
R news and tutorials contributed by (573) R bloggers

Home
About
RSS
add your blog!
R jobs���
Contact us

Welcome!

FollowFollow

Here you will find daily
news and tutorials
about R, contributed by
over 573 bloggers.
There are many ways to
follow us -
By e-mail:

Your e-mail here

Subscribe

On Facebook:

Sé el primero de tus
amigos en indicar que
te gusta esto.

R blog…
26 391 Me gu…

Me gusta esta páginaMe gusta esta página

If you are an R blogger
yourself you are invited
to add your own R
content feed to this site
(Non-English R bloggers
should add themselves-
here)

 Jobs for R-
users

Product Analyst
(@ Pittsburgh)
Quantitative
Developer/Data
Scientist (@
Mountain View)
Data Scientist
AWF
Network Link
analysis Consultant
(@ London)
Seeking R

Programmers for
long term contract
role

Search & Hit Enter

Popular
Searches

heatmap
web scraping
maps
undefined
hadoop
shiny
twitter
boxplot
animation
ggplot2
trading
finance
time series
latex
excel
ggplot
pca
quantmod
googlevis
eclipse
market research
rstudio
how to import
image file to R
tutorial
knitr
rattle
coplot
rcmdr
gis
sweave

Recent Posts

Differences in the
network structure
of CRAN and
BioConductor
SWMPr 2.1.0 on
CRAN
Visualizing bdsns
data using bdvis
How Do Auction
Values Differ by the
Number of Teams
in Your League? A
Multilevel Model
How do you know
if your data has
signal?
Multilevel Models
and Political
Advertising
JSM 2015 [day
#2]

The Keep Function
On radical
manuscript
openness
How Do You
Know if Your Data
Has Signal?
In case you missed
it: July 2015
roundup
Share your Shiny
Apps with Docker
and Kitematic!
JSM 2015 [day
#1]
Curl 0.9.2: tweaks
and proxies for
windows
Turning your R (or
Python) models into
APIs

Other sites

Jobs for R-users
Statistics of Israel
SAS blogs

Using apply, sapply, lapply in R
December 18, 2012
By Pete

(This article was first published on Shifting sands, and kindly contributed to R-bloggers)

This is an introductory post about using apply, sapply and lapply, best
suited for people relatively new to R or unfamiliar with these functions.
There is a part 2 coming that will look at density plots with ggplot, but first I
thought I would go on a tangent to give some examples of the apply family,
as they come up a lot working with R.
I have been comparing three methods on a data set. A sample from the data
set was generated, and three different methods were applied to that subset.
I wanted to see how their results differed from one another.
I would run my test harness which returned a matrix. The columns values
were the metric used for evaluation of each method, and the rows were the
results for a given subset. We have three columns, one for each method,
and lets say 30 rows, representing 30 different subsets that the three
methods were applied to.
It looked a bit like this
 method1 method2 method3
[1,] 0.05517714 0.014054038 0.017260447
[2,] 0.08367678 0.003570883 0.004289079
[3,] 0.05274706 0.028629661 0.071323030
[4,] 0.06769936 0.048446559 0.057432519
[5,] 0.06875188 0.019782518 0.080564474
[6,] 0.04913779 0.100062929 0.102208706

We can simulate this data using rnorm, to create three sets of
observations. The first has mean 0, second mean of 2, third of mean of 5,
and with 30 rows.
m <- matrix(data=cbind(rnorm(30, 0), rnorm(30, 2), rnorm(30, 5)), nrow=30,
ncol=3)

Apply

When do we use apply? When we have some structured blob of data that
we wish to perform operations on. Here structured means in some form of
matrix. The operations may be informational, or perhaps transforming,

77LikeLike ShareShare

subsetting, whatever to the data.

As a commenter pointed out, if you are using a data frame the data types
must all be the same otherwise they will be subjected to type conversion.
This may or may not be what you want, if the data frame has
string/character data as well as numeric data, the numeric data will be
converted to strings/characters and numerical operations will probably not
give what you expected.

Needless to say such circumstances arise quite frequently when working in
R, so spending some time getting familiar with apply can be a great boon
to our productivity.
Which actual apply function and which specific incantion is required
depends on your data, the function you wish to use, and what you want the
end result to look like. Hopefully the right choice should be a bit clearer by
the end of these examples.
First I want to make sure I created that matrix correctly, three columns each
with a mean 0, 2 and 5 respectively. We can use apply and the base
mean function to check this.
We tell apply to traverse row wise or column wise by the second
argument. In this case we expect to get three numbers at the end, the mean
value for each column, so tell apply to work along columns by passing 2
as the second argument. But let’s do it wrong for the point of illustration:
apply(m, 1, mean)
[1] 2.408150 2.709325 1.718529 0.822519 2.693614 2.259044 1.849530 2.544685 2.957950
2.219874
#[11] 2.582011 2.471938 2.015625 2.101832 2.189781 2.319142 2.504821 2.203066 2.280550
2.401297
#[21] 2.312254 1.833903 1.900122 2.427002 2.426869 1.890895 2.515842 2.363085 3.049760
2.027570

Passing a 1 in the second argument, we get 30 values back, giving the mean
of each row. Not the three numbers we were expecting, try again.
apply(m, 2, mean)
#[1] -0.02664418 1.95812458 4.86857792

Great. We can see the mean of each column is roughly 0, 2, and 5 as we
expected.

Our own functions

Let’s say I see that negative number and realise I wanted to only look at
positive values. Let’s see how many negative numbers each column has,
using apply again:
apply(m, 2, function(x) length(x[x<0]))
#[1] 14 1 0

So 14 negative values in column one, 1 negative value in column two, and
none in column three. More or less what we would expect for three normal
distributions with the given means and sd of 1.
Here we have used a simple function we defined in the call to apply,
rather than some built in function. Note we did not specify a return value for
our function. R will magically return the last evaluated value. The actual
function is using subsetting to extract all the elements in x that are less than
0, and then counting how many are left are using length.
The function takes one argument, which I have arbitrarily called x. In this
case x will be a single column of the matrix. Is it a 1 column matrix or a just
a vector? Let’s have a look:
apply(m, 2, function(x) is.matrix(x))
#[1] FALSE FALSE FALSE

Not a matrix. Here the function definition is not required, we could instead
just pass the is.matrix function, as it only takes one argument and has
already been wrapped up in a function for us. Let’s check they are vectors
as we might expect.
apply(m, 2, is.vector)
#[1] TRUE TRUE TRUE

Why then did we need to wrap up our length function? When we want to
define our own handling function for apply, we must at a minimum give a
name to the incoming data, so we can use it in our function.
apply(m, 2, length(x[x<0]))
#Error in match.fun(FUN) : object ‘x’ not found

We are referring to some value x in the function, but R does not know
where that is and so gives us an error. There are other forces at play here,

but for simplicity just remember to wrap any code up in a function. For
example, let’s look at the mean value of only the positive values:
apply(m, 2, function(x) mean(x[x>0]))
#[1] 0.4466368 2.0415736 4.8685779

Using sapply and lapply

These two functions work in a similar way, traversing over a set of data like
a list or vector, and calling the specified function for each item.
Sometimes we require traversal of our data in a less than linear way. Say
we wanted to compare the current observation with the value 5 periods
before it. Use can probably use rollapply for this (via quantmod), but
a quick and dirty way is to run sapply or lapply passing a set of
index values.
Here we will use sapply, which works on a list or vector of data.
sapply(1:3, function(x) x^2)
#[1] 1 4 9

lapply is very similar, however it will return a list rather than a vector:
lapply(1:3, function(x) x^2)
#[[1]]
#[1] 1
#
#[[2]]
#[1] 4
#
#[[3]]
#[1] 9

Passing simplify=FALSE to sapply will also give you a list:
sapply(1:3, function(x) x^2, simplify=F)
#[[1]]
#[1] 1
#
#[[2]]
#[1] 4
#
#[[3]]
#[1] 9

And you can use unlist with lapply to get a vector.
unlist(lapply(1:3, function(x) x^2))
#[1] 1 4 9

However the behviour is not as clean when things have names, so best to
use sapply or lapply as makes sense for your data and what you
want to receive back. If you want a list returned, use lapply. If you want
a vector, use sapply.

Dirty Deeds

Anyway, a cheap trick is to pass sapply a vector of indexes and write
your function making some assumptions about the structure of the
underlying data. Let’s look at our mean example again:
sapply(1:3, function(x) mean(m[,x]))
[1] -0.02664418 1.95812458 4.86857792

We pass the column indexes (1,2,3) to our function, which assumes some
variable m has our data. Fine for quickies but not very nice, and will likely
turn into a maintainability bomb down the line.
We can neaten things up a bit by passing our data in an argument to our
function, and using the … special argument which all the apply functions have
for passing extra arguments:
sapply(1:3, function(x, y) mean(y[,x]), y=m)
#[1] -0.02664418 1.95812458 4.86857792

This time, our function has 2 arguments, x and y. The x variable will be as
it was before, whatever sapply is currently going through. The y variable
we will pass using the optional arguments to sapply.
In this case we have passed in m, explicitly naming the y argument in the
sapply call. Not strictly necessary but it makes for easier to read &
maintain code. The y value will be the same for each call sapply makes
to our function.
I don’t really recommend passing the index arguments like this, it is error
prone and can be quite confusing to others reading your code.
I hope you found these examples helpful. Please check out part 2 where we
create a density plot of the values in our matrix.

To leave a comment for the author, please follow the link and comment on his blog:
Shifting sands.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics
such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio,
Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression,
PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site?
Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Top 3 Posts from the past 2
days

Scatterplots
In-depth introduction to machine learning in
15 hours of expert videos
Installing R packages

Search & Hit Enter

Top 9 articles of the week

1. In-depth introduction to machine learning in
15 hours of expert videos

2. Installing R packages
3. Scatterplots
4. Using apply, sapply, lapply in R
5. Turning your R (or Python) models into

APIs
6. Basics of Histograms
7. Microsoft Launches Its First Free Online R

Course on edX
8. Read Excel files from R
9. Adding a legend to a plot

Sponsors

Related

77

LikeLike

ShareShare

77LikeLike ShareShare

Plotly: collaborative, publication-quality graphing.

Search & Hit Enter

Full list of contributing R-bloggers
R-bloggers was founded by Tal Galili, with gratitude to the R community.
Is powered by WordPress using a bavotasan.com design.
Copyright © 2015 R-bloggers. All Rights Reserved. Terms and Conditions for this website

