
Large-Scale Parallel Statistical Forecasting Computations in R

Murray Stokely∗ Farzan Rohani∗ Eric Tassone∗

Abstract
We demonstrate the utility of massively parallel computational infrastructure for statistical
computing using the MapReduce paradigm for R. This framework allows users to write com-
putations in a high-level language that are then broken up and distributed to worker tasks in
Google datacenters. Results are collected in a scalable, distributed data store and returned
to the interactive user session. We apply our approach to a forecasting application that
fits a variety of models, prohibiting an analytical description of the statistical uncertainty
associated with the overall forecast. To overcome this, we generate simulation-based uncer-
tainty bands, which necessitates a large number of computationally intensive realizations.
Our technique cut total run time by a factor of 300. Distributing the computation across
many machines permits analysts to focus on statistical issues while answering questions that
would be intractable without significant parallel computational infrastructure. We present
real-world performance characteristics from our application to allow practitioners to better
understand the nature of massively parallel statistical simulations in R.

Key Words: Statistical Computing, R, forecasting, timeseries, parallelism

1. Introduction

Large-scale statistical computing has become widespread at Internet companies in
recent years, and the rapid growth of available data has increased the importance
of scaling the tools for data analysis. Significant progress has been made in design-
ing distributed systems to take advantage of massive clusters of shared machines
for long-running batch jobs, but the development of higher-level abstractions and
tools for interactive statistical analysis using this infrastructure has lagged. It is
particularly vital that analysts are able to iterate quickly when engaged in data
exploration, model fitting, and visualization on these very large data sets.

Supporting interactive analysis of data sets that are far larger than available
memory and disk space on a single machine requires a high degree of parallelism. At
Google, parallelism is implemented using shared clusters of commodity machines [5].
This paper describes a statistical computing framework built on top of Google’s
distributed infrastructure and illustrates an example use case based on statistical
forecasting of large numbers of time series.

The rest of this paper is structured as follows. In Section 2 we provide back-
ground information. Then, in Sections 3 and 4, we explain the design and imple-
mentation of a set of R [21] packages to take advantage of the distributed systems
available at Google for high-level statistical computing tasks. After that, in Sections
5 and 6, we offer an application of this infrastructure for forecasting large numbers
of time series, describing the parallel algorithms and providing experimental results
from our clusters. We end with overall conclusions in Section 7.

∗Google, Inc.

2. Background

2.1 Data Analysis in R

Split-apply-combine [26] is a common strategy for data analysis in R. The strategy
involves splitting up the data into manageable chunks, applying a function or trans-
formation on those chunks, and then combining the results. Such techniques map
closely to the MapReduce [11] programming model for large compute clusters. As a
vector language, R includes built-in functions for map or apply, and many functions
that take lists of inputs act as reduce functions. The MapReduce paradigm extends
the strategy to multiple nodes by sending a subset of the input data to Mappers
running on different nodes. There are a number of parallel apply packages avail-
able in R [10, 24] that allow a user to do a parallel Map or Apply step as long as
the results can fit in memory on the calling R instance, to essentially implement a
MapReduce with only a single Reducer.

2.2 Related Work

Other parallel R implementations are surveyed in [22]. These implementations
depend on technologies such as MPI or TCP/IP sockets relying on shared NFS
storage for small clusters of workstations. In addition, they require manual pre-
configuration of R and needed libraries on worker nodes. We work with much larger
clusters that may write to other non-POSIX parallel filesystems such as GFS [15]
or Bigtable [7]. The scale of these shared clusters precludes manual pre-staging
of R, and thus we are not able to use these frameworks. The pR system [18] is a
framework that transparently parallelizes R code through the use of runtime static
analysis, but works only for non-interactive batch jobs and sequential processing
tasks where the data set fits fully in memory on a single machine.

Our approach is most similar to the RHIPE package [16], which implements a
more complete MapReduce environment with user-provided Map and Reduce func-
tions written in R that run on multiple nodes with Hadoop. In contrast to RHIPE,
though, we instead focus on larger scale clusters where more automated node setup
is essential. Furthermore, in our system all definitions in the calling environment
are serialized to disk and distributed to worker tasks, allowing the workers to ref-
erence functions, classes, and variables using the lexical scoping rules expected in
the R language. We also take advantage of [25] to speed up the computations on
individual multi-core nodes. However, our interest here is exclusively on scaling
beyond multiple nodes and so we assume our applications have already been tuned
to take advantage of the number of cores per machine.

3. Map: Parallel Apply

In this section we describe the high-level design and implementation details for a
series of R packages facilitating the use of Google datacenters for executing massively
parallel R code.

3.1 Design Goals

Our design goals were based on observations of how the use of R at Google has
evolved over the past several years. In particular, these goals included:

• Facilitate parallelism of computations on up to thousands of machines without
access to shared NFS filesystems.

• Make distribution of code and required resources as seamless as possible for
analysts to minimize code modifications required to enable parallelism.

• No setup or pre-installation of R or specific libraries should be required on the
machines in the cluster. A virtual machine for the workers should be created
dynamically based on the global environment and available libraries of the
caller.

• Return results of parallel computations in list form directly back to the calling
interactive session, as with lapply in R.

• Allow the parallel functions to be used recursively, so that MapReduce workers
can in turn spawn additional MapReduces.

3.2 Implementation Overview

Figure 1 shows an overview of the basic implementation of our Parallel Map frame-
work. The three main steps of the process are described below.

library(googleparallelism)
myfunc ← function(x) { x * x }
results ← google.apply(1:5, myfunc) Bigtable Datastore

(input vec[1])
(input vec[1])Task N executes myfunc(input vec[N])

results ← google.apply(1:5, myfunc)
print(results)

Interactive R Session Production “Cloud” Datacenter

1

3 2

Figure 1: Parallel Map

1. First, the user’s code calls google.apply() with a list of inputs and a provided
function, FUN. An archive is dynamically created on the client including R
and all of the needed libraries and then staged to the cluster management
system in a datacenter with available resources. FUN and its environment
are serialized and written out to a Bigtable in that datacenter.

2. Second, workers tasks are spawned using the dynamically generated virtual
machines providing access to all of the R packages that were loaded in the
calling instance’s R session. These workers read in the serialized environment
from the Bigtable, execute the provided function over a unique element of
the input list, and write out the serialized results to a different column of the
Bigtable.

3. Third, and finally, the calling R instance reads back in the serialized return
values from each worker task, performs the necessary error handling, and
returns the computed list to the google.apply() caller.

.
The next three subsections provide more detail about each of these three steps.

3.3 Lexical Scoping and Serialization in R

To reduce the effort of utilizing Google’s parallel infrastructure for statistical com-
putations, we opted to automatically serialize the calling environment and distribute
it to the parallel workers. This allows users to reference visible objects from their
calling frame in a way that is consistent with the R language, and without requiring
cumbersome manual source() calls of distributed .R files on the worker tasks.

The R language’s lexical scoping rules require that free variables in a function
be resolved in the environment that was active when the function was defined [14].
Figure 2 shows a brief example of a function definition and the bindings of the vari-
ables to different calling environments. Serialization of a function thus requires the
serialization of the calling environments all the way up to the global environment
to ensure that any possible variable references or function calls used in the inner-
most functions are available when the serialized environment is loaded on another
machine. The default R serialization mechanism described in [23] handles these
details to allow us to stream the complete calling environment from the interactive
or batch R instance and the spawned worker tasks.

x← 5
function(y)

function(z)
x + y + z

Figure 2: Lexical Scoping

Algorithm 1 runs on the calling R instance and shows how the input list is split
up, and the input function is serialized with the calling environment and distributed
to worker tasks. One caveat with this approach is that package namespaces are
serialized by name. This means that all loaded packages must be packaged up
inside the virtual machine that is dynamically generated and distributed to the
spawned worker tasks. Furthermore, any mutable objects, such as user-defined
environments, that are hidden within a package namespace will not be serialized—a
very rare occurrence, in practice, that is the price of not requiring any manual setup
of worker nodes.

3.4 Worker Scheduling

In shared cluster environments with thousands of machines the runtime of long-term
statistical computations will be affected by failures, upgrades, workload changes,
task pre-emptions by higher priority jobs, and other factors. To deal with these
events, individual worker tasks that fail will need to be restarted or migrated to
separate machines. In some cases, backup workers may need to be scheduled if
some particular workers are taking longer than others due to hardware, network,

Algorithm 1 Task distribution

Simple case , we have 1 worker for each list element :

if (length(x) <= max.workers) {

assign(".G.INPUT", x, env=.GlobalEnv)

assign(".G.FUNCTION",

function(x) { FUN(x, ...) }, env=.GlobalEnv)

} else {

warning("length(x) > max.workers , some worker tasks will ",

"execute over more than 1 input.")

new.input = InputSplit(x, max.workers)

assign(".G.INPUT", new.input , env=.GlobalEnv)

assign(".G.FUNCTION",

function(x) { lapply(x, FUN , ...) }, env=.GlobalEnv)

}

Step 2. Save the environment of the calling session

shared.env <- tempfile(".Rdata")

save(list = ls(envir = .GlobalEnv , all.names = TRUE),

file = shared.env , envir = .GlobalEnv)

Add the .Rdata file , R, and packages to stage in our VM.

packages <- list(VMPKG(files=shared.env))

packages <- c(packages , VMPKG(files=GetRFiles ()))

Get Bigtable rowkey where results should be written.

key <- GetBigtableKey ()

Launch the tasks with the created VM.

LaunchRVMs(max.workers , packages , key)

or contention from other shared workload jobs on that machine. In other cases, we
may be able to return when 95% of the workers have completed to provide most
of the accuracy of our computation at a fraction of the runtime cost compared to
waiting for all workers to complete.

There are two parameters that we expose to the callers for scheduling their R
worker tasks: one, the total number of failures we will tolerate from an individual
worker task; and two, the total number of worker failures across all tasks. The first
parameter should scale with the total runtime of the job, and is set to a reasonable
default since we do not typically know the runtime of a job before first execution.
The second parameter should scale with the total number of parallel tasks that were
launched. We also provide deadlines and other scheduling parameters to give users
greater control over the worker tasks. Dealing with stragglers and scheduling is an
active area of research in MapReduce [2].

3.5 Error Handling and Return Values

When the worker tasks have completed, the calling R instance reads in the serialized
results from the Bigtable, unserializes the result for each worker, and returns R
language results. Depending on the scheduling parameters in use, all of the workers
may have completed successfully, some may have failed to run completely because
of resource constraints on the scheduling system, or may have run but reached an
exception in the R language code executed on the workers. In all cases we seek to

examine the results and promote errors from any of the workers to the attention of
the caller. By default, the worker code is wrapped in a try() so the calling instance
examines the returned output after unserializing it from the Bigtable and issues
a warning() with the task number and exact error message from any try-errors
encountered by any of the workers. If all of the workers returned a try-error, then
these warnings are promoted to a stop error.

So far, we have described a massively parallel approach to the common Split-
Apply-Combine data analysis paradigm, but we have not fully taken advantage of
MapReduce because the results from all Mappers return to the calling R instance—
essentially a MapReduce with a single reducer. The next section describes the
extensions necessary for statistical computations where the aggregate of the outputs
from the machines running the Map function is far too large for the memory of a
single machine.

4. Reduce

In the traditional MapReduce programming model [11], the Map function produces
a set of intermediate key/value pairs which are grouped together by intermediate
key and then passed to a Reduce function. The reduce function is passed an iterator
over the intermediate inputs, so it can process more records than will necessarily fit
inside memory on a single Reduce worker.

There is limited support for streaming statistical computations in R, and so we
have taken a hybrid approach for MapReduce-like statistical computations inside
Google. This approach involves using a scalable query processing system directly
over the intermediate outputs to implement the types of aggregations typically
performed in a Reduce. Since our parallelism implementation allows individual
Map workers to in turn generate separate parallel R applications, possibly running
in a different datacenter, we can chain together a series of computations at the R
level and then perform the final aggregation step with a distributed query system.

4.1 Distributed Result Aggregation in Dremel

Individual Map functions written in R can write out intermediate results in a variety
of formats. We store Protocol Buffer outputs in the nested column-striped storage
representation described in [19]. R data.frames and lists are written directly to
this format from the Map functions in R code. When the Map functions complete,
the resulting columnar data files are queried directly using an R-language interface
to the Dremel scalable ad-hoc query system. In contrast to Pig [20], Hive [1], or
Tenzing [8], these queries execute immediately against the data in-place, without
having to launch separate MapReduce jobs over the data.

In the past two Sections (3 and 4) we have described the design and implemen-
tation of R packages that take advantage of the distributed systems available at
Google for high-level statistical computing tasks. In the next two Sections (5 and
6) we see these R packages in action in an illustrative example based on statistical
forecasting of a large number of time series.

5. Application to Forecasting

5.1 Forecasting at Google

At Google we use forecasting for numerous purposes, including evaluating perfor-
mance and anomaly detection. We forecast many quantities (such as queries, rev-
enue, number of users, etc.) for many services (such as web search, YouTube, etc.)
and many geographic locations (such as global, continents, countries, etc.), which
involves forecasting thousands of time series every day.

These time series exhibit a variety of trends, seasonalities, and holiday effects.
For example, the number of Google searches for the query “pizza” grows with a
different rate compared to the query “car insurance”1. Figure 3 shows that the
two queries also differ in their behavior during the end-of-year holiday season, when
“pizza” queries spike while “car insurance” queries dip. Consequently, we may need
to use different models to forecast “pizza” and “car insurance” queries.

Figure 3: Trend and seasonality for “pizza” and “car insurance” queries from
Google Trends.

Building and updating forecasting models individually for thousands of different
time series is expensive and impractical, and requires a considerable amount of hu-
man intervention—highlighting the need for a generic forecasting methodology that
is robust and provides an adequately accurate forecast for each time series. In this
section, we focus on how the googleparallelism package in conjunction with Google’s
infrastructure can be a useful, practical, and inexpensive method for building, eval-
uating, and engineering such a forecasting methodology in the R programming

1All data sets used herein are publicly available from Google Trends, google.com/trends.

language. A high-level overview of our forecasting methodology is provided in the
next sub-section, but further details are beyond the scope of this paper.

5.2 Brief Overview of Forecasting Methodology

As opposed to fine-tuning a single model, we generate forecasts by averaging en-
sembles of forecasts from different models [3, 4, 9, 17]. The idea is to reduce the
variance and gain robustness by averaging out the various errors from individual
models. Figure 4 shows the ensemble of forecasts for weekly “pizza” searches. The
black curve in the middle is the trimmed mean2 of individual forecasts at each point
in time. This forecasting methodology does not provide the best forecast for ev-
ery single case, but serves us well in large-scale forecasting, where it consistently
produces adequate forecasts with minimal human intervention.

20
09

−
06

−
11

20
09

−
07

−
11

20
09

−
08

−
11

20
09

−
09

−
11

20
09

−
10

−
11

20
09

−
11

−
11

20
09

−
12

−
11

20
10

−
01

−
11

20
10

−
02

−
11

20
10

−
03

−
11

20
10

−
04

−
11

20
10

−
05

−
11

20
10

−
06

−
11

1.6

1.8

2

2.2

2.4

2.6

1

2

3

4
5

67

8910

11
1213

1415
16

1718

19

20
21

2223

actuals
forecast
date of fit
Model 1
Model 2
Model 3
Model 4
Model 5
Model 6
Model 7
Model 8
Model 9
Model 10
Model 11
Model 12
Model 13
Model 14
Model 15
Model 16
Model 17
Model 18
Model 19
Model 20
Model 21
Model 22
Model 23

The trend for query 'pizza' in US from Google Trends

Figure 4: The ensemble of forecasts for US “pizza” queries

The robustness of ensemble averaging and the convenience of using R come at
a price. Combining multiple models makes it difficult to quantify the uncertainty
associated with the forecast process—that is, we cannot build confidence intervals or
perform statistical inference. Using simulation-based methods is a typical solution
to the problem, but these methods are computationally intensive, particularly on
the scale at which we seek to operate. In the next sub-section we describe how the
googleparallelism package can help us in building forecast confidence intervals using
parallel simulations.

5.3 Forecast Confidence Intervals

Forecasts inevitably differ from the realized outcomes or actuals. Discrepancies be-
tween forecasts and actuals reflect forecast uncertainty or true differences. Because
our ensemble methodology does not provide a measure of statistical uncertainty, we
generate simulation-based confidence intervals, which necessitates a large number

2The top and bottom 20% of individual forecasts are trimmed at each point in time.

of computationally intensive realizations. We use the general framework described
in the previous sections to generate these confidence intervals over many more time
series than was previously possible.

We use a computationally intensive simulation method called “bootstrapping”
[12, 13] to project a sample of trajectory paths for an arbitrary number of periods
into the future and extract the distribution of simulated traffic at each time. This
simulation-based method enables us to compute the uncertainty associated with dif-
ferent attributes of the time series, such as year-over-year growth values and daily,
weekly, and quarterly totals.

5.4 Iterative Forecasts and R Map Function

We use iterative forecasts to simulate future values as depicted in Figure 5. For
one realization of values in the next n weeks, we repeat the following three steps n
times:

1. At the training end date, we forecast the next week’s value.

2. We adjust the forecast value in Step 1, multiplying by an adjusting factor (a
randomly generated number based on the distribution of historical one-week-
out forecasting errors).

3. We add the adjusted value in Step 2 to the history as a new actual and move
the training end date to the next week.

History

Training end date

Forecast next week

Error1

Simulation Path

1 Based on historical 1-week-out-errors

Figure 5: Iterative Forecasts.

Figure 6 depicts one thousand realizations for the normalized number of weekly
“pizza” searches for 13 weeks starting at our training end date, 16 February 2010.
At each time t, we take the α/2 and (1 − α/2) quantiles of the realizations as the
lower and upper bounds of the (1 − α) × 100% forecast confidence interval. These
intervals are point-wise, and for 95% confidence regions we expect 5% of the actuals
fall out of the bands.

To get a thousand realizations for the next year (52 weeks), we need to run the
forecasting code 1000 × 52 = 52, 000 times. A single run of the forecasting code
takes about 5 seconds, so computing a one-year-long confidence region would take
5× 52, 000 seconds ≈ 72 hours on a single workstation, which is impractical for our
purposes.

For forecast simulations, we can only parallelize the between-realization fore-
casts, while within-realizations forecasts must be run on the same machine due to

Date

N
or

m
al

iz
ed

 T
ra

ffi
c

2010−02−16 2010−03−02 2010−03−16 2010−03−30 2010−04−13 2010−04−27 2010−05−11

1.
8

2
2.

2
2.

4
2.

6

median of simulations
95% confidence bands

Simulations for query 'pizza' in US (data from Google Trends)

Figure 6: One thousand realizations of “pizza” traffic trajectories.

the iterative nature of the method—each forecast for the same realization uses the
output of the previous forecast in the chain as an input. Overall, the R package re-
duced the running time in the above example to 15 minutes (about 300 times faster).
Experimental measurements of the task setup costs and runtime distribution of the
tasks is presented in Section 6.

5.5 Forecast Evaluation and R MapReduce

When the goal is to have a robust forecasting method, we must make sure that pro-
posed changes to the forecasting models and parameters would improve forecasting
accuracy in general and not only for particular time series—which means we need
a comprehensive performance evaluation for our forecasting models over the large
set of time series we forecast. As we expand the scope of Google forecasting project
to handle more cases, changes in our forecasting codebase become more frequent.
Therefore, any method we use for evaluating the performance of the forecast needs
to be fast and efficient.

We used Google’s R MapReduce to build an efficient forecast evaluation system.
After trying out a change in our forecasting code, we use the output of this system
to help decide whether or not the proposed change should be implemented. Our
evaluation system consists of four major parts which are depicted in Figure 7:

1. A Google datastore (Bigtable) that stores an inclusive set of time series we
forecast.

2. A forecast mapper that parallelizes the current and the updated forecast on a
Google data center for the time series in the datastore (Part 1) at different pre-
specified training end dates. The output of each forecast is an R data.frame
with columns specifying the time series, the forecasting model, the training
end date, the forecast/actual date, the length of forecast horizon and the
forecasting error, (forecast− actual)/actual.

3. The intermediate data.frames are saved on GFS in the nested column-striped
format explained in Section 4.

4. A forecast reducer that uses the Dremel query system to aggregate the re-
sults of the forecast mapper and provides information regarding the forecast
performance (e.g., MAPE metrics).

library(googleparallelism)
fcast ← function(timeseries, ...) {

...
return(forecast)

}
results ← google.apply(seq(20), fcast)

Bigtable Datastore

(input vec[1])
(input vec[1])Task N executes fcast(input vec[N])

library(dremel)
AddTable(forecasts, ”/gfs/path/*”)
errors ← ExecuteQuery(”SELECT

SUM(ABS(error))/count(error)
as MAPE from forecasts”)

print(errors)

Interactive R Session Production “Cloud” Datacenter

1

3

2

GFS

Dremel

Dremel ShardDremel ShardDremel Shard

4

Figure 7: Parallel Map

On a single computer, it would take weeks to generate historical forecasts at
the scale of Google data. The forecast mapper uses the googleparallelism package
to regenerate hundreds of thousands of historical forecasts in a matter of hours
(100,000 forecasts would take less than two hours on 1,000 computers). Also, the
output of forecast mapper contains millions of data.frame rows which makes the
aggregation step very slow using standard R data manipulation (for 1,000 time
series in the datastore and 100 different training end dates, the output of forecast
mapper would have more than 20 million rows). Using the R dremel package,
we can perform basic aggregations over this 20-million row data set in seconds.
For example, we can easily compute Mean Absolute Percentage Error (MAPE) for
different forecasting models and for a particular forecast horizon (like one-year-out
forecasts) in only a few seconds.

6. Experimental Results

This section provides empirical results of the runtimes for the iterative forecast
simulations. Table 1 shows the mean and 95th percentile runtimes for the five
parallel jobs used to generate the results in Section 5. Each task generates one
realization of traffic for the next 15 weeks (from the training end date) using iterative
forecasts (explained in Section 5.4 and depicted in Figure 5).

These results demonstrate the motivation for some of the scheduling parameters
described in Section 3.4. The long tail of straggler jobs is responsible for a dispro-
portionate amount of the total runtime. On a large shared cluster the exact cause
of the runtime differences could be due to workload differences, hardware capabil-
ity differences, network congestion, or hardware failures. The effect is much more
pronounced for longer running jobs and is one of the reasons that setting a dead-
line or scheduling duplicate tasks for the stragglers can help improve total runtime
performance, as is suggested by Figure 8.

Table 1: Runtime characteristics of various parallel simulations.

Simulation Run Startup Time (s) Run Time (s)
Mean 95% Mean 95%

1 48.3 88 249.4 266.1
2 40.8 67 260.7 283.1
3 43.3 74 312.6 343
4 37.4 61 283.5 304
5 32.3 44 249.5 264

0 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

CDF of Task Startup Times

Startup delay in seconds

P
er

ce
nt

ag
e

of
 W

or
ke

r
Ta

sk
s

S
ta

rt
ed

●●●
●●●
●●●
●●
●●
●●
●
●●
●●
●●
●
●
●●
●
●
●●
●
●
●●●
●
●
●●●
●●●
●●
●●
●●
●●●
●●●●
●●●●
●●●●
●●●

●●●●●●●●
●●● ● ● ●

220 240 260 280 300

0.0

0.2

0.4

0.6

0.8

1.0

CDF of Task Run Times

Run time in seconds

P
er

ce
nt

ag
e

of
 W

or
ke

r
Ta

sk
s

C
om

pl
et

ed

●●●●●●
●●●●●●

●●●●●
●●
●
●●
●
●
●
●

●
●
●

●
●
●
●
●
●
●
●●
●
●
●
●
●●
●●
●●●●

●●●●●●●●●● ●● ● ●●

Figure 8: CDF of Worker Startup Time (left) and Run Time (right)

7. Conclusions

In addition to the traffic forecasting application described here, the googleparallelism
R package has been applied to a variety of problems at Google requiring large-scale
statistical analysis [6]. Since the initial development of the package, analyst teams
have launched over 64,000 parallel statistical jobs using an average of 180 machines.

Importantly, this parallelism is available to analysts without any experience with
Google’s engineering infrastructure, dramatically expanding the set of people who
can take advantage of the system—and allowing analysts to direct their creativity
toward their problem-domain without worrying about the infrastructure.

References

[1] Hive. https://cwiki.apache.org/confluence/display/Hive/Home, 2011.

[2] Ganesh Ananthanarayanan, Srikanth Kandula, Albert Greenberg, Ion Stoica,
Yi Lu, Bikas Saha, and Edward Harris. Reining in the outliers in map-reduce
clusters using mantri. In Proceedings of the 9th USENIX Conference on Op-
erating Systems Design and Implementation, OSDI’10, pages 1–16, Berkeley,
CA, USA, 2010. USENIX Association.

[3] J. Scott Armstrong. Combining forecasts. Priniples of forecasting: A handbook
for researchesr and practitioners, pages 417–439.

[4] J. Scott Armstrong. Combining forecasts: The end of the beginning or the
beginning of the end? International Journal of Forecasting, 5:585–588.

[5] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis Lectures
on Computer Architecture. Morgan & Claypool Publishers, 2009.

[6] David X. Chan, Yuan Yuan, Jim Koehler, and Deepak Kumar. Incremental
clicks impact of search advertising. Google Technical Report.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gru-
ber. Bigtable: a distributed storage system for structured data. In OSDI ’06:
Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation, pages 205–218, Nov. 2006.

[8] Biswapesh Chattopadhyay, Liang Lin, Weiran Liu, Sagar Mittal, Prathyusha
Aragonda, Vera Lychagina, Yonghee Kwon, and Michael Wong. Tenzing: A sql
implementation on the mapreduce framework. Proc. VLDB Endow., September
2011.

[9] R.T. Clemen. Combining forecasts: A review and annotated bibliography.
International Journal of Forecasting, 5:559–583.

[10] Duane Currie. papply: Parallel apply function using MPI, 2010. R package
version 0.1-3.

[11] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing
on large clusters. Commun. ACM, 51:107–113, January 2008.

[12] Bradley Efron. Better bootstrap confidence intervals. Journal of the American
Statistical Association, 82(397):pp. 171–185, 1987.

[13] Bradley Efron. An introduction to the bootstrap. Chapman and Hall, New
York, 1994.

[14] Robert Gentleman and Ross Ihaka. Lexical scope and statistical computing.
Journal of Computational and Graphical Statistics, 9(3):pp. 491–508, 2000.

[15] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file
system. In SOSP ’03: Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 29–43, Oct. 2003.

[16] Saptarshi Guha. RHIPE: A Distributed Environment for the Analysis of Large
and Complex Datasets, 2010.

[17] Simon Haykin. Neural networks : a comprehensive foundation. Upper Saddle
River.

[18] Jiangtian Li, Xiaosong Ma, Srikanth Yoginath, Guruprasad Kora, and Nag-
iza F. Samatova. Transparent runtime parallelization of the r scripting lan-
guage. J. Parallel Distrib. Comput., 71:157–168, February 2011.

[19] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer, Shiva Shiv-
akumar, Matt Tolton, and Theo Vassilakis. Dremel: interactive analysis of
web-scale datasets. Proc. VLDB Endow., 3:330–339, September 2010.

[20] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and
Andrew Tomkins. Pig latin: a not-so-foreign language for data processing. In
Proceedings of the 2008 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’08, pages 1099–1110, New York, NY, USA, 2008.
ACM.

[21] R Development Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.

[22] Markus Schmidberger, Martin Morgan, Dirk Eddelbuettel, Hao Yu, Luke Tier-
ney, and Ulrich Mansmann. State of the art in parallel computing with r.
Journal of Statistical Software, 31(1):1–27, 8 2009.

[23] Luke Tierney. A new serialization mechanism for r, 2003.

[24] Luke Tierney, A. J. Rossini, Na Li, and H. Sevcikova. snow: Simple Network
of Workstations. R package version 0.3-3.

[25] Simon Urbanek. multicore: Parallel processing of R code on machines with
multiple cores or CPUs, 2010. R package version 0.1-3.

[26] Hadley Wickham. The split-apply-combine strategy for data analysis. Journal
of Statistical Software, 40(1):1–29, 4 2011.

