε) = (pζpεqI −A0∗(ε))
−1
(
Bp(Ã) ∗p F (ζ, ε) + g(ζ, ε)

)
, (3-19)

and defined in an adequate Banach space E of functions.

We are going to prove that B̂p(ŵ) admits analytic continuation to Ωδ. To do so we consider

a bounded open set U ⊂ Ωδ and an arbitrary N ∈ N. Then to prove that B̂p(ŵ) admits

analytic continuation to U it is sufficient to prove that B̂p(ŵ) −
∑N

n=0
yn∗

Γ(1+n/p)ζ
n admits

analytic continuation to U .

If we perform the change of variable wN (x, ε) = w(x, ε)−
∑N

n=0 yn∗(ε)x
n+p in equation (3-16),

then using the recurrences (3-7) we see that wN satisfies the same differential equation (3-16)

but with bN (x, ε) =
∑∞

n=N+1

(
bn∗(ε) +

∑N
i=0An−i∗(ε)yi(ε)− (n− p)yn−p∗(ε)

)
xn instead of

b. Therefore B̂p(wN ) satisfies the same convolution equation (3-17) but with g replaced by

gN = Bp(x
pbN ). The main point here is that ordxgN > N .

Let EU,N denote the subspace of functions of C(U) ∩ O(U) such that

∥F∥N = sup
(ζ,ε)∈U

|F (ζ, ε)|
|ζ|N

,
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is finite. EU,N is a Banach space with the norm ∥ · ∥N and gN ∈ EU,N . We shall prove

that HN : EU,N → EU,N , defined as H but with gN instead of g, is well-defined and it is a

contraction if N is large enough. Indeed, if F ∈ EU,N then

|HN (F )(ζ, ε)| ≤M

∣∣∣∣∫ 1

0
Bp(Ã)(ζt

1/p, ε)F (ζ(1− t)1/p, ε)ζpdt

∣∣∣∣+M∥gN∥N |ζ|N

≤M

∫ 1

0

∣∣∣Bp(Ã)(ζt
1/p, ε)

∣∣∣ ∥F∥N |ζ|p+N (1− t)N/pdt+M∥gN∥N |ζ|N .

A way to estimate adequately the previous expression it is to bound the following integral:

∫ 1

0
tn/p−1(1− t)N/pdt =

Γ
(
n
p

)
Γ
(
1 + N

p

)
Γ
(
1 + n+N

p

) .

for n ≥ 1. Note that here we are using the Beta function. The easiest case is when n > p,

because we can use inequality (3-3) to bound it by

Γ
(
n
p

)
Γ
(
1 + N

p

)
n+N
p Γ

(
n+N
p

) ≤ p

n+N
≤ p

1 +N
.

The case 1 ≤ n ≤ p can be treated using the limit (3-4) as follows: using that limit with

s = 1/p and b = n/p, we can find for every n a large enough constant Dn,p such that

Γ
(
n
p

)
Γ
(
1 + N

p

)
Γ
(
1 + n+N

p

) ≤ Dn,p

(N + n)n/p
.

If Dp = max{p,D1,p, ..., Dp,p} then the integral is easily bounded in all cases by
Dp

(1+N)1/p
.

Back to the operator HN (F ), we now can ensure that

|HN (F )(ζ, ε)| ≤M

(
DpKU

(N + 1)1/p
∥F∥N + ∥gN∥N

)
|ζ|N , where KU = sup

(ζ,ε)∈U

∑
n≥1

|An∗(ε)|
Γ(n/p)

|ζ|n.

We remark that KU is finite since U is bounded and Ã is analytic on D2
R. The previous

bound is sufficient to ensure that HN (F ) ∈ EU,N . To show that HN is a contraction, we

estimate as before to see that if F,G ∈ EU,N then

∥HN (F )−HN (G)∥N ≤ MDpKU

(N + 1)1/p
∥F −G∥N .

Then it is enough to take N with
MDpKU

(N+1)1/p
< 1 to conclude the result.
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Applying Banach’s fixed point theorem, we can conclude that HN has a unique fixed point

FU,N ∈ EU,N , that is, equation (3-17) has a unique analytic solution defined on U of the form

FU (ζ, ε) = FU,N (ζ, ε)+
∑N

n=0
yn∗(ε)

Γ(1+n/p)ζ
n . Now, if we take a polydisc at the origin contained

in Ωδ with sufficiently small poly-radius, the solution provided by the fixed point is precisely

B̂p(ŵ), because this is the unique formal solution at (0, 0) of equation (3-17). Then if U

intersects this polydisc, FU and B̂p(ŵ) coincide in the intersection, being both solutions of

the convolution equation. This let us conclude that B̂p(ŵ) admits analytic continuation to

Ωδ.

We focus now in the exponential growth of the solutions we have obtained. Let C > 0 an

arbitrary positive constant. Taking δ > 0 as before and S an unbounded open set of Ωδ, we

will denote by ES,C the subspace of functions F in O(S) such that

∥F∥C = sup
(ζ,ε)∈S

|F (ζ, ε)|e−C|ζ|p ,

is finite, i.e., the space of analytic functions on S with exponential growth in ζ of order p

and type C. Then ES,C is a Banach space with the norm ∥ ·∥C . Furthermore, it follows from

(3-18) that we can find a large enough constant C ′ > 0 such that g ∈ EΩδ,C′ .

Following the same ideas as before we shall prove that H : ES,C → ES,C , is well-defined and

a contraction if C > C ′ is large enough. For the first assertion, if F ∈ ES,C , then

|H(F )(ζ, ε)| ≤M

∣∣∣∣∫ 1

0
Bp(Ã)(ζt

1/p, ε)F (ζ(1− t)1/p, ε)ζpdt

∣∣∣∣+M∥g∥C′eC
′|ζ|p

≤M

∫ 1

0

∣∣∣ζpBp(Ã)(ζt
1/p, ε)

∣∣∣ ∥F∥CeC|ζ|p(1−t)dt+M∥g∥C′eC
′|ζ|p .

To estimate adequately the previous expression, we can use the Gamma function to see that∫ 1

0
tn/p−1eC|ζ|p(1−t)dt =

eC|ζ|p

(C|ζ|p)n/p

∫ C|ζ|p

0
un/p−1e−udu ≤ Γ(n/p)

Cn/p|ζ|n
eC|ζ|p ,

for all n ≥ 1 and ζ ∈ C. Applying these bounds we see that

|H(F )(ζ, ε)| ≤ ML

C1/p
∥F∥CeC|ζ|p +M∥g∥C′eC

′|ζ|p

≤M

(
L

C1/p
∥F∥C + ∥g∥C′

)
eC|ζ|p .

where L > 0 is a constant such that∑
n≥1

|An∗(ε)||z|n−1 ≤ L,
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for all |z|, |ε| ≤ R and we take C with 1/C1/p < R.

Therefore we have proved that H(F ) ∈ ES,C . In the same way, if F,G ∈ ES,C then

∥H(F )−H(G)∥C ≤ ML

C1/p
∥F −G∥C .

If we take C large enough such that ML
C1/p < 1 we can conclude that H is a contraction, and

then it has a unique fixed point. We formulate these results in the next lemma.

Lemma 3.1.3. Using the previous notation, for every admissible δ > 0 and every open set

S ⊂ Ωδ there exist a unique solution FS of (3-17) defined on S and there are constants

K = K(S), C = C(S) > 0 such that |FS(ζ, ε)| ≤ KeC|ζ|p for all (ζ, ε) ∈ S.

The previous lemma joint with Ramis-Sibuya Theorem 1.2.27 are the keys to tackle the

main problem of this section: to prove that ŷ is in fact 1−summable in xpεq. For this, let

d1, ..., dl ∈ [0, 2π) be the different arguments of λ1, ..., λl, arg(λj) = dj , numbered so that

d1 ≤ d2 ≤ · · · ≤ dl. They are well-defined since the λj are different from zero. These are

going to be the singular directions. Then for every d ∈ [0, 2π) \ {d1, ..., dl} we are going to

construct a bounded solution wd of equation (3-16) defined in a monomial sector in xpεq

bisected by d with opening greater than π.

Indeed, consider any such d and set

δ = δ(d) =
1

4
min

1≤j,m≤l
λj ̸=λm

{
|λj |, |λj − λm|, dist(λm, eidR≥0)

}
.

Then δ is admissible and δ(d) → 0 as d→ dj for any j = 1, ..., l. Also let

Sd = {(ζ, ε) ∈ C2 | 0 < |ε| < R(δ), |arg(ζpεq)− d| < θd/2},

be the intersection of C × DR(δ)(0) with the monomial sector in ζpεq bisected by d with

maximal opening θd contained in Ωδ(d). Again, θd → 0 as d → dj for any j = 1, ..., l.

From here, by abuse of notation, we are denoting the distance between two directions as the

minimal one, modulo 2π. With this convention we see that,

0 <
θd
2
< |d− dj |, (3-20)

for all j = 1, ..., n.

As expected, the required solution wd of equation (3-16) is defined by

wd(x, ε) =

∫ eiα∞

0
FSd

(xu1/p, ε)e−udu, (3-21)
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where α ranks from −π/2 to π/2. This is just the Laplace transform of FSd
w.r.t. the

variable x. For fixed α, the previous formula defines an analytic function in the domain

given by

−θd
2

− α < arg(xpεq)− d <
θd
2

− α, |x|p < cos(α)

Cd
, |ε| < R(δ),

where Cd = C(Sd). Moving α from −π/2+ θd/4 to π/2− θd/4 and choosing a small enough

constant such that 0 < σd < sin(θd/4)/Cd, we can conclude that wd is in fact well-defined and

bounded in the sector Sp,q(d, π + θd/2, ρd), where ρd = min{sin(θd/4)/Cd − σd, R(δ)
q} > 0.

The next step to be able to apply Theorem 1.2.27 is to consider an adequate finite covering

of D2
ρ′ \ {xε = 0}, for some ρ′ > 0, by sets Sp,q(d, π + θd/2, ρd), and estimate the difference

wd − wd′ , when the corresponding domains intersect.

First we remark that if d, d′ ∈ [0, 2π) \ {d1, ..., dl}, and there is no dj between d and d′ then

wd − wd′ = 0 in the intersection of its domains. Indeed, we can suppose d < d′ and that d

and d′ are close enough. Then set S = Πp,q(d − θd/4, d
′ + θd′/4,+∞) ∩ C ×DR(δ)(0). S is

contained in Ωδ, for δ = min{δ(d), δ(d′)} and contain both Sd and Sd′ . Using Lemma 3.1.3

we can replace FSd
and FSd′

in formula (3-21) by FS and the result follows.

Now suppose we are given d, d′ with dj−1 < d < dj < d′ < dj+1 for some j. If they are

close to dj we can suppose that dj − d, d′ − dj < π and d+ θd/2 < d′ − θd′/2. In particular

d′−d > |θd−θd′ |/4. Now take any (x, ε) ∈ Sp,q(d, π+θd/2, ρd)∩Sp,q(d′, π+θd′/2, ρd′). Then
the point satisfies

d′ − π/2− θd′/4 < arg(xpεq) < d+ π/2 + θd/4.

Let α′ = dj − d′ + π/2 + θd′/4 and α = dj − d − π/2 − θd/4. The above condition is then

equivalent to say that the point satisfies

α < dj − arg(xpεq) < α′. (3-22)

Besides the hypotheses and inequality (3-20) imply that |α| < π/2 − θd/4 and also |α′| <
π/2− θd′/4.

With these considerations we can estimate wd − wd′ as follows: Let δ = min{δ(d), δ(d′)}
and let S be the preimage in the complex (ζ, ε)−plane under the map (ζ, ε) 7→ (η, ε), η =

pζpεq, of the largest star-shaped domain w.r.t. the origin, containing the sector defined by

V (d− θd/2, d
′ + θd′/2,+∞) and not the circle |η − λj | ≤ δ/2, (without loss of generality we

are assuming that λj is the λm such that arg(λm) = dj and has smallest norm) (see Figure

3-1). Then S is contained in Ωδ/2, and contains both Sd and Sd′ . Using Lemma 3.1.3 and

the previous α, α′ we see that

|wd(x, ε)− wd′(x, ε)| =

∣∣∣∣∣
∫
eiα

′R≥0−eiαR≥0

FS(xu
1/p, ε)e−udu

∣∣∣∣∣ .
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Figura 3-1: S for the case d < dj < d′.

By Cauchy’s theorem we can change the above path of integration in the u−plane as long

as (xu1/p, ε) ∈ S. In particular we most have |pxpεqu − λj | > δ/2. Using condition (3-22)

we may integrate over a path contained in V (α, α′,+∞) from ∞ down to the vicinity of the

point λj/px
pεq, Dδ/p|xpεq |(λj/px

pεq), then around this vicinity and back to ∞. Then

|wd(x, ε)− wd′(x, ε)| ≤ 2

∫ +∞

|λj |−δ

p|xpεq |

K(S)e(C(S)|x|p−cos(min{|α|,|α′|}))|u|d|u|,

and reducing min{ρd, ρd′} if necessary we may conclude that

|wd(x, ε)− wd′(x, ε)| ≤ K ′
d,d′e

−
Md,d′
|xpεq | ,

for all (x, ε) in the intersection of the previous sectors, for certain positive constants K ′
d,d′ ,

Md,d′ .

In conclusion, we have shown that for close non-singular directions d, d′, the difference of its

corresponding solutions wd−wd′ is zero or have exponential decay of order 1 in the monomial

xpεq at the origin. As we can cover D2
ρ′ \ {xε = 0}, with ρ′ > 0 small enough, by a finite
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number of sectors Sp,q(d, π + θd/2, ρd), where the chosen finite non-singular directions are

close enough, we can apply Ramis-Sibuya Theorem 1.2.27 to conclude that the corresponding

solutions wd have a common asymptotic expansion w̃ in xpεq of 1−Gevrey type on the sector

Sp,q(d, π + θd/2, ρd). But necessarily w̃ = ŵ because both are formal solutions of equation

(3-16). Then we have proved the main result of this section.

Theorem 3.1.4. The unique formal solution ŷ of equation (3-1) is 1−summable in xpεq.

As immediate consequences of this theorem, using Proposition 1.2.31 we see that for every

fixed ε0 with small enough norm the series ŷ(x, ε0) ∈ C[[x]] is p−summable. Analogously

ŷ(x0, ε) ∈ C[[ε]] is q−summable for every fixed x0 with small enough norm.

We note that to prove the theorem we also could have attempted to analyze directly the

properties of analytic continuation and exponential growth of B̂(p,q)
1,(s1,s2)

(xpεqŷ), for some

s1, s2 > 0 with s1 + s2 = 1. Since ŷ satisfies (3-1) then Ŵ = xpεqŷ satisfies the differential

equation.

εqxp+1dW

dx
= (pεqxpI +A(x, ε))W (x, ε) + xpεqb(x, ε), (3-23)

Then F̂ = B̂(p,q)
1,(s1,s2)

(Ŵ ) is analytic in a neighborhood of the origin and satisfies the equation

ξ
∂

∂ξ

(
ξpυq

∫ 1

0
F (ξts1/p, υts2/q)dt

)
= A(0, 0)F (ξ, υ) + B(p,q)

1,(s1,s2)
(Ã) ∗(p,q)1,(s1,s2)

F (ξ, υ) + g(ξ, υ),

(3-24)

where Ã(x, ε) = A(x, ε)−A(0, 0)+pxpεqI and g = B(p,q)
1,(s1,s2)

(xpεqb). Actually, F̂ is the unique

formal solution of this equation. From here the scheme of proof used before does not work

anymore, due to the derivative in the previous expression. However since we already have

the characterization of monomial summability in terms of monomial Borel-Laplace methods

(Theorem 2.2.1) we can formulate the following corollary, strengthen Theorem 3 in [BM].

Corollary 3.1.5. Using the previous notation, for every direction d ̸= dj, j = 1, ..., l,

B̂(p,q)
1,(s1,s2)

(Ŵ ) admits analytic continuation φd,s1,s2 to some Sp,q(d, βd,+∞), for some βd > 0,

and there are constants Cd, Bd > 0 such that |φd,s1,s2(ξ, υ)| ≤ Cde
Bd max{|ξ|p/s1 ,|υ|q/s2} for all

(ξ, υ) ∈ Sp,q(d, βd,+∞). In particular,

wd(x, ε) =
1

xpεq
L(p,q)
1,s1,s2

(φd,s1,s2)(x, ε),

in the intersections of its domains.
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To finish this section we enunciate without proof the generalization of Theorem 3.1.4 to the

non-linear case. We refer the reader to [CDMS] for a complete proof.

Theorem 3.1.6. Consider the singularly perturbed differential equation

εqxp+1 dy

dx
= f(x, ε, y),

where y ∈ Cl, p, q ∈ N∗ f analytic in a neighborhood of (0, 0, 0) and f(0, 0, 0) = 0. If

∂f/∂y(0, 0, 0) is invertible then the previous equation has a unique formal solution ŷ. Fur-

thermore it is 1−summable in xpεq.

3.2 Monomial summability of solutions of a linear partial

differential equation

In order to apply directly the Borel-Laplace methods introduced in the previous chapter and

in view of Proposition 2.1.3 we can study the partial differential equation

s1
p
εqxp+1 ∂y

∂x
+
s2
q
xpεq+1∂y

∂ε
= C(x, ε)y(x, ε) + γ(x, ε), (3-25)

where p, q ∈ N∗, s1, s2 > 0 satisfy s1 + s2 = 1 and C ∈ Mat(l× l,C{x, ε}), γ ∈ C{x, ε}l. We

remark that in the boundary cases s1 = 1, s2 = 0 and s1 = 0, s2 = 1 the equation reduces to

equation (3-1), that has been already studied in the previous section.

As usual we choose r > 0 such that C ∈ Mat(l × l,Ob(D
2
r)) and γ ∈ Ob(D

2
r)

l. On the

existence, uniqueness and Gevrey character of the formal solutions ŷ of (3-25) we have as a

first result the following proposition.

Proposition 3.2.1. Consider the partial differential equation (3-25). If C(0, 0) is invertible

then (3-25) has a unique solution ŷ ∈ R̂l. Moreover ŷ ∈ (R̂
(p,q)
1 )l.

Proof. We write ŷ as in equation (3-5) and also C(x, ε) =
∑

n,mCn,mx
nεm, γ(x, ε) =∑

n,m γn,mx
nεm and analogously when expanding them in powers of x, resp. ε. The exis-

tence and uniqueness of ŷ follows from replacing the expressions in (3-5) into equation (3-25).

Indeed, if we expand respect to x and ε, we obtain the recurrence equations(
s1
p
(n− p) +

s2
q
(m− q)

)
yn−p,m−q =

n∑
i=0

m∑
j=0

Cn−i,m−jyi,j + γn,m, (3-26)
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for all n,m ∈ N. Here and below we set all coefficients with negative indexes as 0. Since

C(0, 0) is invertible, the coefficients yn,m are uniquely determined by these equations. Due

to the role of x and ε in symmetric in equation (3-25), we only write the calculations for the

variable x. Thus if we expand respect to x, we obtain the family of differential equations

s1
p
(n− p)εqyn−p∗(ε) +

s2
q
εq+1y′n−p∗(ε) =

n∑
i=0

Cn−i∗(ε)yi∗(ε) + γn∗(ε), (3-27)

for all n ∈ N. In this case C0∗(ε) is also invertible for |ε| < r (reducing r if necessary).

Again, we obtain that the coefficients yn∗ are uniquely determined by these equations and

are analytic on Dr.

In order to determine the Gevrey order of the entries of ŷ in x we use the Nagumo norms.

Take any 0 < R < r and working on DR, write c = ∥C−1
0∗ ∥0, zn = ∥yn∗∥n, cn = ∥Cn∗∥n and

fn = ∥γn∗∥n. It follows from equation (3-27) that this numbers satisfy the inequalities

zn ≤ c

(
(1 + e) (n− p+ 1)Rp+qzn−p +

n−1∑
i=0

cn−izi + fn

)
. (3-28)

Dividing by Γ(1 + n/p) = n/pΓ(n/p), using the inequality (3-3) and n− p+ 1 ≤ 2n, we can

conclude that

zn

Γ
(
1 + n

p

) ≤ c

2p (1 + e)Rp+q zn−p

Γ
(
n
p

) +
n−1∑
i=0

cn−i

Γ
(
1 + n−i

p

) zi

Γ
(
1 + i

p

) +
fn

Γ
(
1 + n

p

)
 ,

(3-29)

If we define recursively wn by w0 = z0 and

wn = c

2p(1 + e)Rp+qwn−p +
n−1∑
i=0

cn−i

Γ
(
1 + n−i

p

)wi +
fn

Γ
(
1 + n

p

)
 , (3-30)

it follows that zn/Γ(1 + n/p) ≤ wn for all n ∈ N. If we set ŵ(τ) =
∑

n≥0wnτ
n, σ(τ) =∑

n≥1 cn/Γ(1 +
n
p )τ

n and f(τ) =
∑

n≥0 fn/Γ(1 + n/p)τn, we see that σ, f ∈ O(C) and that

ŵ satisfies the functional equation

w(τ) = c(2p(1 + e)Rp+qτpw(τ) + σ(τ)w(τ) + f(τ)).

Since σ(0) = 0, this equation has a unique analytic solution at 0 and it must be ŵ. Then

there are positive constants C,D such that

wn ≤ CDn,

for all n ∈ N. Using Cauchy’s formula for ρ < R we obtain the bounds
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|yn,m| ≤ C
Dn

(R− ρ)nρm
Γ

(
1 +

n

p

)
,

valid for all n,m ∈ N. Therefore ŷ ∈ (R̂(1/p,0))
l.

Using a similar reasoning we can conclude also that ŷ ∈ (R̂(0,1/q))
l. It follows from Proposi-

tion 1.2.3 that ŷ ∈ (R̂
(p,q)
1 )l, as was to be proved.

We can adapt the model of proof used in Theorem 3.1.4 to this situation, replacing naturally

the Borel and Laplace transforms by their monomial counterparts, with weights s1, s2. In

this context the proof goes easily because none of the variables act as a parameter.

Theorem 3.2.2. Consider equation (3-25). If C(0, 0) is invertible then the unique formal

solution ŷ given by the previous proposition is 1−summable in xpεq. Its possible singular

directions are the directions passing through the eigenvalues of C(0, 0).

Proof. In order to prove monomial summability we are going to use the characterization given

by Theorem 2.2.1. To simplify the notations we are going to write B = B(p,q)
1,(s1,s2)

, B̂ = B̂(p,q)
1,(s1,s2)

and ∗ = ∗(p,q)1,(s1,s2)
for the corresponding Borel transforms and for the 1−(s1, s2)−convolution,

respectively.

The change of variables w = xpεqy in equation (3-25) leads us to the new equation

s1
p
εqxp+1∂w

∂x
+
s2
q
xpεq+1∂w

∂ε
= (xpεqI + C(x, ε))w(x, ε) + xpεqγ(x, ε), (3-31)

which is solved formally by ŵ = xpεqŷ. As before I = Il denotes the identity matrix of size

l. If we apply the 1−Borel transform associated to the monomial xpεq with weight (s1, s2)

to this equation, using Propositions 2.1.3 and 2.1.15, we see that F = B̂(ŵ) is a solution of

the corresponding convolution equation

(ξpυqI − C(0, 0))F (ξ, υ) = B(C̃) ∗ F (ξ, υ) + g(ξ, υ), (3-32)

where C̃(x, ε) = xpεqI + C(x, ε)− C(0, 0) and g = B(xpεqγ). Furthermore we can write

g(ξ, υ) =
∑

n,m≥0

γn,m

Γ
(
1 + ns1

p + ms2
q

)ξnυm, B(C̃)(ξ, υ) =
∑

n,m≥0
(n,m) ̸=(0,0)

Cn,m

Γ
(
ns1
p + ms2

q

)ξn−pυm−q,

(3-33)

where Cn,m = Cn,m for (n,m) ̸= (p, q) and Cp,q = Cp,q + I.
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Let λ1, ..., λl the eigenvalues of C(0, 0) repeated according to their multiplicity and recall

that they are all non-zero by assumption. The open set where we can invert the matrix

ξpυqI − C(0, 0) is given by

Ω = {(ξ, υ) ∈ C2 | ξpυq ̸= λj for all j = 1, ..., l}.

Working on Ω, we see that finding solutions of certain type of the convolution equation (3-32)

is equivalent to find a fixed point of the operator H given by

H(F )(ξ, υ) = (ξpυqI − C(0, 0))−1
(
B(C̃) ∗ F (ξ, υ) + g(ξ, υ)

)
, (3-34)

and defined in an adequate Banach space E of functions.

We are going to prove that B(ŵ) admits analytic continuation to Ω. To do so we consider an

arbitrary bounded open set U such that U ⊂ Ω and an arbitrary N ∈ N. Then it is sufficient

to prove that B(ŵ)−
∑N

n=0

∑∞
m=0

yn,m

Γ(1+ns1/p+ms2/q)
ξnυm admits analytic continuation to U .

If we perform the change of variable wN (x, ε) = w(x, ε)−
∑N

n=0 ε
qyn∗(ε)x

n+p in equation (3-

31), then using the recurrences (3-27) we see that wN satisfies the same differential equation

(3-31) but with γ replaced by a γN with ordxγN > N . Therefore B(wN ) satisfies the same

convolution equation (3-32) but with g replaced by gN = B(xpεqγN ) and ordxgN > N .

Let EU,N denote the subspace of functions of C(U) ∩ O(U) such that

∥F∥N = sup
(ξ,υ)∈U

|F (ξ, υ)|
|ξ|N

,

is finite. EU,N is a Banach space with the norm ∥ · ∥N and gN ∈ EU,N . We shall prove

that HN : EU,N → EU,N , defined as H but with gN instead of g, is well-defined and it is a

contraction if N is large enough. Indeed, if F ∈ EU,N then

|HN (F )(ξ, υ)|

≤MU

∣∣∣∣∫ 1

0
B(C̃)(ξts1/p, υts2/q)F (ξ(1− t)s1/p, υ(1− t)s2/q)ξpυqdt

∣∣∣∣+MU∥gN∥N |ξ|N

≤MU

∫ 1

0

∣∣∣B(C̃)(ξts1/p, υts2/q)∣∣∣ ∥F∥N |ξ|p+N |υ|q(1− t)Ns1/pdt+MU∥gN∥N |ξ|N ,

where MU > 0 is a constant such that∥∥∥(ξpυqI − C(0, 0))−1
∥∥∥ ≤MU , for all (ξ, υ) ∈ U.
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A way to estimate adequately the previous expression it is to bound the following integral:

∫ 1

0
tns1/p+ms2/q−1(1− t)Ns1/pdt =

Γ
(
ns1
p + ms2

q

)
Γ
(
1 + Ns1

p

)
Γ
(
1 + (n+N)s1

p + ms2
q

) .

If ns1/p+ms2/ > 1, inequality (3-3) shows that

Γ
(
ns1
p + ms2

q

)
Γ
(
1 + Ns1

p

)
(
(n+N)s1

p + ms2
q

)
Γ
(
(n+N)s1

p + ms2
q

) ≤ p

Ns1
.

For the case ns1/p+ms2/ ≤ 1 we use the limit (3-4) with s = s1/p and b = ns1/p+ms2/q.

It implies that there is a constant Dn,m,p,q,s1,s2 such that

Γ
(
ns1
p + ms2

q

)
Γ
(
1 + Ns1

p

)
Γ
(
1 + (n+N)s1

p + ms2
q

) ≤ Dn,m,p,q,s1,s2(
(N+n)s1

p + ms2
q

)ns1/p+ms2/q
.

If D = Dp,q,s1,s2 = max{Dn,m,p,q,s1,s2 , p/s1, (p/s1)
ns1/p+ms2/q|ns1/p + ms2/ ≤ 1} (it is a

finite constant because the maximum is taken over a finite number of values) the integral is

bounded in any case by

D

Nmin{s1/p,s2/q}
.

Back to the operator HN , we now can ensure that

|HN (F )(ξ, υ)| ≤MU

(
DKU

Nmin{s1/p,s2/q}
∥F∥N + ∥gN∥N

)
|ξ|N ,

where

KU = sup
(ξ,υ)∈U

∑
n,m≥0

(n,m) ̸=(0,0)

|Cn,m|

Γ
(
ns1
p + ms2

q

) |ξ|n|υ|m.
We remark that KU is finite since U is bounded and C̃ is analytic at (0, 0). The previous

bound is sufficient to ensure that HN (F ) ∈ EU,N . To show that HN is a contraction, we

estimate as before to see that if F,G ∈ EU,N then

∥HN (F )−HN (G)∥N ≤ DMUKU

Nmin{s1/p,s2/q}
∥F −G∥N .

Then it is enough to take N with DMUKU

Nmin{s1/p,s2/q}
< 1 to conclude the result.

Applying Banach’s fixed point theorem, we can conclude that HN has a unique fixed point

FU,N ∈ EU,N , that is, equation (3-32) has a unique analytic solution defined on U of the
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form FU (ζ, ε) = FU,N (ζ, ε)+
∑N

n=0

∑∞
m=0

yn,m

Γ(1+ns1/p+ms2/q)
ξnυm . Now, if we take a polydisc

at the origin contained in Ω with sufficiently small poly-radius, the solution provided by the

fixed point is precisely B̂(ŵ), because this is the unique formal solution at (0, 0) of equation

(3-32). Then if U intersects this polydisc, FU and B̂(ŵ) coincide in the intersection, being

both solutions of the convolution equation. This let us conclude that B̂(ŵ) admits analytic

continuation to Ω.

It remains to prove that the above solutions have the adequate exponential growth. Let

C > 0 an arbitrary positive constant. Let S an unbounded open set such that S ⊂ Ω. We

will denote by ES,C the subspace of functions F in O(S) such that

∥F∥C = sup
(ξ,υ)∈S

|F (ξ, υ)|e−CR(ξ,υ),

is finite, where R(ξ, υ) = max{|ξ|p/s1 , |υ|q/s2}. Then ES,C is a Banach space with the norm

∥ · ∥C . Furthermore, it follows from (3-33) that we can find a large enough constant C ′ > 0

such that g ∈ EΩ,C′ .

Following the same ideas as before we shall prove that H : ES,C → ES,C , is well-defined and

a contraction if C > C ′ is large enough. For the first assertion, if F ∈ ES,C , then

|H(F )(ξ, υ)|

≤MS

∣∣∣∣∫ 1

0
B(C̃)(ξts1/p, υts2/q)F (ξ(1− t)s1/p, υ(1− t)s2/q)ξpυqdt

∣∣∣∣+MS∥g∥C′eC
′R(ξ,υ)

≤MS

∫ 1

0

∣∣∣ξpυqB(C̃)(ξts1/p, υts2/q)∣∣∣ ∥F∥CeCR(ξ,υ)(1−t)dt+MS∥g∥C′eC
′R(ξ,υ),

where MS > 0 is a constant such that∥∥∥(ξpυqI − C(0, 0))−1
∥∥∥ ≤MS , for all (ξ, υ) ∈ S.

To estimate adequately the previous expression, we can use the Gamma function to see that

∫ 1

0
tns1/p+ms2/q−1eCR(ξ,υ)(1−t)dt =

eCR(ξ,υ)

(CR(ξ, υ))ns1/p+ms2/q

∫ CR(ξ,υ)

0
uns1/p+ms2/q−1e−udu

≤ Γ(ns1/p+ms2/q)

(CR(ξ, υ))ns1/p+ms2/q
eCR(ξ,υ),

for all n,m ∈ N , (n,m) ̸= (0, 0) and ξ, υ ∈ C∗. Applying these bounds we see that

|H(F )(ζ, ε)| ≤MSL

(
1

Cs1/p
+

1

Cs2/q

)
∥F∥CeCR(ξ,υ) +MS∥g∥C′eC

′R(ξ,υ)

≤MS

(
L

(
1

Cs1/p
+

1

Cs2/q

)
∥F∥C + ∥g∥C′

)
eCR(ξ,υ),
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where L > 0 is a constant such that∑
m≥1

|C0m||υ|m−1,
∑
n≥1
m≥0

|Cnm||ξ|n−1|υ|m ≤ L,

for all |ξ|, |υ| ≤ R and 1/Cs2/q, 1/Cs1/p < R.

Therefore we have proved that H(F ) ∈ ES,C . In the same way, if F,G ∈ ES,C then

∥H(F )−H(G)∥C ≤MSL

(
1

Cs1/p
+

1

Cs2/q

)
∥F −G∥C .

If we take C large enough such that MSL
(

1
Cs1/p

+ 1
Cs2/q

)
< 1 we can conclude that H is

a contraction, and then it has a unique fixed point. This means that (3-32) has a unique

solution in S with the exponential growth above.

If we choose any direction d ̸= arg(λj), j = 1, ..., l and θd > 0 small enough such that

S = Sp,q(d, 2θd,+∞) ⊂ Ω, then we have proved in particular that B̂(ŵ) can be analytically

continued to S with exponential growth as required in Definition 2.2.1 for k = 1. Then by

Theorem 2.2.1, ŷ es 1−summable in xpεq in direction d as we wanted to prove.

3.3 Monomial summability of solutions of a class of Pfaffian

systems

The last application we will give in this text is the study of the convergence and the monomial

summability properties of formal solutions of a class of Pfaffian systems in two independent

variables. In the first place we explore the consequences of such a system to be completely

integrable focusing in the behavior of their linear parts. Then we pass to the study of the

mentioned formal solutions and prove their convergence in generic cases in the situation of

non-integrability.

The more general situation we are going to analyze here is the study of formal solutions of

the systems of singular partial differential equations or Pfaffian system with normal crossings

of the form


εqxp+1 ∂y

∂x
= f1(x, ε, y), (3-35a)

xp
′
εq

′+1∂y

∂ε
= f2(x, ε, y), (3-35b)

where p, q, p′, q′ ∈ N∗, y ∈ Cl, and f1, f2 are analytic functions defined on a neighborhood of

the origin in C × C × Cl. If f1(x, ε, 0) = f2(x, ε, 0) = 0 and the functions f1, f2 satisfy the

following integrability condition on its domains of definition:
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−qxp′εq′f1(x, ε, y) + xp
′
εq

′+1∂f1
∂ε

(x, ε, y) +
∂f1
∂y

(x, ε, y)f2(x, ε, y) = (3-36)

−p′xpεqf2(x, ε, y) + xp+1εq
∂f2
∂x

(x, ε, y) +
∂f2
∂y

(x, ε, y)f1(x, ε, y),

then the system will be referred as completely integrable Pfaffian system with normal cro-

ssings. The normal crossing refers to the singular locus xε = 0 where the differential equation

changes to an implicit one. This is a plausible condition to impose since it helps to relate

the solutions of both equations (note that the condition can be obtained from the equality

of mixed derivatives). We shall see that the condition of complete integrability imposes se-

rious restrictions on f1 and f2 and the results we present require hypotheses that completely

integrable systems may not satisfy. Fortunately the complete integrability condition is not

always necessary for the existence of solutions as we will see through examples.

Let us write f1(x, ε, y) = A(x, ε)y+
∑

|J |≥2 f1,Jy
J and f2(x, ε, y) = B(x, ε)y+

∑
|J |≥2 f2,Jy

J ,

as a Taylor’s series in y around 0 ∈ Cl. We may suppose that A and B have entries in O(D2
r)

for some r > 0. Then replacing these expressions into equation (3-36) and equaling to zero

the common terms in each yJ , we see in particular that A and B satisfy

xp
′
εq

′
(
ε
∂A

∂ε
− qA

)
− xpεq

(
x
∂B

∂x
− p′B

)
+ [A,B] = 0, (3-37)

where [, ] is the usual Lie bracket of matrices. In particular, by taking x = 0 and ε = 0 we

conclude that [A(0, 0), B(0, 0)] = 0, [A(x, 0), B(x, 0)] = 0 and [A(0, ε), B(0, ε)] = 0 for all

|x|, |ε| < r.

We can extract more information about A(0, 0) = A0,0 and B(0, 0) = B0,0 and their spectra

from equation (3-37), depending on p, q, p′ and q′. We are going to consider only some

possible cases. For this let us put

A(x, ε) =
∑

n,m≥0

An,mx
mεm =

∑
n≥0

An∗(ε)x
n =

∑
m≥0

A∗m(x)εm,

B(x, ε) =
∑

n,m≥0

Bn,mx
mεm =

∑
n≥0

Bn∗(ε)x
n =

∑
m≥0

B∗m(x)εm.

Then replacing the previous expressions in equation (3-37) and grouping by common powers

we see that
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0 =(m− q − q′)An−p′,m−q′ − (n− p− p′)Bn−p,m−q +
n∑

i=0

m∑
j=0

[Ai,j , Bn−i,m−j ], (3-38)

0 =εq
′ (
εA′

n−p′∗(ε)− qAn−p′∗(ε)
)
− (n− p− p′)εqBn−p∗(ε) +

n∑
i=0

[Ai∗(ε), Bn−i∗(ε)], (3-39)

0 =(m− q − q′)xp
′
A∗m−q′(x)− xp

(
xB′

∗m−q(x)− p′B∗m−q(x)
)
+

m∑
j=0

[A∗j(x), B∗m−j(x)],

(3-40)

for all n,m ∈ N and |x|, |ε| < r.

We consider an arbitrary eigenvalue µ0 of B0,0. If this is the only eigenvalue of B0,0 we

proceed to the cases described below. If it is not unique then we can always find an adequate

constant invertible matrix P0 such that

P0B0,0P
−1
0 =

(
B

11
0 (0) 0

0 B
22
0 (0)

)
,

in such a way that the only eigenvalue of B
11
0 (0) is µ0 and B

11
0 (0) and B

22
0 (0) have no

common eigenvalues. We can even find ρ > 0 small enough and P ∈ GL(l,O(Dρ)) such that

P (0) = P0 and

B0∗(ε) = P (ε)B0∗(ε)P (ε)
−1 =

(
B

11
0 (ε) 0

0 B
22
0 (ε)

)
,

so that for every |ε| < ρ, the matrices B
11
0 (ε) and B

22
0 (ε) have no common eigenvalues (see

Theorem 25.1, [W1]). This last property joint with the fact that B0∗ and A0∗ commute let

us conclude that

A0∗(ε) = P (ε)A0∗(ε)P (ε)
−1 =

(
A

11
0 (ε) 0

0 A
22
0 (ε)

)
,

where [A
jj
0 (ε), B

jj
0 (ε)] = 0, j = 1, 2. Let us also write

A1∗(ε) = P (ε)A1∗(ε)P (ε)
−1 =

(
A

11
1 (ε) A

12
1 (ε)

A
21
1 (ε) A

22
1 (ε)

)
,

B1∗(ε) = P (ε)B1∗(ε)P (ε)
−1 =

(
B

11
1 (ε) B

12
1 (ε)

B
21
1 (ε) B

22
1 (ε)

)
,

in the same block-decomposition as A0∗(ε) and B0∗(ε). We consider the following cases

regarding p, p′, q and q′:
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Case I. Suppose p = 1 and 1 < p′. Then the equation (3-39) for n = 1 reduces to

p′εqB0∗(ε) + [A0∗(ε), B1∗(ε)] + [A1∗(ε), B0∗(ε)] = 0. (3-38)

If necessary, after multiplying equation (3-38) by P (ε) to the left and by P (ε)−1 to the right,

the equation obtained in the position (1, 1) according to the previous block-decomposition is

p′εqB
11
0 (ε) + [A

11
0 (ε), B

11
1 (ε)] + [A

11
1 (ε), B

11
0 (ε)] = 0. (3-39)

Applying the trace in the previous equation we see that tr(p′εqB
11
0 (ε)) = 0 and thus

tr(B
11
0 (0)) = 0. Since µ0 is the only eigenvalue of B

11
0 (0) we conclude that µ0 = 0. Since µ0

was arbitrary then B0,0 is nilpotent.

Case II. Suppose that p = p′ = 1. Here equation (3-39) for n = 1 is given by

εq
′ (
εA′

0∗(ε)− qA0∗(ε)
)
+ εqB0∗(ε) + [A0∗(ε), B1∗(ε)] + [A1∗(ε), B0∗(ε)] = 0. (3-40)

If necessary, multiplying equation (3-40) by P (ε) to the left and by P (ε)−1 to the right, the

equation obtained in the position (1, 1) according to the previous block decomposition is

εq
′+1(PA′

0∗P
−1)(1,1)(ε)− qεq

′
A

11
0 (ε) + εqB

11
0 (ε) + [A

11
0 (ε), B

11
1 (ε)] + [A

11
1 (ε), B

11
0 (ε)] = 0,

(3-41)

where (PA′
0∗P

−1)(1,1) indicates the matrix in position (1, 1) of PA′
0∗P

−1. Taking the trace

in this equation we see that

εq
′+1tr

(
(PA′

0∗P
−1)(1,1)(ε)

)
− qεq

′
tr
(
A

11
0 (ε)

)
+ εqtr

(
B

11
0 (ε)

)
= 0. (3-42)

If q < q′ we conclude that µ0 = 0 and since this eigenvalue was arbitrary then B0,0 is

nilpotent. If instead q = q′ we conclude that

q tr
(
A

1,1
0 (0)

)
= tr

(
B

1,1
0 (0)

)
= l1µ0,

where l1 is the size of B
1,1
0 . We have two cases here:

1. A
1,1
0 (0) has only one eigenvalue λ0. In this case we can conclude that qλ0 = µ0.

2. A
1,1
0 (0) has at least two different eigenvalues. Let λ0 be one of them. We apply again

the previous process. Take an adequate constant invertible matrix T0 such that

T0A
1,1
0 (0)T−1

0 =

(
C11
0 (0) 0

0 C22
0 (0)

)
,
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in such a way that the only eigenvalue of C11
0 (0) is λ0 and C11

0 (0) and C22
0 (0) have no

common eigenvalues. Find 0 < ρ′ ≤ ρ small enough and T ∈ GL(l1,O(Dρ′)) such that

T (0) = T0 and

C0(ε) = T (ε)A
1,1
0 (ε)T (ε)−1 =

(
C11
0 (ε) 0

0 C22
0 (ε)

)
,

so that for every |ε| < ρ′, the matrices C11
0 (ε) and C22

0 (ε) have no common eigenvalues.

Then

D0(ε) = T (ε)B
1,1
0 (ε)T (ε)−1 =

(
D11

0 (ε) 0

0 D22
0 (ε)

)
.

As before, considering the equation obtained from the position (1, 1) in equation (3-41),

taking the trace and evaluating at ε = 0 we conclude that

q tr C1,1
0 (0) = tr D1,1

0 (0),

but the only eigenvalue of C1,1
0 (0) is λ0 and the only one of D1,1

0 (0) is µ0, and in this

case we can also conclude that qλ0 = µ0.

Case III. Suppose p > 1 and p′ = Np for some N ∈ N∗. The idea is to apply rank reduction

to be able to use the previous cases. Indeed, consider the ramification t = xp and let us write

A(x, ε) = A0(x
p, ε) + xA1(x

p, ε) + · · ·+ xp−1Ap−1(x
p, ε),

B(x, ε) = B0(x
p, ε) + xB1(x

p, ε) + · · ·+ xp−1Bp−1(x
p, ε).

Then replacing these expressions in equation (3-37) and equaling to zero the terms containing

each power xi, i = 0, 1, ..., p− 1 we see that

tNεq
′
(
ε
∂Ai

∂ε
− qAi

)
−ptεq

(
t
∂Bi

∂t
−
(
N − i

p

)
Bi

)
+

i∑
j=0

[Aj , Bi−j ]+

p−1∑
j=i+1

t[Aj , Bp−j+i] = 0.

(3-43)

Define the following matrices

Ã(t, ε) =


A0 tAp−1 · · · tA1

A1 A0 − tεqI · · · tA2
...

...
. . .

...

Ap−1 Ap−2 · · · A0 − (p− 1)tεqI

 ,

B̃(t, ε) =


B0 tBp−1 · · · tB1

B1 B0 · · · tB2
...

...
. . .

...

Bp−1 Bp−2 · · · B0

 .
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The matrices Ã, B̃ ∈ Mat(pl × pl,C{t, ε}) are obtained from the system (3-35a), (3-35b)

as follows: if we write y(x, ε) = y0(x
p, ε) + xy1(x

p, ε) + · · · + xp−1yp−1(x
p, ε) and put Y =

(y0, ..., yp−1)
t then Ã and B̃ correspond to the linear parts of the Pfaffian system satisfied

by Y .

Using equations (3-43) it is possible to check that Ã, B̃ satisfy the differential equation

tNεq
′

(
ε
∂Ã

∂ε
− qÃ

)
− ptεq

(
t
∂B̃

∂t
−NB̃

)
+ [Ã, B̃] = 0. (3-44)

So we are in a similar situation as the initial equation (3-37) and we can apply Case (I) and

Case (II) in this case. If N > 1 then by Case (I) we conclude that B0,0 is nilpotent. If N = 1,

that is, if p = p′ and q < q′ then B0,0 is nilpotent. Finally, if p = p′ and q = q′ then for each

eigenvalue µ of B0,0 there is an eigenvalue λ of A0,0 such that qλ = pµ.

We can repeat the same considerations if we start from an arbitrary eigenvalue λ0 of A0,0.

By abuse of notation we suppose in this case that the only eigenvalue of A
11
0 (0) is λ0, that

A
11
0 (0) and A

22
0 (0) have no common eigenvalues and that P (ε) block-diagonalize A0∗(ε) and

B0∗(ε) as above, with A
11
0 (ε) and A

22
0 (ε) with no common eigenvalues, for |ε| < ρ. Then the

corresponding cases read as follows:

Case I′. Suppose p′ = 1 and 1 < p. . Then the equation (3-39) for n = 1 reduces to

εq
′ (
εA′

0∗(ε)− qA0∗(ε)
)
+ [A0∗(ε), B1∗(ε)] + [A1∗(ε), B0∗(ε)] = 0. (3-45)

If necessary, after multiplying equation (3-45) by P (ε) to the left and by P (ε)−1 to the right,

the equation obtained in the position (1, 1) according to the given block-decomposition is

εq
′+1(PA′

0∗P
−1)(1,1)(ε)− qεq

′
A

(1,1)
0∗ (ε) + [A

11
0 (ε), B

11
1 (ε)] + [A

11
1 (ε), B

11
0 (ε)] = 0. (3-46)

Applying the trace in the previous equation, evaluating at ε = 0 and recalling that λ0 is

the only eigenvalue of A
11
0 (0) we conclude that λ0 = 0. Since λ0 was arbitrary then A0,0 is

nilpotent.

Case II′. Suppose that p = p′ = 1. Proceeding as in Case (II), if q′ < q we can conclude

from equation (3-42) that λ0 = 0 and since it was an arbitrary eigenvalue of A0,0 then A0,0

is nilpotent.
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Case III′. Suppose p′ > 1 and p = N ′p′ for some N ′ ∈ N∗. Here we apply rank reduction

as in Case (III) but with the ramification t = xp
′
. In this case the corresponding matrices Ã

and B̃ satisfy the differential equation

tεq
′

(
ε
∂Ã

∂ε
− qÃ

)
− p′tN

′
εq

(
t
∂B̃

∂t
− B̃

)
+ [Ã, B̃] = 0. (3-47)

If N ′ > 1 then by Case (I′) we conclude that 1/p′A0,0 and thus A0,0 are nilpotent. If N ′ = 1

and q′ < q then by Case (II′) we also conclude that A0,0 is nilpotent.

Finally if we rewrite equation (3-37) as

εqxp
(
x
∂B

∂x
− p′B

)
− εq

′
xp

′
(
ε
∂A

∂ε
− qA

)
+ [B,A] = 0,

we can then change the roles of x and ε and deduce similar conclusions from the previous

cases. Gathering all these results we can establish the following proposition. The cases left

out require a more careful analysis than the one done here.

Proposition 3.3.1. Consider the Pfaffian system (3-35a), (3-35b). If it is completely inte-

grable then the following assertions hold:

1. The matrix ∂f2
∂y (0, 0, 0) is nilpotent if p = p′ and q < q′, or p′ = Np with N > 1, or

q′ = q and p < p′ or q′ =Mq with M > 1.

2. The matrix ∂f1
∂y (0, 0, 0) is nilpotent if p = p′ and q′ < q, or p = N ′p′ with N ′ > 1, or

q′ = q and p′ < p or q =M ′q′ with M ′ > 1.

3. If p = p′ and q = q′, for every eigenvalue µ of ∂f2
∂y (0, 0, 0) there is an eigenvalue λ

of ∂f1
∂y (0, 0, 0) such that qλ = pµ. The number λ is an eigenvalue of ∂f1

∂y (0, 0, 0), when

restricted to its invariant subspace Eµ = {v ∈ Cn|(∂f2∂y (0, 0, 0)−µI)
kv = 0 for some k ∈

N}.

Finally we turn to the study of formal solutions of the Pfaffian system (3-35a), (3-35b). To

motivate the results we are going to present we start by commenting the better known case

q = 0 and p′ = 0 that we do not treat here (each equation took separately is not singularly

perturbed). As mentioned by H. Majima in [Mj2], the study of those systems in the com-

pletely integrable case, i.e. of completely integrable Pfaffian systems with irregular singular

points was opened by R. Gérard and Y. Sibuya in [GS] and by K. Takano in [T]. Among the

study of existence and uniqueness of formal solutions, of their asymptotical behavior (with

different notions of asymptotic introduced in [GS]) and of the analytic reduction of those

systems perhaps one of the most remarkable results is the following:
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Theorem 3.3.2 (Gérard-Sibuya). Consider the completely integrable Pffafian system (3-

35a), (3-35b), with q = p′ = 0. If ∂f1
∂y (0, 0, 0) and

∂f2
∂y (0, 0, 0) are invertible then the Pfaffian

system admits a unique analytic solution y at the origin such that y(0, 0) = 0.

At first glance the result is in conflict comparing it with the usual results in one variable,

but one may think that these completely integrable systems are quite rigid and impose many

conditions reducing the complexity of their solutions. The first proof of Theorem 3.3.2 can be

found in [GS]. Due to the nature of the result Y. Sibuya reproved it with different methods,

see [S2] for a proof using summability theory and see [S1], [S3] for a proof in the linear case

using algebraic tools. For a more recent proof the reader may also consult [S].

Returning to the general case, we mention that H. Majima in [Mj2] using his theory of

strongly asymptotic expansions of functions of several variables has studied the systems

(3-35a), (3-35b) and its generalization to more independent variables in the completely inte-

grable case. Unfortunately the lack of examples in his exposition make it more complicated

to assimilate. Using the tools we have developed here we can provide information on the

solutions of those systems. Indeed, we can apply Theorem 3.1.6 and tauberian Theorem

1.3.5 to prove easily the convergence of solutions under generic conditions, when they exist.

More specifically we have the following theorem.

Theorem 3.3.3. Consider the system (3-35a), (3-35b). The following assertions hold:

1. Suppose the system has a formal solution ŷ. If ∂f1
∂y (0, 0, 0) and

∂f2
∂y (0, 0, 0) are invertible

and xpεq ̸= xp
′
εq

′
then ŷ is convergent.

2. If the system is completely integrable and ∂f1
∂y (0, 0, 0) is invertible then the system has

a unique formal solution ŷ. Moreover ŷ is 1-summable in xpεq.

3. If the system is completely integrable and ∂f2
∂y (0, 0, 0) is invertible then the system has

a unique formal solution ŷ. Moreover ŷ is 1-summable in xp
′
εq

′
.

Proof. To prove (1) note that if we consider equation (3-35a) as a singularly perturbed

ordinary differential equation and ∂f1
∂y (0, 0, 0) is invertible then by Theorem 3.1.6 it has a

unique formal solution ŷ1, 1−summable in xpεq. In the same way if ∂f2
∂y (0, 0, 0) is invertible

then (3-35b) has a unique formal solution ŷ2, 1−summable in xp
′
εq

′
. If we assume that the

system has a formal solution ŷ we are assuming that ŷ = ŷ1 = ŷ2. If x
pεq ̸= xp

′
εq

′
it follows

from the tauberian Theorem 1.3.5 that ŷ converges.

The proofs of (2) and (3) are analogous so we only prove (2). If we suppose that ∂f1
∂y (0, 0, 0)

is invertible we already know that by Theorem 3.1.6 the equation (3-35a) has a unique

formal solution ŷ ∈ (R
(p,q)
1 )l. It only remains to see that ŷ is also a solution of (3-35b).

We consider ŵ = xp
′
εq

′+1 ∂ŷ
∂ε − f2(x, ε, ŷ). Then using the integrability condition (3-36) it is
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straightforward to check that ŵ is a solution of the linear differential equation with formal

coefficients:

xp+1εq
∂w

∂x
=

(
p′xpεqIl +

∂f1
∂y

(x, ε, ŷ)

)
w,

Since ∂f1
∂y (0, 0, 0) is invertible, the above equation has a unique formal solution, and since 0

is a solution then ŵ = 0 as we wanted to show.

The reader may note that the reason why we do not assume in the first statement of the

previous theorem that the system is completely integrable is because Proposition 3.3.1 indi-

cates that the conditions imposed could never be satisfied. In particular we can not take for

granted that Theorem 3.3.3 is a generalization of the Gérard-Sibuya Theorem 3.3.2. On the

other side the following example exhibits a simple situation of a non-completely integrable

system where the hypotheses of the previous theorem hold, showing in particular its not

vacuity.

Example 3.3.1. Consider a constant vector c ∈ Cl, arbitrary p, q, p′, q′ ∈ N∗ and the Pfaffian

system

{
xp+1εq ∂y

∂x = y − c,

εq
′+1xp

′ ∂y
∂ε = y − c.

It has a unique formal solution given by ŷ = c and it is convergent. Also the system is not

completely integrable except by the case p = p′ = q = q′.

Example 3.3.2. This trivial example describes the Pfaffian systems coming from differential

equations in one independent variable. Consider the differential equation zr+1 dw
dz = f(z, w),

where r ∈ N∗, w ∈ Cl and f is an analytic function defined in a neighborhood of the origin

in C×Cl such that f(0, w) = 0. If we set y(x, ε) = w(xpεq), where p, q ∈ N∗ then it induces

the completely integrable system

{
εrqxrp+1 ∂y

∂x = pf(xpεq, y),

xrpεrq+1 ∂y
∂ε = qf(xpεq, y).

It has the same monomial in the singular part and illustrates the situation of statement (3) of

Proposition 3.3.1. It follows from Theorem 3.3.3 or directly from the classical theory in one

variable that if ∂f
∂w (0, 0) is invertible then the system has a unique solution ŷ, 1−summable

in xprεqr. Furthermore ŷ(x, ε) = ŵ(xpεq), where ŵ is r−summable and it is the only solution

of the initial differential equation.
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The statement (1) of Theorem 3.3.3 give us positive information on the convergence of formal

solutions of the system (3-35a), (3-35b) only when the monomials involved are different.

However, thanks to Theorem 3.2.2 we still can obtain a convergence result for the case of

systems (3-35a), (3-35b) when the functions f1, f2 are affine in y and the monomial in both

equation is equal. So we now focus in Pfaffian systems of the form


εqxp+1 ∂y

∂x
= A(x, ε)y(x, ε) + a(x, ε), (3-48a)

xpεq+1∂y

∂ε
= B(x, ε)y(x, ε) + b(x, ε), (3-48b)

where p, q ∈ N∗ and A,B ∈ Mat(l × l,C{x, ε}), a, b ∈ C{x, ε}l. Note we can pass from

system (3-48a), (3-48b) to an equation of the form (3-25) by multiplying (3-48a) by s1/p,

(3-48b) by s2/p and adding them. In that case C(x, ε) = s1
p A(x, ε)+

s2
q B(x, ε) and γ(x, ε) =

s1
p a(x, ε) +

s2
q b(x, ε). As an immediate consequence of Theorem 3.3.3 and Theorem 3.2.2 we

have the following proposition.

Proposition 3.3.4. The following assertions hold:

1. If the system (3-48a), (3-48b) is completely integrable and A(0, 0) or B(0, 0) is inverti-

ble then the system (3-48a), (3-48b) has a unique formal solution that is 1−summable

in xpεq.

2. If the system has a formal solution ŷ and there are s1, s2 > 0 such that s1 + s2 = 1

and s1/pA(0, 0)+ s2/qB(0, 0) is invertible, then ŷ is 1−summable in xpεq. Its possible

singular directions are the directions passing through the eigenvalues of s1/pA(0, 0) +

s2/qB(0, 0).

The reader should note again that in the second statement we do not assume that the

system is completely integrable because from Proposition 3.3.1 we can show that the process

explained above is useless in that case. Indeed, if the system is completely integrable then

A(0, 0) and B(0, 0) commute. Let µ1, ..., µm be the different eigenvalues of B with algebraic

multiplicities l1, ..., lm respectively. To unify notation set l0 = 0. After a linear change of

coordinates we can assume that A(0, 0) and B(0, 0) are in block-diagonal

A(0, 0) =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am

 , B(0, 0) =


B1 0 · · · 0

0 B2 · · · 0
...

...
. . .

...

0 0 · · · Bm

 ,

where the matrices Aj , Bj have size lj , all are upper-triangular and the only eigenvalue of

Bj is µj , for all j = 1, ...,m. Let λ1, ..., λl be the eigenvalues of A(0, 0), counting repetitions.

If we number them in such a way that A1 has eigenvalues λ1, ..., λl1 , A2 has eigenvalues
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λl1+1, ..., λl1+l2 and so on then from the form of the matrices we conclude that s1
p A(0, 0) +

s2
q B(0, 0) has eigenvalues s1λk

p +
s2µj

q , where j = 1, ...,m and lj−1 + 1 ≤ k ≤ lj−1 + lj .

But statement (3) of Proposition 3.3.1 tell us that qλk = pµj for all j = 1, ...,m and

lj−1 + 1 ≤ k ≤ lj−1 + lj . In particular the spectrum of the matrix s1
p A(0, 0) +

s2
q B(0, 0) is

independent of s1, s2 > 0 such that s1 + s2 = 1.

In the non-integrable case there are not imposed relations between A(0, 0) and B(0, 0) and

then there are more possible situations for the spectrum of s1
p A(0, 0)+

s2
q B(0, 0). In particular

there is a case when we can conclude convergence due to the absence of singular directions

and it is explained in the next theorem.

Theorem 3.3.5. Consider the system (3-48a), (3-48b) and suppose it has a formal solution

ŷ. Denote by λ1(s), ..., λl(s) the eigenvalues of s
pA(0, 0)+

(1−s)
q B(0, 0), where 0 ≤ s ≤ 1, and

assume that they are never zero. Then if for every direction d there is s ∈ [0, 1] such that

arg(λj(s)) ̸= d for all j = 1, ..., l then ŷ is convergent.

Proof. Let d be a direction. If we take s ∈ [0, 1] such that arg(λj(s)) ̸= d for all j = 1, ..., l

we know by Proposition 3.3.4 that d is not a singular direction for 1−summability in xpεq

of ŷ. Then ŷ has no singular directions and by tauberian Proposition 1.3.1 ŷ is convergent.

We finish this section with a simple example where the hypotheses of the theorem hold.

Example 3.3.3. Consider the Pfaffian system given by


εqxp+1 ∂y

∂x
=

(
xp + ε+ 1 −xp − x

1 1− x

)
y +

(
xpε− ε− 1

xε− ε− 2

)
, (3-49a)

xpεq+1∂y

∂ε
=

(
i− x+ ε −x− ε

−i− εq i+ εq

)
y +

(
(2− i)x+ x2 + ε2 − i

xεq + ix− iε

)
, (3-49b)

where p, q ∈ N∗. It is not completely integrable but nonetheless it admits a unique formal

solution

ŷ = (x+ 1, ε+ 1)t,

and it is convergent. This can be seen an a consequence of the previous theorem: the only

eigenvalue of s
pA(0, 0) +

(1−s)
q B(0, 0) is given by λ(s) = s/p + i(1 − s)/q, 0 ≤ s ≤ 1. If d

is a direction and d ̸∈ [0, π/2] then it is non-singular because d(s) = arg(λ(s)) ∈ [0, π/2].

If instead d ∈ [0, π/2] there is only one s with d = d(s) so taking any s′ ̸= s we see that

d ̸= d(s′) and d is also non-singular.
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The aim of this chapter is to propose a definition of monomial multisumability for two levels,

i.e. a method of summability that mixes two monomial summability methods. In order to do

this we have developed acceleration operators associated to two monomials, two parameters

of summability and two weights, when restricted to adequate cases when the calculations are

possible.

The chapter is divided into three sections. In the first one we have recalled the classical

acceleration operators and the notion of multisummability for two levels, in one variable. In

the second one we have formally calculated the composition of a Borel transform associated

to a monomial, a parameter of summability and a weight of the variables and a Laplace

transform associated to another monomial, a parameter of summability and a weight of the

variables. The resulting operator is an acceleration operator for monomial summability. In

this section we have developed all the properties of such operator as their behavior w.r.t.

monomial asymptotic expansions and convolutions.

In the last section we prove that the sum of divergent monomial summable series cannot be

monomial summable at least that they all belong to the same space of monomial summable

series. In order to sum series obtained in that way we propose a definition of monomial

multisummability for two levels using the monomial acceleration operators. Finally we show

that this notion is stable by sums and products.

4.1 Classical acceleration operators and multisummability

The goal of this section is to quickly recall the notion of multisummability (for two levels)

of formal power series. There are many equivalent ways to introduce the concept of multi-

summability, for instance using cohomological methods as in [MR], through iterated Laplace

transforms as in [B1] or using acceleration operators as was originally done by J. Ecalle in

[Ec]. Here we only explain the point of view of the acceleration operators following mainly

the exposition in [B1]. Many of the formulas used here as well as relevant results in the

theory are contained in the paper [MrR].

Nowadays it is well known that k−summability is not a strong enough method to sum all

the formal power series solutions of systems of linear or nonlinear meromorphic ordinary

differential equations. A more sophisticated summation process called multisummability had
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become necessary. The first example of this situation was provided by J.P. Ramis and Y.

Sibuya in 1984 and it consists in the sum of two divergent power series of different levels of

summability. This is the kind of series that multisummability for two levels will sum. We

reproduce the example here because we will use the same idea for the case of two monomials.

Consider the series Ê(x) :=
∑∞

n=0(−1)nn!xn+1, called the Euler series. It is 1−summable

and satisfies the differential equation D1(Ê(x)) = x, where D1 = x2d/dx + 1. Then Ê(x2)

is 2−summable and satisfies D2(Ê(x2)) = 2x2, where D2 = x3 d
dx + 2. If we calculate

the left least common multiple of D1 and D2 (in the non-commutative ring C(x)[d/dx]),
i.e. the monic differential operator D of minimal degree in d/dx that can be factored as

D = L1D1 = L2D2, for some L1, L2 ∈ C(x)[d/dx] we find that

D = x5(2− x)
d2

dx2
− x2(2x3 − 5x2 − 4)

d

dx
+ 2(x2 − x+ 2),

L1 = x3(2−x) d
dx+2x2−2x+4 and L2 = x2(2−x) d

dx+x
2−x+2. Then f̂(x) = Ê(x)+Ê(x2)

satisfies the differential equation

D(f̂) = D(Ê(x)) +D(Ê(x2)) = L1(x) + L2(2x
2) = −3x4 + 10x3 + 2x2 + 4x,

and also naturally satisfies d5/dx5D(f̂) = 0. However f̂ is not k−summable for any value of

k, as the following proposition shows.

Proposition 4.1.1. Let 0 < km < · · · < k2 < k1 be positive numbers, m ≥ 2, and f̂i ∈
C{x}1/ki for every i = 1, ...,m. If the f̂i are not convergent then f̂ = f̂1 + f̂2 + · · · + f̂m
cannot be k−summable for any k > 0.

The reader may note that the previous proposition is indeed equivalent to the part of Theo-

rem 1.1.13 that establishes that C{x}1/k′ ∩ C{x}1/k = C{x} for all 0 < k < k′.

To be able to define multisummability we need to recall the following family of special

functions. For a real number α > 1 and z ∈ C the acceleration function corresponding to α

is defined by the integral formula

Cα(z) =
1

2πi

∫
γ
ev−zv1/αdv,

where the integral is taken over a Hankel path γ. It is well known that Cα is an entire

function and that for every 0 < θ < π/β there are constants c1 = c1(α, θ), c2 = c2(α, θ) > 0

with

|Cα(z)| ≤ c1e
−c2|z|β ,

for all z ∈ C with |arg(z)| ≤ θ/2, where 1
α+

1
β = 1. By calculating the power series expansion

of Cα it follows that
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Cα(1/z) =
∞∑
n=0

(−1)nz−n

n!Γ
(−n

α

) = zαBα(e
−1/t)(z),

for all z ∈ C∗. Using the Laplace transform Lα we can express this equality as

Lα

(
1

zα
Cα

(
1

z

))
(w) = e−1/w,

or after a change of variables,

∫ eid∞

0
Cα

(
wu−1/α

) e−u

u
du = e−w, (4-1)

an equality valid for |d| < π/2 and w ∈ C satisfying
∣∣arg(w)− d

α

∣∣ < π
2β .

Finally an application of property (1) of Proposition 1.1.9 leads us to the following formula:∫ 1

0
Cα

( z

t1/α

)
Cα

( w

t1/α

) dt

t(1− t)
= Cα (z + w) , (4-2)

valid for all z, w ∈ C, very useful in the study of convolutions.

The acceleration functions allow us to introduce the acceleration operators in the same way as

the exponential function lead us to the Laplace transform. In this case the exponential kernel

in the Laplace transform is replaced by a function Cα, for some α > 1. More specifically,

let 0 < k2 < k1 be positive numbers, let κ be determined by 1
κ = 1

k2
− 1

k1
and let d be

a direction. The acceleration operator of index (k1, k2) in the direction d is defined by the

integral formula

Ak1,k2,d(f)(z) =
1

zk1

∫ eid∞

0
f(u)Ck1/k2((u/z)

k2)duk2 , (4-3)

for functions f : [0, eid∞) → C, with exponential growth at infinity at most κ. The resulting

function is defined in a sectorial region of opening π/κ bisected by d and zk1−k2Ak1,k2,d(f)(z)

is analytic there. If the domain of f contains a sector, d, d′ are directions in that sector and

|d− d′| < π/κ then Ak1,k2,d(f)(z) = Ak1,k2,d′(f)(z) on the intersection of their corresponding

domains.

For λ ∈ C with Re(λ) > 0 it can be proved that:

Ak1,k2,d(z
λ)(z) =

Γ
(
λ+k2
k2

)
Γ
(
λ+k2
k1

)zλ+k2−k1 ,

what lead us to define the formal acceleration operator of index (k1, k2):
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Âk1,k2 :C[[z]] −→ zk2−k1C[[z]]

∞∑
n=0

anz
n 7−→

∞∑
n=0

Γ
(
n+k2
k2

)
Γ
(
n+k2
k1

)anzn+k2−k1 .

Note that L̂k1 ◦ Âk1,k2 ◦ B̂k2(z
k2 f̂) = zk2 f̂ for any f̂ ∈ C[[z]]. In the analytic context, we

can assure that if f has exponential growth at most k2 on V then Ak1,k2(f) is analytic and

of exponential growth at most k1 on the corresponding sectorial region and the following

formula holds:

Lk1(Ak1,k2(f))(z) = Lk2(f)(z),

where both expressions are defined.

The behavior of acceleration operators w.r.t. asymptotic expansions can be described as

follows: Suppose f ∈ O(V ), where V is a sector of infinite radius and opening ϑ, and that

f has exponential growth at most κ on V . If f ∼s1 f̂ on V , then zk1−k2Ak1,k2,d(f) ∼s2

zk1−k2Âk1,k2(f̂) on the corresponding sectorial region of opening ϑ+ π/κ, where s2 = s1 +
1
κ

and d is a direction in V .

Finally, we recall that acceleration operators behave well under convolution: if f, g have

exponential growth at infinity at most κ, then so does f ∗k2 g and

Ak1,k2(f ∗k2 g) = Ak1,k2(f) ∗k1 Ak1,ks(g). (4-4)

At this point we are ready to introduce the notion of multisummability using the acceleration

operators. The definition just asks for natural conditions to be able to use the acceleration

operators. We are going to do it only in the case of two levels of multissumability because

that is the case we are going to treat in the attempt of a generalization using monomials in

the next sections.

Definition 4.1.1. Let 0 < k2 < k1 positive real numbers and let k = (k1, k2). A pair of

directions d = (d1, d2) is said to be k−admissible if it satisfies

|d1 − d2| ≤
π

2κ
, where

1

κ
=

1

k2
− 1

k1
.

If k and d satisfy these conditions then we say they are admissible.

Given k = (k1, k2) and d = (d1, d2) it follows that d is k−admissible if and only if the

intervals Ij =
[
dj − π

2kj
, dj +

π
2kj

]
, j = 1, 2, satisfy I1 ⊂ I2.
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Definition 4.1.2. Let 0 < k2 < k1 be positive real numbers, let k = (k1, k2) and d = (d1, d2)

admissible. Suppose a formal power series f̂ ∈ C[[x]]1/k2 satisfies the following conditions:

1. B̂k2(f̂) can be analytically continued analytically, say as φ, into a small sector of infinite

radius bisected by d2 with exponential growth at most κ. Then we can calculate

Ak1,k2(φ).

2. Ak1,k2(φ) extends analytically, say as ψ, into a small sector of infinite radius bisected

by d1 with exponential growth at most k1.

Then f(x) = Lk1,d1(ψ)(x) is well-defined in a sector bisected by d1 with opening greater than

π/k1. In that case we say that f̂ is k−multisummable in the multidirection d. The function

f is called the k−multisum of f̂ in the multidirection d.

The set of k−multisummable power series in the multidirection d will be denoted by C{x}k,d.

The reader may note that we have suppressed the additional factor xk2 in the previous

definition as compared with the definition of summability. This is because in this case even

if we included such factor, we need then to apply the acceleration operator that also modifies

the exponents but in this case we cannot add another such factor to compensate the change,

at least not maintaining the relation L̂k1 ◦ Âk1,k2 ◦ B̂k2(z
k2 f̂) = zk2 f̂ . One advantage of not

adding this factors is that using convolutions it can be proved directly from the definition

that C{x}k,d is closed by the usual product.

Given k = (k1, k2) and d = (d1, d2) admissible and f̂ ∈ C[[x]]1/k2 we may wonder when

f̂ ∈ C{x}k,d. If this happens we say that d is a non-singular multidirection of f̂ for

k−summability. If instead d is singular it can be for several reasons: first if B̂k2(f̂) can-

not be analytically continued to a small sector of infinite radius bisected by d2 or it can but

with exponential growth greater than κ. In that case any k−admissible d with d2 as second

component is a singular multidirection. Then we say that d is singular at level 2. Second, if

B̂k2(f̂) can be analytically continued, say as φ, into a small sector of infinite radius bisected

by d2 with exponential growth at most κ but Ak1,k2(φ) cannot be extended analytically into

a small sector of infinite radius bisected by d1 or it can but with exponential growth greater

than k1. Then we say that d is singular at level 1.

Once we have identified all singular multidirections at level 2 with common second component

and also identifying admissible multidirections modulo 2π we say that f̂ is k−multisummable

if only remain a finite number of singular multidirections. The set of k−multisummable

formal power series will be denoted by C{x}k.

If k and d are admissible then C{x}k,d and C{x}k are differential algebras and the map

that assigns to each element of C{x}k,d its sum, is a homomorphism of differential algebras.

Using the properties of the acceleration operators it follows that C{x}1/kj ,dj ⊂ C{x}k,d for

j = 1, 2, and the sum operator coincide in both spaces. In particular if f̂j ∈ C{x}1/kj ,dj ,
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j = 1, 2, then f̂1 + f̂2 ∈ C{x}k,d. Conversely we have the following decomposition theorem

due to W. Balser.

Theorem 4.1.2 (Balser). Given k = (k1, k2) and d = (d1, d2) admissible, assume that

1/k2 − 1/k1 < 2. Then for f̂ ∈ C{x}k,d there are f̂j ∈ C{x}1/kj ,dj such that f̂ = f̂1 + f̂2 and

the k−sum of f̂ is given by the sum of the k1−sum of f̂1 and the k2−sum of f̂2.

The definitions of multisummability in a multidirection and multisummability can be gene-

ralized to any number of levels and all the previous properties hold. The most remarkable

result in this theory is the fact that all the formal power series solutions of systems of non-

linear meromorphic ordinary differential equations are multisummable. The first complete

proof of this fact was given by Braaksma [Br]. Another complete proof using similar reaso-

nings can be found in chapter 8 of [B1]. A different proof based on cohomological arguments

is due to Ramis and Sibuya [RS1].

4.2 Monomial acceleration operators

In this section we define an analogue to the acceleration operators adapted to monomials

using the Borel and Laplace transformations defined in Chapter 2. The aim of these operators

is to lead us to a definition of monomial multisummability. Along the section we develop

all its properties, similar to the ones of the classical acceleration operators such as its action

on formal power series, its compatibility with the corresponding Laplace transforms, their

behavior w.r.t monomial asymptotic expansions and with convolutions.

As in the classical case, we want to obtain an analogue to the acceleration operators for

monomials. Following the same lines as in the one variable case we formally calculate the

composition between a Borel and Laplace transforms of different indexes. More specifically,

let p, q, p′, q′ ∈ N∗ be positive natural numbers and let s1, s2, s
′
1, s

′
2 > 0 be positive real

numbers such that s1 + s2 = 1 and s′1 + s′2 = 1. Then a simple calculation shows that for a

function f we have

B(p′,q′)
l,(s′1,s

′
2)

(
L(p,q)
k,d,(s1,s2)

(f)
)
(ξ, υ) =

(ξpυq)k

2πi(ξp′υq′)l

∫
γ

∫ eid∞

0
u−k/l(s′1p/s1+s′2q/s2)f(ξu−s′1/p

′lvs1/pk, υu−s′2/q
′lvs2/qk)eu−vdvdu,

where d is a direction such that |d| < π/2 and γ is a Hankel path.

A possible way to proceed is to request that Λ := s1
s′1

p′

p = s2
s′2

q′

q . This equation can always be

solved for fixed s1, s2 or fixed s′1, s
′
2. For instance, in the first case the solution is given by
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s′1 =
s1p

′q

s2pq′ + s1p′q
s′2 =

s2pq
′

s2pq′ + s1p′q
. (4-5)

Then, for each u, we can consider the change of variables w = u−1vΛl/k. Some calculations,

including the formal interchange in the order the integrals, lead us to the following formula

B(p′,q′)
l,(s′1,s

′
2)

(
L(p,q)
k,d,(s1,s2)

(f)
)
(ξ, υ) =

(ξpυq)k

(ξp′υq′)l

∫ eid∞

0
f(ξws′1/p

′l, υws′2/q
′l)CΛl/k(w

k/Λl)d(wk/Λl)

=
(ξpυq)k

(ξp′υq′)l

∫ eid∞

0
f(ξτ s1/pk, υτ s2/qk)CΛl/k(τ)dτ,

provided that Λl/k > 1. Using equations (4-5), this inequality is equivalent to have

s1(p
′q − pq′) >

p

l
(qk − q′l). (4-6)

In order to be able to choose 0 < s1 < 1 satisfying the above inequality we compare p/p′, q/q′

and l/k and check all the possible cases:

1. Suppose max
{

p
p′ ,

q
q′

}
< l

k . Then any 0 < s1 < 1 satisfies (4-6).

2. Suppose min
{

p
p′ ,

q
q′

}
< l

k ≤ max
{

p
p′ ,

q
q′

}
. Then if p/p′ < l/k ≤ q/q′, we can take any

s1 satisfying 0 ≤ p(qk−q′l)
l(p′q−pq′) < s1 < 1. If q/q′ < l/k ≤ p/p′, we can take any s1 satisfying

0 < s1 <
p(qk−q′l)
l(p′q−pq′) ≤ 1.

3. Suppose l
k ≤ min

{
p
p′ ,

q
q′

}
. Then there is no 0 < s1 < 1 satisfying (4-6).

We remark that in the case of the same monomial, i.e., p = p′, q = q′, we have s′1 = s1,

s′2 = s2 and Λ = 1. Then inequality (4-6) is just l > k.

The previous considerations justify the following definition of an acceleration operator.

Definition 4.2.1. Let p, q, p′, q′ ∈ N∗ be positive natural numbers and k, l > 0 be positive

real numbers such that min
{

p
p′ ,

q
q′

}
< l

k . Let s1, s2 > 0 be positive real numbers satisfying

s1 + s2 = 1 and such that s1(p
′q − pq′) > p

l (qk − q′l). Let s′1, s
′
2 be given by (4-5) and

set I = (p′, q′, p, q, l, k, s′1, s
′
2, s1, s2). The acceleration operator in direction θ, associated to

the monomials xpεq, xp
′
εq

′
, with index (l, k) and weights (s1, s2), (s′1, s

′
2), or simply the

acceleration operator associated to I in direction θ, of a function f is defined through the

formula

AI,θ(f)(ξ, υ) =
(ξpυq)k

(ξp′υq′)l

∫ eiθ∞

0
f(ξτ s1/pk, υτ s2/qk)CΛl/k(τ)dτ, where Λ =

s1
s′1

p′

p
=
s2
s′2

q′

q
.
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To determine the type of functions such that the above integral is meaningful we take into

account the exponential behavior of CΛl/k. If we assume that f has an exponential growth of

the form |f(ξ, υ)| ≤ CeM max{|ξ|κ1 ,|υ|κ2}, for some C,M > 0, then the norm of the integrand

can be bounded by

|f(ξτ s1/pk, υτ s2/qk)CΛl/k(τ)| ≤ Cc1e
M max{|ξ|κ1 |τ |κ1s1/pk,|υ|κ2 |τ |κ2s2/qk}−c2|τ |1/(1−k/Λl)

,

as long as |d| < π
2

(
1− k

Λl

)
and (ξτ s1/pk, υτ s2/qk) belongs to the domain of f . Then it is

natural to request that

pk

κ1s1
=

qk

κ2s2
= 1− k

Λl
.

In conclusion, we may work with functions f having exponential growth as

|f(ξ, υ)| ≤ CeM max{|ξ|κ1 ,|υ|κ2},
1

κ1
:=

s1
pk

− s′1
p′l
,

1

κ2
:=

s2
qk

− s′2
q′l
, (4-7)

for some constants C,M > 0 and all (ξ, υ) in the domain of f . On the domain of f we can

assert the following statements:

1. If f ∈ O(Πp,q(a, b,+∞)), and has exponential growth as in (4-7), then for each θ

satisfying |θ| < π
2

(
1− k

Λl

)
, AI is defined on the region D′

I,θ(a, b,M) given by

a− θ/k < arg(ξpυq) < b− θ/k, M max{|ξ|κ1 , |υ|κ2} < c2(Λl/k, θ).

Note that changing the direction θ we obtain an analytic continuation of AI,θ. This

process leads to an analytic function AI(f) defined in the region∪
|θ|<π

2 (1−
k
Λl)

D′
I,θ(a, b,M),

which is a sectorial region in the monomial ξpυq of opening b− a+ π
(
1
k − 1

Λl

)
.

2. If f ∈ O(Πp′,q′(a, b,+∞)), and has exponential growth as in (4-7), then for each θ

satisfying |θ| < π
2

(
1− k

Λl

)
, AI is defined on the region D′′

I.θ(a, b,M) given by

a− Λθ/k < arg(ξp
′
υq

′
) < b− Λθ/k, M max{|ξ|κ1 , |υ|κ2} < c2(Λl/k, θ).

As before, changing the direction θ we obtain an analytic continuation of AI,θ. This

process leads to an analytic function AI(f) defined in the region∪
|θ|<π

2 (1−
k
Λl)

D′′
I,θ(a, b,M),

which is a sectorial region in the monomial ξp
′
υq

′
of opening b− a+ π

(
Λ
k − 1

l

)
.
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The first natural property of the monomial acceleration operators is that they coincide with

the composition of the corresponding monomial Borel and Laplace transforms, for functions

having the adequate exponential growth.

Proposition 4.2.1. Let f ∈ O(Π) be an analytic function, where Π is a monomial sector on

infinite radius in ξpυq or ξp
′
υq

′
and let I be as in Definition 4.2.1. Suppose f has exponential

growth |f(ξ, υ)| ≤ CeBmax{|ξ|pk/s1 ,|υ|qk/s2} for some C,B > 0 and all (ξ, υ) ∈ Π. Then AI(f)

is analytic in a corresponding monomial sector of infinite radius, has exponential growth of

the form |AI(f)(ξ, υ)| ≤ DeM max{|ξ|p
′l/s′1 ,|υ|q

′l/s′2} for some D,M > 0 and satisfies

L(p′,q′)
l,(s′1,s

′
2)
(AI(f)) = L(p,q)

k,(s1,s2)
(f).

Proof. Set α = Λl/k and β such that 1/α + 1/β = 1. Also to simplify notation write

R(ξ, υ) = max{|ξ|pk/s1 , |υ|qk/s2}. To check that AI(f) has the mentioned exponential growth

we bound it directly, as

|AI(f)(ξ, υ)| ≤
|ξpυq|k

|ξp′υq′ |l|

∫ +∞

0
CeBR(ξ,υ)−c2tβdt

=
|ξpυq|k

|ξp′υq′ |l|
C

R(ξ, υ)

∫ +∞

0
eBu−c2uβ/R(ξ,υ)βdt.

Take any positive number δ and set u0 =
(
B+δ
c2

)1/β−1
R(ξ, υ)β/β−1. Note that if u0 ≤ u then

B− c2u
β−1/R(ξ, υ)β ≤ −δ. By bounding the integral from 0 to u0 and then from u0 to +∞

we see that

|AI(f)(ξ, υ)| ≤
|ξpυq|k

|ξp′υq′ |l
C

R(ξ, υ)

(∫ u0

0
eBudu+

∫ +∞

u0

e−δudu

)
≤ |ξpυq|k

|ξp′υq′ |l
C

R(ξ, υ)

(
1

B
eBu0 +

1

δ

)
.

Since R(ξ, υ)β/β−1 = max{|ξ|p′l/s′1 , |υ|q′l/s′2}, the result follows.

The proof of the last part of the statement follows by calculating the left side of the equality,

interchanging the order of integrals and using formula (4-1).

Using the previous proposition and formulas (2-1) and (2-11) it can be seen that for λ, µ ∈ C
such that Re(λ),Re(µ) > 0 we have
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AI(ξ
λυµ)(ξ, υ) =

Γ
(
1 + λs1

pk + µs2
qk

)
Γ
(

k
Λl +

λs′1
p′l +

µs′2
q′l

)ξλ+pk−p′lυµ+qk−q′l,

=
Γ
(
1 + λs1

pk + µs2
qk

)
Γ
(

k
Λl

(
1 + λs1

pk + µs2
qk

))ξλ+pk−p′lυµ+qk−q′l.

The previous formula suggests the definition of the formal acceleration operator associated

with I as:

ÂI :C[[ξ, υ]] −→ ξpkυqk

ξp′lυq′l
C[[ξ, υ]]

∑
n,m≥0

an,mξ
nυm 7−→

∑
n,m≥0

an,m
Γ
(
1 + λs1

pk + µs2
qk

)
Γ
(

k
lΛ +

λs′1
p′l +

µs′2
q′l

)ξn+pk−p′lυm+qk−q′l.

It is a liner isomorphism and satisfy ÂI = B̂(p′,q′)
l,(s′1,s

′
2)
◦L̂(p,q)

k,(s1,s2)
, giving us the formal counterpart

of the previous proposition.

Remark 4.2.2. Let f̂ =
∑

n,m≥0 an,mξ
nυm =

∑
n≥0 fn(ξ, υ)(ξ

pυq)n be a formal power series

and I as in Definition 4.2.1. A necessary and sufficient condition on f̂ so that ÂI(f̂) is a

convergent power series, is that there are constants K,A > 0 such that

|an,m| ≤ KAn+m

Γ
(
1 + n

κ1
+ m

κ2

) ,
for all n,m ≥ 0, where κ1, κ2 are given by (4-7). This is equivalent to say that f̂ defines an

entire function f with an exponential growth of the form (4-7). Then (ξp
′
υq′ )l

(ξpυq)k
AI(f) exists,

it is analytic in a polydisc at the origin, and it has (ξp
′
υq′ )l

(ξpυq)k
ÂI(f̂) as Taylor’s series at the

origin.

Now assume that there are constants s,B,D,M > 0 such that the family of maps fn are

entire and satisfy the bounds

|fn(ξ, υ)| ≤ DBnΓ (1 + sn) eM max{|ξ|κ1 ,|υ|κ2}, (4-8)

for all (ξ, υ) ∈ C2. This is equivalent to require that the coefficient of f̂ satisfy bounds of

type

|anp+m,nq+j | ≤ KLnp+nq+m+j Γ (1 + sn)

Γ
(
1 + m

κ1
+ j

κ2

) ,
for all n,m, j ∈ N with m < p or j < q (recall formula (1-6)) and some constants K,L > 0 .
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Thus we can conclude that f̂ ∈ C[[ξ, υ]](p,q)s , (ξp
′
υq′ )l

(ξpυq)k
ÂI(f̂) ∈ C[[ξ, υ]](p,q)s+1/k−1/Λl, all the maps

AI((ξ
pυq)nfn) are analytic in a common polydisc centered at the origin and

ÂI(f̂) =
∑
n≥0

AI((ξ
pυq)nfn).

In the same way, if f̂ =
∑

n≥0 f
′
n(ξ, υ)(ξ

p′υq
′
)n and assuming that there are constants

s,B,D,M > 0 such that the family of maps f ′n are entire and satisfy the bounds

|f ′n(ξ, υ)| ≤ DBnΓ (1 + sn) eM max{|ξ|κ1 ,|υ|κ2}, (4-9)

for all (ξ, υ) ∈ C2, or equivalently, to require that the coefficient of f̂ satisfy bounds of type

|anp′+m,nq′+j | ≤ KLnp′+nq′+m+j Γ (1 + sn)

Γ
(
1 + m

κ1
+ j

κ2

) ,
for all n,m, j ∈ N with m < p′ or j < q′ and some constants K,L > 0, we can conclude

that f̂ ∈ C[[ξ, υ]](p
′,q′)

s , (ξp
′
υq′ )l

(ξpυq)k
ÂI(f̂) ∈ C[[ξ, υ]](p

′,q′)
s+Λ/k−1/l, all the maps AI((ξ

p′υq
′
)nf ′n) are

analytic in a common polydisc centered at the origin and

ÂI(f̂) =
∑
n≥0

AI((ξ
p′υq

′
)nf ′n).

As in the study of the Laplace transform we center our attention to the behavior of the

acceleration operators w.r.t. monomial asymptotic expansions. Since these operators relate

two monomials, it is natural to obtain results of asymptotic expansions for each monomial.

The following two propositions are the analogue to Proposition 2.1.11 in this context and

the proofs follow the same lines. Thus we only write the proof of the first one.

Proposition 4.2.3. Let f ∈ O(Πp,q(a, b,+∞)) be an analytic function. Suppose that the

following statements hold:

1. f ∼(p,q)
s f̂ on Πp,q = Πp,q(a, b,+∞), for some s ≥ 0.

2. If T̂p,q(f̂) =
∑

n≥0 fnt
n, then every fn is an entire function and there are constants

B,D,K > 0 such that

|fn(ξ, υ)| ≤ DBnΓ (1 + sn) eKmax{|ξ|κ1 ,|υ|κ2},

for all n ∈ N and for all (ξ, υ) ∈ C2.

3. For every monomial subsector Π̃p,q b Πp,q there are constants C,A,M > 0 such that

for all N ∈ N
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∣∣∣∣∣f(ξ, υ)−
N−1∑
n=0

fn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ ≤ CANΓ(1 + sN)|ξpυq|NeM max{|ξ|κ1 ,|υ|κ2},

for all (ξ, υ) ∈ Π̃p,q.

Then (ξp
′
υq′ )l

(ξpυq)k
AI(f) ∼(p,q)

s+1/k−1/Λl
(ξp

′
υq′ )l

(ξpυq)k
ÂI(f̂) on

∪
|θ|<π

2 (1−
k
Λl)

D′
I,θ(a, b,M).

Proof. To simplify notation we are going to write R(ξ, υ) = M max{|ξ|κ1 , |υ|κ2}. We note

that hypothesis 3. for N = 0 is interpreted as f having exponential growth as in (4-7).

Let h(ξ, υ) = (ξp
′
υq′ )l

(ξpυq)k
AI(f)(ξ, υ) and write T̂p,q

(
(ξp

′
υq′ )l

(ξpυq)k
ÂI(f̂)

)
=
∑

n≥0 hnτ
n. Then, as a

consequence of statement (2), we can use Remark 4.2.2 to conclude that

hn(ξ, υ)(ξ
pυq)n =

(ξp
′
υq

′
)l

(ξpυq)k
AI((ξ

pυq)nfn),

and additionally that (ξp
′
υq′ )l

(ξpυq)k
ÂI(f̂) is (s+ 1/k − 1/Λl)−Gevrey in the monomial ξpυq.

Now fix θ such that |θ| < π
2

(
1− k

Λl

)
. It is enough to prove the result for subsectors contained

in D′
I,θ(a, b,M). If we take one of those proper subsectors Πp,q, we can find δ > 0 small

enough such that

R(ξ, υ) < c2(Λl/k, θ)− δ,

for all (ξ, υ) ∈ Πp,q. Now let Π̃p,q b Πp,q such that (ξτ s1/pk, υτ s2/qk) ∈ Π̃p,q if (ξ, υ) ∈ Πp,q

and τ is on the semi-line [0, eiθ∞). Using statement 3. for Π̃p,q we see that

∣∣∣∣∣h(ξ, υ)−
N−1∑
n=0

hn(ξ, υ)(ξ
pυq)n

∣∣∣∣∣ =∣∣∣∣∣
∫ eiθ∞

0

(
f(ξτ s1/pk, υτ s2/qk)−

N−1∑
n=0

fn(ξτ
s1/pk, υτ s2/qk)(ξpυq)nτn/k

)
CΛl/k(τ)dτ

∣∣∣∣∣
≤
∫ +∞

0
CANΓ(1 +N/l)|ξpυq|NρN/ke−δρ1/(1−k/Λl)

dρ

=

(
1− k

Λl

)
C

δ1−k/Λl

AN

δN(
1
k
− 1

Λl)
Γ(1 + sN)Γ

(
1 +N

(
1

k
− 1

Λl

)
+ 1− k

Λl

)
|ξpυq|N ,

for all (ξ, υ) ∈ Πp,q. We can conclude that (ξp
′
υq′ )l

(ξpυq)k
AI(f) ∼(p,q)

s+1/k−1/Λl
(ξp

′
υq′ )l

(ξpυq)k
ÂI(f̂) on on∪

|θ|<π
2 (1−

k
Λl)

D′
I,θ(a, b,M), as we wanted to show.

Proposition 4.2.4. Let f ∈ O(Πp′,q′(a, b,+∞)) be an analytic function. Suppose that the

following statements hold:
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1. f ∼(p′,q′)
s f̂ on Πp′,q′ = Πp′,q′(a, b,+∞), for some s ≥ 0.

2. If T̂p′,q′(f̂) =
∑

n≥0 f
′
nt

n, then every f ′n is an entire function and there are constants

B,D,K > 0 such that

|f ′n(ξ, υ)| ≤ DBnΓ (1 + sn) eKmax{|ξ|κ1 ,|υ|κ2},

for all n ∈ N and for all (ξ, υ) ∈ C2.

3. For every monomial subsector Π̃p′,q′ b Πp′,q′ there are constants C,A,M > 0 such that

for all N ∈ N

∣∣∣∣∣f(ξ, υ)−
N−1∑
n=0

f ′n(ξ, υ)(ξ
p′υq

′
)n

∣∣∣∣∣ ≤ CANΓ(1 + sN)
∣∣∣ξp′υq′∣∣∣N eM max{|ξ|κ1 ,|υ|κ2},

for all (ξ, υ) ∈ Π̃p′,q′.

Then (ξp
′
υq′ )l

(ξpυq)k
AI(f) ∼(p′,q′)

s+Λ/k−1/l
(ξp

′
υq′ )l

(ξpυq)k
ÂI(f̂) on

∪
|θ|<π

2 (1−
k
Λl)

D′′
I,θ(a, b,M).

To conclude this section we prove the relation between the convolution product and monomial

acceleration operators, i.e., the analogue to formula (4-4) in this context.

Proposition 4.2.5. Let f, g ∈ O(Πp,q) be analytic functions on a monomial sector in ξpυq

of infinite radius. Suppose f, g have exponential growth as in (4-7). Then so does f ∗(p,q)k,(s1,s2)
g,

AI(f ∗(p,q)k,(s1,s2)
g) is well defined and we have

AI(f) ∗(p
′,q′)

l,(s′1,s
′
2)
AI(g) = AI(f ∗(p,q)k,(s1,s2)

g).

Proof. The fact that f ∗(p,q)k,(s1,s2)
g has exponential growth as in (4-7) follows by a direct

estimate. To verify the equality note that by definition we have for some adequate θ that:

AI(f) ∗(p
′,q′)

l,(s′1,s
′
2)
AI(g)(ξ, υ) =

(ξpυq)2k

(ξp′υq′)l

∫ 1

0

∫ eiθ∞

0

∫ eiθ∞

0
(t(1− t))k/Λl−1

f(ξts
′
1/p

′lus1/pk, υts
′
2/q

′lus2/qk)g(ξ(1−t)s′1/p′lvs1/pk, υ(1−t)s′2/q′lvs2/qk)CΛl/k(u)CΛl/k(v)dudvdt.

By performing the change of variables w = utk/Λl, z = v(1− t)k/Λl, interchanging the order

of integrals and applying formula (4-2) we get

(ξpυq)2k

(ξp′υq′)l

∫ eiθ∞

0

∫ eiθ∞

0
f(ξws1/pk, υws2/qk)g(ξzs1/pk, υzs2/qk)CΛl/k(w + z)dwdz.
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Then fixing z, making the change ζ = w+z and after interchanging the order of the integrals

we obtain the expression:

(ξpυq)2k

(ξp′υq′)l

∫ eiθ∞

0

∫ ζ

0
f(ξ(ζ − z)s1/pk, υ(ζ − z)s2/qk)g(ξzs1/pk, υzs2/qk)CΛl/k(ζ)dzdζ =

=
(ξpυq)k

(ξp′υq′)l

∫ eiθ∞

0
(f ∗(p,q)k,(s1,s2)

g(ζ))CΛl/k(ζ)dζ

= AI(f ∗(p,q)k,(s1,s2)
g)(ξ, υ),

as we wanted to show.

4.3 A definition of monomial multisummability

To motivate the definition of monomial multisummability we will propose here, we can prove

an analogous result to Proposition 4.1.1 in the context of monomial summability. It is

proved applying point blow-ups and it provides examples of power series in S that are not

k−summable for any monomial and for any k > 0. The reader may note that the following

result is a generalization of tauberian Theorem 1.3.5.

Theorem 4.3.1. Let p0, ..., pr, q0, ..., qr be positive natural numbers and let k0, ..., kr be

positive real numbers. Let f̂j ∈ R
(pj ,qj)

1/kj
\ R be kj−summable power series in the monomial

xpjεqj , for j = 1, ..., r, respectively. Then f̂0 = f̂1+ · · ·+ f̂r is k0−summable in xp0εq0 if and

only if k0p0 = kjpj and k0q0 = kjqj for all j = 1, ..., r.

Proof. We prove the theorem by induction on r. If r = 1 the statement is just the tauberian

Theorem 1.3.5. Suppose the theorem is true for r − 1 and let us prove it for r. If the

conditions k0p0 = kjpj and k0q0 = kjqj hold for all j = 1, ..., r then by Proposition 1.3.3 we

see that R
(p0,q0)
1/k0

= R
(pj ,qj)

1/kj
for all j = 1, ..., r and the statement is clear.

Conversely, suppose that f̂0 ∈ R
(p0,q0)
1/k0

. We may assume (reindexing the power series if

necessary) that k0p0 ≤ ... ≤ krpr. The following situations cover all the possible cases:

I. We have the strict inequalities k0p0 < ... < krpr and k0q0 < ... < krqr. If we

apply T̂p0,q0 to f̂0 we see from Proposition 1.2.20 and Corollary 1.2.5 that T̂p0,q0(f̂0)

is k0−summable and a sum of max{p0/pj , q0/qj}/kj−Gevrey series, j = 1, ..., r. Since

max{p0/pj , q0/qj}/kj < 1/k0 for all j = 1, ..., r then by Theorem 1.1.13, T̂p0,q0(f̂0) and
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so f̂0 are convergent. Using the induction hypothesis on the series ĝ0 = f̂0 − f̂1 and

ĝj = f̂j+1, j = 1, ..., r − 1, we obtain a contradiction.

II. We have the equalities k0p0 = · · · = krpr. Then we compare the numbers kjqj for

j = 0, 1, ..., r. Suppose there are i ̸= j such that kiqi = kjqj then by Proposition 1.3.3

R
(pi,qi)
1/ki

= R
(pj ,qj)

1/kj
. Reindexing the series we may suppose i = 0, j = 1. Then using the

induction hypothesis on the series ĝ0 = f̂0 − f̂1 and ĝj = f̂j+1, j = 1, ..., r − 1, we see

that k0p0 = kjpj and k0q0 = kjqj for all j = 1, ..., r, as we wanted to show.

Otherwise kiqi ̸= kjqj for all i, j. Reindexing the series we can assume we have the

strict inequalities k0q0 < ... < krqr. Composing with π2 we obtain series f̂j ◦ π2
satisfying f̂j ◦ π2 ∈ R

(pj+qj ,qj)

1/kj
for all j = 0, 1, ..., r. But now the new numbers satisfy

k0(p0 + q0) < ... < kr(pr + qr) and k0q0 < ... < krqr (strict inequalities). Arguing

as in case (I) we can conclude that f̂0 ◦ π2 is convergent and using Proposition 2.3.1

we see that f̂0 is also convergent. Finally using the induction hypothesis on the series

ĝ0 = f̂0 − f̂1 and ĝj = f̂j+1, j = 1, ..., r − 1, we obtain a contradiction.

III. We have k0p0 < krpr but some of the numbers in between are equal. We can write

k0p0 = · · · = ki0pi0 < ki0+1pi0+1 = · · · = ki1pi1 < ki1+1pi1+1 = · · ·
< kim+1pim+1 = · · · = krpr,

where the indexes i0, i1, ..., im indicate when we have a strict inequality. More precisely,

if il + 1 ≤ j ≤ il+1 then kjpj = kil+1
pil+1

and if j = il then kilpil < kil+1pil+1. Now

consider N ∈ N∗ satisfying

N > max
0≤l≤m

kilqil − kil+1qil+1

kil+1pil+1 − kilpil
.

Composing N times the given series with π1 we obtain series f̂j ◦ πN1 ∈ R
(pj ,q

′
j)

1/kj
,

j = 0, 1, ..., r, where q′j = Npj + qj . By the election of N we have the strict inequalities

kilq
′
il
< kil+1q

′
il+1, for all l = 0, ...,m.

Furthermore the order relations between kil+1q
′
il+1, ..., kil+1

q′il+1
are the same as the

ones between kil+1qil+1, ..., kil+1
qil+1

. If for some l a pair of numbers among kil+1q
′
il+1,...,

kil+1
q′il+1

are equal the corresponding spaces coincide and we can use the induction hy-

pothesis to get a contradiction. If not, all the numbers kil+1q
′
il+1, ..., kil+1

q′il+1
are

different, for all l = 0, 1, ...,m. We can even assume, by reindexing the series with

index in the set {il + 1, ..., il+1}, for every possible l, that these numbers are ordered

by the index, as

kil+1q
′
il+1 < · · · < kil+1

q′il+1
,

where all the inequalities are strict. In other words, we have achieve to the situation

k0q
′
0 < · · · < krq

′
r, where all the inequalities are strict. Finally composing with π2 we
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obtain series f̂j ◦ πN1 ◦ π2 ∈ R
(pj+q′j ,q

′
j)

1/kj
, j = 0, 1, ..., r, and the corresponding numbers

satisfy the strict inequalities k0(p0 + q′0) < · · · < kr(pr + q′r) and k0q
′
0 < · · · < krq

′
r. As

in case (I) we conclude that f̂0 ◦πN1 ◦π2 is convergent and then f̂0 is convergent. Using

the induction hypothesis on the series ĝ0 = f̂0 − f̂1 and ĝj = f̂j+1, j = 1, ..., r − 1, we

obtain a contradiction.

Since the only non-contradictory case is when k0p0 = kjpj and k0q0 = kjqj for all j = 1, ..., r,

this is the only possible order relation among those numbers and the statement of the theorem

is true for r. The result follows by the principle of induction.

Example 4.3.1. Consider two different monomials xpεq and xp
′
εq

′
and a, b ∈ C∗ and define

the series

f̂(x, ε) =

∞∑
n=0

(−1)nn!

pan+1
εq(n+1)xp(n+1) =

1

p
Ê

(
1

a
xpεq

)
,

ĝ(x, ε) =

∞∑
n=0

(−1)nn!

p′bn+1
εq

′(n+1)xp
′(n+1) =

1

p′
Ê

(
1

b
xp

′
εq

′
)
,

where Ê denotes the Euler series. The series f̂ is 1−summable in xpεq and satisfies the

differential equation D1(f̂) = xpεq, where D1 = εqxp+1∂/∂x + ap. In the same way, the

series ĝ is 1−summable in xp
′
εq

′
and satisfies the differential equation D2(ĝ) = xp

′
εq

′
, where

D2 = εq
′
xp

′+1∂/∂x + bp′. By Theorem 4.3.1 the series ĥ = f̂ + ĝ is not k−summable in any

monomial, for any k > 0. We want to explore what kind of differential equation it satisfies.

As in the example of J.P. Ramis and Y. Sibuya mentioned in the first section we calculate

a differential operator D of degree 2 that can be factored as D = L1D1 = L2D2, for some

L1, L2 ∈ C(x, ε)[∂/∂x]. If we call P = max{p, p′} and Q = max{q, q′} then a possible such

operator is given by D = A(∂/∂x)
2 +B∂/∂x + C where

A = p′bx3P−p′+2ε3Q−q′ − apx3P−p+2ε3Q−q,

B = p′(p′ + 1)bx3P−p′+1ε3Q−q′ + (bp′)2x3P−2p′+1ε3Q−2q′ − p(p+ 1)ax3P−p+1ε3Q−q

− (ap)2x3P−2p+1ε3Q−2q,

C = pp′ab(p′ − p)x3P−p−p′ε3Q−q−q′ + p(p′)2ab2x3P−2p′−pε3Q−2q′−q − a2bp2p′x3P−2p−p′ε3Q−2q−q′ .

The operators L1 and L2 are given by

L1 =(p′bx3P−p−p′+1ε3Q−q−q′ − apx3P−2p+1ε3Q−2q)∂x + bp′(p′ − p)x3P−p−p′ε3Q−q−q′

+ (bp′)2x3P−2p′−pε3Q−2q′−q − abpp′x3P−2p−p′ε3Q−2q−q′ ,

L2 =(p′bx3P−2p′+1ε3Q−2q′ − apx3P−p−p′+1ε3Q−q−q′)∂x + ap(p′ − p)x3P−p−p′ε3Q−q−q′

− (ap)2x3P−2p−p′ε3Q−2q−q′ + abpp′x3P−p−2p′ε3Q−q−2q′ .
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Then it follows that ĥ satisfies the differential equation of second order

D(y) = 2b(p′)2x3P−p′ε3Q−q′ − 2ap2x3P−pε3Q−q + (bp′)2x3P−2p′ε2q
′ − (ap)2x3P−2pε3Q−2q.

We can differentiate 3P −min{p, p′}+ 1 times w.r.t. x to obtain a homogenous differential

equation satisfied by ĥ. We note that the term multiplying the highest derivative of y in this

new equation is still A. In order to factor a common monomial in A and that the resulting

factor is invertible in (0, 0) it is necessary and sufficient that 3P − p′ + 2 ≤ 3P − p+ 2 and

3Q− q′ ≤ 3Q− q or 3P − p′ + 2 ≥ 3P − p+ 2 and 3Q− q′ ≥ 3Q− q. These inequalities are

equivalent to require that

max

{
p

p′
,
q

q′

}
≤ 1 or max

{
p′

p
,
q′

q

}
≤ 1.

Since the monomials are different, we will see that we are in adequate conditions to apply

monomial multisummability to the series ĥ.

As in the classical theory of multisummability, we want to define a summability method for

series in S capable to sum the series described in Theorem 4.3.1, at least for two summands

and that combines the monomial summability of the monomials involved. Indeed, if we take

f̂ ∈ R
(p,q)
1/k and ĝ ∈ R

(p′,q′)
1/l and set ĥ = f̂ + ĝ we distinguish between the following cases:

1. If p/q = p′/q′ then we can suppose that we are working with the same monomial, so

suppose that xpεq = xp
′
εq

′
and k < l. In particular, the domains of the sum will be a

monomial sectors in that monomial. Then we can use the operator T̂p,q to study the

classical multisummability of the series T̂p,q(ĥ).

2. If p/q ̸= p′/q′ the monomials are essentially different. Then the monomial multisum of

ĥ would be defined in the intersection of the domains of the sum of f̂ and the sum of

ĝ, i.e. in sets of the form Πp,q ∩ Πp′,q′ , for some monomial sectors. At this point the

path changes drastically in view of the nature of this sets.

When restricting our attention to directions d1 and d2 of monomial summability of ĝ and f̂ ,

respectively, the condition of (d1, d2) being (l, k)−admissible in the sense of Definition 4.1.1

is only meaningful in case (1). Then we need to adapt this condition for the general case

to a condition where the domains of the different sums intersect. Taking into account this

remark, a straight generalization of classical multisummability is available with the aid of

the monomial acceleration operators presented in the previous section.

Definition 4.3.1. Let I = (p′, q′, p, q, l, k, s′1, s
′
2, s1, s2) be as in Definition 4.2.1. We will say

that f̂ ∈ S is I-multisummable in the multidirection (d1, d2) if the following conditions are

satisfied
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1. f̂ is 1/k−Gevrey in the monomial xpεq,

2. B̂(p,q)
k,(s1,s2)

(f̂), being convergent in a neighborhood of the origin, can be analytically

continued, say as φs1,s2 , to a monomial sector of the form Sp,q(d1, θ1,+∞), for some

θ1 > 0, with exponential growth of the form CeM max{|ξ|κ1 ,|υ|κ2}, for some constants

C,M > 0.

3. AI(φs1,s2), being defined in a sectorial region in the monomial ξpυq bisected by d1,

can be analytically continued, say as ψs′1,s
′
2
, to the intersection of monomial sectors of

the form Sp,q(d1, θ
′
1,+∞) and Sp′,q′(d2, θ

′
2,+∞), for some θ′1, θ

′
2 > 0, with exponential

growth of the form C ′eM
′ max{|ξ|p

′l/s′1 ,|υ|q
′l/s′2}, for some constants C ′,M ′ > 0.

Then the I−multisum of f̂ in the multidirection (d1, d2) is defined as

f(x, ε) = L(p′,q′)
l,(s′1,s

′
2)
(ψs′1,s

′
2
)(x, ε),

and it is an analytic function in a set of the form Sp,q(d1, θ
′′
1 +π/lΛ, r)∩Sp′,q′(d2, θ′′2 +π/l, r),

where θ′′1 < θ′1, θ
′′
2 < θ′2 and r is small enough.

The set of I−multisummable power series in the multidirection (d1, d2) will be denoted by

RI,(d1,d2) = C{x, ε}I,(d1,d2).

From this definition we can deduce the following two properties guaranteeing the stability of

the set RI,(d1,d2) by sums and products and that series of the form f̂ + ĝ, where f̂ ∈ R
(p,q)
1/k,d1

and ĝ ∈ R
(p′,q′)
1/l,d2

belong to RI,(d1,d2) under the assumption that the domains of their sums

intersects. The first property follows from the linearity of the operators involved for the

addition and from Proposition 4.2.5 for the product.

Proposition 4.3.2. Let I be as in Definition 4.2.1. If f̂ , ĝ ∈ RI,(d1,d2) then f̂+ ĝ ∈ RI,(d1,d2)

and f̂ ĝ ∈ RI,(d1,d2).

Proposition 4.3.3. Let I be as in Definition 4.2.1. If f̂ ∈ R
(p,q)
1/k,d1

and ĝ ∈ R
(p′,q′)
1/l,d2

and the

domains of their sums intersect then f̂ + ĝ ∈ RI,(d1,d2).

The proof of the last proposition reduces to prove that f̂ and ĝ belong to RI,(d1,d2). For f̂

the proof follows using Proposition 4.2.1. For ĝ and its Gevrey order we can use Remark

4.2.2 to conclude that AI(B(p,q)
k,(s1,s2)

(ĝ)) = B(p′,q′)
l,(s′1,s

′
2)
(ĝ) is analytic at the origin and use the

l−sumability of ĝ in xp
′
εq

′
in direction d2 to conclude that ĝ ∈ RI,(d1,d2). The hypothesis of

the intersection of the domains is used to ensure the third condition of the definition.

We remark that in the proofs of the above propositions we also have seen that the monomial

multisum of the series involved is obtained from the monomial sum, accordingly to each case.



Conclusions and future work

We want to briefly summarize in this last part the main conclusions of this thesis and to

indicate some possible lines of work.

We have recalled and developed in detail the notion of monomial asymptotic expansions and

we have focused in the special case of expansions of Gevrey type and monomial summability,

as in the article [CDMS] on which is based our work. Many simple properties have been

written to support the stronger results, including formulas to calculate the monomial sum.

The first remarkable result is the tauberian property that establishes the incompatibility of

non-equivalent monomial summation methods, described in the Theorem 1.3.5.

In the absence of a systematic approach to monomial summability using integral transfor-

mations we have developed Borel and Laplace operators adapted to a monomial but using

weights in the variables, to be able to use the monomial sectors as natural domains of the

functions on which the operators act. Based in the classical theory we have defined a su-

mmability method using these operators (adequate Gevrey type plus analytic continuation

of the Borel transform with good exponential growth) and proved in the Theorem 2.2.1 that

it is equivalent to monomial summability.

The natural scenario to apply monomial summability is the field of singularly perturbed

analytic differential equations and so we did. The applications we have included treat three

types of equations: doubly singular analytic linear differential equations, a partial differential

equations induced naturally by a property of the monomial Borel transform and pfaffian

systems in which every single equation is doubly singular. In all of them we have obtained

properties of existence and uniqueness of formal solutions joint with monomial summability

properties under the key hypothesis of the invertibility of the linear part at the origin of the

analytic function involved: Proposition 3.1.2, Theorem 3.1.4, Proposition 3.3.4, Theorem

3.2.2. In the case of the pfaffian systems also properties of the spectra of the linear parts

at the origin of those functions have been deduced from the classical integrability condition,

Proposition 3.3.1. In the non integrable case, we have deduced from the tauberian theorems

the convergence of formal solutions under mild conditions, Theorem 3.3.3 and Theorem 3.3.5.

Finally, after building examples of non-monomial summable series, Theorem 4.3.1, we have

proposed a notion of monomial multisummability for two levels, by using acceleration ope-

rators adapted to monomials. We have defined and developed such operators in the same

way we did it for the Borel and Laplace transformations in the second chapter. This is just

a first step into a vast, technical and intricate theory far from being understood. By the



154 Toward monomial multisummability

key application of point blow-ups to prove Theorem 4.3.1 we can inquire that a more careful

study of this geometric tool will be necessary to understand monomial multisummability.

Many open questions still remain unanswered and some tools have to be improved. We have

already mentioned the necessity of extend the concept of monomial multisummability to an

arbitrary number of levels. Of course a natural thought is to be able to handle these concepts

also in many complex variables. We have the certainty that the results will extend with no

difficulty, up to increasing technicality. The real problems underlay in the nature of the

domains of the multisum: intersection of many monomial sectors. We hope this summation

method will be as useful for doubly singular equations as the usual multisummability is

to analytic differential equations at singular points, dropping the invertibility hypothesis.

Besides we also can explore in more detail the pfaffian systems we have treated here. Of

course another path to unravel is the sheaf theoretical approach to this theory.
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[FS] Fruchard A.; Schäfke R.: Exceptional complex solutions of the forced van der Pol equation.

Funkcial. Ekvac. 42 (2), (1999) 201–223

[FZ] Fruchard A.; Zhang C.: Remarques sur les developpements asymptotiques. Ann. Fac. Sci.
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