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My heart sinks a little when I check on my laptop in the morning and the computation I started

the night before still hasn’t finished. Even when the data I’m playing with isn’t particularly....

large... (I’m not going to say it), I have a knack for choosing expensive algorithms late at night.

Because of my reluctance to get remote servers and tmux involved at ungodly hours, I’ve been

exploring ways to speed up my code without too much trouble (I take the first of the Three

virtues of programming (http://threevirtues.com) very seriously) and without having to

translate from my native tongue: R.

writing idiomatic R

taking advantage of the way R stores numerics in contiguous blocks of RAM and uses C code

for vectorized functions

using Rcpp or inline

Identify bottlenecks and replace time critical/innermost-loops with C or C++ code

distribute processing over machines

It’s relatively easy to set up a computing cluster using Amazon Web Services and use the

package snow (http://cran.r-project.org/web/packages/snow/snow.pdf), or a similar package.

taking advantage of multiple cores

Besides for writing idiomatic R (which is the subject of a future post), I’ve found that the

easiest way to get a speedup is to use parallel processing on a single machine using the

multicore (http://cran.r-project.org/web/packages/multicore/multicore.pdf) package. This

usually gives me a very substantial speedup, even if the code is less than elegant, as we’ll see.

Testing it:
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Just for the sake of choosing a problem that exhibits combinatorial explosion

(http://en.wikipedia.org/wiki/Combinatorial_explosion), let's use the multicore package to get

the mean distance between all airports in the U.S.

If we think of a network of air-travel as a complete graph where the vertices are airports and a

bee-line between any two airports as an edge, we want to find the average length of the edges.

The number of edges in a complete graph is  where n is the number of vertices. If this

looks familiar, it’s because it’s equivalent to the binomial coefficient . Intuitively, this

makes sense, since every edge connecting two vertices is a unique pairing of two airports. The

fact that this number exhibits polynomial growth and that the computation of the distance

between two airports does not depend on the distance between any other two, makes this a

prime candidate for parallelizing.

The dataset of US airport codes and their longitude and latitude is available here

(https://opendata.socrata.com/dataset/Airport-Codes-mapped-to-Latitude-Longitude-in-the-

/rxrh-4cxm ). There are 13,429 airport codes, which makes the total number of combinations

90,162,306. Clearly, extreme measures have to be taken to make this a tractable problem on

commodity hardware.

Since the Earth isn’t flat (it's not even, strictly speaking, a perfect sphere

(http://en.wikipedia.org/wiki/Oblate_spheroid)) the distance between longitude and latitude

degrees is not constant. Luckily, there’s a great package, Imap (http://cran.r-

project.org/web/packages/Imap/Imap.pdf), to handle conversion from two long/lat points to

miles or kilometers.

The code:
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library(multicore)
library(Imap)
 
calc.distance.two.rows <- function(ind1, ind2){
  return(gdist(air.locs[ind1, 3],
               air.locs[ind1, 2],
               air.locs[ind2, 3],
               air.locs[ind2, 2], units="km"))
}
 
sum.of.distances <- function(a.mat){
  return(sum(apply(a.mat, 2, function(x){
                               calc.distance.two.rows(x[1], x[2])
                             })))
}
 
# read airport long/lat data set
air.locs <- read.csv("airportcodes.csv", stringsAsFactors=FALSE)
 
# read command-line args
args <- commandArgs(TRUE)
 
# read the number of airports to use (sample size) from the command-line
smp.size <- as.numeric(args[1])
 
# choose a random sample of airports
sampling <- sample((1:nrow(air.locs)), smp.size)
 
# shrink dataframe
air.locs <- air.locs[sampling, ]
 
# create a matrix of unique subsets of indices from the
# data frame that stores the airport information
combos <- combn(1:nrow(air.locs), 2)



(http://www.onthelambda.com/wp-content/uploads/2013/11/Time-comparison-

between-single-and-multicore.png)

Time comparison between single and multicore execution time in seconds. The curves

were smoothed using LOESS.

Then, I wrote a wrapper program in python that compared the speeds using sample sizes from

10 to 800 in increments of ten.

The results:
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combos <- combn(1:nrow(air.locs), 2)
num.of.comps <- ncol(combos)
 
# use single core
single <- function(){
  the.sum <- sum.of.distances(combos)
  result <- the.sum / num.of.comps
  return(result)
}
 
# use two cores
mult <- function(){
  half <- floor(num.of.comps/2)
  f1 <- parallel(sum.of.distances(combos[, 1:half]))
  f2 <- parallel(sum.of.distances(combos[, (half+1):num.of.comps]))
  the.sum <- sum(as.vector(unlist(collect(list(f1, f2)))))
  result <- the.sum / num.of.comps
  return(result)
}
 
# compare the execution times (in time elapsed)
perform <- function(){
  first <- system.time(res1 <- single())
  second <- system.time(res2 <- mult())
  cat(smp.size); cat(",first,"); cat(first[3]); cat(","); cat(res1); cat
  cat(smp.size); cat(",second,"); cat(second[3]); cat(","); cat(res2); cat
}
 
perform()



 P R E V I O U S  A R T I C L E

qstats -  quick and dirty statistics tool for
the Unix pipeline
(http://www.onthelambda.com/2013/11/05/qstats-
quick-and-dirty-statistics- tool- for- the-
unix-pipeline/)

N E X T  A R T I C L E  

Compiling R from source and why you
shouldn't do it

(http://www.onthelambda.com/2013/11/22/compiling-
r- from-source-and-why-you-shouldnt-

do- it/)

parallelized solution is much faster but it is not twice as fast, as one might expect. This is

because, not only is there overhead involved in the process of forking and collecting the result,

but part of the program (namely the reading of the dataset) is not parallelized. (For more

information, check out Amdehl’s Law (http://en.wikipedia.org/wiki/Amdahl%27s_law)).

Some cursory curve-fitting suggests that the single core solution’s execution time is fairly well-

modeled by the function  and the dual core solution is well modeled by 

. This would make the total time to completion about 7 hours and 4.5 hours,

respectively.

After about 1 hour, I psychosomatically smelled melting plastic from my laptop so I called off

the actual distance calculation. But repeated trials with sample sizes of 300 suggested that the

sampling distribution of the sample mean (whew) had a mean of about 1,874 km and a

standard deviation of 64 km (this is the standard error of the mean). This would suggest that

the mean distance between any two US airports is about 1,874 km +- 125 (543 miles +- 78) with a

standard deviation of around 1109 km (689 miles).

As this example shows, even a kludge-y solution that uses more than one thread can give you

pretty substantial speed increases. In future posts, I plan to cover applying Rcpp to this problem

and setting up a cluster to perform this calculation. In the meantime, I'll still be starting things

at night and regretting it in the morning.

Footnote: If you're interested in this topic, I suggest you check out this site (http://cran.r-

project.org/web/views/HighPerformanceComputing.html) from CRAN. Also, everything I know about parallel R,

I learned from this book (http://shop.oreilly.com/product/0636920021421.do).

share this: (h ttp ://w w w .fa c e b o o k .c o m/sh a re r.p h p ?
u = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-
tra v e l %2 F & t= P a ra l l e l %2 0 R %2 0 %2 8 a n d %2 0 a ir%2 0 tra v e l %2 9 & s= 1 0 0 & p [ u rl ] = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-
tra v e l %2 F & p [ ima g e s] [ 0 ] = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F w p -
c o n te n t%2 F u p l o a d s%2 F 2 0 1 3 %2 F 1 1 %2 F T ime -
c o mp a riso n -b e tw e e n -
sin g l e -a n d -
mu l tic o re .p n g & p [ titl e ] = P a ra l l e l %2 0 R %2 0 %2 8 a n d %2 0 a ir%2 0 tra v e l %2 9 )

(h ttp ://tw itte r.c o m/sh a re ?
u rl = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-
tra v e l %2 F & te x t= H e y %2 0 c h e c k %2 0 th is%2 0 o u t)

(h ttp s://p l u s.g o o g l e .c o m/sh a re ?
u rl = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-tra v e l %2 F )

(h ttp ://w w w .re d d it.c o m/su b mit?
u rl = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-
tra v e l %2 F & titl e = P a ra l l e l %2 0 R %2 0 %2 8 a n d %2 0 a ir%2 0 tra v e l %2 9 )

(h ttp ://p in te re st.c o m/p in /c re a te /b u tto n /?
u rl = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-
tra v e l %2 F & me d ia = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F w p -
c o n te n t%2 F u p l o a d s%2 F 2 0 1 3 %2 F 1 1 %2 F T ime -
c o mp a riso n -b e tw e e n -
sin g l e -a n d -
mu l tic o re .p n g & d e sc rip tio n = P a ra l l e l %2 0 R %2 0 %2 8 a n d %2 0 a ir%2 0 tra v e l %2 9 )

(h ttp ://w w w .l in k e d in .c o m/sh a re A rtic l e ?
min i= tru e & u rl = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-
tra v e l %2 F & titl e = P a ra l l e l %2 0 R %2 0 %2 8 a n d %2 0 a ir%2 0 tra v e l %2 9 )

(h ttp ://tu mb l r.c o m/sh a re ?
s= & v = 3 & t= P a ra l l e l %2 0 R %2 0 %2 8 a n d %2 0 a ir%2 0 tra v e l %2 9 & u = h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-tra v e l %2 F )

(ma il to :?
su b j e c t= P a ra l l e l %2 0 R %2 0 %2 8 a n d %2 0 a ir%2 0 tra v e l %2 9 & b o d y = H e y %2 0 c h e c k %2 0 th is%2 0 o u t:%2 0 h ttp %3 A %2 F %2 F w w w .o n th e l a mb d a .c o m%2 F 2 0 1 3 %2 F 1 1 %2 F 1 3 %2 F p a ra l l e l -
r-a n d -a ir-tra v e l %2 F )

  R (http://www.onthelambda.com/category/r/)   high performance computing

(http://www.onthelambda.com/tag/high-performance-computing/), R (http://www.onthelambda.com/tag/r/),

statistics (http://www.onthelambda.com/tag/statistics/)   Bookmark

(http://www.onthelambda.com/2013/11/13/parallel-r-and-air-travel/)

5  R E S P O NS E S

Pingback: The performance gains from switching R’s linear algebra libraries | On the lambda

(http://www.onthelambda.com/2013/12/26/the-performance-gains- from-switching-rs- linear-algebra-

libraries/)

Pingback: Squeezing more speed from R for nothing, Rcpp style | On the lambda

.00014(n)(n − 1)

.00009(n)(n − 1)



(http://www.onthelambda.com/2014/06/27/squeezing-more-speed-from-r- for-nothing-rcpp-style/)

O W E  J E S S E N

June 28, 2014 / 3:46 am

I think one problem in the abysmal performance could be the apply function in the

sum.of.distances function. I get the following results

single <-  function(){

the.sum <-  sum.of.distances(combos)

result <-  the.sum / num.of.comps

result

}

vectorized = function(){

the.sum <-  sum(calc.distance.two.rows(combos[1,], combos[2,]))

result benchmark(single(), vectorized())

test replications elapsed relative user.self sys.self user.child sys.child

1 single() 100 1.06 7.067 1.07 0 NA NA

2 vectorized() 100 0.15 1.000 0.16 0 NA NA

 Reply (http://www.onthelambda.com/2013/11/13/parallel-r-and-air-travel/?replytocom=3935#respond)

T O N Y . F I S C H E T T I @ G M A I L . C O M

June 30, 2014 / 11:21 am

Maybe wordpress got the formatting of your comment wrong, but I don't see how the "vectorized()"

function could work

 Reply (http://www.onthelambda.com/2013/11/13/parallel-r-and-air-travel/?replytocom=3955#respond)

Pingback: Lessons learned in high-performance R – On the lambda

(http://www.onthelambda.com/2015/05/31/lessons- learned- in-high-performance-r/)
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