
Distributed Data Analysis with Hadoop and R 

Jonathan Seidman and Ramesh Venkataramaiah, Ph. D. 

OSCON Data 2011	




Flow of this Talk 

•  Introductions 

•  Hadoop, R and Interfacing 

•  Our Prototypes 

•  A use case for interfacing Hadoop and R 

•  Alternatives for Running R on Hadoop 

•  Alternatives to Hadoop and R 

•  Conclusions 

•  References 

page 2 



Who We Are 

page 3 

•  Ramesh Venkataramaiah, Ph. D. 

–  Principal Engineer, TechOps 

–  rvenkataramaiah@orbitz.com 

–  @rvenkatar 

•  Jonathan Seidman 

–  Lead Engineer, Business Intelligence/Big Data Team 

–  Co-founder/organizer of Chicago Hadoop User Group (
http://www.meetup.com/Chicago-area-Hadoop-User-Group-CHUG) and 
Chicago Big Data (http://www.meetup.com/Chicago-Big-Data/ 

–  jseidman@orbitz.com 

–  @jseidman 

•  Orbitz Careers 

–  http://careers.orbitz.com/ 

–  @OrbitzTalent 



page 4 

Launched in  2001, Chicago, IL  

Over 160 million bookings 



Hadoop and R  
as an analytic platform? 
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What is Hadoop? 

Distributed file system (HDFS) and parallel processing 
framework.  

 Uses MapReduce programming model as the core. 

  Provides fault tolerant and scalable storage 

   of very large datasets across machines in a cluster. 
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What is R? When do we need it? 

Open-source stat package with visualization 

 Vibrant community support. 

  One-line calculations galore! 

   Steep learning curve but worth it! 

Insight into statistical properties and trends… 

            or for machine learning purposes… 

              or Big Data to be understood well. 
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Our Options  

•  Data volume reduction by sampling 
–  Very bad for long-tail data distribution 

–  Approximation lead to bad conclusion 

•  Scaling R 
–  Still in-memory 

–  But make it parallel using segue, Rhipe, R-Hive… 

•  Use sql-like interfaces 
–  Apache Hive with Hadoop 

–  File sprawl and process issues 

•  Regular DBMS 
–  How to fit square peg in a round hole 

–  No in-line R calls from SQL but commercial efforts are underway. 

•  This Talk: Interface Hadoop with R over dataspaces 
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Why Interface Hadoop and R at cluster level? 

•  R only works on:  

– Data is in-memory, stand alone. Single-threaded, mostly. 
“multicore” package in R help here. 

•  HDFS can be “the” data and analytic store. 

•  Interfacing with Hadoop brings parallel processing capability to 
R environment. 

How do we interface Hadoop and R, at cluster level? 
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Our prototypes 
User segmentations 

Hotel bookings 
Airline Performance* 
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* Public dataset	




Before Hadoop 
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With Hadoop 



Getting a Buy-in  

presented a long-term, unstructured data growth story and 

explained how this will help harness long-tail opportunities at 

lowest cost. 
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- Traditional DW!
-  Classical Stats!
-  Sampling!

- Big Data!
-  Specific spikes!
-  Median is not the message!

* From a blog 	




Workload and Resource Partition 
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Purpose � Data Volume � Platform preference � Resource Level �

Collection� Scalable, elastic�
GB to TB�

Hadoop (cluster level) � Developers �

Aggregation/
Summary �

Large scale, �
Big data�
GB to TB�

Rhipe �
Hadoop streaming �
Hadoop Interactive �

Developers �
Analysts�
Machine Learning Teams�

Modeling/
Visualization�

Small datasets,�
In-memory, �
MB to GB �

R (stand-alone) � Analysts�
Machine Learning Teams�



User Segmentation by Browsers 
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Seasonal variations 
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•  Customer hotel stay gets longer during summer months  

•  Could help in designing search based on seasons. 



Airline Performance 
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Description of Use Case 

•  Analyze openly available dataset: Airline on-time performance. 

•  Dataset was used in “Visualization Poster Competition 2009” 

– Consists of flight arrival/departure details from 1987-2008. 

– Approximately 120 MM records totaling 120GB. 

•  Available at: http://stat-computing.org/dataexpo/2009/ 
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Airline Delay Plot: R code 
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> deptdelays.monthly.full <- read.delim("~/OSCON2011/Delays_by_Month.dat", header=F)!
> View(deptdelays.monthly.full)!
> names(deptdelays.monthly.full) <- c("Year","Month","Count","Airline","Delay”)!
> Delay_by_month <- deptdelays.monthly.full[order(deptdelays.monthly.full
$Delay,decreasing=TRUE),]!
> Top_10_Delay_by_Month <- Delay_by_Month[1:10,]!
> Top_10_Normal <- ((Delay - mean(Delay)) / sd(Delay))!
> symbols( Month, Delay, circles= Top_10_Normal, inches=.3, fg="white”,bg="red”,…)!
> text(Month, Delay, Airline, cex= 0.5)!



Multiple Distributions: R code 
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> library(lattice)!
> deptdelays.monthly.full$Year <- as.character(deptdelays.monthly.full$Year)!
> h <- histogram(~Delay|Year,data=deptdelays.monthly.full,layout=c(5,5))!
> update(h)!



Running R on Hadoop: 
Hadoop Streaming 
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Hadoop Streaming – Overview 

•  An alternative to the Java MapReduce API which allows you to 
write jobs in any language supporting stdin/stdout. 

•  Limited to text data in current versions of Hadoop. Support for 
binary streams added in 0.21.0. 

•  Requires installation of R on all DataNodes. 
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Hadoop Streaming – Dataflow 
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1988,1,9,6,1348,1331,1458,1435,PI,942,NA,70,64,NA,23,17,SYR,BWI...	

1988,1,17,7,1331,1331,1440,1435,PI,942,NA,69,64,NA,5,0,SYR,BWI…	

1987,10,14,3,741,730,912,849,PS,1451,NA,91,79,NA,23,11,SAN,SFO...	

1987,10,21,3,728,730,848,849,PS,1451,NA,80,79,NA,-1,-2,SAN,SFO...	

1987,10,23,5,731,730,902,849,PS,1451,NA,91,79,NA,13,1,SAN,SFO…	

1987,10,30,5,1712,1658,1811,1800,DL,475,NA,59,62,NA,11,14,LEX,ATL...	


Input to map 

PI|1988|1 	
 17 	

PI|1988|1 	
 0 	

PS|1987|10 	
 11 	

PS|1987|10 	
 -2 	

PS|1987|10 	
 1 	

DL|1987|10 	
 14 	


Output from map 

*	


* Map function receives input records line-by-line via standard input. 



Hadoop Streaming – Dataflow Cont’d 
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DL|1987|10 	
 14 	

PI|1988|1 	
 0 	

PI|1988|1 	
 17 	

PS|1987|10 	
 1 	

PS|1987|10 	
 11 	

PS|1987|10 	
 -2 	


Input to reduce 

1987 	
 10  	
 1 	
 DL 	
 14 	

1988 	
 1  	
 2 	
 PI 	
 8.5 	

1987 	
 10  	
 3 	
 PS 	
 3.333333 	
Output from reduce 

*	


* Reduce receives map output key/value pairs sorted by key, line-by-line. 



Hadoop Streaming – Example 
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#! /usr/bin/env Rscript!

con <- file("stdin", open = "r")!
while (length(line <- readLines(con, n = 1, warn = FALSE)) > 0) {!
  fields <- unlist(strsplit(line, "\\,"))!
  if (!(identical(fields[[1]], "Year")) & length(fields) == 29) {!
    deptDelay <- fields[[16]]!
    if (!(identical(deptDelay, "NA"))) {!
      cat(paste(fields[[9]], "|", fields[[1]], "|", fields[[2]],         !
                sep=""), "\t”, deptDelay, "\n")!
    }!
  }!
}!
close(con)!

map.R 



Hadoop Streaming – Example Cont’d 
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#!/usr/bin/env Rscript!

con <- file("stdin", open = "r")!
delays <- numeric(0) # vector of departure delays!
lastKey <- ""!
while (length(line <- readLines(con, n = 1, warn = FALSE)) > 0) {!
  split <- unlist(strsplit(line, "\t"))!
  key <- split[[1]]!
  deptDelay <- as.numeric(split[[2]])!

  if (!(identical(lastKey, "")) & (!(identical(lastKey, key)))) {!
    keySplit <- unlist(strsplit(lastKey, "\\|"))!
    cat(keySplit[[2]], "\t", keySplit[[3]], "\t", length(delays), "\t", keySplit
[[1]], "\t", (mean(delays)), "\n")!
    lastKey <- key!
    delays <- c(deptDelay) !
  } else { !
      lastKey <- key!
      delays <- c(delays, deptDelay)!
  }!
}!
keySplit <- unlist(strsplit(lastKey, "\\|"))!
cat(keySplit[[2]], "\t", keySplit[[3]], "\t", length(delays), "\t", keySplit[[1]], 
"\t", (mean (delays)), "\n")!

reduce.R 



Running R on Hadoop: 
Hadoop Interactive 
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Hadoop Interactive (hive) – Overview 

•  Very unfortunate acronym. 

•  Provides an interface to Hadoop from the R environment. 

•  Provides R functions to access HDFS – DFS_list(), 
DFS_dir_create(), DFS_put()… 

•  Provides R functions to control Hadoop – hive_start(), 
hive_stop()… 

•  And allows streaming jobs to be executed from R via 
hive_stream(). 

•  Allows HDFS data, including the output from MapReduce 
processing, to be manipulated and analyzed directly from R. 
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Hadoop Interactive – Example 
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#! /usr/bin/env Rscript!

mapper <- function() {!
...!
}!

reducer <- function() {!
...!
}!

library(hive)!
DFS_dir_remove("/dept-delay-month", recursive = TRUE, henv = hive())!
hive_stream(mapper = mapper, reducer = reducer, !
            input="/data/airline", output="/dept-delay-month", !
            henv = hive())!
results <- DFS_read_lines("/dept-delay-month/part-r-00000", !
           henv = hive())!



Running R on Hadoop: 
RHIPE 
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RHIPE – Overview 

•  Active project with frequent updates and active community. 

•  RHIPE is based on Hadoop streaming source, but provides 
some significant enhancements, such as support for binary 
files. 

•  Developed to provide R users with access to same Hadoop 
functionality available to Java developers. 

–  For example, provides rhcounter() and rhstatus(), 
analagous to counters and the reporter interface in the Java 
API. 

•  Can be somewhat confusing and intimidating. 

–  Then again, the same can be said for the Java API. 

– Worth taking the time to get comfortable with. 

page 31 



RHIPE – Overview Cont’d 

•  Allows developers to work directly on data stored in HDFS in 
the R environment. 

•  Also allows developers to write MapReduce jobs in R and 
execute them on the Hadoop cluster. 

•  RHIPE uses Google protocol buffers to serialize data. Most R 
data types are supported. 

– Using protocol buffers increases efficiency and provides 
interoperability with other languages. 

•  Must be installed on all DataNodes.  
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RHIPE – MapReduce 

map <- expression({}) !

reduce <- expression( !

    pre = {…},!

    reduce = {…}, !

    post = {…}!

 ) !

z <- rhmr(map=map,reduce=reduce,!

          inout=c("text","sequence”), !

          ifolder=INPUT_PATH ,!

          ofolder=OUTPUT_PATH,!

          …)!

rhex(z) !
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RHIPE – Dataflow 
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Keys = […]	

Values  =	

  [1988,1,9,6,1348,1331,1458,1435,PI,942,NA,70,64,NA,23,17,SYR,BWI...	

   1988,1,17,7,1331,1331,1440,1435,PI,942,NA,69,64,NA,5,0,SYR,BWI…	

   1987,10,14,3,741,730,912,849,PS,1451,NA,91,79,NA,23,11,SAN,SFO...	

   1987,10,21,3,728,730,848,849,PS,1451,NA,80,79,NA,-1,-2,SAN,SFO...	

   1987,10,23,5,731,730,902,849,PS,1451,NA,91,79,NA,13,1,SAN,SFO…	

   1987,10,30,5,1712,1658,1811,1800,DL,475,NA,59,62,NA,11,14,LEX,ATL...]	


Input to map 

PI|1988|1 	
 17 	

PI|1988|1 	
 0 	

PS|1987|10 	
 11 	

PS|1987|10 	
 -2 	

PS|1987|10 	
 1 	

DL|1987|10 	
 14 	


Output from map 

*

* Note that Input to map is a vector of keys and a vector of values.  



RHIPE – Dataflow Cont’d 
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DL|1987|10 	
 [14] 	


Input to reduce 

1987 	
 10  	
 1 	
 DL 	
 14 	

1988 	
 1  	
 2 	
 PI 	
 8.5 	

1987 	
 10  	
 3 	
 PS 	
 3.333333 	
Output from reduce 

PI|1988|1 	
 [0, 17] 	


PS|1987|10  	
 [1,11,-2] 	


* Note that input to reduce is each unique key and a vector of values  
  associated with that key.  

*



RHIPE – Example 
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#! /usr/bin/env Rscript!

library(Rhipe)!
rhinit(TRUE, TRUE)!

map <- expression({!
  # For each input record, parse out required fields and output new record:!
  mapLine = function(line) {!
    fields <- unlist(strsplit(line, "\\,"))!
    # Skip header lines and bad records:!
    if (!(identical(fields[[1]], "Year")) & length(fields) == 29) {!
      deptDelay <- fields[[16]]!
     # Skip records where departure dalay is "NA":!
      if (!(identical(deptDelay, "NA"))) {!
        # field[9] is carrier, field[1] is year, field[2] is month:!
        rhcollect(paste(fields[[9]], "|", fields[[1]], "|", fields[[2]], sep=""), 
deptDelay)!
      }!
    }!
  }!
  # Process each record in map input:!
  lapply(map.values, mapLine)!
})!



RHIPE – Example Cont’d 
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reduce <- expression(!
  reduce = {!
    count <- length(reduce.values)!
    avg <- mean(as.numeric(reduce.values))!
    keySplit <- unlist(strsplit(reduce.key, "\\|"))!
  },!
  post = {!
    rhcollect(keySplit[[2]], !
              paste(keySplit[[3]], count, keySplit[[1]], avg, sep="\t"))!
  }!
)!

# Create job object:!
z <- rhmr(map=map, reduce=reduce,!
          ifolder="/data/airline/", ofolder=”/dept-delay-month,!
          inout=c('text', 'text'), jobname='Avg Departure Delay By Month')!
# Run it:!
rhex(z)!



RHIPE – Example Cont’d 
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library(lattice)!
rhget("/dept-delay-month/part-r-00000", "deptdelay.dat")!
deptdelays.monthly.full <- read.delim("deptdelay.dat", header=F)!
names(deptdelays.monthly.full)<- c("Year","Month","Count","Airline","Delay")!
deptdelays.monthly.full$Year <- as.character(deptdelays.monthly.full$Year)!
h <- histogram(~Delay|Year,data=deptdelays.monthly.full,layout=c(5,5))!
update(h)!



Running R on Hadoop: 
Segue 
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Segue – Overview 

•  Intended to work around single-threading in R by taking 
advantage of Hadoop streaming to provide simple parallel 
processing. 

–  For example, running multiple simulations in parallel. 

•  Suitable for embarrassingly pleasantly parallel problems – big 
CPU, not big data. 

•  Runs on Amazon’s Elastic Map Reduce (EMR). 

– Not intended for internal clusters. 

•  Provides emrlapply(), a parallel version of lapply()!
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Segue – Example 
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estimatePi <- function(seed){!
   set.seed(seed)!
   numDraws <- 1e6!

   r <- .5 #radius... in case the unit circle is too boring!
   x <- runif(numDraws, min=-r, max=r)!
   y <- runif(numDraws, min=-r, max=r)!
   inCircle <- ifelse( (x^2 + y^2)^.5 < r , 1, 0)!

   return(sum(inCircle) / length(inCircle) * 4)!
 }!

seedList <- as.list(1:1000)!
require(segue)!
myCluster <- createCluster(20)!
myEstimates <- emrlapply( myCluster, seedList, estimatePi )!
stopCluster(myCluster)!



Predictive Analytics on 
Hadoop: Sawmill 
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Sawmill – Overview 

•  A framework for integrating a PMML-compliant Scoring Engine 
with Hadoop. 

•  Hadoop streaming allows easier integration of a scoring engine 
into reducer code (Python and R). 

–  The output of a MapReduce run becomes a segmented 
PMML model – one segment for each partition 

•  Training the models and Scoring are separate MapReduce 
jobs. 

•  Interoperates with open source scoring engines such as 
Augustus, as well as a forthcoming R scoring engine. 
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Alternatives 

•  Apache Mahout 

–  Scalable machine learning library. 

–  Offers clustering, classification, collaborative filtering on Hadoop. 

•  Python 

–  Many modules available to support scientific and statistical computing. 

•  Revolution Analytics 

–  Provides commercial packages to support processing big data with R. 

•  Ricardo – looks interesting but you can’t have it. 

•  Other HPC/parallel processing packages, e.g. Rmpi or snow. 

•  Apache Hive + RJDBC? 

–  We haven’t been able to get it to work yet. 

–  You can however wrap calls to the Hive client in R to return R objects. See 
https://github.com/satpreetsingh/rDBwrappers/wiki 
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Conclusions 

•  If practical, consider using Hadoop to aggregate data for input 
to R analyses. 

•  Avoid using R for general purpose MapReduce use. 

•  For simple MapReduce jobs, or “embarrassingly” parallel jobs 
on a local cluster, consider Hadoop streaming (or Hadoop 
Interactive). 

–  Limited to processing text only. 

– But easy to test at the command line outside of Hadoop:  

• $ cat DATAFILE |./map.R |sort |./reduce.R!
•  To run compute-bound analyses with relatively small amount of 

data on the cloud look at Segue. 

•  Otherwise, look at RHIPE. 
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Conclusions Cont’d 

•  Also look at alternatives – Mahout, Python, etc.  

•  Make sure your cluster nodes are consistent – same version of 
R installed, required libraries are installed on each node, etc. 
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Example Code 

•  https://github.com/jseidman/hadoop-R 
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 “R meets Big Data - a basket of strategies to help you use R 
  for large-scale analysis and computation.” 


