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ABSTRACT 

El objetivo de este trabajo es investigar el comportamiento de ciertos materiales 
bifuncionales mediante catálisis asistida en un proceso llamado Chemical Looping. 
La necesidad de obtener energía ha llevado a un considerable aumento del 
contenido de CO2 en la atmósfera a lo largo de las últimas décadas (principal 
fuente de emisión: combustibles fósiles). Por ello, hoy en día, el uso de energías 
renovables o la reutilización de CO2 están ganando fuerza. Surge así el proceso 
Chemical Looping mediante el cual se puede obtener hidrógeno (fuente de energía 
limpia) o transformar CO2 en CO. Se trata de un proceso cíclico a través de un 
transportador de oxígeno que es reducido (con CH3OH o C2H5OH) y reoxidado (CO2 o 
H2O). Diferentes ferritas (CoFe2O4 y NiFe2O4) modificadas mediante CeZrO2 fueron 
sintetizadas vía método de coprecipitación. La caracterización y análisis de la 
estabilidad y actividad rédox se llevaron a cabo mediante XRD, B.E.T., TEM-EDX, 
TPR/TPO… El material más estable y activo resultó ser 20wt%CoFe2O4-CeZrO2. 
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Abstract 
 

The focus of this work is to investigate the behavior of bifunctional materials in catalyst assisted 

chemical looping process. Different ferrite (CoFe2O4 and NiFe2O4) materials modified by 

CeZrO2 were synthesized via co-precipitation method. Characterization was performed by 

several analytical techniques such as in-situ XRD, B.E.T., TEM-EDX, etc. The redox activity 

and stability at different temperatures (500oC and 750oC) were studied in order to determine the 

most stable bifunctional material. The chemical looping reforming was carried out in two 

stages, in the first step the bifunctional material was reduced by CH3OH or C2H5OH. In the 

second step H2O or CO2 were used for regeneration of to study the production of high purity H2 

and CO. Addition of CeZrO2 improved the redox behavior of ferrite materials. Among the 

modified ferrite materials CoFe2O4 were the best performing materials as they could reduce and 

reoxidize to the as prepared state. The most stable material was 20wt%CoFe2O4-CeZrO2 during 

methanol and ethanol chemical looping. NiFe2O4 supported materials suffered from deactivation 

due to phase transformation as they could not cycle back to spinel (NiFe2O4) phase.  

 
Keywords- Chemical looping process, ethanol, methanol, ferrites, spinel, oxygen storage 

material. 
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�Abstract- The focus of this work is to investigate the behavior of 
bifunctional materials in catalyst assisted chemical looping 
process. Different ferrite (CoFe2O4 and NiFe2O4) materials 
modified by CeZrO2 were synthesized via co-precipitation method. 
Characterization was performed by several analytical techniques 
such as in-situ XRD, B.E.T., TEM-EDX, etc. The redox activity 
and stability at different temperatures (500oC and 750oC) were 
studied in order to determine the most stable bifunctional material. 
The chemical looping reforming was carried out in two stages, in 
the first step the bifunctional material was reduced by CH3OH or 
C2H5OH. In the second step H2O or CO2 were used for 
regeneration of to study the production of high purity H2 and CO. 
Addition of CeZrO2 improved the redox behavior of ferrite 
materials. Among the modified ferrite materials CoFe2O4 were the 
best performing materials as they could reduce and reoxidize to the 
as prepared state. The most stable material was 20wt%CoFe2O4-
CeZrO2 during methanol and ethanol chemical looping. NiFe2O4 
supported materials suffered from deactivation due to phase 
transformation as they could not cycle back to spinel (NiFe2O4) 
phase.  

Keywords- chemical looping process, ethanol, methanol, 
ferrites, spinel, oxygen storage material. 

I. INTRODUCTION 

Over the past centuries, human dependence on fossil fuels 
has increased exponentially. This has led to a considerable 
greenhouse emission (COx, NOx and SOx) rise incrementing 
average global temperature. Nowadays, CO2 is the largest 
contributor, its global atmospheric content is more than 390 
ppn[1] since approximately 30 billion tons per year are 
emitted[2]. Fossil fuel combustion is responsible for more than 
65% according to IPPC. In order to mitigate CO2 emissions, 
renewable energy sources are increasingly in development. 
Chemical looping process is a promising alternative to 
conventional H2 and syngas production networks, which leads 
to value added chemicals. It is a cyclic process through an 
oxygen carrier which is, respectively, reduced and reoxidized 
using feed fuels like CH3OH, C2H5OH or bio-gas as reducing 
agent and H2O/CO2 as oxidizer. Iron oxides are the most 
applied as oxygen carrier due to its high oxygen storage 
capacity, its abundant availability, its environmental 
compatibility and its low cost[1], [3], [4]. To improve 
reduction process splitting oxidative carbon products, iron 
oxides are modified with metals forming ferrites[1]. On the 
basis of literature, Co and Ni have been studied in this work. 
However, ferrites tend to deactivate because of sintering[5] so 
stability is enhanced with promoter elements addition, ex: 
CeZrO2 possess assuring mechanical and redox properties 
towards chemical looping[6]. 
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Thus, CeZrO2 promoted ferrites solid oxygen storage 
materials seem to be good candidates for performing chemical 
looping dry and steam reforming in an efficient way. The 
objective is to find the best performing material to produce 
high purity H2 or CO and value added chemicals. 

II. MATERIALS AND SETUP 

A. Material Preparation 

Samples containing 100, 80, 50 and 20 wt% of 
CoFe2O4/NiFe2O4 promoted by CeZrO2 were synthesized via 
co-precipitation method. Precursors were dissolved in 
deionized water and subjected to stirring in order to 
homogenize the mixture. Ammonium hydroxide base solution 
was added dropwise until reaching a constant pH around 10-
11. Post-treatment consisted of vacuum filtration, drying in an 
oven (240 °C), crushing and calcining (650 °C and 750oC). 
Fe(NO3)3·9H2O, Co(NO3)2·6H2O, Ni(NO3)2·6H2O, 
ZrO(NO3)2·xH2O, Ce(NO3)3·6H2O were used as precursors 
for metals and pH was controlled by ammonium hydroxide.  
All chemicals were supplied by Sigma-Aldrich®. 

B. Material Characterization Techniques 

B.E.T. N2-adsorption experiments were performed on 
Micrometrics Tristar II 3020. TEM imaging was done with 
JEOL JEM-2200 setup and EDX analysis was performed by 
EDAX Genesis 4000. XRD was performed with a Siemens 
Kristalloflex D5000 and in situ XRD analysis on phase 
transformation was performed in Bruker Discover D8 (Vantec 
linear detector) setup. For Temperature-Programmed 
reduction and oxidation, Micrometrics Autochem II 2920 was 
utilized. Cyclic stability was tested in Step Response reactor 
setup. 

III. RESULTS AND DISCUSSION 

A. Transmission Electron Microscopy (TEM) and Energy 
Dispersive X-Ray analysis (EDX). 

On Figure 1a, fresh 20wt% CoFe2O4-CeZrO2 sample 
morphology with crystallite sizes varying between ~10-20 nm 
is showed. Fe and Co are uniformly dispersed (Figure 1b) 
indicating CoFe2O4 formation. CeZrO2 support is also formed 
according to their uniform distribution exhibited in Figure 1c. 
On Figure 2, same sample is showed after methanol redox 
cycles. Diameter has increased with values in order of ~30-50 
nm due to sintering. Figure 2b shows large crystals of Co and 
Fe together in form of spinel phase. However, Fe also remains 
dispersed along with C (Figure 2c) forming carbides which 
lead to deactivation. 



100 nm 100 nm 100 nm

a) b) c)

ZrCoFe Ce  

Figure 1 ± TEM-EDX images of fresh 20CoFe2O4/80CeZrO2,: a) morphology, b) 
elemental mapping of  Fe and Co, c) elemental mapping of Ce and Zr. 

 

Figure 2 ± TEM-EDX images of 20CoFe2O4/80CeZrO2 after methanol redox cycles,: a) 
morphology, b) elemental mapping of  Fe and Co, c) elemental mapping of Fe, Co, C.. 

B. Temperature programmed reaction. 
Redox properties on bulk iron oxides and modified ferrites 

were tested by means of H2-TPR and CO2-TPO measurements. 
Ferrite materials resulted in enhanced redox properties in 
comparison to bulk Fe2O3. However, second cycle of both Co 
and Ni ferrites does not show the same behavior due to 
deactivation because of phase segregation and sintering. Thus, 
CeZrO2 supported ferrites have been investigated leading to 
repeated reduction and oxidation cycles at similar 
temperatures. 

C. In situ XRD analysis 

In-situ XRD analyses performed in prior CoFe2O4 
manifested spinel segregation into metallic Co and Fe3O4 

instead of cycling back during oxidation. For prior NiFe2O4, 
alloy formed during reduction remained stable and only traces 
of magnetite were observed in patterns. This is in agreement 
from H2-TPR and CO2-TPO study. 

In order to understand phase transformations responsible for 
the repeated reduction and oxidation, an in-situ XRD study 
was carried out. Alloy formation during reduction occurred at 
a relatively lower temperature (460 oC) for Co supported 
ferrites and it was reoxidized to spinel original state at 600oC 
without any segregation. However for Ni ferrites, despite 
repeated cycles achieved, alloy remained stable with some 
decomposition into Ni which gave rise to Fe segregation. 

 

Figure 3 ± In-situ XRD for 80wt%CoFe2O4-CeZrO2: a) H2-TPR and b) CO2-TPO. 

 

Figure 4 ± In-situ XRD for 80wt%NiFe2O4-CeZrO2: a) H2-TPR and b) CO2-TPO. 

D. N2- adsorption  

The B.E.T measurements showed that the surface area 
increased with the progressive loading of CeZrO2. Highest 
specific surface area of 42 m2/g was obtained in 20wt% 
CoFe2O4-CeZrO2. 

E. Cyclic stability 
On Figure 5, different oxygen storage materials are compared. 
Activity and stability were studied by means of three different 
stages of redox process. First, methanol/ethanol 
decomposition activity into syngas was investigated along with 
CO2 regeneration and He purging in between. Secondly, a pre-
treatment was performed to test stability after 100 cycles upon 
H2-reduction and CO2-reoxidation. Finally, to test activity, 
four more cycles were undertaken under the same conditions 
as first stage. The highest CO2 conversion to CO is attained by 
20wt%CoFe2O4-CeZrO2 using methanol as feed gas. During 
the first three cycles rapid deactivation is observed. This 
deactivation can be attributed to carbon formation whereas in 
the pretreatment step with H2 and CO2 the effect of sintering 
and stability during prolonged redox cycles was investigated. 
 

 
Figure 5 - Estimated CO yield for CO2 conversion over several redox cycles at 500 oC.  
(Ŷ) 20wt%CoFe2O4-CeZrO2, 

IV. CONCLUSION 

Among the modified ferrite materials, CoFe2O4 with CeZrO2 
were the most active and stable in comparison to 
NiFe2O4/CeZrO2. These ferrite materials could reduce and 
reoxidize to as prepared state. However deactivation due to 
carbon formation and sintering was observed in both the 
bifunctional materials. The carbon formation hinders the 
ability to form high purity H2, but however these materials due 
to their improved oxygen storage characteristics can be used 
as a H2 storage material. The material can be pre reduced with 
H2 and then oxidized by H2O to produce high purity H2 which 
can be used in fuel cell based automobile applications. In this 
way it could be potential clean energy technology. 
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List of symbols and acronyms 
 

Symbol Description Units  Remarks 
A Concentration of gas phase molecules ml/m3 STP Used in B.E.T. theory calculations 

am Molecular surface area m2 B.E.T. equation 

as Specific surface area m2/g B.E.T. equation 
b Instrumental width  rad, deg Scherrer equation 
c Molar concentration mol/m3 Lambert-Beer Law 

cn Storage capacity g CO2/g n corresponds to a determinate number of cycles 
d Plane distance nm Distance between two lattice planes 
d Path length m Lambert-Beer Law 

dXRD Particle dimension nm Used for XRD measurements 

E1 heat of adsorption for the first layer  J/kg Used in B.E.T. equation 

EL heat of adsorption for the second and higher layers  J/kg Used in B.E.T. equation 

K Dimesionless shape factor - Scherrer equation 

Kɲ   XRD 

I Measured intensity  Lambert-Beer Law 

Io Measured reference intensity  Lambert-Beer Law 

mox mass of oxidized metal g 
 mred mass of reduced metal g 
 MWi Molecular Weight of component i g/mol 
 n Cycle number - Integer number 

n Positive integer (order of reflection) - �ƌĂŐŐ͛Ɛ�>Ăǁ 

NA Avogadro's Constant mol-1 The value of this constant is : 6.022·1023 mol -1 

 Mole of CO produced mol  

nf,o Initial molar amount of fuel mol 
 nf Final molar amount of fuel  mol Molar amount of fuel at certain cycle n 

pA Saturated pressure of adsorbate gas Pa B.E.T. equation 

pi Partial pressure of component i Pa B.E.T. equation 

p0 Vapor pressure  Pa B.E.T. equation 
R Constant of Ideal Gases  J/mol ·°C Value of gas constant: 8.314 J/mol ·°C 

si Surface area m2/g  

ss Specific surface area m2/m3  
T Temperature °C 

 Vm Theoretical monolayer adsorption capacity ml STP B.E.T. equation 
W Sample weight   B.E.T. equation 

 Mass of oxygen carrier material kg Yield 

Xf Fuel conversion   
 Xi Fraction of active metal oxide in the sample   
 

  
  

 

  
  

 

  
  

 



 

Greek symbol Description Units Remarks 
ɴ Peak width deg, rad   Full width half maximun according to Scherrer's equation 
 
ɴ Linear heating rate °C/min      Parameter in TPR 

ɽ Diffraction angle deg, rad 
  Angle between incoming X-rays and the normal to the 
reflecting lattice plane. 

 
ʄ X-ray wavelength nm      ^ĐŚĞƌƌĞƌ͛s and Bragg͛s law 

ȴ,°r Standard reaction enthalpy kJ/mol      Standard reaction enthalpy per mole of reaction 

     

Acronym Description Remarks 
AES Atomic Emission Spectroscopy Determine elemental composition 

B.E.T. Brunauer,emett, Teller Theory of N2-adsorption 

CLC Chemical Loopig Combustion 
 CLDR Chemical Looping Dry Reforming 
 CLP Chemical Looping Process 
 CLSR Chemical Looping Steam Reforming  

CP Co-precipitation Material preparation method 

EDX Energy-dispersive X-ray spectroscopy 
 FWHM Full Widh Half Maximun Scherrer's equation 

HTWGS High Temperature Water shift   

ICP Inductively Coupled Plasma 
 IPCC Intergovernmental Panel on Climate Control  

LTWGS Low Temperature Water gas shift   

M Metal in its reduced form 
 MeO Metal in its oxidized form 
 MS Mass Spectrometer 
 OC Oxygen Carrier 
 OES Optical Emission Spectroscopy Determine elemental composition 

RT Room Temperature 
 SSA  Specific surface Area 
 STP Standard Temperature and Pressure T=273.15 K and P=1.013 bar 

TCD Thermal Conductivity Detector  

TEM Transmission Electron Microscopy 
 TPO Temperature-Programmed Oxidation  
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Since the industrial revolution, human dependence on fossil fuels has increased exponentially. This has 

resulted in increased emission of greenhouse gases (COx, NOx and SOx) which are responsible towards 

global warming [1]. Thus there is a need to minimize the dependence on fossil fuels and rely on clean 

energy renewable sources. One of the abundant inexpensive renewable source of chemicals and energy is 

biomass. Feedstocks containing alcohols especially methanol and ethanol due to high carbon to hydrogen 

ratio and their easy biomass derivability are promising towards clean energy production [2], [3]. One 

attractive process to convert these fuels to value added chemicals and produce high purity H2/CO is 

chemical looping process.  

It is a cyclic process based on the periodic reduction and reoxidation of the oxygen storage material [4]. 

During this process, the oxygen storage material is reduced by feed (ex: CH3OH, C2H5OH or bio-gas) to 

produce value added chemicals. Then in the second step H2O/CO2 is used again as a reoxidation agent to 

regenerate the material resulting in the production of high purity H2/CO. However the operating 

temperatures and stability are governed by the oxygen storage materials. The most widely investigated 

materials as oxygen storage materials are the transition metal oxides (Fe, Ni, Cu)[5]. However among 

these, iron oxides due to the high oxygen storage capacity, abundant availability and environmentally 

friendly are widely applied [6]. The oxygen carriers are usually novel metal materials that can be modified 

to improve redox properties. In the present study the chemical looping approach consists of two-steps i.e., 

first the reduction of a modified metal oxide by a reducing agent, which is oxidized to carbon oxides, 

hydrogen and water, followed by the re-oxidation of the pre-reduced oxide with H2O or CO2, to produce 

high purity H2 or CO respectively.  

However when iron oxides are applied in chemical looping processes with hydrocarbon containing feed 

ex: bio gas (CH4, H2O) as a feed, the reduction step produces CO2 and H2O along with H2 and CO. The 

oxidizing gases produced during reduction of methane limit the kinetics in this step [7], [8]. In order to 

improve the kinetics of the reduction step an extra element is added to the oxygen storage material, which 

can split the oxidative products and enhance the reduction. Usually iron oxides are modified with metals 

to form ferrites. Among these Ni and Co based ferrites have been applied towards this process, [9], [10], 

however Co, Ni-ferrites tend to deactivate rapidly. In order to improve the stability, support such as CeZrO2 

are employed due to their promising mechanical and redox properties towards chemical looping. In this 

master thesis, the application of ferrite materials towards chemical looping process using methanol or 

ethanol as feed gas and H2O/CO2 as oxidizer has been investigated.  

CHAPTER 1        INTRODUCTION 
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The literature study mainly focusses on the applicability of chemical looping towards production of value 

added chemicals. It discusses the use of various potential feedstocks, and oxygen storage materials applied 

in this process. The importance of renewable feed stocks (ex: bio-ethanol and bio-methanol) and modified 

iron oxides materials are the major focus. 

 
2.1  IMPORTANCE OF RENEWABLE ENERGY 
 

The current rise in global temperatures because of the increase in the emission of greenhouse gases from 

the use of fossil fuels has been provoking a serious alarm. This has led to increased concern in global 

climate change and impose some restrictions on gases emissions.  

Hence over the past decade the importance of using renewable sources to minimize greenhouse gases 

(SOx, NOx, COx) has been stressed. Among greenhouse gases, CO2 due to a high residence time in the 

atmosphere poses a serious threat to the climate. The global atmospheric content of CO2 has increased 

from 280 ppm to 390 ppm in the past decades [1] and, according to the Intergovernmental Panel on 

Climate Control (IPCC), the percent of carbon dioxide from fossil fuels combustion and industrial processes 

emitted to the atmosphere is 65%. Therefore, it was established that, by 2050, a considerable reduction 

is indispensable to control the global temperature rise lower than 2 °C [11] meaning that CO2 

concentrations cannot exceed 450 ppm [1].  

In order to minimize the carbon dioxide emissions into the atmosphere, several technologies such as CO2 

capture and utilization techniques have gained significance. In this aspect chemical looping provides an 

interesting alternative towards CO2 utilization. This process converts CO2 to value added chemical such as 

CO which can be used as raw material for Fischer Tropsch processes.  

The second alternative to minimize greenhouse gas emissions, is to rely on clean energy sources such as 

H2. The use of Hydrogen as a clean energy fuel, is a promising alternative as the only by product resulting 

from the combustion is H2O. However, the main challenge is to produce high purity hydrogen which can 

be used in fuel cell based technologies to produce energy in small scale ex: automobile engines and 

domestic household purposes. Feedstock containing alcohols, especially ethanol and methanol, are 

promising to produce hydrogen due to their biomass derivability, easy handling and high hydrogen to 

carbon ratio. 

CHAPTER 2        LITERATURE SURVEY 
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In the coming sections, the various conventional technologies to produce hydrogen will be described. 

Further, the simplicity and applicability of hydrogen energy production and advantages of CO2 utilization 

through chemical looping are discussed. 

 

2.1.1 Hydrogen applications 

Hydrogen is used as a raw material in various applications ranging from small scale, e.g. hydrogenations in 

pharmaceuticals and fine chemicals, medium scale, e.g. manufacture of chemicals such as aniline, 

cyclohexanol and butanol, to large scale, e.g. manufacture of a number of important bulk chemicals like 

methanol, ammonia and sponge iron[3]. In addition, large amounts of hydrogen are consumed in different 

industrial processes like refining petroleum such as hydrodemetallation, hydrodewaxing, 

hydrodesulphurization, hydrocracking, hydrodenitrogenation, etc., treating metals, processing food and 

producing fertilizer. 

As energy source, H2 can be utilized in conventional electric power generation technologies, for 

transportation and for portable electronic devices like mobile phones and laptops [12]. For example, NASA 

(National Aeronautics and Space Administration) is an important user of hydrogen as fuel. At the 

beginning, liquid hydrogen was its rocket fuel and, moreover, NASA was one of the first to employ fuel 

cells to power electrical systems on space craft. The main exploitations of hydrogen as a clean energy 

source are in automobile engines, power plant turbines or in fuel cells.  

o Transportation  

Transportation applications include buses, trucks, passenger vehicles and trains. Search of hydrogen use 

in fuel cells and internal combustion engines (methanol systems also) is being a big challenge to overcome. 

[12] This work is conducted towards hydrogen production for using specially in automobiles and fuel cells. 

The infrastructure for fuel cells vehicles will be improved step by step because a lot of benefits over 

traditional vehicles can be procured from fuel cells such as energy security and reduced carbon dioxide 

emissions. [12] 

o Stationary power generation 

This point involves back-up power units, grid management, power for remote locations, stand-alone 

power plants for towns and cities, distributed generation for buildings and cogeneration [12]. 

o Portable power generation 

Applications for fuel cells comprises consumer electronics, business machinery and recreational devices  
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2.1.2  Conventional methods to produce hydrogen 

H2 is the most abundant element in the Universe. Nevertheless, hydrogen in its elemental state is difficult 

to find on Earth. Hence should be generated/stored and used instantaneously. A wide variety of process 

technologies can be utilized to produce hydrogen, from fossil fuels (natural gas, coal) and renewable 

sources (water, biomass) to chemical and biological processes. The Figure 2.1 shows a scheme of the 

various sources to produce hydrogen energy. The most widely used methods for bulk H2 production are: 

steam reforming, gasification of coal and other hydrocarbons, electrolysis of water, biomass conversion 

(thermochemical and biochemical processes). Steam reforming is the most industrially applied processes 

and is described in detail in the next section. 

 
Figure 2.1 ʹ Some feedstock and process alternatives [13] 

Method Process 

Steam reforming 

In presence of nickel catalyst & at 700 ʹ 1100°C:͒ 

 CH4(g) + H2O(g)՜ CO(g) + 3H2(g) 

Next reaction at lower temperature: 

CO(g) + H2O(g) => CO2(g) + H2(g) 

Gasification 
At high temperature and pressure:  

Coal + H2O(g) + O2(g) =>  syngas  

Electrolysis 
Electric current passed through water:  

2H2O(l) => 2H2(g) + O2(g) 
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Method Implementation Advantages Disadvantages 

Steam 

reforming 

Current major 

source of H2 

65-75 % Efficiency Economical 

(cheapest method) 

Established infrastructure 

Nonrenewable source 

CO2 emissions  

Gasification 
Current method of 

mass H2 production 

Large supplies of coal 

Inexpensive resources 

CO2 emissions 

45% efficiency 

Electrolysis 

Not in so much use 

due to cost of 

electricity 

Depend on electricity source 

CO2 emissions if coal is 

energy source. 

Production can require 

more energy than it is 

released. 

 

Table 2.1 ʹ Main methods to produce hydrogen [14] 

 

2.1.2.1 Steam reforming network 

 

It is the most common way to generate commercial bulk H2 and it has dominated synthesis-gas production 

for 70 years. The process is performed in a reformer into which steam reacts with a hydrocarbon fuel (fossil 

fuel), typically natural gas whose main constituent is methane (CH4) which possesses a high heating value 

and the greatest H/C ratio [15].  

Scientists are continually looking for improvements in steam reforming such as catalysts, operation 

conditions and heat transfer. However, its intensive energy requirement is inevitable.[15] Steam reforming 

is entirely feasible thermodynamically and entangles the strongly endothermic conversion of fossil fuel 

(CH4) and H2O into H2 and CO (Reaction 2.1) ǁŚŽƐĞ�ĞŶƚŚĂůƉǇ�ŝƐ�ȴ,r=206 kJ/mol [13].  

 

ସܪܥ  ଶܱ�ሺ݃ሻܪ  �ݐ݄ܽ݁ ՜ ܱܥ   ଶ                                                                     Reaction 2.1ܪ͵

 

Given that methane is not a reactive molecule because of the high energy of C-H bond (439 kJ/mol), the 

process normally takes place at high temperatures, between 700-850°C, and pressures of 3 to 25 bar. 
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Figure 2.2.  Steam reforming process  

 

In consequence, the reaction catalyst has to be active and resistant in this regard the most widely used are 

nickel-based catalysts which are shown a reasonable methane conversion [16]. In fact, zirconium oxide 

was a good support according to Yasuyuki et al. [17] 

Unfortunately, the efficiency of the process can decrease if the methane source used as feed gas contains 

some impurities of sulfur or other compounds since it would require a pre-treatment cleanup to remove 

them[18]. Besides, other issues are: a) thermodynamics confirms that only above 900°C higher conversions 

are achieved, however heat transfer coefficient is become the rate-limiting factor if working temperature 

is so elevated and b) thermodynamically, reduced species formation is favorable giving rise to carbon 

filaments (Boudouard reaction and coke deposition) covering nickel particles and its subsequent chemical 

deactivation or, even, catalyst breaking. If water is fed in excess, these problems could be solved.[19]  

In addition, a membrane reactor has been proposed by Yasutuki Matsumura et al. in which hydrogen is 

separated from the mixture increasing the equilibrium conversion of methane [17]. Uemiya et al. also 

reported very high methane conversion at lower temperature using this type of reactor [20].  

In addition to produce high purity H2, the following steps need to be carried out. 

2.1.2.2   Water gas shift reaction 
 

Fuel cells can use hydrogen feed stream with different purities depending on the type and future 

application of fuel cell. As a case in point high-temperature fuel cells admit high concentration of CO 

or/and CO2 in the feed flow whereas, for low-temperature fuel cells, CO adsorbs irreversibly on the surface 

of electrode catalysts blocking the reaction sites for hydrogen [21]. Because of this and with the goal of 

increasing hydrogen selectivity, CO coming from methane steam reforming can be transformed in CO2 and 

H2 through the water-gas shift reaction [13].  
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It is an historical and industrial important reaction which reached a large development in 1960 when one 

catalyst of copper and zinc was discovered for low temperature shift reaction. Since then, the water gas 

shift reaction has been performed mainly to generate hydrogen for processes like ammonia synthesis or 

hydro treating of petroleum stocks. Nowadays, it is being used mainly for fuel cells in steam reforming as 

it was declared above. The development is focused on searching for catalyst characterization, kinetic and 

reactor modeling. [5] The exothermic reaction describes the conversion of carbon monoxide and steam to 

carbon dioxide and hydrogen ĂŶĚ�ƚŚĞ�ŝŶǀŽůǀĞĚ�ĞŶƚŚĂůƉǇ�ŝƐ�ȴ,r = -41.1 kJ/mol [22].  

 

ܱܥ ܪ�ଶܱ� ՞ ଶܱܥ ܪ�ଶ                                                                                Reaction 2.2 

 

 
Figure 2.3.  WGSR progress as function of temperature [23] 

 

The notable temperature dependency makes that the equilibrium constant decreases with a temperature 

rise which means that at lower temperatures (Figure 2.3) it is noticed a higher carbon monoxide 

conversion. Thus, WGSR is inhibited at high temperatures and, besides, it is slow compared to other 

hydrocarbon reactions what gives room to a reactor with large dimensions, usually the biggest element in 

this type of processes. To accomplish a reactor size reduction is a fundamental matter[5]. 

Nevertheless, the higher temperature, the higher reaction rates so, in order to take advantage of both the 

thermodynamics and kinetics of the reaction, WGSR is executed in multiple adiabatic steps involving a high 

temperature shift (HTWGS) followed by a low temperature shift (LTWGS) with intersystem cooling. 

Different catalysts are required in each stage because of diverse operation conditions.  
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o High temperature WGS (HTWGS) 

In a typical operation, gas comes from reformer at approximately 350-450°C. Next, HTWGS also occurs 

within a temperature range between 310-450 °C . The incoming temperature is maintained to prevent a 

very high exit temperature since this rises during the length of reactor due to its exothermic nature. Typical 

pressure condition is a range from atmospheric to 8375 kPa.  

HTWGS initial step is favored by high reaction rates, but it is thermodynamically restricted so carbon 

monoxide conversion is incomplete and, about 3-4% CO concentration still remains in exit stream [23].  

The most commonly used and commercial HTWGS catalyst is the iron oxide-chromium oxide. Its use has 

been recognized owing to its advantages such as low cost, long life and reasonable resistance to sulphur 

though the restraint is its deactivity below 350 °C [23]. Iron oxides are in charge of material catalysis and 

the chromium acts to stabilize iron oxide and prevents sintering. 

 

o Low temperature WGS (LTWGS) 

A consecutive low temperature shift reaction is performed to produce a CO exit concentration of less than 

1% and to achieve hydrogen production. LTWGS reactor operates at a range of 200 to 250 °C. The typical 

LTWGS catalyst is a copper-based catalyst but its temperature stability is poor above 300 °C and it tends 

to poisoning by sulfur and thermal sintering. Copper-based catalysts are usually combined with ZnO, which 

provides structural support and prevents sulfur poisoning, and with Al2O3 which prevents dispersion. It is 

important to operate at low temperatures to preserve the activity and to prevent side reactions.  

 

2.1.2.3   Disadvantages of steam reforming 

Nowadays, concerning the effort to minimize CO2 emissions, the search of alternative methods to replace 

fossil fuels for hydrogen generation is the main focus of renewable energy sources development. Mainly, 

taking into account that most of H2 production technologies exhibit a high penalty of energy giving rise to 

an efficiency loss and a price rise [11], ex: Figure 2.5 represents the long chain of steps that steam 

reforming network entails, including steam reforming and water-gas shift reaction, in order to achieve a 

reasonable hydrogen conversion and high hydrogen stream purity. 
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          Figure 2.4. Hydrogen production network [23] 

Among different alternatives proposed during the last years, Chemical looping process has gained special 

attention. This emerging technology is able to collaborate in a wide range of applications such as fuels, 

chemicals and electricity productions in addition to reducing carbon dioxide emission[4]. 

 

2.2   MAIN FUNDAMENTALS OF CHEMICAL LOOPING PROCESS 

 

 
Figure 2.5 Chemical looping process basis  

Chemical looping is a process based on redox cycles (Figure 2.5) through an oxygen carrier which is reduced 

and reoxidized, respectively, transporting the required oxygen to convert a specific fuel. The oxygen carrier 

is commonly a transition metal oxide (MeO) which is reduced by a fuel gas producing CO2 and/or H2O and, 

subsequently, it is reoxidized by means of air or steam/carbon dioxide generating heat or CO/H2.  
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In a normal chemical looping unit, the solid material (metal oxide, MeO) is circulated between two 

reactors: the reducer and oxidizer [4]. Diverse reducing agents like hydrogen, methane and syngas can be 

chosen and, among oxidizing agents, air, CO2 and H2O are the most frequently employed. Furthermore, 

other studies have considered the option of metal thermal reduction applying concentrated solar energy 

and providing oxygen[24]. Depending on the gas employed in the oxidation step the chemical looping can 

be broadly be classified into the following categories: 

Chemical looping combustion (CLC): Air is used to regenerate the oxygen storage material. It basically 

consists of carbonaceous conversion into heat following the operation scheme described above. [1], [4].  

 

Reactions performed during CLC are described in what follows as well as a process scheme that consists 

of two interconnected reactors[25]: 

  

ሺʹ݊ ݉ሻ݁ܯ௫ ௬ܱ ܥ�ܪଶ �՜ � ሺʹ݊ ݉ሻ݁ܯ௫ܱ௬ିଵ  ଶܱܪ݉   ଶ                            Reaction 2.3ܱܥ݊

௫ܱ௬ିଵ݁ܯʹ �ܱଶሺ݃ሻ �՜ ௫݁ܯʹ� ௬ܱ                                                                                             Reaction 2.4                                   

 

On the other hand, for high purity hydrogen production, the regeneration of oxygen carrier must be 

performed by using H2O, obtaining a hydrogen stream as product. This type is called Chemical looping 

steam reforming (CLSR) [4]. A separate stream of pure and easily sequestered CO2 can be also formed if 

the reducing agent is any syngas. The wide typical range of operation temperatures is 500-1000°C [9] 

depending on the reactants and solid material. [4]: 

 

ሺʹ݊ ݉ሻ݁ܯ௫ܱ௬ିଵ �ሺʹ݊ ݉ሻܪଶܱ� ՜ � ሺʹ݊ ݉ሻ݁ܯ௫ ௬ܱ  ሺʹ݊ ݉ሻܪଶ                            Reaction 2.5                                  

 

Another kind of chemical looping process whose name is Chemical Looping dry reforming (CLDR) or 

Chemical Looping CO2 conversion produces synthesis gas (mainly CO) which can be employed in other 

chemical processes. The oxidizing agent is CO2 and the typical operating conditions are 700-900 °C [11]. 

Unlike the target of traditional dry reforming, CLDR is optimized for CO2 activation with the goal of 

maximum CO yield and no selectivity for H2 over an oxygen storage material [7], [4], [26]: 

ሺʹ݊ ݉ሻ݁ܯ௫ܱ௬ିଵ �ሺʹ݊ ݉ሻܱܥଶ �՜ � ሺʹ݊ ݉ሻ݁ܯ௫ ௬ܱ  ሺʹ݊ ݉ሻܱܥ                            Reaction 2.6   
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For each type of Chemical Looping process according to the application, it is totally crucial to find the 

best oxygen carrier material taking into account different operation conditions. 

 

2.3   OXYGEN CARRIERS 

2.3.1 Characteristics [1] 

A key issue in the system performance is the selection of an appropriate oxygen carrier material. Among 

the characteristics taken into account to choose the carrier with criterion, it is found: its limited cost, some 

environmental aspects, the reactivity of the oxygen storage material, thermal stability, resistance to 

attrition, negligible carbon deposition, no agglomeration. 

Oxygen storage capacity and favourable thermodynamics depend on the redox system because though 

oxidation reaction is always exothermic, the reduction reaction depends on the system redox, it is 

sometimes exothermic (H2 or CO) and other times endothermic (with CH4). 

Besides, the pure metal oxides do not fulfil normally the characteristics and reaction rates so it is necessary 

a porous support to provide a higher surface area for reaction. Thus, the method used in the preparation 

of the materials strongly also affects the properties of the oxygen-carrier. 

The economic cost, includes three important factors: cost of the metal oxide, the inert, and the 

manufacturing cost. Cobalt and nickel are the more expensive metals, followed by copper. Manganese and 

iron exhibit the lowest prices. 

Oxygen carriers based on nickel and cobalt derived compounds have carcinogenic properties, hence toxic 

to the environment. Hence environmentally friendly materials, iron and manganese which are considered 

as non-toxic materials can be applied towards Chemical Looping applications 

It has also to take into account the attrition behaviour of solids (in fluidized fuel reactors), the particles 

agglomeration due to the fact that it could cause solids circulation disturbances and channeling and carbon 

deposition on the oxygen-carrier particles since it reduces the efficiency of the CO2 capture.  

2.3.2   Oxygen carrier materials 

Many efforts have been made to develop oxygen-carriers suitable for the different processes. Most of the 

oxygen-carriers proposed in the literature are synthetic materials. The active metal oxides (CuO, Fe2O3, 

NiO, Mn3O4 or CoO) are supported on different inert materials such as Al2O3, MgAl2O4, SiO2, TiO2, ZrO2 [1]. 
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The most important oxygen-carriers are [1]: 

 

o Ni-based oxygen-carriers: high reactivity, good performance at high temperatures (900-1100 ºC) 

but more expensive (solution: particles with low nickel content) and toxic (safety measures). Pure 

NiO has low reaction rate (due to low porosity) so some improvements can be done like using 

support material or different preparation methods. Alumina (Al2O3) based compounds as support 

material is a good option because they show very high reactivity with fuel gases, no agglomeration 

problems, low attrition rates and avoidance of carbon deposition but the problem is the partial 

transformation of NiO into NiAl2O4 spinel compound. 

 

o Cu-based oxygen-carriers: non-hazardous, cheaper, high reaction rates and oxygen transfer 

capacity and no thermodynamic restrictions. In particular, CuO has been investigated because of 

its high reactivity. However, the oxidation rate decreases with the number of cycles rise so to 

improve CuO performance, a number of Cu-based materials have been prepared using different 

compounds as support materials and different preparation methods. In spite of Cu-based 

materials have exhibited very high reactivity, they exhibit agglomeration problems due to the low 

melting point of Cu (1085 ºC). Therefore, Cu-based materials are good oxygen-carriers at 

temperatures lower than 800 ºC but higher temperatures would be preferred to obtain a better 

efficiency in the process. 

 

o Mn-based oxygen-carriers: non-toxic and cheap material, higher oxygen transport capacity. 

Particles of pure manganese oxide show low reactivity. To improve its performance, ZrO2 is used 

to stabilize the compound achieving a good reactivity and stability. 

 

o Co-based oxygen-carriers: low economic and environmental feasibility but high transport 

capacity. Although several oxidation states can be involved in redox reactions, Cobalt oxide is not 

suitable as oxygen carrier due to low thermal stability of Co3O4. 

 

o Fe-based oxygen-carriers: low cost, abundant availability, environmental compatibility (not toxic), 

no risk of sulphide or sulphate formation in Chemical Looping Combustion and overall favourable 
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thermodynamics [9]. Different oxidation states (Fe3O4, FeO, Fe) are detected when Fe2O3 is 

reduced (Fe2O3 => Fe3O4 => FeO => Fe), but Fe3O4 is thermodynamically unable to oxidize by CO2 

and H2O, only using air (O2) as oxidizing agent. Other problems have also been found, iron oxides 

with high surface area rapidly deactivate due to material sintering. To eliminate sintering 

problems, ferrites can be deposited on porous supports like Al2O3, TiO2, MgAl2O4, SiO2, ZrO2, CeO2 

or CeZrO2. 

 

In general, Fe-based materials exhibited good reactivities, especially with CO and H2. Fe-based oxygen 

carriers with small addition of Ni-based particles has been proposed by Juan Adanez et al. to be useful for 

Chemical Looping for hydrogen production. 

 

¾ Chemical looping dry and steam reforming 

Focusing on chemical looping reforming processes, reactivity is the strongest criterion because the 

reactivity of CO2 and H2O as oxidizers is lower than air. After a thermodynamic analysis to identify suitable 

metals, it was concluded that a great deal of transition metals can be oxidized by CO2 but many of them 

present some restrictions such as equilibrium conversion for reduction depending on the fuel and required 

temperatures close to melting points [26]. Some metals give reasonable CO2 reduction capacity to CO, 

however, among these, iron shows the widest operating temperatures range along with high oxygen 

storage capacity (for two moles of Fe, there are three moles of oxygen). Comparing thermodynamically 

specific oxides of Ni, Cu, Co and Mn, Fe2O3 shows the most promising conversion of CO and H2 to CO2 and 

H2O, according to Victoria J. Aston [9]. Moreover, a higher conversion of H2O to H2 is obtained by oxidation 

of Fe and FeO to Fe3O4 [9]. Fe3O4 cannot split water to regenerate Fe2O3 without O2 oxidation since Fe3O4 

is thermodynamically unable to oxidize much of the CO and H2 in syngas to CO2 and H2O, leaving part un 

reacted syngas. 

The commonly performed reactions using Fe-based materials are: 

 

ଶܱଷ݁ܨ͵  �ͻܪଶȀܱܥ� ՞ ݁ܨ  ͻܪଶܱȀܱܥଶ                                                                       Reaction 2.7 

݁ܨ  �ͺܪଶܱ� ՞ ଷ݁ܨʹ ସܱ  ͺܪଶ                                                                                          Reaction 2.8 

ଷ݁ܨʹ ସܱ �ଵଶ ܱଶ �՞  ଶܱଷ                                                                                                  Reaction 2.9݁ܨ͵
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2.3.3  Bifunctional materials 

A bifunctional material is a novel material widely employed in chemical looping reforming process which 

apart from taking part in the redox process, i.e. reduction and oxidation, it improves reaction 

characteristics providing some essential qualities to the material such as sintering prevention and good 

material dispersion with support addition and better activity and stability in addition to fuel conversion to 

reducing agent over a catalyst addition [7]. In short, through a bifunctional material, three steps take place: 

a first catalyst step where fuel is split, a reduction process and an oxidation process, returning to its initial 

phase. 

Hence, it is clear that the intrinsic properties of a metal oxide can be altered by changing or doping with 

additional metallic constituents in order to fulfill better properties. As a matter of fact, in the past decades, 

nanosized spinel ferrite particles have gained more attention. They have been investigated in a great deal 

of fields like ferrofluids, magnetic refrigeration systems, microwave industries. It is recognized that spinel 

ferrites (binary and ternary) are successfully used as catalysts for industrial processes such as Fischer-

Tropsch reaction, hydrodesulfurization of crude petroleum, decomposition alcohols etc. [27]  

 

2.3.3.1 Structure  

The general formula of a spinel is Me2+Me2
+3O4 and they present three ways of distribution [27]: 

- Normal: divalent metal ions placed on tetrahedral A-sites (Me2+)A [Me2
+3]B O4 

- Inverse: divalent metal ions located on octahedral B-sites (Me3+)A [Me2+Me+3]B O4 

- Intermediate or partially inverse: between normal and inverse (Mex
2+Meʄ

3+)A [Me1-x
2+Me2-ʄ

+3]B O4 

In the particular case of Fe, Fe3+ cations can occupy both A or B sites depending on the stoichiometric ratio. 

Thus, the distribution in spinel structure influences physically and chemically material so its determination 

is considerable to study the properties [27]. 
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Figure 2.6.  Lattice structure distribution  

 

2.3.3.2 Modified iron oxides  

Iron is suggested for hydrogen production at relatively high temperatures but redox cycles in that case 

induce structural changes, agglomeration, sintering and deactivation of iron. For this reason, a 

metal/metal oxide, a catalyst and a convenient support are some requisites to work at lower temperatures 

with high reactivity of solid reactants [28]. In particular, bifunctional materials are mostly utilized so as to 

increase the reactivity of particles, to improve the conversion of the fuel gas, to decrease the attrition and 

carbon deposition, to reduce the preparation cost and to minimize toxic metals [1]. 

Another important restraint of iron is the possibility of soot, Fe3C and FeCO3 formation in the reduction 

process by CO and CO2 leading to hydrogen with carbon impurities production [28]. Therefore, looking for 

convenient conditions for a thermodynamically easier reduction step and to decrease carbide and 

carbonate formation tendency, some transitional metal are commonly employed. Cu, Co and Ni are the 

most sustainable for Chemical Looping. 

Nevertheless, the main restraint of copper is that its operating temperature is limited due to the low 

melting point of metallic Cu (1063 -1085°C). Thus, several studies eliminated Cu as potential oxygen carrier 

owing to agglomeration problems [29]. Hence, Ni and Co have been chosen for cyclic hydrogen production 

in Chemical looping.  

The mixed metal spinels NiFe2O4 and CoFe2O4 have the composition AB2O4. The alone magnetite Fe3O4 

contains one Fe2+ ion for two Fe3+ ions whereas, in the mixed, all the Fe ions are Fe3+ and Ni and Co present 
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a 2+ charge [9]. A higher conversion of H2 and CO2 during mixed metal ferrite reduction than through Fe3O4 

along with a mixed metal spinel regeneration after oxidation unlike Fe2O3 case were showed by Karel 

Svodoba et al. [28] . Special consideration should be given to the possible segregation upon cycling to 

Fe3O4, NiO, and CoO instead of cycling back to NiFe2O4 and CoFe2O4 spinel. Hydrogen yield will be higher 

in mixed metal ferrites because Fe2+ to Fe3+ oxidation gives rise to an additional H2 production [9]. In fact, 

according to Jonathan R. Scheffe et al. CoFe2O4 generate twice the amount of hydrogen as Fe2O3 under 

the same conditions, probably, since the ability of Co2+ to cycle between metallic state and 2+ oxidation 

state. Furthermore, this study reported that the cyclability was maintained for up to 7 cycles [30]. 

In addition, a driving force is necessary so as to methanol and ethanol decomposition takes place. This is 

explained in a below section. Both cobalt and nickel are capable of provoking methanol decomposition. 

Besides, they are cheap and widely used in the industry, especially Ni. Furthermore, both can work at high 

temperatures (900-1100 °C). However, according to Kodama and Gokon, hydrogen production during first 

cycle is higher using Cobalt than nickel. On the other hand, considering average yield at the same reducing 

temperature, it is concluded that nickel is more promising [31].  

 

2.3.3.3 Modified ferrites 

Therefore, chemical looping process relies strongly on the material activity. As stated above, the main 

challenge is to select an appropriate oxygen carrier which maintains its activity and stability in repeated 

reduction and reoxidation cycles and iron oxides prove to be the best option for thesis aim but, it is well-

known that these particles with high surface area rapidly deactivate due to material sintering and coke 

formation [4], [7]. Hence, redox support materials are commonly utilized to prevent catalyst deactivation. 

Among different supports like SiO2, Al2O3, MgO, MgAl2O4, CeO2 and CeZrO2 [11], cerium oxide stands out 

as promoter owing to characteristics such as high activity in methane or syngas oxidation by lattice oxygen 

and improvement of metal catalyst dispersion. In addition, its redox couple (Ce4+/Ce3+) facilitates surface 

deposited coke gasification by storing and transferring active oxygen [4][7]. Thus, this promoter brings out 

structural modification and stabilization of iron oxides what makes it an ideal support material for 

hydrogen production chemical looping. Besides, it has been demonstrated an improvement in reducibility 

at lower temperatures with the creation of a solid solution between transition metal oxide and cerium 

oxide [4]. Finally, Zirconium enhances the surface area, thermal stability and oxygen storage capacity of 

material if it is introduced in the ceria lattice structure [32]. 
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To sum up, CeO2 was chosen due to its redox properties, taking part in the reaction and acting as a physical 

barrier and Zr was introduced to improve thermal stability of Ce. 

2.3.4 Chemical looping reforming process 

Chemical looping reforming process for H2 production and CO2 conversion from methanol and ethanol as 

reducing agents through CoFe2O4 and NiFe2O4 are based on three steps: firstly, biofuel must be 

decomposed in syngas over a catalyst, secondly spinel is reduced with the organic feed fuel whose 

products are CO, CO2, H2O and H2 and, finally, reoxidation to initial state of material. In fact, in general, 

iron-based oxides of Co-, Cu, Ni-, Zn- ferrites, also with ceria and zirconia as support, are good candidates 

for the decomposition [22]. Stefano Cocchi et al. considered that CoFe2O4 presents great interest because 

of its higher reducibility and, consequently, lower reduction temperature and, also, E. Manova et al. 

studied the changes in redox properties of iron and mixed iron cobalt oxides in methanol decomposition 

[22], [27]. 

On the other hand, Nickel catalysts have also proved to be active for decomposition. Specific surface area 

of metal depends on the content and crystallite size of nickel, for that reason, they are key factors to 

control. For instance, the investigation of Yasuyuki Matsumura et al. showed that small nickel particles (2-

4 nm) are less active than large ones what means that decomposition is promoted on well-crystallized Ni 

particles [33]. 

2.3.4.1 Methanol and ethanol steam reforming 

According to conventional networks in which bioalcohols are usually employed and referring to Section 

2.2.2.1. Methanol and ethanol can be used as feed fuels in hydrogen production by steam reforming 

process. Both ƌĞĂĐƚŝŽŶƐ� ĂƌĞ� ĞŶĚŽƚŚĞƌŵŝĐ͕� ȴ,r=131 kJ/mol for methanol [2] ĂŶĚ� ȴ,r= 238 kJ/mol  for 

ethanol [34]. 

�ܪଷܱܪܥ  ��ଶܱܪ ՜ ଶܱܥ   ଶ                                                        Reaction 2.10ܪ͵

 

�ܪଶܱܪܥଷܪܥ  ��ଶܱܪ͵ ՜ ଶܱܥʹ  ܪଶ                                            Reaction 2.11 

Methanol is a bulk chemical generated in large quantities and it can be produced from renewable 

feedstocks avoiding anthropogenic carbon dioxide emission to the atmosphere. Among its characteristics, 

it stands out its easy conversion at low temperatures (200-300 °C), high hydrogen-to-carbon ratio, it does 
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not possess carbon-carbon bond what makes it a energetically favourable process and prevents soot 

formation. [2] 

On the other hand, the very attractive qualities of ethanol are its availability, handling safety, storage, 

moderately high hydrogen content and its renewable production from some biomass sources such as 

waste materials from agroindustries, organic fraction of municipal solid waste, energy plants, forestry 

residue materials, etc. [34], higher energy content and lower toxic level than methanol [2].  

The steam reforming of these alcohols can be influenced by a great deal of undesirable factors, mainly, 

disliked side reactions. Therefore, to achieve a high yield of pure hydrogen, some variables have to be 

studied and adjusted such as temperature, pressure and reactants ratio. Because of this, first of all, it is to 

analyse the effect of these variables on product stream investigating the thermodynamics. Some studies 

have performed a thermodynamic analysis of the process and have concluded that the steam reforming 

of methanol and ethanol is totally attainable [3] [35]. For instance, concerning ethanol, the following 

statements guide to high purity hydrogen and syngas: low pressure, higher water/ethanol ratio and high 

temperatures [35][36].  

The main difficulty is to find a catalyst which presents high stability and activity for steam reforming, resists 

to coke formation and, above all, leads to high yield of H2. In the case of ethanol steam reforming, a few 

studies described the performance of a diversity of catalysts like Ni, Co, Cu and noble materials like Rh, Pd 

and Pt. To cite an instance, Dimitris K. Liguras et al. reported that both supported Ni catalysts and 

supported Rh catalyst present high activity, stability and selectivity under selected experimental conditions 

leading to hydrogen-rich process gas production [34]. However for methanol case, Copper-based catalysts 

are almost the most frequently material utilized for methanol steam reforming. B. Lindström et al. studied 

the reforming of methanol over various copper-based catalysts testing with different promoters such as 

chromium, zinc and zirconia and with aluminum oxide as support. The conclusion was that hydrogen yield 

increases if the content of Cu is higher and chromium promotes catalyst activity preventing the formation 

of agglomerates. [2] 
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2.3.4.2  Methanol decomposition 

Methanol decomposition is a convenient process to obtain syngas for reduction reaction. To carry out the 

reduction process, a reducing agent like hydrogen and methane is necessary. Methanol has been become 

one of the most appropriate liquid energy carriers because of its synthesis from plentiful sources and its 

high hydrogen-to-carbon atomic ratio. The main objective concerning this thesis is to obtain high purity  

hydrogen or high purity of carbon monoxide so by means of methanol decomposition, it is produced 

syngas, i.e. hydrogen and carbon monoxide, which can be allocated for chemical processes or used as fuel 

for fuel cells, vehicles and gas turbines [27]. 

o Reaction 

Methanol conversion to hydrogen and carbon monoxide is an endothermic process with a 90.7 kJ/mol 

heat of reaction [37]. Therefore, a heat contribution is necessary to reach required temperature and to 

maintain the reaction. Furthermore, it is necessary a catalyst so that reaction takes place. 

�ܪଷܱܪܥ ՜ ܱܥ   ଶ                                                     Reaction 2.12ܪʹ

In consequence, methanol decomposition depends on temperature as it is showed in studies reported by 

E. Manova et al. and Yasuyuki Matsumura et al. [27], [33] Temperature range in which methanol 

decomposition is achieved is, approximately, between 250-450 °C. 

o Reaction conditions 

As objection, carbon monoxide generated is an atmospheric pollutant, poisonous for fuel cells and harmful 

to health so another process must be done before using hydrogen product stream for fuel cells. Moreover, 

the reaction can give rise to undesired by-products like di-methyl-ether and methane. Both issues depend 

on the reaction conditions and catalyst choice [38].  

Catalysts that work at low temperatures with high selectivity to H2 and CO and good activity are necessary 

to apply methanol decomposition as hydrogen source for applications like vehicles and fuel cells [39]. 

o Methanol as feed gas in CLP 

Chemical looping process consists of three steps if methanol is used as feed gas. Before taking place the 

reduction, bioalcohol is decomposed through a catalyst, as stated above in the bifunctional material 

explanation. CO and H2, i.e. syngas, are the products from the reaction and they are charge of carrying out 

reduction of the oxygen storage material. Next, bifunctional material is regenerated by mean of a oxidation 

process upon H2O or CO2 leading to H2 and CO generation. Reactions performed are the following: 

1.      Catalytic Step                 ܪܥ�ଷܱܪ� ՜ ܱܥ   ଶ                                                        Reaction 2.13ܪʹ
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2.      Reduction Step             ݁ܨଷ ସܱ  ܱܥ�  ଶܪ �՜ ݁ܨ  ଶܱܥ� ܪ�ଶܱ                        Reaction 2.14 

               3.      Oxidation Step              ݁ܨ  �ଶܱܪଶȀܱܥ� ՜ ଷ݁ܨ ସܱ   ଶ                              Reaction 2.15ܪ�Ȁܱܥ�

 

2.3.4.3  Ethanol decomposition 

Ethanol is a very important energy carrier and it can be also utilized as feed fuel gas in Chemical Looping 

steam and dry reforming. This bioalcohol has potential as hydrogen carrier for fuel cell applications. 

Thermal decomposition of ethanol strongly depends on the pressure[40] and it takes place at high 

temperatures.  

o Reaction 

The dominant decomposition reaction is showed at Reaction 2.16. When ethanol is decomposed, it gives 

rise to some products which can be employed as reducers in Chemical Looping process in order to produce 

high purity hydrogen or carbon monoxide relying on the chosen oxidizing agent.  

�ܪହܱܪଶܥ ՜ ସܪܥ  ܱܥ ܪ�ଶ                                                     Reaction 2.16 

o Reaction conditions 

Unlike methanol decomposition, ethanol exhibits an important restraint: It forms methane in its 

decomposition. As section 2.1.2.1. encloses, methane needs high temperatures to decompose, to carry 

out this second decomposition a third functional compound would be necessary so it would be a 

trifunctional material. For that reason, in this investigation, methane has not been decomposed working 

with some bifunctional materials. 

o Ethanol as feed gas in CLP 

Ethanol Chemical Looping reforming process is also performed in three steps (one is subdivided in two). 

1.      Catalytic Step                 ܥ�ଶܪହܱܪ� ՜ ସܪܥ  ܱܥ   ଶ                                           Reaction 2.17ܪ

2.a. Reduction Step                ܪܥ�ସ  ଷ݁ܨ ସܱ ՜ ଶܱܥ  ଶܱܪʹ   Reaction 2.18                             �݁ܨ

2.b.             ݁ܨଷ ସܱ  ܱܥ�  ଶܪ �՜ ݁ܨ͵  ଶܱܥ� ܪ�ଶܱ                  Reaction 2.19 

               3.      Oxidation Step              ͵݁ܨ  �ͶܱܥଶȀͶܪଶܱ� ՜ ଷ݁ܨ ସܱ  �ͶܱܥȀ�Ͷܪଶ                 Reaction 2.20 

 

 

 

 



 

 
 

 

 

21 

2.3.5 Material synthesis 

Obviously, once it is known the importance of properties ferrites, it is necessary to carry out deeply some 

investigations on preparation procedures and characterization by various analytical techniques[41]. 

Various nanostructures of CoFe2O4 and NiFe2O4 have been successfully fabricated by the following 

methods: hydrothermal method, chemical co-precipitation, thermal decomposition, sol-gel method, 

pulsed laser deposition, electrodeposition, microemulsion, combustion and electrospinning [42]. 

The selection of an appropriate synthetic procedure often depends on the desired properties and the final 

applications. The following is a more detailed explanation of some of these methods, focusing on chemical 

co-precipitation which is used for this specific experiment. 

o Electrospinning: it represents a simple, effective and convenient method for preparing polymer 

fibers and ceramic fibers (ultrathin). In a typical procedure, a high electrical potential is applied 

between a droplet of a polymer solution and a grounded target. When the applied electric field 

gets over the surface tension of the droplet, a charged jet of polymer solution is ejected and its 

route is controlled by the electric field. The charged jet undergoes a stretching process resulting 

in the formation of many continuous fibers. 

Only a few studies have been reported on electrospinning of magnetic oxide nanofibers but,  some 

novel metal oxide nanofibers have been successfully prepared by this process followed by 

calcination at high temperature. An interesting investigation on this topic is reported by Montana 

Sangmanee and Santi Maensiri 2009 [42]. Another study of CoFe2O4 nanostructures and their 

variation of magnetic properties with calcination temperature was reported by Zhongli Wang et 

al. 2008 [43].  

 

o Microwave combustion: it is one of the most effective, simple and feasible method for the rapid 

synthesis with high purity, homogeneity and improved characteristics of the nanomaterials. The 

procedure consists of the microwave energy transformation into heat energy by strong 

intermolecular friction and rises the precursor materials temperature suddenly. Other significant 

advantages are its adequacy for the preparation of large quantities of products without the need 

of higher temperatures for calcination, energy loss reduction, economical viability improvement 

and the chemical reaction and kinetics speeding up. 
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On the basis of some reported studies, an interesting investigation was carried out in order to try 

to improve the optical, magnetic and catalytic properties of spinel ferrites. The research attempts 

to identify the effects of Zn2+ doping and it was reported by E.Hema et al. 2015 [44].  

 

o Sol-gel method: This synthesis route of the polymerized complex has been used to obtain 

especially nickel, nickel-zinc and strontium ferrites. It presents a better control in the 

stoichiometry of the products and, besides, it uses lower synthesis temperatures, shorter reaction 

times and gives better reproducibility. 

Two interesting studies are reported by Mathew George et al. 2006 [43] and by Sagrario M. 

Montemayor et al. 2007 [45] in which there is a comparison between CoFe2O4 and NiFe2O4 

synthesis. 

 

o Chemical co-precipitation: It consists of precipitating at the same time two metal compounds in 

aqueous solution which contains cation metal salt (nitrates). To get the precipitation, it is used a 

base which is added dropwise and which will be changing the pH until reaching a constant value. 

At this moment, the precipitation has been achieved with all cations in the same structure forming 

a spinel structure in this study case. 

Among all the synthesis methods, the chemical co-precipitation method is the most widely used 

for its simplicity, good control of crystallite size, free from contamination, lower cost and more 

homogeneous mixing of the components. 

 

9 LITERATURE SURVEY CONCLUSIONS 

From the literature survey performed, Co and Ni ferrites show promising prospects as bifunctional 

materials in methanol and ethanol chemical looping. Their redox properties can further enhanced by 

modifying them with support materials such as CeZrO2. A coprecipitation strategy would be adopted 

towards synthesis. These materials would be further tested for their activity and stability. 

 

 



 

 
 

 

 

23 

This main objective of this chapter is to describe procedures followed towards the synthesis (section 3.1) 

and testing of oxygen storage materials towards chemical looping (section 3.2). 

3.1   MATERIAL SYNTHESIS 

3.1.1 Synthesis strategy 

Based on the literature survey (Chapter 2), co-precipitation method was adopted to synthesize modified 

iron ferrites as bifunctional materials in chemical looping. A batch of 5 grams for each sample was 

synthesized. The list of precursor materials used in synthesis is tabulated in Table 3.1, all of them were 

supplied by Sigma-Aldrich. The stoichiometric amount of precursor materials were weighed and mixed in 

a beaker with 400 ml of H2O to form a solution. The solution was made homogeneous by constant stirring 

at 400 rpm at room temperature, once crystallites were dissolved, temperature was ramped to 70ࣙC, while 

ammonium hydroxide solution was added dropwise. The onset of precipitation is characterized by change 

in the solution colour due to precipitate being formed. This process occurs at a pH between 10-11. Once 

the pH is attained the addition of base is stopped and the solution is stirred for 5 min in those conditions 

and then allowed to precipitate. pH control is a fundamental step to be followed during the co-

precipitation. Samples with varying loadings (100, 80, 50, 20 wt% CoFe2O4/NiFe2O4-CeZrO2 ) were 

synthesized.  

Precursor Molar weight (g/mol) Function 

Fe(NO3)3·9H2O 403.997 Novel material 

Co(NO3)2·6H2O 291.035 Novel material 

Ni(NO3)2·6H2O 290.79 Novel material 

ZrO(NO3)2·xH2O 231 Support 

Ce(NO3)3·6H2O 434.22 Support 

NH4OH 35.045 Driver precipitation 

 

Table 3.1 ʹ List of chemical precursors used in materials synthesis. 
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3.1.2  Post-treatment 

After the procedure described in section 3.1.1, a post-treatment is performed on the samples. Firstly, 

obtained mixtures were vacuum filtered to separate desired precipitate from the solution (Figure 3.1.a). 

Secondly, this precipitate is dried overnight in an oven at 240 ࣙC to eliminate water amount (Figure 3.1.b). 

After drying, samples were crushed using a pestle and mortar (Figure 3.1.c) and weighed to verify how 

much amount of material has been synthesized. Finally, resulting samples were calcined (Figure 3.1.d) at 

650 ࣙC for 6 hours from room temperature according to the following temperature program (Figure 3.2).  

           
Figure 3.1. ʹ Post-treatment devices: 

a) Vacuum filtration, b) Drying oven, c) pestle and mortar, d) Calcination oven. 

 

 
Figure 3.2. ʹ Temperature program for calcination. 
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3.2   MATERIAL CHARACTERIZATION TECHNIQUES 
 

The following experimental setups were used to characterize the samples and to analyze the physic-

chemical properties. 

- XRD: Siemens Kristalloflex D5000. 

- In-situ XRD: Bruker Discover D8 (Vantec linear detector). 

- N2- adsorption: Micrometrics Tristar II 3020. 

- TPR / TPO: Micromeritics Autochem II 2920. 

- Experimental reactor set-up: Step response. 

- TEM: JEOL JEM-2200FS. 

- EDX: EDAX Genesis 4000.  

- ICP-AES: Thermo Scientific iCAP 6500. 

 

3.2.1  X-Ray Diffraction (XRD) analysis 

XRD analysis is a non-destructive characterization tool used in materials science and solid state chemistry. 

Some basic concepts and the information derived from XRD are explained below. 

A solid matter can be classified as [46]: 

- Amorphous: atoms are arranged in a random way. 

- Crystalline: periodic arrangement. In such a way that crystal is like a repetition of the smallest 

volume element in the structure called unit cell and whose dimensions (lattice parameters) are 

three axes (a,b,c) and the angles between them ɲ͕�ɴ͕�ɶ�ǁŚŝĐŚ�ĐĂŶ�ďĞ�ĚĞƚĞƌŵŝŶĞĚ�ďǇ�yZ�͘ 

 

 

 

 

 

 
The structures of crystals and molecules are often being identified using X-Ray diffraction studies since its 

discovery in 1895. Each crystalline material always gives the same characteristic X-ray powder pattern 

Figure 3.3. ʹ Lattice structure of a crystal [52] 
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independently of the others in a mixture of substances, it is like a fingerprint used for its identification. 

Due to this property, XRD is mainly employed to determinate each compound in a sample and to 

characterize its structure. 

o Information that can be obtained from powder x-ray diffraction are as follows [47]: 

- Lattice parameters 

- Phase identity 

- Phase purity 

- Crystallinity 

- Crystal structure 

- Percent phase composition 

 

o Operation 

In XRD, the sample is scattered with a monochromatic beam of X-rays photons (one wavelength by a filter 

or a crystal monochromator). When an X-Ray beam hits an atom, the electrons around it start to oscillate 

with the same frequency as the incoming beam. In almost all directions it will be found destructive 

interference (out of phase and no resultant energy leaving the solid sample). However, in a crystal, there 

will be constructive interference due to the regular pattern of their atoms so the waves will be in phase 

and X-Ray beams will leave the sample at various directions. 

 
Figure 3.4. ʹ Phase of Interferences  

o Beam production 

X-Rays are generated through a metal (Cu and Mo usually) by bombarding with a beam of high-speed 

electrons whose emission is produced from a hot filament (Tungsten as the most common material). When 

the beam impacts on the metal, electrons are ejected and drop from a lower level (1s) to an upper level 

(2p or 3p) filling the atom vacancies and giving rise to X-Rays emission. X-Ray source in XRD set-up was Cu 

metal whose Kɲ beam = 1.5418 Å 
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Figure 3.5. ʹ X-Rays production device [47] 

 

o �ƌĂŐŐ͛Ɛ�>Ăǁ 

�ŝĨĨƌĂĐƚŝŽŶ� ŝƐ� ďĂƐĞĚ�ŽŶ��ƌĂŐŐ͛Ɛ� >Ăǁ͘� dŚĞ� ůĂǁ� ƐƚĂƚĞƐ� ƚŚĂƚ�ǁŚĞŶ� ƚŚĞ� ƌĂĚŝĂƚŝŽŶ� ŝƐ� ŝŶĐŝĚĞŶƚ�onto a crystal 

ƐƵƌĨĂĐĞ͕� ŝƚƐ�ĂŶŐůĞ�ŽĨ� ŝŶĐŝĚĞŶĐĞ͕�ɽ͕�ǁŝůů�ƌĞĨůĞĐƚ�ďĂĐŬ�ǁŝƚŚ�Ă�ƐĂŵĞ�ĂŶŐůĞ�ŽĨ�ƐĐĂƚƚĞƌŝŶŐ͘��ŶĚ͕�ǁŚĞŶ�ƚŚĞ�ƉĂƚŚ�

difference, d, is equal to a whole number, n, of wavelength (remaining in phase), the scattered waves 

interfere constructively. TherefoƌĞ͕��ƌĂŐŐ͛Ɛ�>Ăǁ�ƌĞůĂƚĞƐ�ƚŚĞ�ůĂƚƚŝĐĞ�ƐƉĂĐŝŶŐ�ĂŶĚ�ĚŝĨĨƌĂĐƚŝŽŶ�ĂŶŐůĞ�ǁŚŝĐŚ͕�ŝŶ�

turn, is a function of X-ray intensity.  

 
Figure 3.6. ʹ Bragg´s Law 

 
 

ߣ݊ ൌ  Ʌ                                                          Equation 3.1݊݅ݏ�݀ʹ

Where: 

- ʄ [nm] = wavelength of the x-ray 

- d [nm] = spacing of the crystal layers (lattice space or path difference) 

- ɽ�ࣙC] = incident angle (the angle between incident ray and the scatter plane) 

- n = a positive integer (order of reflection) 
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o Scherrer equation for crystallite size: 

The main disadvantage of XRD is its intensity dependency on the crystallite size. Crystallite size can be 

estimated by means of Scherrer equation calculation using full-width half maximum (FWHM) of each 

characteristic peak. 

݀ ൌ � �ఒ
ሺஒିୠሻ�ୡ୭ୱ                                          Equation 3.2 

Where: 

- ʄ [nm] = wavelength of the x-ray. 

- d [nm] = particle dimension (diameter). 

- K = a dimensionless shape factor, with a value close to unity (constant). 

- ɽ [ࣙC] = Bragg angle. 

- ɴ�ƌĂĚ�с�ƉĞĂŬ�ǁŝĚƚŚ�Ăƚ�ŚĂůĨ�the maximum intensity (FWHM). 

- b [rad] = instrumental width 

 

This equation is limited to nanoscale particles (no more than 0.1-0.2 ʅŵͿ�ŽǁŝŶŐ�ƚŽ�ƚŚĞ�ĨĂĐƚ�ƚŚĂƚ�Ă�ǀĂƌŝĞƚǇ�

of factors can contribute to the width of a diffraction peak. For crystallite size calculation, it is necessary 

to correct ɴ�ǀĂůƵĞ�ŽďƚĂŝŶĞĚ�ĨƌŽŵ�ƚŚĞ�ĞǆƉĞƌŝŵĞŶƚ�ƉĞĂŬƐ�with a reference data base like the used in this 

master thesis, LaB6 crystal reference.  

WŽƐŝƚŝŽŶ�;ϮɽͿ Width (b) WŽƐŝƚŝŽŶ�;ϮɽͿ Width (b) 

21.354 0.250 63.267 0.299 

30.395 0.242 67.603 0.330 

37.464 0.245 71.803 0.340 

43.534 0.256 75.907 0.363 

48.993 0.266 79.931 0.353 

54.029 0.278 83.920 0.392 

 

Table 3.2 ʹ Instrumental width (b) of LaB6 crystal. 
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3.2.2  In-situ X-Ray Diffraction analysis. 

In-situ XRD can be utilized to examine crystallographic changes or solid-state reactions.[7] In the present 

study, crystallographic transformations in the sample during H2-TPR, CO2-TPO and isothermal cycling were 

followed in a Bruker-AXS D8 Discover (Cu Kɲ radiation of wavelength 0.154 nm), in situ XRD setup. The set 

up consisted of a homebuilt reaction chamber with a Kapton foil window to allow X-ray transmission and 

a linear Vantec detector covering 20o with an angular resolution of approximately 0.1° in 2ɽ� [11]. A 

collection time of 10 seconds was used during the experiment [7]. Approximately 10 mg of powder is 

spread on a single crystal Si wafer (1,1,1). No interaction between the Si wafer and catalyst sample was 

observed [11]. Prior to the start of experiment the chamber is degassed to a base pressure of 5 Pa by 

means of a rotation pump and purged with helium. A uniform ramp rate of 20 ࣙC/min till a temperature 

of was used during H2-TPR and CO2-TPO studies. The isothermal cycling experiments were undertaken at 

500 ࣙ C and 750 ࣙ C with alternating sequences of reduction and oxidation. All the gas flows were maintained 

at 33 Nml/sec and 10%H2/He and CO2 (100%) were employed for reduction and reoxidation. Full XRD scans 

(10° to 65° with a step of 0.02°) at room temperature is performed on as prepared samples at selected 

stages of experiments.  

 

3.2.3  N2-adsorption analysis. BrunauerʹEmmettʹTeller (BET) 

BET analysis provides information on the sample specific surface area which is related to particle size, 

particle morphology, surface texturing and porosity [48]. This analysis technique is based on Brunauerʹ

EmmettʹTeller theory which explains physical adsorption of inert gas molecules (ex: Nitrogen) on a solid 

surface. Specific surface area of a material can be determined by calculating the amount of adsorbate 

corresponding to a monolayer on the surface at a given pressure. It is derived from van der Waals forces 

that are established between the adsorbent surface area of sample and adsorbate gas molecules. Surface 

area is determined by monolayer formation and the principle of capillary condensation is applied to detect 

the presence of pores, pore size distribution and pore volume. So not only BET surface area can be 

accomplished by this technique but also other useful information. 

The basis of BET theory is an extension of Langmuir theory (monolayer adsorption) to multilayer 

adsorption on solid materials which is more realistic than the presupposition of monolayers.  
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 Some assumptions are established [49]:  

- Homogeneous surface 

- No lateral interactions between molecules 

- Uppermost layer is in equilibrium with vapor phase 

- First layer: Heat of adsorption 

Higher layers: Heat of condensation 

- At saturation pressure, the number of layers becomes infinite 

 
Figure 3.7. ʹ Gas adsorption theory.  

 

An adsorption isotherm is obtained by measuring the amount of gas adsorbed across a wide range of 

pressures at a fixed temperature (typically liquid N2, 77 K) [50]. Conversely desorption isotherms are 

achieved by measuring gas removed as pressure is reduced. There are 6 types of isotherms presented on 

next Figure 3.8.  

 
Figure 3.8. ʹ Isotherms of adsorption [49]. 

x Type I:  surface almost exclusively inside the pores. Once they are filled, there is no more external 

surface area or only a little bit.  

� Stage 1: Isolated sites on the surface begin to adsorb gas 
molecules at low pressure. 

� Stage 2: Coverage of adsorbed molecules increases to 
form a monolayer with a gas pressure increase. 

� Stage 3: Beginning of multi-layer coverage. Smaller pores 
fill first. BET to calculate specific surface area. 

� Stage 4: Complete coverage. The BJH calculation to 
determine pore diameter, volume and distribution. 
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x Type II: frequently nonporous powders or powders with diameters exceeding micropores.  

x Type III: characterized by heats of adsorption lower than the adsorbate heat of liquefaction. 

Adsorption proceeds as the adsorbate interaction with an adsorbed layer is greater than the 

interaction with the adsorbent surface 

x Type IV: porous adsorbents with pores in the range of 1.5 ʹ 100nm. at higher pressures the slope 

shows increased uptake of adsorbate as pores become filled. 

x Type V: small adsorbate-absorbent interaction and pores in the 1.5 ʹ 100nm range 

x Type VI: stepwise multilayer adsorption of on nanoporous non-uniform surface. 

It is a cheap, fast and reliable method but it is not valid for all types of isotherms. Types II, IV and VI can be 

measured by BET but Types III and V present debilitated interactions between gas and adsorbent. 

 

¾ CALCULATION  [49]  

o At equilibrium: 

ܽ ή  ή ିଵݏ ൌ �ܾ ή ݏ ή ݁
ିா ோ்ൗ                                         Equation 3.3 

Where 

 .  = Surface areaݏ -

- p = Pressure. 

- Ei = Heat of Adsorption. 

- a,b = Constants. 

 

o Total surface area:  ܣ ൌ�σ ஶݏ
ୀ  

o Total volume adsorbed: ܸ ൌ� ܸ σ ݅ஶ
ୀ  ݏ

o Volume of gas adsorbed with totally covered surface: ܸ ൌ ܸܣ 

 

From that point, Brunauer, Emmet and Teller derived the following equation:  
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- V [ml] = Volume of gas adsorbed at standard temperature and pressure (STP)(273.15 K and 

atmospheric pressure). 

- Vm [ml] = Volume of gas adsorbed at STP to produce an apparent monolayer. 

- p [Pa] = Partial pressure of adsorbate gas in equilibrium with the surface at 77.4 K (liquid 

nitrogen) 

- po [Pa] = Saturated pressure of adsorbate gas. 

- c = BET constant relating to the enthalpy of adsorption of the adsorbate on the sample. 

By linear regression, Vm and c can be approximated so it is more convenient to write the equation as it 

follows [49]:  


ήሺିሻ

ൌ � ଵ
ή �

ିଵ
ή ή




                               Equation 3.5 

 
Figure 3.9. ʹ Linear relationship 

 

This linear relationship is only valid in the range of ͲǤͲͷ ൏ �  ൏ ͲǤ͵ͷ  

From Vm, BET specific surface area, S [m2/g], can be calculated knowing the diameter of the sorbate:  

ܵ ൌ �  � ή � ܰ ή � ଵ
ଶଶସ � ή �ܽ�                                      Equation 3.6 

Where 

- Vm [m3] = Volume of gas adsorbed at STP to produce an apparent monolayer. 

- m [g] = mass of sample  

- NA [mol-1] = Avogadro constant (6.022 x 1023 mol-1). 

- a [m2] = Effective cross-sectional area occupied by a singles adsorbate molecule (0.162 

nm2 for nitrogen). 

- ͳ ʹʹͶͲͲൗ  [mol/m3] = Concentration of adsorbate gas at STP. 
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Before carrying out the experiment, samples must be pretreated in order to remove all the other gases in 

the sample such as H2O or CO2 since the aim is to measure properties using N2 adsorption. Hence, once 

samples are weighed and dried in the oven, they must be heated at 300 ࣙC in the Smart-prep (Figure 3.10) 

overnight. 

In the present investigation, Brunauer-Emmet-Teller surface area was determined by N2 adsorption (five 

point BET method) using Micrometrics Tristar II 3020 (Figure 3.10.). 

                                
Figure 3.10. ʹ a) Smart-prep and b) Micromeritics Gemini 2360 for BET measurements. 

 

3.2.4 Temperature-Programmed Reduction and Oxidation (TPR/TPO) 

Temperature-programmed reaction techniques are thermoanalytical techniques utilized to characterize 

chemical interactions between solid and gaseous substances. Among these analyses that can be 

performed, the most common tools for heterogeneous catalysts are: Temperature-programmed 

desorption (TPD), reduction (TPR) and oxidation (TPO). These material tests provide very useful 

information about redox properties of studied samples since it is possible to detect and follow physical or 

chemical transformations because of exchanges of matter and/or energy that occurred in the sample.  

In this work, the H2-TPR and CO2-TPO experiments are carried out in a Micromeritics Autochem II 2920 

setup. Micromeritics Autochem consists of an oven with a U shape quartz tube reactor inside. This reactor 

contains the sample arranged on the top of a quartz wool layer. Besides, there is a thermocouple 

measuring the temperature. Each sample was subjected to two cycles of H2-TPR and CO2-TPO to 
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investigate the redox properties. The samples were ramped from room temperature. Constant heating 

rate or temperature ramp in each test was 20 ࣙC/min from room temperature until reaching 750 ࣙC. The 

outlet gas compositions were monitored using a TCD detector. All the gas flows were maintained at 33 

Nml/s. Results obtained from TPR and TPO by Autochem represent H2 and CO2 consumption (mol/s/kg 

material) as a function of time and temperature. Furthermore, the stability of materials was analysed by 

isothermal redox cycles alternating H2 reduction, He purging, CO2 oxidation and He purging again. 

 
Figure 3.11. ʹ Micromeritics Autochem II 2920 setup with a schematic representation of the reactor 

 

Process that takes place between the sample and feed gas is represented in the following figure: 

 
Figure 3.12. ʹ Interaction solid-gas 
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3.2.5  Experimental reactor setup (Step response) 

 

Figure 3.13. ʹ Experimental reactor setup 

Transient step-response experiments for both the reduction and reoxidation of modified iron oxides were 

carried out at atmospheric pressure in a quartz tube reactor (i.d. 10 mm) [11] in order to examine the 

stability in redox process to find out in detail its possible application in production of valuable chemicals 

towards chemical looping process. The loading of sample to be is approximately 100 mg and it is placed 

between quartz wool plugs. In addition, to achieve the desired temperature in the catalyst bed, the reactor 

is introduced in an electric furnace which is monitored by K-type thermocouples placed between inside 

and outside of the reactor [4]. 

Different reducers (methanol, bio-ethanol and  bio-gas) and oxidizers (CO2 and H2O) were used in the redox 

experiments performed in the reactor depending on the particular aim. The methanol chemical looping 

experiments were performed at 500oC whereas the bio-ethanol and bio-gas experiments were performed 

at higher temperature of 750oC. Each chemical looping cycle consisted of a reduction pulse (3 min) 

followed by a reoxidation pulse (3 min) with He pulse (3 min) in between.     

The experiments were carried out at two temperatures, 500oC and 750oC, using methanol and ethanol as 

reducing agents and CO2 for reoxidation in both cases. At both these temperatures, redox pretreatment 

was carried out using alternating 5% H2/Ar (reducer) and CO2 (oxidizer) with He purging between them 

were set out for each sample. The total flows rate of gases into the reactor were kept constant, 200 Nml/s 

for reducer and oxidizer, by means of Brooks mass flow controllers. The consumption of H2 and CO2 during 

the process was monitored online using a Mass Spectrometer detector whose response was systematically 
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calibrated with reference gases [11]. The sample was again treated with methanol/ethanol chemical 

looping, to study the effect of crystallite size and redox cycles. As a proof of concept H2O was used as 

reoxidizing agent, to study the production of H2. 

 

An important performance test which indicates the process results is yield. The yield of the process can 

be defined as the fuel conversion or product obtained. It is the product obtained during the process relying 

on fuel conversion divided mass of oxygen storage material used. 

 

������ሺ ܻሻ ൌ � ೀ�ௐ                              Equation 3.7 

 Where: 

-  ݊ை = Mole of CO produced [mol] 

-  ிܹ�= Mass of oxygen carrier material [kg]        

 

3.2.6 Transmission Electron Microscopy (TEM) 

Transmission electronic microscopy (TEM) is a significant analytical tool which procures crystallographic, 

morphologic and compositional information on materials. In this technique, a beam of electrons is 

transmitted through a sample causing the interaction between both and giving rise to an image which is 

magnified and focused onto an imaging instrument (a layer of photographic film or a fluorescent screen). 

The image resolution in TEM apparatus is very high due to the fact that the wavelength of electrons is 

dependent on the energy and, then, can be adjusted to achieve a smaller wavelength. Electrons can be 

engendered by field emission or by thermionic discharge and, next, they are speeded up by an electric 

field and focused on the specimen. Sample thickness must be sufficiently low to detect electrons. 

A JEOL JEM-2200FS: Cs-corrected, operated at 200 kV, equipped with a Schottky-type field-emission gun 

(FEG), EDX JEOL JED-2300D and JEOL in-column omega filter (EELS) was used for TEM measurements [7]. 

Specimens were prepared by immersion of a lacey carbon film on a copper support grid into the as 

prepared sample by blowing off the excess of powder [4]. 
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Figure 3.14. ʹ TEM Experimental setup 

 

3.2.7  Energy Dispersive X-Ray analysis (EDX) 

It is an analytical X-Ray technique to determinate the elemental composition and chemical 

characterization of a material. This EDX system is attached to Transmission Electron Microscopy (TEM) 

setup. Apart from the composition calculation of each element in the analysed sample, an Elemental 

mapping and image analysis can be performed by EDX. A beryllium specimen retainer was used to remove 

secondary X-ray fluorescence in the spectra. 

 

3.2.8 Inductively Coupled Plasma ʹ Atomic Emission Spectroscopy (ICP-AES) 

Inductively Coupled Plasma-Atomic Emission Spectroscopy also known as ICP-Optical Emission 

Spectrometry (ICP-OES) is a very versatile and one of the most common analytical technique for elemental 

analysis because of accurate detection limits, high specificity and multi-element capability. 

The process consists of an Argon plasma source dissociates the nebulized sample exciting the electrons to 

a higher energy level. In a way that when they return to ground state, they emit radiation (energy, photons) 

at a specific wavelength which is characteristic of each element. The solid sample has to be dissolved 

before introducing it in the setup so materials are mixed with sodium peroxide or borate. 

 
Figure 3.15. ʹ ICP operation. 
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This technique is also employed towards quantitative analysis of the as prepared sample.  The ionization 

of the sample results in the emission of wavelengths and the intensity of these peaks is proportional to 

the concentration of that element. This relationship is represented by Lambert-Beer law: 

 �ଵ݈݃
ூ
ூ  = ᡅ ή ݈ ή ܿ                                                     Equation 3.8 

Where  

- I = Measured intensity. 

- Io = Measured reference intensity. 

- ᡅ [m3/(mol/m)] = Molar absorptivity. 

- c [mol/m3] = Molar concentration. 

- d [m] = Path length. 

 

 

9 Materials and methods conclusions 

The various characterization techniques have been described in detail. TEM and ex situ XRD would be 

employed to study the state of the material before and after the reaction. Redox properties of these 

materials would be studied during H2-TPR and CO2-TPO in the Autochem set up. In addition the phase 

transformation during H2-reduction and CO2-reoxidation would be studied in a D8 discover in situ XRD set 

up. The activity and stability would be tested in step response reactor set up. 
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In this chapter a structural investigation on the as prepared modified ferrite materials has been performed 

using XRD and TEM. In addition the redox behavior of these materials were investigated by comparing the 

conventional H2-TPR and CO2-TPO consumption profiles with the crystallographic changes in the in-situ 

XRD. 

4.1   CHARACTERIZATION OF AS PREPARED MATERIALS 

4.1.1 XRD analysis 

Phase identification of as prepared Co-ferrites (CoFe2O4/CeZrO2) and Ni-ferrites (NiFe2O4/CeZrO2) is 

described in this section. In the as prepared Co ferrites, the characteristic peaks for CoFe2O4 corresponding 

with 2ɽ positions at 30.5°, 35.5°, 43°, 54°, 58° and 62.5° (Figure 4.1a) were identified. The most intense 

peaks were observed in the unsupported CoFe2O4. However the intensity of these peaks decreased as the 

loading of the support material CeZrO2 increased (Figure 4.1a). The peaks of CoFe2O4 are gradually 

replaced by peaks characteristic to CeZrO2 at of 29°, 34.5°, 48° and 59° in higher loadings (20wt% and 

50wt%CoFe2O4-CeZrO2). This could be due to fine dispersion and a relatively smaller crystallite size. 

Similarly in the Ni ferrites (Figure 4.1b), diffraction patterns corresponding to NiFe2O4 at 30°, 36°, 44°, 54°, 

57° were identified. As the loading of the support increases peaks characteristic to CeZrO2 were more 

prominent as in the case of CoFe2O4/CeZrO2 materials. 

 

  

Figure 4.1 - XRD patterns of as prepared (a) CoFe2O4-CeZrO2 and (b) NiFe2O4-CeZrO2 

 with varying loading (100wt%-20wt%CoFe2O4/NiFe2O4-CeZrO2) 

CHAPTER 4        CHARACTERIZATION 
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o Crystallite size 

Crystallite size of CeZrO2, CoFe2O4 and NiFe2O4 materials are calculated using Scherrer equation, by fitting 

Gaussian to the characteristic peaks. Figure 4.2 shows the calculated crystallite size with varying support 

content. Note that the error bars represent the standard deviation when averaging calculated crystallite 

dimension over different peaks. 

The largest crystallite size is exhibited by unsupported crystallites, with CoFe2O4 ~57nm and NiFe2O4 

~45nm. With increasing loading, the crystallite size of spinel phase (CoFe2O4 and NiFe2O4) in Co and Ni 

modified ferrites decreased as shown in the Figure 4.2. A relatively smaller crystallite size was observed in 

Ni modified ferrites.  

However in 20wt%NiFe2O4/CoFe2O4-80wt%CeZrO2 major peak contributions from CeZrO2 were observed. 

Due to the close overlap in the peak positions of NiFe2O4/CoFe2O4 and CeZrO2, the crystallite size of these 

materials could not be accurately determined from XRD. But however the crystallite size of these materials 

is further expected to decrease which is indicated by the dotted line. A detailed TEM study has been 

performed on this material to identify the sample morphology and elemental distribution.  

 

 

Figure 4.2 ʹ Evolution of crystallite size in CoFe2O4/NiFe2O4-CeZrO2 materials. Error bars represent standard deviation on 

averaging the crystallite size over different peaks. The dotted lines are a guide to the eye. 
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Similarly for CeZrO2 phase the crystallite size analysis showed that highest crystallite size was shown in 

20wt%NiFe2O4/CoFe2O4-80wt%CeZrO2 (~15nm) and smallest crystallites in 80wt%NiFe2O4/CoFe2O4-

20wt%CeZrO2. 

4.1.2 TEM-EDX analysis 

In order to obtain structural information on samples with lower loading of CoFe2O4 and NiFe2O4, TEM 

measurements along with EDX elemental mapping are performed.  

x 20wt% CoFe2O4-CeZrO2 

The Figure 4.3a shows the sample morphology with crystallite sizes varying between ~10-20nm. The 

elemental mapping of these images exhibits that Co and Fe (Figure 4.3b) are dispersed uniformly 

throughout the material indicating the formation of CoFe2O4. Similarly, Ce and Zr (Figure 4.3c) are also 

evenly distributed in the sample. This suggests the formation of CeZrO2. However from TEM images the 

crystallite size of two different types of crystallites could not be determined as all the elements are 

uniformly distributed throughout the material. The observations from TEM support the findings obtained 

from XRD.  

 

Figure 4.3 ʹ TEM-images of 20wt%CoFe2O4 - CeZrO2: showing the sample a) morphology and EDX elemental mapping of (b), 

Co and Fe along with (c) Ce and Zr 

x 20 wt% NiFe2O4-CeZrO2 

Similarly, TEM analysis on these as prepared materials showed crystallites between 10-20nm were 

observed (Figure 4.4a). The EDX overlay images of Ni and Fe show that these were spread throughout the 

100 nm 100 nm 100 nm

a) b) c)

ZrCoFe Ce
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sample uniformly (Figure 4.4b) indicating the formation of NiFe2O4. Additionally the elemental distribution 

of Ce and Zr shows (Figure 4.4b) that they are evenly distributed throughout the sample forming CeZrO2. 

As in the case of CoFe2O4 the crystallite size of two different types of phases namely NiFe2O4 and CeZrO2 

could not be distinguished as they were distributed throughout the sample uniformly. In addition to the 

TEM analysis, the bulk elemental composition was also determined using ICP analysis. The results were in 

agreement with the expected composition of the samples.  

 

Figure 4.4 ʹ TEM-images of 20wt%NiFe2O4- CeZrO2 showig the a) sample morphology and b) elemental mapping of Ni and Fe 

along with c) Ce and Zr. 

4.1.3 N2-B.E.T. analysis 

The Figure 4.5 shows the obtained specific surface area results of N2-B.E.T. measurements for each sample 

of both Co and Ni ferrites. It is observed that cobalt modified iron oxide surface area increases with the 

loading of CeZrO2 promoter.  

The main functions of the support material is to prevent sintering and to achieve a good dispersion. Thus, 

the more quantity of support, the better activity of the sample meaning higher surface area. Furthermore, 

on the basis of literature, the larger surface area (more active sites), the smaller particles since the 

relationship between surface area and crystallite size is inverse (Equation 4.1). For Ni samples, a similar 

trend was observed. 

100 nm 100 nm

a) b) c)

ZrNiFe Ce 100 nm
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Figure 4.5 ʹ N2- B.E.T. specific surface area of as-prepared bifunctional materials. 

 

4.2     REDOX PROPERTIES 

A H2-TPR and CO2-TPO study was performed on bulk iron oxides and modified ferrites to compare the 

redox properties. The materials were subjected towards two consequent redox cycles to test the repeated 

reducibility. The repeated reducibility of these materials was studied in Autochem and the various phases 

that were being reduced and oxidized were identified using in situ XRD.  

As a first step, the redox properties of bulk iron oxide were compared with ferrites. The H2-TPR of Fe2O3, 

NiFe2O4 and CoFe2O4 (Figure 4.6a) show that the ferrite materials showed complete reduction at a much 

lower temperature (~525oC).  

 
Figure 4.6 ʹ Iron oxide vs Modified iron oxide redox properties during a) H2-TPR and b) CO2-TPO. 
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However the reduction of bulk Fe2O3 remains incomplete with a consumption peak at ~425oC 

characteristic to transition of Fe2O3 to Fe3O4. The peak at ~600oC represents transition of Fe3O4 to FeO. 

The complete reduction to metallic Fe can only take place at a much higher temperature. 

Similarly the CO2-TPO (Figure 4.6b) reoxidation profiles show an early onset of reoxidation in NiFe2O4 

(~425oC) followed by CoFe2O4 (~550oC). However the oxidation of bulk Fe in Fe2O3 remains incomplete 

with two consumption peaks at ~500oC and ~640oC. Thus ferrite materials showed enhanced redox 

properties in comparison to bulk Fe2O3. Thus ferrite materials were further investigated. 

4.2.1 CoFe2O4  and NiFe2O4 

The bulk CoFe2O4 and NiFe2O4 were subjected to two times redox cycles. The H2-TPR of CoFe2O4 (Figure 

4.7a) shows a first reduction peak at 530°C and a small shoulder at 600oC. The first consumption peak 

could be due to the reduction of surface spinel and the second represents the onset of bulk reduction. 

However in the second cycle the reduction temperature shifted to a much higher temperature with a single 

broad consumption peak.  

Nevertheless during the CO2-TPO the material reoxidized at the same temperature, in contrary to the 

profile exhibited during H2-TPR. But the amount of material redoxidized was much lower in comparison to 

the first cycle. This shift in redox temperatures could be due to probable sintering or phase segregation.  

A similar analysis was performed on NiFe2O4, the H2-TPR (Figure 4.7c) revealed that the temperature of 

reduction increased from 540°C in cycle 1 to 580oC in cycle 2. However, the CO2 reoxidation temperature 

(Figure 4.2d) shifted from 450oC in cycle 1 to 550oC in cycle 2 unlike CoFe2O4 where the spinel reoxidized 

at the same temperature. The reduction and reoxidation temperatures exhibited by NiFe2O4 were lower 

in comparison to CoFe2O4. Further, phase transformation during the redox process was investigated using 

in situ. 

Figure 4.8 gives an overview of in-situ XRD of two consecutive cycles: H2-TPR and CO2-TPO carried out in 

CoFe2O4 sample. The diffraction peaks of CoFe2O4 are identified at 2ɽ�с�ϯϲΣ�ĂŶĚ�ϰϯ͘ϱΣ͘��ƵƌŝŶŐ�ƚŚĞ�,2-TPR 

cycle 1 the spinel reduces to FeO (wuestite) (2ɽ�с�42°) at 420°C. In addition alloy CoFe (2ɽ�с�45°) formation 

is detected at 480°C. During reoxidation the alloy transforms to probable Fe3O4 and a separate metallic Co 

phase.  
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This indicates that the spinel segregates into metallic Co and Fe3O4 and does not reoxidize back to spinel 

CoFe2O4. Similarly in the second cycle the spinel undergoes reduction to CoFe alloy and reoxidizes to Fe3O4 

and Co metal. This could eventually lead to phase segregation and elevated temperatures of reduction and 

reoxidation. This is in agreement with the result obtained from the conventional H2-TPR and CO2-TPO 

study.  

 

 

Figure 4.7 ʹThe redox properties of CoFe2O4 during. a) H2-TPR and b) CO2-TPO and NiFe2O4 during c) H2-TPR and d) CO2-TPO 

 (   ) CoFe2O4 cycle1, (  ) CoFe2O4 cycle2, (  ) NiFe2O4 cycle1, (    ) NiFe2O4 cycle 2 
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Figure 4.8 ʹIn-situ XRD for CoFe2O4 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 1, c) H2-TPR cycle 2 and d) 

CO2-TPO cycle 2. 

A similar study was performed on NiFe2O4 materials, Figure 4.9 shows an overview of in-situ XRD of two 

consecutive cycles: H2-TPR and CO2-TPO carried out in NiFe2O4 sample. From NiFe2O4 spinel (2ɽ�с�ϯϲΣ�ĂŶĚ�

45°), sample is reduced to alloy Fe3Ni2 (43.5° and 35.5o) through a transition to metallic Fe (2ɽс�ϰϱΣͿ͘�dƌĂŶĐĞ�

of metallic Fe are detected at 405°C and it is completely reduced at 570°C.  

However during the CO2 reoxidation, the alloy remains stable and traces of Fe3O4 are observed at 

temperatures above 600oC. This suggests that alloy is not reoxidized to spinel, it remained stable though 

probably, part of it is transformed to Fe3O4. During H2-TPR in the second cycle the Fe3O4 is reduced again 

to alloy phase through a transition to metallic Fe. Similarly during the reoxidation a part of Fe from alloy is 

transformed to Fe3O4. 
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Figure 4.9 ʹIn-situ XRD for NiFe2O4 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 1, c) H2-TPR cycle 2 and d) CO2-

TPO cycle 2. 

Hence from both the bulk material the major reason for deactivation is phase segregation into materials 

which transform to phases which result in loss of oxygen storage capacity hence these materials are 

modified with support CeZrO2. A detailed redox property study on these materials has been presented in 

the following section. 

4.2.2 80wt% CoFe2O4-CeZrO2 

A similar study on repeated reducibility was performed on the CeZrO2 supported materials. The H2-TPR of 

these materials show that during cycle 1, the reduction peak is observed at 560oC and a second shoulder 

at 620oC, these two peaks suggest probable surface and bulk reduction. A similar reduction profile is seen 

during cycle 2. The material reduced at similar temperatures in two consecutive cycles unlike the bulk 

unsupported material.  
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Similarly during reoxidation the material showed two consumption peaks with a most intense 

consumption peak at 560oC and a small shoulder at 620oC. This could be due to surface and bulk 

contributions.  

The H2-TPR and CO2-TPO study shows that this material can repeatedly reduce (~560oC, Figure 4.10a) and 

reoxidize (~560oC, Figure 4.10b) at the similar temperatures unlike unsupported CoFe2O4.  

 

Figure 4.10 ʹRedox properties of 80wt%CoFe2O4-CeZrO2 during. a) H2-TPR and b) CO2-TPO. 

(    ) CoFe2O4 cycle1, (  ͙͙͘  ) CoFe2O4 cycle 2 

 

To understand the phase transformations responsible for the repeated reduction and reoxidation an in 

situ XRD study was performed (Figure 4.11). The H2-TPR study (Figure 4.11a) showed the CoFe2O4 

underwent a reduction through a transition from FeO phase to CoFe alloy as seen in the unsupported 

material.  

However the alloy formation was observed at a relatively lower temperature (460oC). During reoxidation 

(Figure 4.11b) the alloy phase oxidized to CoFe2O4 at a temperature of 600oC and no segregation of Co 

metal was observed. A similar phase transition was observed during second cycle (Figure 4.11 c&d). Thus 

the spinel could reduce and reoxidize back to its original state without loss in oxygen storage capacity.  

Nevertheless no noticeable changes in CeZrO2 peak were noticed during the in situ reduction and 

reoxidation. A peak position analysis showed partial shift in peak position during reduction and 

reoxidation. This shift can be attributed to a possible partial reduction of CeO2 owing to its redox couple 

(Ce4+/Ce3+) [4], [7].  
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Figure 4.11 ʹIn-situ XRD for 80wt%CoFe2O4 / 20wt%CeZrO2 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 

1, c) H2-TPR cycle 2 and d) CO2-TPO cycle 2.  

 

The downward shift of diffraction peaks occurs because reduced cation Ce3+ is larger than Ce4+ which can 
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[4], [7]. This is seen during the reduction (Figure 4.12a ), and the vice versa has been observed during the 

reoxidation process (Figure 4.12b). 

 

Figure 4.12 ʹCeZrO2 peak position during: a) Reduction, H2-TPR cycles 1,2 and b) Oxidation, CO2-TPO cycles 1,2. 

( Ŷ )cycle 1 ( Ŷ ) cycle 2 

CeZrO2
30

45

40

35

Temperature (oC)

200 400 600

2ɽ
(o )

(c)

(b)

CoFe

CoFe2O4

CoFe2O4

CoFe

CeZrO230

45

40

35

Temperature (oC)
200 400 600

2ɽ
(o )

(a)

(b)

CoFe2O4

CoFe2O4
FeO

CoFe

CeZrO2

CeZrO2

30

45

40

35

Temperature (oC)
200 400 600

2ɽ
(o )

(b)

(b)

CoFe2O4

CoFe2O4

CeZrO2

CeZrO2

CoFe

30

45

40

35

Temperature (oC)
200 400 600

2ɽ
(o )

(d)

(b)

CoFe2O4

CoFe2O4

29

30

Temperature (oC)

200 400 600

(a)

(b)

2ɽ
(o )

29

30

Temperature (oC)

200 400 600

(b)

(b)

2ɽ
(o )



 

 
 

 

 

50 

A similar analysis was performed on 50wt%CoFe2O4-CeZrO2 materials, the phase transition temperatures 

were similar to 80wt%CoFe2O4-CeZrO2 and the results are reported in the appendix (Appendix Figure B9, 

Figure B10).  

 

4.2.3 20wt% CoFe2O4-CeZrO2 

 
Figure 4.13 ʹRedox cycles of 20wt%CoFe2O4-CeZrO2 during. a) H2-TPR and b) CO2-TPO. 

  (    )  cycle1, (  ͙͙͘  )  cycle 2 

 
 
In 20wt%CoFe2O4-CeZrO2, during the H2-TPR (Figure 4.13), onset of reduction occurs at a much lower 

temperature (450oC) and a second maximum at 550oC. However during the second cycle a single peak with 

a maximum at 550oC was observed. Whereas during the reoxidation step the material reduced and 

reoxidized at the same temperature (550oC). An in situ XRD analysis was performed on this material to 

understand the phase transformations.  

A faint diffraction peak of CoFe2O4 is noticed during the first H2-TPR cycle (Figure 4.14a), which exhibits a 

transition to CoFe alloy at 450oC. However during reoxidation step, alloy is reoxidized back to spinel at 

500oC. The reduction and reoxidation of spinel occurred at a relatively lower temperature in comparison 

to higher loadings of CoFe2O4. A similar trend in the next consecutive cycle of H2-TPR and CO2-TPO was 

observed. 
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Figure 4.14 ʹIn-situ XRD for 20wt%CoFe2O4 / 80wt%CeZrO2 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 

1, c) H2-TPR cycle 2 and d) CO2-TPO cycle 2. 

However the CeZrO2 peaks remained stable during reduction and reoxidation. No peaks due to reduction 

to Ce+3 were identified. However a peak position analysis as in the case of 80wt%CoFe2O4-CeZrO2 showed 

partial reduced and reoxidation.  

4.2.4 80wt% NiFe2O4 - CeZrO2 

The H2-TPR study is shown in Figure 4.15a. Similar to modified ferrites these materials also show repeated 

reduction at similar temperatures, with consumption peak at 540oC and a shoulder at around 600oC. These 

peaks also represent the contributions of surface and bulk reduction in the case of contributions of 

CoFe2O4 The reoxidation profiles also show that these materials can be reoxidized at similar temperatures 

as shown in the H2-TPR. However in the case of cycle 1, two contributions of surface and bulk reoxidation 

are clearly observed but in the second cycle, the first shoulder at 450oC becomes less prominent, but the 

major reoxidation peak is seen at 600oC. 
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Figure 4.15 ʹReduction and reoxidation of 80wt%NiFe2O4 -CeZrO2 during. a) H2-TPR and b) CO2-TPO.  

(   ) NiFe2O4 cycle1, (  ͙͙͘  ) NiFe2O4 cycle 2 

The in situ XRD study showed that during reduction (Figure 4.16a) the spinel transforms to alloy Fe3Ni2.at 

500oC. This alloy remains stable during reoxidation (Figure 4.16b), however under CO2, it decomposes to 

metallic Ni at 44.5° and magnetite (Fe3O4) at 600oC. In second reduction process, apart from Fe3Ni2, the 

presence of metallic Fe is exhibited at higher temperatures (Figure 4.16c). However during reoxidation the 

Fe is reoxidized to Fe3O4 at 480oC and also a part of alloy decomposes to Fe3O4 and metallic Ni. 

 

Figure 4.16 ʹIn-situ XRD for 80wt%NiFe2O4-CeZrO2 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 1, c) H2-

TPR cycle 2 and d) CO2-TPO cycle 2. 
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No noticeable phase transitions were observed in CeZrO2 peaks hence to understand the reducibility of 

CeZrO2 phase, a peak position analysis was performed as in the case of CoFe2O4-CeZrO2 materials. The 

peak position analysis showed a similar trend in Figure 4.12, indicating that CeZrO2 also contributed 

towards the redox reaction. A similar redox analysis was performed on samples on 50wt%NiFe2O4-

CeZrO2. (Appendix Figure B12, Figure B13) 

4.2.5 20wt% NiFe2O4 - CeZrO2 

However in lower loading, the reduction and oxidation occurred at a much lower temperature. The H2-

TPR and CO2-TPO analysis show that during the first cycle (Figure 4.17a) the reduction occurred at much 

lower temperatures (330oC) in comparison to other materials. However during the second cycle shifted 

to a much higher temperature (390oC). The reoxidation of the material during the first and the second 

occurred at the same temperatures (490oC). 

 

Figure 4.17 ʹReduction and reoxidation of 20wt%NiFe2O4 -CeZrO2 during. a) H2-TPR and b) CO2-TPO.  

(  ) NiFe2O4 cycle1, (  ͙͙͘  ) NiFe2O4 cycle 2 

Further an in situ XRD analysis was performed on this sample and it was observed that the spinel reduced 

to an alloy Fe3Ni2 and metallic Fe, during first H2-TPR (Figure 4.18a ). The reduction to alloy phase Fe3Ni2 is 

seen at temperature of 430oC. However during the reoxidation, the metallic Fe is reoxidized to Fe3O4 and 

a part of the alloy remains unoxidized in the form of metallic Ni (Figure 4.18b). A same trend in reduction 

and reoxidation is seen in cycle 2, during H2-TPR (Figure 4.18c) and CO2-TPO (Figure 4.18d). In Ni-modified 

ferrites most of the spinel reduces to an alloy Fe3Ni2 and a part of it remains as metallic Ni, due to which 
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there is a loss in oxygen storage capacity. The CeZrO2 peaks remained stable throughout and did not show 

reduction due to phase transformation. However a peak position analysis revealed a partial reduction and 

reoxidation as in 80wt%NiFe2O4-CeZrO2 (Appendix Figure B.14) 

 

Figure 4.18 ʹIn-situ XRD for 20wt%NiFe2O4 - CeZrO2 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 1, c) 

H2-TPR cycle 2 and d) CO2-TPO cycle 2. 

For all the CoFe2O4/CeZrO2 samples a detailed full XRD scan analysis is presented in the Appendix B under 

phase segregation. Further, to test the repeated reducibility redox cycles were performed at 500oC and 

750oC to see the applicability in the cyclic redox process. The various phase transformations were 

monitored in an in situ XRD. 

4.3   IN-SITU XRD ISOTHERMAL REDOX CYCLES 

In order to test the stability of modified ferrite materials as oxygen carrier, several samples were exposed 

to 5 subsequent in-situ XRD redox cycles. Each cycle consists of four stages: Firstly, stabilization through 
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helium stream followed by H2 reduction, purging under helium and, finally, CO2 oxidation according to the 

following scheme (Figure 4.19) 

 

Figure 4.19 ʹScheme of one isothermal redox cycle. 

4.3.1  Low temperature (500 oC) redox cycles 

Both Co and Ni ferrites were subjected to repeated redox cycles at 500oC. In the CoFe2O4 materials it was 

observed that the spinel repeatedly reduces and reoxidizes between an alloy and spinel phase. CeZrO2 

remain visually stable during the experiment. 

  

Figure 4.20 ʹIn-situ XRD isothermal redox cycles at 500 oC for (a) 80wt% CoFe2O4-CeZrO2 and (b) 80wt% NiFe2O4-CeZrO2 

However in the Ni ferrites the spinel transforms partly to alloy Fe3Ni2 (Figure 4.20b) and metallic Fe 

during reduction. During reoxidation Fe is transformed into Fe3O4 and alloy remains stable. No peak 

position changes were noticed in CeZrO2. 

4.3.2 High temperature (750 oC) redox cycles 

Similarly both the materials were tested at high temperatures for H2 reduction and CO2 reoxidation. The 

Co-modified ferrites showed similar behavior during 500oC (Figure 4.21a). However the Ni-Ferrites, 

reduced to Fe3Ni2 alloy and then reoxidized to Fe3O4 and a part remained unoxidized as metallic Ni. Unlike 

the low temperature redox cycles the Ni-ferrites showed the occurrence of metallic Ni (Figure 4.21b). 
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Figure 4.21 ʹ In-situ XRD isothermal redox cycles at 750 oC for (a) 80wt% CoFe2O4-CeZrO2 and (b) 80wt% NiFe2O4-CeZrO2 

Among both the ferrites, Co-modified ferrites show that they can cycle back to their spinel state when 

modified with CeZrO2. This properties can be exploited to design materials which can repeatedly reduce 

and reoxidize at lower temperatures without loss in oxygen storage capacity. However the Ni-Ferrites 

undergo phase segregation and a part of Ni remains in metallic form. The presence of metallic Ni can be 

interesting in reforming reactions at high temperatures. 

 

9 Characterization conclusions 

The in situ XRD study shows that among both the ferrites, Co-modified ferrites could cycle back to their as 

prepared spinel state when modified with CeZrO2. This properties can be exploited to design materials 

which can repeatedly reduce and reoxidize at lower temperatures without loss in oxygen storage capacity. 

However the Ni-Ferrites undergo phase segregation and a part of Ni remains in metallic form. The presence 

of metallic Ni could be interesting in reforming reactions at high temperatures. 

In this chapter results on activity and stability of modified ferrites have been discussed. Different feed gas 

namely methanol and ethanol have been tested. The state of material after reaction has been 

characterized using TEM. 
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5.1  METHANOL AND ETHANOL CHEMICAL LOOPING 

In the previous section the redox properties of various materials have been investigated using H2 and CO2. 

Both the Co and Ni ferrites were subjected to test their activity and stability using methanol and ethanol 

as feed gas. The reaction products were monitored by a mass spectrometer and CO yield has been 

calculated in the reoxidation half cycle. The methanol decomposition was tested at 500oC and ethanol 

decomposition at 750oC.  

To test activity and stability, the redox process consists of three stages. The modified iron ferrites were 

subjected to methanol/ethanol decomposition pulses for a period of three minutes and the regeneration 

was performed using CO2 with He purging in between. This allowed to check material activity towards 

methanol/ethanol decomposition into syngas. Secondly, a pretreatment was performed to test stability of 

these materials through 100 cycles upon H2-reduction and CO2-reoxidation. Finally, to test real activity of 

the material after a long time, four more cycles were undertaken under the same conditions as first stage. 

5.1.1 Methanol as feed gas 

All the metal modified ferrites: 80wt%CoFe2O4-CeZrO2, 50wt%CoFe2O4-CeZrO2, 20wt%CoFe2O4-CeZrO2, 

80wt%NiFe2O4-CeZrO2 and 20wt%NiFe2O4-CeZrO2 were tested towards methanol chemical looping (Figure 

5.1). First of all, according to Figure 5.1, it is observed that the highest CO2 conversion to CO is attained by 

20wt%CoFe2O4-CeZrO2, reaching yield values between 0.002 and 0.003 mol CO/kg material, 

approximately. On the other hand, the lowest yield was obtained by 80wt%CoFe2O4/20wt%CeZrO2, it 

might be due to low amount of CeZrO2 leading to sintering. During the first three cycles rapid deactivation 

is observed in 20wt%CoFe2O4-CeZrO2, the materials with 80wt%CoFe2O4-CeZrO2 showed a relatively stable 

yield. As similar trend is seen after pretreatment of 100 cycles.  

Concerning stability, both bifunctional materials with 80wt% CeZrO2 support remain almost stable 

throughout the process owing to the fact that, after pretreatment, CO yield results are similar to those of 

the first period, there is no huge deactivation as for instance, the 50wt%CoFe2O4-CeZrO2 case which 

presents high loss of activity meaning low CO2 conversion. It is concluded that 20wt%CoFe2O4-CeZrO2 is a 

suitable bifunctional material to be employed by Chemical Looping process as oxygen carrier. 

CHAPTER 5        REDOX ACTIVITY AND STABILITY 
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Figure 5.1 ʹ Estimated CO yield (mol CO formed during each cycle per kg material) over several redox cycles at 500 oC using 

CH3OH and CO2 for first three cycles, H2 and CO2 for next 100 cycles and, again, CH3OH and CO2 for last four cycles. Each cycle 

lasts 12 min and helium is purged between each reduction and oxidation. A total gas flow of 200 Nml/s was maintained 

during each redox cycle. Samples subjected are ( ) 80wt%CoFe2O4/20wt%CeZrO2, (භ) 50wt%CoFe2O4/50wt%CeZrO2, (Ŷ) 

20wt%CoFe2O4/80wt%CeZrO2, (Ÿ)80wt%NiFe2O4/20wt%CeZrO2 and (භ)20wt%NiFe2O4/80wt%CeZrO2. 

In addition to the experiments above additional experiments were performed to test the ability of these 

materials in H2O splitting (Figure 5.2 ). The sample was pre reduced and tested towards the decomposition 

of H2O, then He was purged for a short period of time followed by the CH3OH pulse. The amount of H2 

produced decreased gradually during the cycles. 

 
Figure 5.2 ʹRedox cycles at 500 oC for (a) 80wt% CoFe2O4-CeZrO2 and (b) 80wt% NiFe2O4-CeZrO2  
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5.1.2 Ethanol as feed gas 

A mixture of ethanol and water in 1:1 molar ratio was prepared to test the applicability of chemical looping 

towards renewable feed stocks such as bio ethanol. The CO yield data for 20wt%CoFe2O4-CeZrO2, 

80wt%NiFe2O4-CeZrO2 and 20wt%NiFe2O4-CeZrO2 is shown in Figure 5.3. The highest yield was obtained 

by using 20wt%CoFe2O4-CeZrO2 as oxygen storage material. This material a relatively stable yield during 

the first three and the last four cycles, unlike when using methanol where the deactivation during these 

cycles was rapid. This material also shows remarkable stability during the 100 redox cycles. However the 

material with higher CoFe2O4 content showed a much lower yield. The CO yield during the first three and 

the last four cycles showed a gradual decline. 

The yield obtained by Ni-ferrites was much lower in comparison to that of Co-ferrites, as in the case of 

methanol decomposition. The CO yield during the ethanol decomposition cycles continued to degenerate 

continuously. This could be due to alloy formation (Fe3Ni2) which results in the loss of active phase. This 

was also observed during the in situ XRD cycling study.  

The Co-ferrites showed a superior ability to split methanol and ethanol during the cycling processes. The 

ability to reoxidize back and forth between CoFe2O4 helped to maintain its oxygen storage capacity. 

However the deactivation was inevitable in these materials. The two factors responsible for deactivation 

are sintering and carbon formation.  

 

Figure 5.3 ʹ Estimated CO yield (mol CO formed during each cycle per kg material) over several redox cycles at 750 OC using 

C2H5OH/H2O and CO2 for first three cycles, H2 and CO2 for next 100 cycles and, again, C2H5OH/H2O and CO2 for last four 

cycles. Each cycle lasts 12 min and helium is purged between each reduction and oxidation. A total gas flow of 200 Nml/s 

was maintained during each redox cycle. Samples subjected are (Ÿ)80wt%NiFe2O4/20wt%CeZrO2 , (භ) 

50wt%CoFe2O4/50wt%CeZrO2 and  (Ŷ) 20wt%CoFe2O4/80wt%CeZrO2. 
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5.2 CARBON FORMATION 

The present study investigates the applicability of chemical looping process towards methanol and ethanol 

chemical looping process. The modified ferrites (CoFe2O4/CeZrO2 and NiFe2O4/CeZrO2) were subjected to 

methanol and ethanol chemical looping applications but deactivation due to carbon formation could not 

be avoided. The carbon formation was studied by using TEM and varying the redox cycle time. 

5.2.1 TEM-EDX analysis 

Morphological and structural analyses were performed using TEM on samples after the reaction. The TEM 

images of 20wt%CoFe2O4-CeZrO2 are shown in Figure 5.3. The TEM image (Figure 5.4a) shows crystallites 

with large diameter (~30-50nm). This could be due to sintering during the cycling processes. The EDX 

overlay of Co and Fe together (Figure 5.4b) show that Co and Fe occur together in large crystals, indicating 

the existence of spinel phase. However Fe remains dispersed throughout the sample. The elemental 

mapping of C shows the existence of C and Fe (Figure 5.4c) together, indicating possible formation of 

carbides and possible encapsulation of spinel phase which leads to deactivation.  

 

Figure 5.4. ʹ TEM-images of 20wt%CoFe2O4-CeZrO2 after methanol redox cycles: a) TEM micrograph and EDX elemental 
mapping b) of Fe and Co combined and c) Fe, Co, C together. 

A similar TEM analysis was performed on 20wt%NiFe2O4-CeZrO2. The sample showed filaments (Figure 

5.5a) and agglomeration of crystallites (~28 nm). However in these images separate clusters of Ni and Fe 

(Figure 5.5b) are seen, indicating possible phase segregation. Carbon formation is more intense in 

comparison to Co-ferrites (Figure 5.5c). The samples of Ni are prone to carbon formation , not only carbon 

50 nm 50 nm 50 nmCoFe CCo

a) b) c)

Fe
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formation is very strong but no spinel phase between Ni and Fe is observed (Figure 5.5b). Thus, due to 

segregation of the spinel phase the redox activity decreases and lead to deactivation.  

 
Figure 5.5 ʹ TEM-images of 20wt%NiFe2O4-CeZrO2 after redox processes: a) TEM micrograph and EDX elemental mapping of 

Ni (b), Fe (c), Fe and Ni combined (d), C (e) and Fe, Ni, C together. 

 

The TEM images show that the deactivation in the samples after methanol chemical looping cycles is due 

to carbon formation. The TEM study of the materials after ethanol is still under progress and was not 

performed within the time frame, but could provide interesting insights on carbon formation. Further a 

carbon formation analysis was also performed on the basis of the cycle time and also the XRD analysis on 

the samples after the reaction. These results are discussed in detail in the next section. 

 

5.2.2 Effect of varying redox cycling time 

Carbon formation was studied by using methanol for reduction and O2 for reoxidation and by varying cycle 

time from 3 min to 1 min. The experiment was performed by pulsing CO2 for reoxidation and then pulsing 

O2 to burn the carbon formed. In the oxidation half cycle the less intense fragments of CO2 and CO can be 

noticed. With increase in cycle time the amount of carbon formed increases. Thus carbon formation was 

inevitable(Figure 5.6 ). This implies that these materials could not be used for high purity H2 applications. 

However when CO2 is used as reoxidation agent high purity CO could be produced, but material stability 

and activity are constraints. Similarly during ethanol chemical looping deactivation due to carbon 

formation and sintering was observed.  
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Figure 5.6 ʹRedox cycles at 500 oC for (a) 80wt% CoFe2O4-CeZrO2 and (b) 80wt% NiFe2O4-CeZrO2  
(  ) O2, (   ) O, (  )CO, (  ) CO2 

Figure 5.7 shows material state after prolonged 100 cycles of methanol. In all the samples characteristic 

peaks of CeZrO2 and CoFe2O4 were identified. In all the materials the final state of spinel was CoFe2O4, 

this is in agreement with the TEM EDX analysis. However in all these materials the carbide formation is 

inevitable. However the peak positions of FeC and CoC show a close overlap, hence it is not clear to 

identify the specific type of carbide.  

 

Figure 5.7 ʹXRD diffraction patterns of materials after 100 methanol redox cycles at 500 oC for 20wt% CoFe2O4-
CeZrO2 , 50wt% CoFe2O4-CeZrO2 and 80wt% CoFe2O4-CeZrO2                                                                                                                                                      

(භ ) CoFe2O4, (ѐ) Co, (Ÿ) Cobalt carbide (Co2C, Co3C) , (Ŷ) CO2, (ӑ) Iron carbide (Fe3C). 
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In addition during ethanol decomposition, CH4 is also one of the important by-products. It was observed 

that CH4 remained stable during the reaction. The applicability to decompose CH4 was tested using a 

mixture of CH4:CO2 in 1:1 ratio. 

5.3 METHANE DECOMPOSITION 

 
Figure 5.8 - Mass spectrometer response during dry reforming on bifunctional 20wt%CoFe2O4-CeZrO2 (a) with no catalyst bed 

and (b) with a catalyst bed. 

The experimental results showed that the material showed no activity towards splitting of CH4 (Figure 

5.8a). To investigate the decomposition of CH4 a dual bed with layer of 10wt%Ni/MgAl2O4 was placed 

before the oxygen storage material. It was observed that CH4 decomposed to CO and H2 (Figure 5.8b), 

hence a catalyst is necessary to decompose methane. This needs a careful tailoring of the catalyst 

composition. It is well known that metallic Ni and Ni rich alloys are responsible for the decomposition of 

CH4 hence find their application in reforming reactions [51]. An important learning from the thesis is to 

alter the composition in Ni-ferrites, so that it forms a Ni-rich alloy which would help in the decomposition 

of CH4. In this case a probable Fe3Ni2 alloy is formed, which could result in decreased activity. The synthesis 

of inverse spinels (NiFe2O4, NiFeAlO4) on a highly active support such as CeZrO2 should be pursued further 

to improve the processes.  

9 Stability conclusions 

Among the ferrites Co-modified CeZrO2 ferrites showed best redox activity during 100 cycles during 

methanol and ethanol chemical looping. Carbon formation was observed in both the ferrites. In the case 

of CoFe2O4/CeZrO2 materials no phase segregation was observed from TEM, however in NiFe2O4 separate 

Fe and Ni clusters were observed indicating phase segregation, which leads to loss in oxygen storage 

capacity. However both these bifunctional materials were not able to convert CH4 an extra catalyst 

component was necessary for splitting CH4. 
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The present study investigates the applicability of chemical looping process towards methanol and ethanol 

chemical looping process. The modified ferrites (CoFe2O4/CeZrO2 and NiFe2O4/CeZrO2) were subjected to 

methanol and ethanol chemical looping applications, deactivation due to sintering and carbon formation 

could not be avoided. This implies that these materials could not be used for high purity H2 applications. 

However when CO2 is used as reoxidation agent high purity CO could be produced, but material stability 

and activity are constraints. Similarly during ethanol chemical looping deactivation due to carbon 

formation and sintering was observed. 

It is well known that ferrites have an AB2O4 spinel structure, where A is usually a cation with +2 charge (ex: 

Ni, Co) and B is a cation with +3 charge (ex: Fe+3). In bulk iron oxide materials (Fe2O3) the iron oxide cycles 

back to Fe3O4 when using CO2 as reoxidizing agent. The Fe3O4 has also a spinel structure but, not all the 

iron cycles back to +3 state, where as in the metal ferrites the Fe occupies the B site and is always 

reoxidized back to +3 state during cyclic operation. Hence, when a metal ferrite cycles back and forth not 

only is the oxygen storage capacity of the material is restored but also has a higher oxygen storage capacity 

than Fe3O4. In this respect CoFe2O4/CeZrO2 materials show promising application towards chemical looping 

applications. 

However the most important finding is the spinel CoFe2O4/CeZrO2 can reduce and reoxidize repeatedly, 

this could be a new application to chemical looping reforming processes. However, if in the first step these 

materials are thermally reduced (ex: by solar energy based sources) and then regenerated by using H2O, 

high purity hydrogen with no carbon emission could be achieved. But it is limited by higher temperature 

of operation, currently CeO2, CeZrO2 are widely investigated materials by solar thermochemical 

conversion. High temperature of operation could also result in sintering of bifunctional material. However 

if these materials are pre-reduced using H2, and then regenerated by using H2O these can be used for high 

purity applications. Using, CeZrO2 along with CoFe2O4 would combine the advantage of using renewable 

solar energy to generate high purity H2. The thermally reduced material would be stored in portable 

storage device and then be reoxidized by H2O to produce H2. 
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Appendix A: Overview of performed experiments 

MATERIAL SYNTHESIS 

DATE EXPERIMENT MATERIAL LAB JOURNAL 
PAGE 

27/10/2015 

CoFe2O4/CeZrO2 
synthesis via 

coprecipitation 
method (CP) 

100-0,80-20,50-50 and 20-80 (wt%) of 
CoFe2O4-CeZrO2  

25 

27/10/2015 

NiFe2O4/CeZrO2 
synthesis via 

coprecipitation 
method (CP) 

100-0,80-20,50-50 and 20-80 (wt%) of 
NiFe2O4-CeZrO2 

26 

3/11/2015-
4/11/2015 Calcination of samples Calcination for all the samples  

at 650°C 27-28 

17/11/2015-
20/11/2015 B.E.T. measurements All the samples 30-32 

28/11/2015 TPR/TPO Autochem Prior CoFe2O4  33 

29/11/2015 TPR/TPO Autochem 80wt%NiFe2O4-CeZrO2, 50wt%NiFe2O4-
CeZrO2and 20wt%NiFe2O4-CeZrO2 

33 

30/11/2015 TPR/TPO Autochem Prior NiFe2O4 and  
80wt%NiFe2O4-CeZrO2 

33 

10/12/2015 TPR/TPO Autochem 20wt%NiFe2O4-CeZrO2 35 

16/12/2015-
18/12/2015 B.E.T. measurements All the samples 38-39 

18/01/2016 B.E.T. measurements 50wt%NiFe2O4-CeZrO2 and 
20wt%NiFe2O4-CeZrO2 

40 

26/01/2016-
27/01/2016 In-situ XRD analyses 100-0,80-20,50-50 and 20-80 (wt%) of 

CoFe2O4-CeZrO2 samples 41-42 

22/02/2016-
23/02/2016 In-situ XRD analyses 100-0,80-20,50-50 and 20-80 (wt%) of 

NiFe2O4-CeZrO2 samples 49-50 

25/02/2016 TPR/TPO Autochem 50wt%NiFe2O4-CeZrO2 50 

26/02/2016 Isothermal cycles  
In situ XRD 

90CaO-10CaZrO3 sample for having 
more material for further study 51-54 

04/03/2016-
07/03/2016 

Methanol Step 
Response experiments 

80-20,50-50 and 20-80 (wt%) of 
CoFe2O4-CeZrO2 samples 55 

22/03/2016 TEM-EDX 
measurements 

90CaO-10CaZrO3 sample for having 
more material for further study 56 
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Appendix B 

PHASE SEGREGATION 
x CoFe2O4 

 
Figure B.1 ʹ XRD spectrums identification for prior CoFe2O4: Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle TPR, 2nd 
cycle TPO. (භ ) CoFe2O4, (ӑ) Fe3O4. (ѐ) Co, (Ÿ) CoFe alloy 

x 80wt% CoFe2O4-CeZrO2 

 
Figure B.2 - XRD spectrums identification for 80wt%CoFe2O4-CeZrO2 : Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle 
TPR, 2nd cycle TPO. (භ ) CoFe2O4, (ѐ) Co, (Ÿ) CoFe alloy , (Ŷ) CeZrO2, 
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x 50wt% CoFe2O4-CeZrO2 

 
Figure B.3 - XRD spectrums identification for 50wt%CoFe2O4-CeZrO2 : Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle 
TPR, 2nd cycle TPO. (භ ) CoFe2O4, (ѐ) Co, (Ÿ) CoFe alloy , (Ŷ) CeZrO2, 

x 20wt% CoFe2O4-CeZrO2 

 
Figure B.4 - XRD spectrums identification for 20wt%CoFe2O4-CeZrO2 : Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle 
TPR, 2nd cycle TPO. (භ ) CoFe2O4, (ѐ) Co, (Ÿ) CoFe alloy , (Ŷ) CeZrO2, 
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x NiFe2O4-CeZrO2 

  

Figure B.5 ʹ XRD spectrums identification for prior NiFe2O4: Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle TPR, 2nd cycle 
TPO. (භ ) NiFe2O4, (ӑ) Fe3O4. (Ÿ) Fe3Ni2 alloy 

x 80wt% NiFe2O4-CeZrO2 

 

 

Figure B.6 - XRD spectrums identification for 80wt%NiFe2O4-CeZrO2 : Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle TPR, 
2nd cycle TPO. (භ ) NiFe2O4, (ӑ) Fe3O4, (ѐ) Ni, (Ÿ) Fe3Ni2 alloy, (Ŷ) CeZrO2, (ѐ) Fe 
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x 50wt% NiFe2O4-CeZrO2 

 

 

Figure B.7 - XRD spectrums identification for 50wt%NiFe2O4-CeZrO2 : Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle TPR, 
2nd cycle TPO. (භ ) NiFe2O4, (ӑ) Fe3O4, (ѐ) Ni, (Ÿ) Fe3Ni2 alloy, (Ŷ) CeZrO2, (ѐ) Fe 

x 20wt% NiFe2O4-CeZrO2 

 

 

Figure B.8 - XRD spectrums identification for 20wt%NiFe2O4-CeZrO2 : Fresh, 1st cycle TPR, 1st cycle TPO, 2nd cycle TPR, 
2nd cycle TPO. (භ ) NiFe2O4, (ӑ) Fe3O4, (ѐ) Ni, (Ÿ) Fe3Ni2 alloy, (Ŷ) CeZrO2, (ѐ) Fe 
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CHARACTERIZATION IN SITU XRD 

x 50wt% CoFe2O4-CeZrO2 

 

 

Figure B.9 ʹIn-situ XRD for 50wt%CoFe2O4 -CeZrO2 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 1, c) H2-
TPR cycle 2 and d) CO2-TPO cycle 2. 

¾ CeZrO2 peak position 

 

Figure B.10 ʹCeZrO2 peak position during: a) Reduction, H2-TPR cycles 1,2 and b) Oxidation, CO2-TPO cycles 1,2.                           
( Ŷ )cycle 1 ( Ŷ ) cycle 2 
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x 50wt% NiFe2O4-CeZrO2 

 

 

Figure B.11 ʹIn-situ XRD for 50wt%NiFe2O4 -CeZrO2 between RT and 700°C: a) H2-TPR cycle 1, b) CO2-TPO cycle 1, c) 
H2-TPR cycle 2 and d) CO2-TPO cycle 2.  

¾ CeZrO2 peak position 

 
Figure B.12 ʹCeZrO2 peak position during: a) Reduction, H2-TPR cycles 1,2 and b) Oxidation, CO2-TPO cycles 1,2. 
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x 80wt% NiFe2O4-CeZrO2 

 
Figure B.13 ʹCeZrO2 peak position during: a) Reduction, H2-TPR cycles 1,2 and b) Oxidation, CO2-TPO cycles 1,2. 

( Ŷ )cycle 1 ( Ŷ ) cycle 2 
 

x 20wt% NiFe2O4-CeZrO2 

 

Figure B.14 ʹCeZrO2 peak position during: a) Reduction, H2-TPR cycles 1,2 and b) Oxidation, CO2-TPO cycles 1,2. 

( Ŷ )cycle 1 ( Ŷ ) cycle 2 

 

 

 

 

29

30

Temperature (oC)
200 400 600

(a)

(b)

2ɽ
(o )

29

30

Temperature (oC)
200 400 600

(b)

(b)

2ɽ
(o )

29.5

29

29.5

Temperature (oC)
200 400 600

(a)

(b)

2ɽ
(o )

29

29.5

Temperature (oC)
200 400 600

(b)

(b)

2ɽ
(o )

29.25



 

 
 

 

 

73 

 

 

REDOX PROPERTIES: TPR/TPO 
 

 
 

Figure B.15 ʹRedox properties of 50wt%CoFe2O4-CeZrO2 during. a) H2-TPR and b) CO2-TPO. 

(    ) CoFe2O4 cycle1, (  ͙͙͘  ) CoFe2O4 cycle 2 

 

 

Figure B.16 ʹRedox properties of 50wt%NiFe2O4-CeZrO2 during. a) H2-TPR and b) CO2-TPO. 

(    ) CoFe2O4 cycle1, (  ͙͙͘  ) CoFe2O4 cycle 2 
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STABILITY AND ACTIVITY: ISOTHERMAL IN SITU XRD CYCLES 
x 20wt% CoFe2O4-CeZrO2 

 
Temperature 500 oC 

 

Figure B.17 ʹ In-situ XRD isothermal redox cycles at 500 oC for 20wt% CoFe2O4 / 80wt%CeZrO2 

Temperature 750 oC 

 

Figure B.18 ʹ In-situ XRD isothermal redox cycles at 750 oC for 20wt% CoFe2O4 / 80wt%CeZrO2 

 

 

 

 

 



 

 
 

 

 

75 

x 20wt% NiFe2O4-CeZrO2 

 

Temperature 750 oC 

 

Figure B.19 ʹ In-situ XRD isothermal redox cycles at 750 oC for 20wt% NiFe2O4 / 80wt%CeZrO2 
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