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Abstract 

 

El objetivo principal de este proyecto es determinar el efecto que la temperatura tendrá 

en un aparato de Respuesta por Frecuencia. En dicho aparato se encuentra un material 

poroso que actúa como catalizador,  del cual se pretenden obtener las constantes de 

difusión y adsorción para optimizar sus propiedades. 

El funcionamiento de este sistema consiste en comprimir y expandir un gas (nitrógeno 

en este caso) de forma que el catalizador entre en funcionamiento. El cambio de presión, 

así como las fuerzas viscosas podrían hacer que la temperatura del sistema aumente 

afectando el funcionamiento del catalizador.  

Para esto se utiliza el programa COMSOL Multiphysics, el cual permite modelar y poner 

en marcha el aparato comprobando, por medio de diferentes campos científicos 

(transferencia de calor, flujo laminar y movimiento del mallado), el cambio de 

temperatura que sufre el sistema. Teniendo en cuenta las especificaciones del material 

poroso se llega a la conclusión de que dicha variación no afecta al funcionamiento de 

éste.  
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1 Introduction 
 

The environmental pollution affects our health directly and it is more notable every day, as 

our population keeps growing. There are natural ways of contamination such as volcanic 

eruptions or decomposition of living beings, but it is the human polluting factors which really 

concern us. Some artificial polluting processes are automobile emissions, chemical odours 

and factory smokes and some examples of gases that are expelled to the atmosphere are 

carbon monoxide (CO), carbon dioxide (CO2), hydrocarbon, oxides of sulphur (SOx) and 

oxides of nitrogen (NOx) [1]. 

 

In some cases, like vehicle emissions, one way of avoiding these emissions is by using 

catalysts. A catalyst is a substance that increases the rate of reaction without being consumed 

or changed [2]. Catalysts can be divided in homogeneous - they have the same phase as 

reactants and products - and heterogeneous – they are present in different phase, usually solid, 

which helps with the catalyst separation from the product and makes the reaction more 

tolerant to extreme operating conditions. One type of heterogeneous catalyst is a zeolite. A 

zeolite is a porous solid with pores of molecular dimensions size – 0.3-2.0 nm – which are 

delineated by their crystal structure [3]. 

Zeolites must be characterized to optimize their performance. The experiment that inspires 

this work has been built in order to make a microkinetic analysis, in which catalytic reactions 

are studied to learn about diffusion and adsorption conditions [4].  There are several methods 

which permit us to achieve this. In this case, a Frequency Response (FR) apparatus is used. It 

changes the volume of the system by compressing and expanding the gas that is inside, 

favouring both diffusion and sorption processes [5], as the porous material lies at the bottom 

of the reactor. 

When gases are compressed their temperature rise. Convection will appear because of the 

velocity that is added to the fluid and conduction too. Temperature changes must be measured 

and it must be decided, whether they are important or not, so that they can be taken into 

account for future experiments. 

In order to measure this temperature exchange in the real experiment, very specific methods 

would be needed, as it is a difficult process. Therefore, computer simulations are preferable 

for approaching our objectives. The conditions of the lab and the experiment itself can be 

described quite exactly, as well as the geometry and materials of every part that is being used. 

Additionally, some parts can be optimized and it is possible to change the fluids or the 

geometry and repeat the experiment. The modelling tool used here is COMSOL Multiphysics 

4.4. 

An existing model based on this experiment was taken as a starting point for this project [6].  
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2 Objectives 
 

The main aim of the experimental investigation is to obtain the adsorption and diffusion 

coefficients of the gas interacting with the catalyst in the reactor, as it was mentioned before. 

In order to achieve this, several elements and conditions which affect it directly must be 

checked. One of them is the temperature exchange with its surroundings.  

Up to now the experiment was considered to be adiabatic. When working under ideal 

conditions, there is no heat exchange between the gas and its surroundings, so the variation of 

heat in the system is zero [7]. 

From now on, the conditions are no longer adiabatic. When the fluid is compressed the total 

volume decreases and the pressure increases. This makes the temperature of the inner fluid 

(N2) rise. As the system is not adiabatic, convection and conduction will appear, and there 

will be a heat exchange between the system and its surroundings. 

The creation of a new model is necessary in order to analyse the heat exchange – new variable 

– correctly. The temperature may affect the final result by heating the solid elements that are 

part of the experiment or affecting the characteristics of the porous material. 

 

A second goal of this project is to create a more detailed model that describes better the actual 

running of the experiment. This will help future projects, even if they are related to different 

topics other than heat exchange. The geometry and the working of the model (compression-

expansion) are not just focused on the temperature-exchange problem.  
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3 Theoretical contents 
 

The part of the experiment that concerns us consists of a closed system where a gas (nitrogen 

in this case) is compressed and expanded periodically. The first assumption to be made is that 

N2 has ideal gas properties. This means that the ideal gas equation will be used, 

 

        (Eq.1) 

 

where p is the gas pressure in Pa, V is the volume in m
3
, R is the gas constant in J/Kg·K, m is 

the mass in kg and T is temperature in K.  

By applying the First Law of Thermodynamics, 

 

   

  
  ̇   ̇  ∑ ̇     

  
 

 
      ∑ ̇     

  
 

 
      

 

(Eq.2) 

 

where dE/dt is the energy variation, W is the power due to external work, Q is the heat power 

within the system and the last two terms are the inlet and outlet of power due to enthalpy, 

fluid velocity and gravity, respectively. But as the system is closed, there is no inlet or outlet. 

The latter equation (Eq.2) then is: 

 

   

  
  ̇   ̇ 

 

(Eq.3) 

 

 

The Second Law of Thermodynamics states that [4], 

 

   

  
  ̇   ̇    ∑ ̇    ∑ ̇    

(Eq.4) 

 

 

where dS/dt is the entropy variation, Sq is the entropy due to heat transfer, Sirr is the entropy 

due to the irreversibility of the process, and the last two terms correspond to the inlet and 

outlet of entropy to the system, respectively. When the closed system condition is applied the 

equation turns into: 
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  ̇   ̇    

(Eq.5) 

 

 

3.1 Isentropic compression  

 

In order to obtain some characteristic values and results previous to doing the simulation, a 

series of assumptions can be made so that the previous equations can be simplified. 

Assuming that the system is adiabatic once the nitrogen is introduced, the last term in (Eq.3) 

cancels out. The resulting equation is: 

 

 

 

   

  
  ̇ 

(Eq.6) 

 

This means that the variation of internal energy depends just on the external work that affects 

the system, in this case, the movement of the bellows. 

If the process is reversible the last two terms of (Eq.5) are equal to zero. The resulting 

equation is: 

 

   

  
   

(Eq.7) 

 

There is no entropy variation in this process so the experiment will work on isentropic 

conditions. Therefore we know that the internal energy variation and the external work 

expressions are, respectively [8]: 

 

 
   ∫      

(Eq.8) 

 

 
   ∫    

(Eq.9) 

 

 

If we equalize equations (Eq.8) and (Eq.9) and substitute the pressure term by using equation 

(Eq.1):  
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(Eq.10) 

 

 
(
  

  
)
  

 (
  

  
)
 

 
 

(Eq.11) 

 

In order to group the exponents, the heat capacity ratio, k, and the relation between R and cv 

will be used according to our adiabatic system and ideal gas conditions, respectively [7]: 

 

   
  

  
 

(Eq.12) 

 

          (Eq.13) 

 

Consequently, equation (Eq.9) changes to: 

 

   
  

 (
  

  
)
   

 
 

(Eq.14) 

 

 

To obtain the relation between temperatures and pressures, the volume-temperature relation 

(Eq.12) along with the ideal gas equation (Eq.1) can be related: 

 

 
  
  

 (
  

  
)

   
 

 

 

(Eq.15) 

 

 

By knowing the ratio of one of these properties, the value of the other two can be calculated. 
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3.2 Heat generation and conservation of energy 

 

In this experiment there are no external heat sources that affect the fluid from the start of the 

process and no temperature difference between the inside of the experiment and the 

surroundings. This means that the heat in its entirety is generated by the fluid interaction 

movement. 

The equation which represents this heat exchange is the conservation of energy: 

 

 
 [

  

  
       ⃗⃗⃗⃗ ]   

  

  
                 

(Eq.16) 

By using the ideal gas equation (Eq.1) and the relation between enthalpy and temperature – 

which can also be used because nitrogen is considered an ideal gas – the latter equation can be 

simplified so that the temperature will be the only unknown variable [9]. 

 

         (Eq.17) 

 

 
   [

  

  
     ]                  

(Eq.18) 

 

The term Qi represents the external heat sources which are cero. The last two terms are 

explained next. 

 

3.2.1 Heat generation due to pressure changes within the fluid 

 

Pressure variations affect the temperature in the fluid and the term Wp refers to this variations. 

It is defined as: 

 

 
    

 

 
(
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(Eq.19) 
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If the fluid has a low Mach number the last term can be neglected as the velocity will be 

rather low [10]. 

 

3.2.2 Heat generation due to the fluid viscosity 

 

The name of this process is viscous heating and it plays an important role in fluid dynamics 

because of the coupling between the energy and momentum equations. It depends highly on 

the velocity of the fluid and produces a local temperature increase with a consequent decrease 

of the viscosity. This change in viscosity may affect temperature and velocity values. These 

processes are controlled by the flow rate, thermal boundary conditions, Nahme number and 

Peclét number [11]. 

The term ϕ, in the simplified energy equation [Eq.14], refers to the viscous heating, and is 

represented in its vectorial form as: 

 

 
   (         

 

 
      )     

(Eq.20) 

It can also be written as ϕ = τ·S, where τ is the viscous stress tensor and S is the strain-rate 

tensor [10]. 

 

 

 

3.3 Frequency Response and diffusion and adsorption processes 

 

FR mechanism consists on periodical changes in a closed system, by lightly varying its 

volume. Due to the volume variation a pressure function will be obtained. When the system is 

empty, these functions have the meeting point in the x-axis and their maximum and minimum 

peaks occur at the same time [12]. 

When a porous material is settled in the system, diffusion and adsorption-desorption processes 

will occur and the pressure function will change.  
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Figure 1: Pressure variation in presence of a porous material 

 

In this figure both the volume function and the pressure function that is obtained with the 

porous material are represented. The main variables that must be measured are the lag (or 

phase variation, φ) and the amplitude variation (attenuation) between the initial pressure 

fucntion and the one in figure 1 [13].  

 

The phase varies depending on the time that the diffusion and sorption processes take and the 

amplitude changes in relation to the amount of solid particles that take place in these 

processes. The main objective of managing these variables is to obtain diffusion and 

adsorption-desorption constants.  

In order to achieve this, Transfer Functions are used, which characterize pressure response of 

the system [14]. 

 

There are two options during this process, either to have diffusion and adsorption 

independently, or to have them coupled. A summary of each process’s working is explained 

next: 

 

- Adsorption: Firstly, adsorption-desorption processes are analysed on uniform surfaces. 

For this process the Langmuir Isotherm is applied. It starts with a mass m of catalyst 

particles enclosed in an equilibrium volume Ve. The equilibrium volume is the volume 

of the system minus the volume of the particles (Ve = V – m/ρs), where ρs is the 

catalyst particles’ density.  

 

FR experiments are able to measure the relaxation time (time in which the equilibrium 

will be reached) for adsorption. 
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- Diffusion: Whenever the adsorptive process does not occur, Fick’s equation solves the 

diffusional transport of a gas in the porous material’s volume. 

 

 

- Coupled processes: In this case, both processes occur at the same time so that they 

affect two different zones of the porous material: Diffusion invades the pore voids and 

adsorption invades the solid surface. The studying of this process depends on both the 

fluid and the solid porous material. Depending on the pores and the particles 

dimension, diffusion and adsorption rates will be comparable or not.  

 

When they are comparable, pores are large in relation to molecular sizes but small 

enough to provide a big adsorbing area and the constants can be calculated. But when 

dimensions of cavities are similar to those of diffusing molecules the distinction 

between gas and adsorbed species cannot be made because the molecules are 

influenced by the confining surfaces.  

 

 

Other applications of FR methods have been quite limited, because of lack of theoretical 

contents, or bad accessibility, but it is very useful when dealing with diffusion and sorption. 

An equilibrated adsorption is needed in order to obtain accurate diffusion coefficients within 

porous solids [12]. 
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4 Experimental setup  
 

The actual experiment consists on gaskets, connecting pipes, joints, screws, nuts, several 

types of valves (like bellow valves), fasteners, a vacuum pump, a pressure measuring unit for 

vacuum, a  differential pressure-measuring head, a glass reactor, a volume-modulation unit 

and two electromagnets.  

 

 

Figure 2: Complete experimental setup 

 

 

 

From the entire set, two parts will be described and analysed in this project. These are: Glass 

reactor and volume-modulation unit. They are connected by metal pipes through which the 

fluid flows.  

 The reactor is made of glass, which has a much smaller conductivity than steel. It is 

isolated so that the temperature maintains constant. 

 

 The volume-modulation unit consists of two bellows which move up and down 

compressing and expanding the gas towards the reactor. These bellows are moved by 

two electromagnets, but they are not included for simplification. 
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Some other parts are not included in this model, but they are very important on the 

experiment, and some decisions will be taken depending on their characteristics: 

 

 The differential pressure-measuring unit is a device which measures the gauge 

pressure inside the experiment. It requires a very exact measurement because changes 

in pressure are relatively small. It also must have a high measuring frequency, as the 

movement of the bellows is rather fast. Before the experiment starts both sides are 

equalized so that each measuring consists on a comparison between the new pressure 

of the system and the initial one. 

 

 The vacuum pump is used to evacuate the container and to clean the reactor and the 

catalyst before inserting again the nitrogen.  

 

 The vacuum tubes and blocking valves are used to protect specific parts. 

 

Figure 3: Setup components that will be analysed in the model 
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Once the cell is evacuated, nitrogen is inserted and the process starts. The nitrogen inlet is 

placed at the top part of the experiment. Nitrogen enters the system and it is periodically 

compressed by the bellows. The gas moves then to the lower part, where the zeolite is located 

and diffusion and adsorption occur. By analysing the changes in pressure (by the pressure-

measuring unit) the zeolite can be characterized.  
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5 Computational setup  
 

The experiment requires the analysis of the behavior of fluids, when compression-expansion 

processes occur, and of the heat exchange between these fluids and their surroundings. It also 

involves he measurement of several variables, as temperature, velocity, pressure or density. 

In order to imitate the real volume variation that the FR apparatus generates a vertical 

movement must be applied to the model. 

These problems can be solved using a software called COMSOL Multiphysics (4.4), which is 

a tool that can describe quite accurately the processes mentioned previously. Three main 

interfaces will be used: “Moving mesh”, “Laminar Flow” and “Heat Transfer”. These will be 

customized to represent as precisely as possible the experiment’s main characteristics and 

constraints. 

 

5.1 Represented components in COMSOL Multiphysics 

One of the main benefits of working with this software is that the model’s working variables 

can be changed at any time, without modifying the entire model. This can be achieved by 

parameterizing these variables. Every measurement that was taken from SolidWorks will be 

parameterized as well as the initial fluid conditions and the function parameters. 

As it was said before, the two main parts of the entire experiment that will appear in this study 

will be the volume-modulation unit and the reactor, along with several joining parts such as 

pipes and rings. This table shows the parameters that have been used to describe each 

component. 

 

Table 1: List of parameters inserted in COMSOLl Multiphysics 

Parameter Value Description 

w_glass 1 mm Wall width of glass reactor 

d_in1 11 mm Internal diameter of reactor 

d_in2 10.4 mm Internal diameter of first pipe and ring 

w_pipe1 1.3 mm Wall width first pipe 

len1 30 mm Length of glass reactor 

len2 24.1 mm Length of first pipe 

hei_ring 7.6 mm Height of every ring 

w_ring1 11.8 mm Wall width of ring 1 

d_in3 16 mm Internal diameter of ring 2 

w_ring2 9 mm Wall width of ring 2 

w_balg1 36 mm Wall width of top part of bellow 

balg_in 46 mm Internal diameter bellow 

len4 6 mm Length solid part of bellow 
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len5 8 mm Length joining part of bellow 

d_in_balg 16 mm Internal diameter starting point of 

bellow 

len3 60.8 mm Length of bigger pipe 

num_fin 27 Number of fins per bellow 

len_balg_tot 99 mm Maximum length of bellow 

len_comp 3 mm Length of compression 

w_pipe2 1.5 mm Wall width of bigger pipe 

len6 2 mm Length of the joining plate 

len_balg 40.5 mm Height of each balg 

len_fin 21 mm  Length of each fin 

w_joiner 46 mm Width of joining plate 

max_mov 3 mm Maximum movement of the bellow 

freq 10 Hz Frequency of square waves 

t_step (0.01/freq) s Step time 

P_amb 101325 Pa Pressure of the surroundings 

T_amb 298.15 K Temperature of the surroundings 

P_N2 133 Pa Pressure nitrogen 

 

 

5.2 Simulation of the FR system 

 

The FR system is in charge of the movement of the fluid and, consequently, of the heat 

exchange that will appear in the experiment. Therefore, it is important to represent closely 

how does it work.  

To achieve this, a periodical function is created. There are two preferable options for this 

purpose: Sinusoidal and square functions.  

The choosing criterion will be based on the similarities with the real experiment and the 

quality of the results. According to this, the sinusoidal function is better managed by the 

software due to the slow growth of its velocity, but the square function is more easily created, 

it represents better the actual bellow movement and when it is used, the system has got better 

long term reliability (f). Hence a square function will describe the FR apparatus movement.  

 

The steps to create this function in COMSOL are: Component 1Definitions (right click) 

FunctionsWaveform. The function name will be wave and “Square” will be selected as 

the type of waveform function. Next step is to select the parameters.  
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Figure 4: Main parameters of the function that describes the movement 

 

The angular frequency ω of the wave will be 2πfreq, where freq is, as shown on the 

parameters list, 10Hz. The frequency range of the experiment varies from 0.001 to 10Hz and 

the latter value is selected because it implies the shortest simulation time with acceptable 

results.  

The phase has a value of π/2 so that the system has its maximum volume at t=0. Both 

compression and expansion have a duration of 0.01s. Compression starts at t=0.02s and 

expansion at t=0.07s.  

The amplitude is defined as the distance between the middle point of the function and the 

further point (lowest or highest point). As max_mov is the total displacement of the bellow, 

the amplitude will be half of its value.  

A transition zone is needed so that the square function does not lead to infinite values. Its 

value will be 10*t_step. The parameter t_step depends on the frequency according to the 

expression t_step = 0.01/freq (s). This means that if the frequency changes its value, the time 

step and the transition zone will also vary.  

The resulting displacement function is shown as well as its first derivate, the velocity 

function: 
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Figure 5: Displacement function of the bellows, wave (x) 

 

Figure 6: Velocity function of the bellows, velocity(x) 
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In the velocity graphic it can be seen that a relatively high velocity is reached in a short time 

and the program takes a long time to solve this. One procedure to avoid this is to increase the 

transition zone so that the velocity peak is not as sharp, so instead of 10*t_step, 20*t_step and 

30*_step are set and the results are compared to check if this change is acceptable. In terms of 

velocity, it decreases 1/2 and 1/3 times respectively. Therefore, the transition zone cannot be 

reduced because it would notably change the results. 
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6 Simulations and interface settings 
 

6.1 Geometry  

 

The model is axisymmetric so the geometry is created in a 2D layout, and just the right half of 

the section is drawn, with the axis on the left-hand side.  

All the parts are already modelled in SolidWorks, but as they cannot be imported directly they 

must be drawn directly in COMSOL. Hence, for each component in SolidWorks, as well as 

for the entire setup, a section is done so that the measures can be written down. Next figure 

shows the setup’s section as it appears in SolidWorks.  

 

Figure 7: Cross section of the setup required for this model 
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For the model in COMSOL the cross joint is obviated because it just involves the pressure-

measuring unit, and it does not affect the results of the experiment. The reactor and the lower 

pipe have the same diameter as well as every ring that is used for connecting and sealing 

pipes. The top part, involving two rings and the vacuum pump pipe are not included in the 

model either. There is a green silhouette around the section that appears in the model. 

The geometry is started by drawing rectangles for every domain that the model contains. 

Click right-button on “Geometry” and “Rectangle” is selected. The domains below the 

volume-modulation unit are also divided into several rectangles so that no rectangle vertexes 

appear inside the geometry. This process is done for meshing purposes: It avoids convergence 

problems and a more regular mesh is achieved.  

 

Afterwards the two bellows are drawn. The chosen option is to use “Polygon”, in which at 

least three coordinates must be inserted. Just the coordinates of the first fin are typed in. Later, 

the option “Array” is chosen. It creates a series of copies of the selected geometry. The 

number of copies the array type (linear or rectangular) and the total displacement can be 

selected. The total number of fins per bellow is 27. The same procedure is repeated on the 

upper bellow. 

 

Figure 8: First geometry of the model 
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In order to measure the change in temperature in this experiment an interface called “Heat 

transfer” must be used. It only works if there is an outer fluid the experiment is in contact 

with. Therefore, an air domain must be added to the right of the model.  

This air domain has a thickness of approximately 1 cm – it is just an auxiliary domain so its 

size is not important as long as there is enough space for the fluid properties to develop – and 

it is set all around the experiment’s outer boundaries. 

It is divided in two parts: The lower part that remains still and the upper part which is in 

contact with the moving part of the setup (volume-modulation unit). By doing it this way it is 

easier to mesh the domains according to their characteristics.  

 

 

 

Figure 9: Complete geometry of the model including the air domains 
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Finally, the option “Form Union” must be chosen in the geometry menu. It joins together all 

the parts that have been created, facilitating the interface working. 

 

  

 

6.2 Materials 

 

In this section the different materials that take part in the experiment will be described and 

added. In order for the software to operate and calculate the different variables that take place 

in the process, each domain must be correctly defined by adding a material to it, along with its 

properties. There are four different materials: 

The fluid which flows inside the experiment is nitrogen. In order to choose it, click right-

button on “Materials” tab and choose Add Material  Liquids and gases  Gases  

Nitrogen. Its main properties are already included, such as density or heat capacity. Although 

N2 was finally set as main working fluid, CO2 could also be chosen to develop this 

experiment. As we are working with COMSOL, it is easy to change from one material to the 

other one if needed.  

Next added material is the steel. For the solid parts of the experiment such as pipes and rings, 

steel AISI 4340 is used. If, in the future, any other kind of steel such as stainless steel is 

needed, it can be created by clicking “New material” instead of “Add material”. It can be 

renamed and every property can be added by writing its value/function.  

The reactor wall is made of glass, so it will be added to the material list: Add Material  

Liquids and gases  Build-In  Glass (quartz). 

Lastly, the external fluid is added. The outer domain is simulating the surroundings, this is, 

the lab. So air is chosen: Add Material  Liquids and gases  Gases  Air.  

 

For each material the corresponding domains must be selected inside each material’s selecting 

menu. The following figure shows which material each domain belongs to. 
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Figure 10: Diagram of the materials used for the model 

 

 

 

 

6.3 Description of the interfaces 

 

COMSOL Multiphysics is a program that can work with several fields of science, such as 

acoustics, optics, structural mechanics or chemical species transport. For every module there 

is a series of equations that are solved by using the properties of the materials and the data 

inserted by de user. These physics can work together if they are accurately connected, so that 

each interface takes the results from the previous one and applies them to its own equations.  
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All these interfaces can be found by clicking on “Add Physics”. They are divided in different 

sections according to each science field. The next figure shows this menu and every available 

field. 

 

Figure 11: “Add physics” menu 

  

This model requires three different interfaces that are described next.  

 

6.3.1 Moving mesh 

 

Moving mesh (ale) is located in the mathematics section and is in charge of the movement of 

the model. For adding it to the model: Add physics  Mathematics  Deformed Mesh  

Moving Mesh (ale). The other interfaces depend on the moving mesh and the movement that 

it develops to work properly. The function that was created in the computational setup section 

is used in this interface.  

Once the interface is open, the moving part must be selected. This consists on the volume-

modulation unit – inner space, bellows, and solid parts – and the upper air domain. The rest of 

the set will remain still, but the fluid will also be affected by the movement in those parts. 

By default just a “Fixed Mesh” and a “Prescribed Mesh Displacement” nodes appear. By 

right-clicking the ale interface a “Free Deformation” node needs to be opened. The moving 

domains must be selected here, in order to let the program know that these are the parts that 

move.  

Boundary constraints are set next. Three more “Prescribed Mesh Displacement” are started. In 

the first one the part that moves is selected, which is the top horizontal boundary, and the 

displacement function is set in the “z” displacement section. As the total displacement of the 
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wall is 3 mm, the term -0.0015 is added to the function so that the function varies between 0 

and -3mm.  

 

Figure 12: Boundary displacement that generates the movement 

 

In the second “Prescribed Mesh Displacement” tab the boundary that belongs to the axis is 

banned from moving horizontally and in the third one, the outer boundaries are restricted from 

any movement so that the total volume remains constant.  
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Figure 13: Axis is set to zero horizontal movement 

 

Figure 14: Outer and lower parts of the moving mesh remain still 
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 “Deformed geometry” is another interface that also works with mesh deformation and that 

was rejected from this project at the beginning. While “Moving Mesh” implies a deformation 

of the spatial frame in relation to the material frame, “Deformed Geometry” implies that the 

material frame is displaced relative to the geometry frame. This makes that in the latter 

interface the program interprets a volume change that it does not interpret in the former one.  

This is another reason for adding the air domain in the geometry section: The “Moving Mesh” 

interface maintains the entire volume constant, but it allows a volume variation in each 

separate part. 

This interface works with the spatial frame, as it has been said, and its coordinates are z and r. 

This means that the displacement is measured following these coordinates, and the velocity 

will be their first derivate, which is zt and rt, according to the software internal language. 

These velocity terms are the connection that is needed between interfaces. 

 

6.3.2 Laminar flow 1 

 

This interface (spf) is in charge of the management of fluids, the interactions with their 

surroundings and the calculation of their properties. It can be reached by: Add physics  

Fluid Flow  Single-Phase Flow  Laminar Flow (spf). This interface computes pressure 

and velocity for the single-phase fluid and supports both incompressible and compressible 

flows at low Mach numbers, as well as non-Newtonian fluids. The equations that the interface 

uses are the Navier-Stokes equations for the conservation of the momentum and the continuity 

equation for the mass conservation [10]: 

 

 
 
  

  
           [                

 

 
       ]    

(Eq.21) 

 

 

   

  
          

(Eq.22) 

 

Both fluids will have different starting densities, so a list of variables is created in order to 

have a shortcut. 

Table 2: Density values used in the model 

Variable Expression Description 

rho_ref1 mat2.def.rho(P_N2[1/Pa],T_amb[1/K])[kg/m
3
] Ref. density nitrogen 

rho.ref2 mat3.def.rho(P_amb[1/Pa],T_amb[1/K])[kg/m
3
] Ref. density air 
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As there are two different fluids and each one has different properties, two different “Laminar 

Flow” interfaces must be used. The interface that involves and contains the nitrogen is 

described next. 

The default nodes that appear are “Fluid Properties”, “Wall”, “Axial Symmetry” and “Initial 

Values”. In “Fluid Properties” temperature, pressure, density and dynamic viscosity are 

selected. In the temperature field, “ht” is set, which matches the fluid interface with the heat 

transfer interface. The absolute pressure is set as the pressure that corresponds to nitrogen and 

the reference pressure at 1 atmosphere.  

In the node “Initial Values” a velocity field and a pressure are required. The velocity is zero 

but the pressure does not remain constant because of gravity. The initial pressure inside the 

cell is 133 Pa, so the entire expression is “P_N2 - P_amb - g_const * (rho_ref1) * z”, where 

P_N2 and P_amb are the pressures of the nitrogen and the surroundings, respectively, g_const 

is the gravity constant and z is the vertical coordinate. This field requires a gauge pressure. 

 

At this point both interfaces must be matched so that the velocity given to the upper boundary 

is transmitted to the fluid. This can be done using a function called “Linear Extrusion”. Right-

button click in Definitions and then Component Couplings  Linear Extrusion. This function 

analyses a boundary or boundaries and collects its properties. So for each boundary in contact 

with the fluid one “Linear Extrusion” will exist. Both the boundary and its two vertexes must 

be selected for each function.  
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Figure 15: Example of the linear extrusion function 

 

Once this is completed, one “Wall” node is created for each boundary in the fluid interface. 

The boundary condition is set to Moving Wall and in the velocity fields the “Linear 

Extrusion” function will be written, with its shortcut and the needed properties: zt and rt. 
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Figure 16: Selection of velocity for the wall node 

 

This process is repeated for every boundary which is in contact with the nitrogen and belongs 

to the area affected by the “Moving Mesh”, so the fluid velocity is as exact as possible. 

Next step is to apply the gravity conditions to the experiment. There are three kinds of nodes 

in every physics tab: Boundary nodes – like those used for adding velocity to the walls –, 

domain nodes, which are applied to a surface and point nodes. The addition of gravity 

requires a domain constraint. So by right-clicking on “Laminar Fluid”, a node called “Volume 

Force” is selected. The unit is N/m
3
 because the programs itself gets the total volume, so the 

expression written in the “z” field is “-g_const*(spf.rho)”, where spf.rho is the name of the 

variable the program uses for the nitrogen’s density. 

A “Pressure Point Constraint” is added at the bottom right vertex of the nitrogen domain. Its 

value, also in gauge pressure, is P_N2-P_amb. This process is commonly done in models that 

use fluid interfaces in order to get a first value that helps the solver getting a solution faster 

and more efficiently.  

It cannot be known a priori if the flow will be laminar or turbulent flow regime, but the first 

option is assumed as the fluid will not reach high velocity values. 

 

 



30 
 

6.3.3 Laminar flow 2 

 

This interface involves the air domain that simulates the surroundings of the experiment. The 

default nodes are the same as in “Laminar Flow 1”. The temperature is connected to the heat 

transfer interface and the pressure is set as the air pressure, with a reference pressure of 1 atm.  

In the node “Initial Values” the pressure is set as “–g_const*(rho.ref2)*z”. 

In this case, the surroundings pressure does not appear because, as this field requires relative 

pressure, it is sufficient to write down the pressure variation due to the gravity force. 

The external walls of the air domain should simulate the lab conditions. For this purpose a 

node called “Open Boundary” is selected by right-clicking the “Fluid Flow” node. It is a 

boundary constraint used for boundaries in contact with large volumes of fluid. The outer 

walls are selected, except the bottom left boundary, which belongs to the glass reactor and is 

isolated. The imposed boundary constraint is Normal stress and the value remains at 0 N/m
2
. 

Next figure shows this: 

 

Figure 17: Open boundary characteristics and selected boundaries 
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For the connection between “Moving Mesh” and “Fluid Flow 2”, the same process is 

repeated, even adding “Wall” to the boundaries that belong to both fluids and to which the 

velocity has already been established. This is required because they are two different 

interfaces and they work separately.  

After bonding velocities, the gravity is set in the outer domain. Another “Volume Force” node 

is selected in which the expression now is “–g_const*(spf2.rho)”, where spf2.rho is the air’s 

density. 

 

Finally, a “Pressure Point Constraint” is added for converging purposes and to help the solver 

with the resolution. It is set at the top right part of the air domain and its value is 0 Pa, (the 

node requires gauge pressure) because the surroundings are at atmospheric pressure. 

 

The “Laminar Flow” part of the study is the most complex one. It involves several fluid 

properties, and the calculations need a high computational cost. As there are two different 

interfaces, one for each fluid, the simulation time will increase notably. Also, the bellows 

have a dense and complex geometry and represent the most likely area for heat transfer. 

 

 

6.3.4 Heat Transfer  

 

The interface “Heat Transfer in Solids” (ht) is used to model the heat exchange by 

conduction, convection and radiation although just the two first processes will occur in this 

model. It uses the differential form of Fourier’s Law, where the temperature is the variable 

that is needed to be found by using the fluid’s properties and the results from previous 

interfaces. This equation has been used in section 3 (Eq.18, view page 6) [10]. 

For this interface the entire geometry is selected, as this process occurs in every component. 

Both solids and fluids can be analysed by using this interface. 

The nodes that are set by default are “Heat Transfer in Solids”, “Thermal Insulation” and 

“Initial Values”. For the “Heat Transfer in Solids” node, the steel and glass components are 

selected and the absolute pressure is set to 1atm. For the properties regarding the solids, from 

material is selected in every term so that the program select the correct properties from each 

solid.  

The “Thermal Insulation” node is used to make the reactor an isolated component. The lower 

left boundary is selected so that no heat is exchanged through it. For the rest of the outline the 

node “Open Boundary” is used (same as in “Fluid Flow” interface). In this case, the constraint 

that has to be input is the temperature of the contour, so T_amb is set.  
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Up to this moment just the solid parts have been selected. In order to include the fluids in our 

studies, another node called “Heat Transfer in Fluids” must be added. As there are two fluids, 

two nodes are required. In each one, each fluid’s domains, velocity and pressure must be 

selected. This node is important for matching both fluid and heat transfer interfaces. 

 

The last two terms of Equation 18 are the viscous heating and the pressure work. Both of 

these processes are found in this interface, by right-clicking on “Heat Transfer in Fluids”. For 

the “Viscous Heating” node the pressure and dynamic viscosity of each fluid is selected. The 

equation that it uses is Equation 20 (view page 7). 

The “Pressure Work” node affects the same domains that “Viscous Heating” and represents 

the heat which is generated from the compression of the fluid and its velocity. It uses 

Equation 19 (view page 6). 

It must be decided whether or not to use the full formulation or the low Mach number 

formulation – which deletes the last term, which depends on the fluid velocity. As the Mach 

number – relation between the fluid velocity and velocity of sound in the same medium – 

cannot be known at this stage, the full formulation is used. Nevertheless, the full equation will 

always provide more complete information. 

The geometry of the bellows makes that both fluids are in contact because they do not have a 

wall or width. This representation is not correct according to the real experiment. Therefore, 

another node named “Thin Thermally Layer” is used to define the thickness and thermal 

conductivity of the resistive material that stands between both fluids. This material is defined 

by its thermal resistance: 

 

These two material properties must be inserted. The layer thickness, ds, is 0.2mm and the 

thermal conductivity, ks, 16W/(m·K) [15]. 

The heat flux is calculated in this interface by the following formulae: 

 

 
                

     

  
 

(Eq.24) 

 

 
                

     
  

 
(Eq.25) 

 

The subscripts “u” and “d” mean, respectively, up- and downside of the layer. 

 
 
 

   
  

  
 

(Eq.23) 
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By assigning these nodes to the “Heat Transfer in Solids” interface, the matching is completed 

and the temperature and heat fluxes can be calculated from the fluid properties.  

 

6.4 Mesh 

 

Meshing is necessary in every model, because it enables the division of the geometry into 

small units of simple shapes, which are called mesh elements. This discretization enables the 

program to analyse the model with detail and is in charge of obtaining a certain continuity in 

the final results [10]. 

This model is in 2D so the main shapes that can be used are triangular and quadrilateral mesh 

elements. The “Mesh” module establishes that no mesh vertex can end at a mesh boundary. 

This is the reason why the initial geometry was divided into numerous rectangles in section 

7.1. Next figure shows the division of the lower domains. 

 

Figure 18: Geometry before and after the domain division 

 

In the figure on the left, several mesh vertexes are in contact with mesh boundaries, which 

generates meshing errors. 
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Once the geometry is decided it is time to build a consistent mesh. As this geometry is 

complex for a rectangular mesh – which is quite consistent – a triangular one will be used in 

most domains.  

The non-moving part of the air domain will not suffer a big change, because the majority of 

the heat and the velocity and pressure variations occur in the upper zone. Therefore, the mesh 

here is set as “Free Quad”. By right-clicking the “Mesh” module a “Free Quad” can be 

selected and domain 16 is set. Several options can be selected in each mesh type. The node 

“Size” lets us modify the element size and calibrate it according to the physics that is been 

used. 

 

Figure 19: Mesh calibration according to the physics 

 

The option General physics is used for the “Free Quad” because, in this case, a rather large 

mesh is wanted. The size can be predefined or customized by the user. 

 

 

Figure 20: Predefined mesh sizes from the finest to the largest 
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Extremely coarse is chosen in this subgroup, for the same reason.  

Afterwards, the rest of the geometry is meshed. A “Free Triangular” mesh is selected for 

every domain apart from 16. The mesh type and size must be chosen, in order to optimize the 

results, which will highly depend on the meshing. Four different triangular mesh settings are 

tried. Their characteristics and results are shown next. 

1. The mesh size is customized to obtain a discretization that adjusts to the model. The 

new values of the element size parameters are: 

 

Figure 21: Values of size parameters for Mesh 1 

 

The maximum and minimum sizes are the absolute size, in meters, that the mesh 

elements can have. The maximum element growth rate indicates how larger can an 

element be in relation to its neighbours. In this case, an element’s size can be twice as 

large as the previous one. By setting this value the elements can grow faster in bigger 

areas so that the simulation takes a shorter time.  The curvature factor is not selected 

because there are no curved boundaries. The resolution of narrow regions is set to a 

scalar number less than 1 (0.5) so that the mesh elements in those regions are not too 

small and the surrounding elements can grow relatively rapid.  

 

2. For the second option, the mesh has the same configuration than the previous one, but 

in this case the size of the “Free triangular” mesh is not customized. On the contrary, it 

is calibrated for General physics and predefined to Extremely coarse. This generates a 
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finer mesh than before because the resolution of narrow regions has a higher value and 

there is a more notable variation between the maximum and minimum element sizes.  

 

 

3. The next mesh that is tried is very similar to the second option, but a new feature is 

added. By right-clicking in the “Mesh” module the option “Boundary Layers” can be 

selected. It consists on adding several layers of elements – long, quadrilateral divisions 

– next to the borders of the selected domains. This node is very useful for models that 

contain fluids because there can be changes in their properties in a slight space and 

because near the walls, fluids have specific boundary constraints that must be 

analysed. The number of layers is set to 4 and the rest of parameters remain as they are 

by default. 

 

 

 

Figure 22: Boundary layer parameters 

 

The inner fluid walls are selected (except from the bellow boundaries) for the 

boundary layers to be added. 

 

4. In the last mesh trial, “Free Quad” and “Free Triangular” are used as well, but two 

different “Free Triangular” nodes will be used: one for the inner fluid and the other 

one for the upper domain of the outer fluid. The former one will remain with the 

customized settings that were presented in option 1 because results do not differ from 

each other and the simulation time is less. The settings of the latter one will be the 
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same as in options 2 and 3, which implies a finer mesh. This has been done because 

the results of the air domain were not clearly defined in the graphics.  

 

Also, more boundary layers are added in the bellows – in both sides of the boundary – 

and in the air walls in contact with the setup. Their parameters are identical as those in 

option 3. With this process a more detailed interaction between fluids will be 

achieved. This is shown in next figure. 

 

 

 

 

Figure 23: Boundary layers in both sides of the bellow boundaries 

 

 

 

 

A simulation with each option is carried out in order to make a comparison. The simulations 

were stopped after the first compression and the comparing property is decided to be velocity. 

The fluid properties inside are well described by both types of mesh, so the velocity in the air 

domain will be compared (t=0.025s). 
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Figure 24: Velocity results for the comparison of the different types of mesh 

 

It can be observed that in the last image the continuity of the solution achieved by the 

program is better. In the first three figures the mesh elements (triangles) can be easily seen, 

while in the last one this only happens in the top right vertex of the geometry, where the 

velocity reaches its maximum – because the top boundary produces the movement – and there 

is a right angle. 



 
 

39 
 

The simulation time is also taken into account. The next table shows the length of each 

simulation until the compression was finished.  

 

Table 3: Simulation time for every mesh type  

Option Simulation Time 

Mesh 1 34min 30s 

Mesh 2 2h 31min 18s 

Mesh 3 2h 59min 15s 

Mesh 4 4h 5min 30s 

 

The first open is the shortest simulation but the results are not descriptive enough. Option 4 is 

chosen because the time difference in relation to the previous option is admissible.  

 

When the final mesh is decided the model is complete. The last step to follow is the 

description of the study. 

 

 

6.5 Study 

 

This module is used to adjust the settings of the simulation in order to obtain the right results. 

In other words, the way in which the system works and operates is decided in the study.  

The study is divided in two parts: “Stationary study” and “Time-dependent” study.  

The stationary study is used when variables do not change over time. It is used for compute 

the steady flow and pressure fields in “Fluid Flow” and to compute the temperature field at 

thermal equilibrium in “Heat Transfer”. In this model, variables do change over time. So the 

main goal of using a “Stationary study” node is to get initial values for the variables that are 

going to be analysed and calculated.  After the stationary solver comes the time-dependant 

solver. It works with the initial values from the previous solver in order to get faster results 

and more consistent and reliable values [10]. 

The “Stationary Study” cannot contain any time-dependant variables. Hence, the “Wall” 

nodes that belong to the “Fluid Flow” interface need to be disabled from the stationary solver, 

as they contain variables as rt or zt, which depend on time. To achieve this: Stationary  

Physics and Variables Selection, select the Modify physics tree and variables for study step 

and disable every wall boundary in both Fluid Interfaces, by right-clicking on them. The node 

“Volume Force” in “Laminar Flow (spf2)” has to be also disabled for converging purposes. 
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The “Time-dependent Study” is in charge of the calculating and storing of the results. In the 

“Time Dependent” tab several characteristics must be modified. The range of time in which 

the system will be evaluated can be set in Study settings. In this simulation the range will be 

(0, 0.002, 0.2), which means that 2 cycles will be analysed and 50 time frames will be saved 

for each cycle.  

In Results while solving a graphic can be activated, which represents a variable while the 

converging process is carried out. The user can select any variable established in the “Results” 

node. The most interesting variable in this simulation is temperature, so a 3D Temperature 

graphic – which appears by default in “Results” – is selected.  

In Physics and Variables Selection the “Pressure Point Constraint” in the inner fluid must be 

disabled. Otherwise one point of the nitrogen fluid would be forced to remain constant during 

the entire experiment and the real conditions would not be reproduced.  

The next characteristics tab, Values of Dependent Variables, is in charge of the connection 

between studies. In order for this study to be adequately correlated with the “Stationary 

Study” the Initial Values of variables solved for box is selected and the solution of Study 2, 

Stationary is chosen.  

 

After adjusting the settings in each study, the “Solver Configurations” must be changed. 

There is one Solver, which involves both studies. This section manages the computing 

methods that the program uses to operate with the incoming data and to calculate the 

variables’ values. For the Stationary Study no variation has to be made, but for the Time-

Dependent Study the Time-Stepping needs to be modified. Time stepping is the option that 

decides how often the program stores data and the initial and maximum step can be changed. 

If the maximum step is too big the results may not be stored completely or correctly. This 

happens because the function that has been selected is periodically developed. When the 

system detects two consecutive points with the same value (for example y=0) it interprets that 

they are the same point and jumps to the last point. If this happens, the displacement function 

is no longer periodical for the system and the movement is not correct.  

The square function dictates that the velocity reaches its maximum value in Δt = 0.005s. In 

order to avoid the phenomena described above, the maximum step value should be five times 

smaller: 0.001s. The initial step is set to a lower value, 0.0001s.  
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 Figure 25: Initial and maximum step new values   

 

At this point, the system reads the velocity function taken into account every relevant point 

and storing the correct data. 

As several variables must be analysed, it is easier for the program to evaluate them separately. 

The method that is set by default is a “Direct” method, which assembles every equation and 

resolves them together. This is changed to a “Segregated” method, in which variables can be 

studied separately by using “Segregated Steps”. Each interface’s variables are stored in one 

step. By default just one “Segregated step” but by right-clicking on “Segregated” more can be 

added.  

For “Heat Transfer” (temperature) and “Moving Mesh” (spatial coordinates) no variation has 

to be done, but for “Laminar Flow” (temperature and pressure) the Non-linear method must 

be changed from Constant to Automatically highly non-linear. This is due to the gravity 

effect, as it works as a non-linear effect on the system. 
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Figure 26: Features of Segregated Step used for “Laminar Flow” variables 

 

 

Using “Segregated” method also helps knowing which interface is not working properly or 

has the wrong boundary constraints when the simulation does not converge.  
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7 Results and problems faced 
 

7.1 Obtained results and commentaries 

 

While the simulation is running the main graphic shows how the temperature changes with 

time. This is useful because if there is any unexpected behaviour, it can be easily spotted and 

the simulation can be stopped so that time is saved.  

An approximated value of the results can be manually calculated. Afterwards they can be 

compared to those obtained in COMSOL. To do this, equations Eq.14 and Eq.15 are used. If 

they are equalized the resulting equation is: 

(
  

  
)
   

 
  
  

 (
  

  
)

   
 

 

 

The property that is known a priori is the volume variation. In order to obtain it a “Surface 

Integration” can be selected by clicking Results  Derived Values and right-clicking on this 

node. In the expression box the value 2πr must be inserted because the model is in 2D and it 

is axisymmetric. As the compression is produced in the range [0.002-0.003] the volume will 

be analysed from the beginning till t=0.003s.  

 

Table 4: Volume variation of the nitrogen during the compression 

Time (s) Volume (m
3
) 

0 3.49627e-4 

0.005 3.49627e-4 

0.01 3.49627e-4 

0.015 3.49627e-4 

0.02 3.49622e-4 

0.025 3.45254e-4 

0.003 3.40882e-4 

0.035 3.40882e-4 

 

The temperature and the pressure at the initial state of the setup are known (T1=298,15 K and 

P1 = 133 Pa) and the heat capacity radio of nitrogen is k=1.4 so their final values can be 

calculated: 

(
       

       
)
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(
       

       
)
     

 (
   

  
)

     
   

 

 

The obtained results are T2 = 301.186 K and P2 = 137,8 Pa. These results are just an 

approximation, as these equations were obtained by a series of assumptions in section 3.1.  

 

The most important region where the properties must be controlled is the glass reactor, the 

bottom part where the porous material will be placed. Therefore, a comparison is going to be 

made between the volume-modulation unit and the reactor, as well as other relevant points 

throughout the setup.  

 

7.1.1 Checking of pressure and temperature values in the model 

 

The average pressure of the nitrogen is obtained and a “Table Graphic” is used to represent 

the result.  

 

Figure 27: Average absolute pressure in the system 
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It can be observed that the maximum average value is 136.56 Pa and the minimum is 132.86 

Pa. The pressure result obtained theoretically was 137.8 Pa which is 1 Pa bigger than this.  

The system average temperature variation is obtained during two cycles: 

 

Figure 28: Average temperature in the system 

 

After the compression the temperature decreases gradually but it does not reach the initial 

value, for which it would need more time. Consequently the expansion starts with a 

temperature offset and does not reach the same (negative) temperature. When the expansion 

ends, the temperature does not reach the initial temperature either so the next cycle will be at 

a lower temperature.  

The maximum average temperature variation reached is 0.6538 K in the positive part of the 

graphic and 0.6316 K in the negative. These results differ from the (301.186 – 298.15 =) 

3.036 K that were expected. 

These differences between the theoretically obtained results and those from COMSOL occur 

because the program is not working with isentropic conditions (the entropy variation in the 

system is greater than zero) as there is a heat loss. 
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The pressure graphic obtained with COMSOL is now compared to the isothermal and 

isentropic cases: 

 

 

Figure 29: Comparison between different pressure functions 

 

The isentropic pressure is represented in green, and it reaches 137,8 Pa, a value which was 

calculated before. The isothermal pressure corresponds to the red line and it is a good 

approximation of the simulation pressure. The main difference can be appreciated at the last 

part of the compression, where the simulation pressure is slightly higher. 

 

7.1.2 Pressure variation in different points of the setup 

 

Pressure values are obtained as a surface average in three different domains:  

1- The volume-modulation main domain.  

2- The pipe domain in which the pressure-measuring unit is placed in the actual 

experiment. 

3- The bottom part of the reactor. 

Each table of data is obtained and represented in a “Table Graphic”. But no difference can be 

seen between them as the pressure values hardly change depending on the “z” component. 

The tables with the pressure values in four different moments of the cycle are shown next:  
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Table 5: Pressure values for the upper domain 

Time (s) Pressure 1
st
 cycle (Pa) Time (s) Pressure 2

nd
 cycle 

(Pa) 

0 132.99704 0.1 132.98771 

0.03 136.55716 0.13 136.55407 

0.05 136.42569 0.15 136.42423 

0.07 136.41816 0.17 136.41706 

0.08 132.86223 0.18 132.86111 

 0.2 132.9873 

 

Table 6: Pressure values for the pipe domain 

Time (s) Pressure 1
st
 cycle (Pa) Time (s) Pressure 2

nd
 cycle 

(Pa) 

0 132.99853 0.1 132.98914 

0.03 136.56687 0.13 136.56355 

0.05 136.42726 0.15 136.4258 

0.07 136.41968 0.17 136.41858 

0.08 132.85574 0.18 132.85479 

 0.2 132.98873 

 

Table 7: Pressure values for the reactor domain 

Time (s) Pressure 1
st
 cycle (Pa) Time (s) Pressure 2

nd
 cycle 

(Pa) 

0 133 0.1 132.99053 

0.03 136.57639 0.13 136.57308 

0.07 136.42121 0.17 136.42011 

0.08 132.84958 0.18 132.84839 

 0.2 132.99012 

 

 

These time values have been selected because they are relevant in our study: At t=0.03, 0.13 

the compression has just finished, at t=0.07, 0.17 the expansion is beginning, at t=0.08, 0.18 

the expansion has finished and t=0, 0.1, 0.2 correspond to the beginning of a cycle.  

The variation between the different heights in the system belong to the order 0.001 Pa, which 

is a change of 0.01-0.001% of the total pressure. This change is generated by the gravity force 

which was added to the “Laminar Flow” interfaces. 
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The proximity to the moving wall affects the pressure in the system, but this variation is 

neglectable due to the dimensions of the model and the properties of the fluid that is being 

used.  

 

7.1.3 Temperature comparison between volume-modulation unit and reactor 

 

The temperature variation depending on time, during two cycles, is measured in the reactor 

domain and the volume-modulation domain. The following graphics show this: 

 

 

Figure 30: Average temperature at the volume-modulation unit and at the reactor 

 

It can be observed that the temperature in the reactor varies about 8 times less in the reactor 

than in the main body. The maximum average temperature in the reactor is 0.117 K while it is 

0.836 K in the upper part. 
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7.1.4 Maximum temperature of the system 

 

The maximum temperatures that system reaches in each cycle are 2.01035 and 1.99742 K and 

it happens at t=0.028 and t=0.128 in first and second cycle, respectively. Next graphic shows 

the highest temperatures in the system in relation to the time. 

 

Figure 31: Maximum temperatures reached in the system 

 

The effects of irreversibility can be seen here as well. The highest point of the second cycle 

has decreased its value in relation to the first one.  

Next graphics shows the temperature distribution at t=0.028s, and at t=0.12s, when the second 

compression is about to start (points 1 and 2 in Fig. 31). 
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Figure 32: Temperature variation distribution at points 1 and 2, respectively, from Fig. 31 

 

 

 

 

 

7.2 Problems faced  

 

- A finer mesh was not possible to develop because the moving mesh makes the 

geometry vary a lot. Hence, the mesh deforms too much and some mesh elements 

suffer a great displacement so their shape is modified. If this happens, the simulation 

is forced to an end. An optimization is needed then, so that the model converges with 

finer mesh and the results can have more reliability.  

 

 

- The pressure shows a range of colour that cannot be seen in the graphic. That happens 

because the greatest variation occurs in the top fins, where the mesh is highly 

deformed as a result of the moving mesh.  
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Figure 33: Pressure variation during the compression process 
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Figure 34 Variation of pressure in the highest elements of the bellows 

 

 

- In Figure 30 the function that corresponds to the temperature in the reactor has some 

unexpected behaviour. Instead of decreasing gradually after the maximum and 

minimum peaks, it decreases suddenly to its initial temperature. This may be due to 

some incorrect boundary constraint or initial value. 
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8. Final conclusions 
 

 

 The pressure results show that this property behaves uniformly in the system, as the 

slight variations are due to the gravity force. The average pressure is, then, an accurate 

procedure to describe the system.  

 

 The isothermal model is very similar to the actual pressure function, except for the 

small variation at the end of the compression. Therefore, this model can be used in the 

future for estimated results. 

 

 Temperature can affect the system in two ways: Directly on pressure and indirectly, by 

influencing the adsorption and desorption processes which have an effect on pressure 

as well. The variation of temperature due to compression-expansion processes play an 

important role in the bellow, but not in the reactor, where the variation is low enough 

to say that it does not affect these sorption processes.  

 

 Boundary constraints have to be optimized in the future, in order to get a more exact 

model and solve some of the arising problems.  
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10. APPENDIX – Symbols  
 

cv Specific heat of nitrogen for constant volume [743 J/kg·K] 

cp Specific heat of nitrogen for constant pressure [1040 J/kg·K] 

ds Resistive layer thickness [m]  

E Total energy [J] 

F Volumetric forces in fluid flow [N/m
3
] 

g Gravity constant [9,806 m/s
2
] 

hi Enthalpy for the species i [J/kg] 

I Unitary matrix 

ks Thermal conductivity of bellows [W/(m·K)] 

k Heat capacity ratio of nitrogen [1.4] 

ksteel Conductivity of the steel [44.5 W/(m·K)] 

m Mass [kg] 

ṁi Mass flow rate of the species i [kg/s] 

Pn Pressure at the n state of the process [Pa] 

P Pressure of gas [Pa] 

pA Absolute pressure of gas [Pa] 

   External heat sources [J] 

  Total heat [J] 

 ̇ Heat power [W] 

R Ideal gas constant for nitrogen [296,8 J/kg·K] 

Rs Thermal resistance [m
2
·K/W] 

S Total entropy [J/K] 

Ṡq Entropy variation due to heat conduction [J/K·s] 

Ṡirr Entropy variation due to irreversibility [J/K·s] 

si Entropy of the species I [J/K] 
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T Temperature of fluid [K] 

Tn Temperature at the n state of the process [m
3
] 

t Time [s] 

U Internal energy [J] 

ui Fluid velocity [m/s] 

V Volume [m
3
] 

Ve Equilibrium volume in adsorption processes [m
3
] 

Vn Volume at the n state of the process [m
3
] 

W Work [J] 

Ẇ Work power [W] 

Wp Pressure work [J] 

zi Height [m] 

µ Dynamic viscosity [Pa·s]  

ρ Gas density [kg/m
3
] 

ρs Density of adsorptive particles [kg/m
3
] 

φ Phase lag [rad] 

Φ Viscous heating term [J] 

  Nabla operator 

 


