
Distributed Data Analysis with Hadoop and R

Jonathan Seidman and Ramesh Venkataramaiah, Ph. D.

OSCON Data 2011	

Flow of this Talk

•  Introductions

•  Hadoop, R and Interfacing

•  Our Prototypes

•  A use case for interfacing Hadoop and R

•  Alternatives for Running R on Hadoop

•  Alternatives to Hadoop and R

•  Conclusions

•  References

page 2

Who We Are

page 3

•  Ramesh Venkataramaiah, Ph. D.

–  Principal Engineer, TechOps

–  rvenkataramaiah@orbitz.com

–  @rvenkatar

•  Jonathan Seidman

–  Lead Engineer, Business Intelligence/Big Data Team

–  Co-founder/organizer of Chicago Hadoop User Group (
http://www.meetup.com/Chicago-area-Hadoop-User-Group-CHUG) and
Chicago Big Data (http://www.meetup.com/Chicago-Big-Data/

–  jseidman@orbitz.com

–  @jseidman

•  Orbitz Careers

–  http://careers.orbitz.com/

–  @OrbitzTalent

page 4

Launched in 2001, Chicago, IL

Over 160 million bookings

Hadoop and R
as an analytic platform?

page 5

What is Hadoop?

Distributed file system (HDFS) and parallel processing
framework.

 Uses MapReduce programming model as the core.

 Provides fault tolerant and scalable storage

 of very large datasets across machines in a cluster.

page 6

What is R? When do we need it?

Open-source stat package with visualization

 Vibrant community support.

 One-line calculations galore!

 Steep learning curve but worth it!

Insight into statistical properties and trends…

 or for machine learning purposes…

 or Big Data to be understood well.

page 7

Our Options

•  Data volume reduction by sampling
–  Very bad for long-tail data distribution

–  Approximation lead to bad conclusion

•  Scaling R
–  Still in-memory

–  But make it parallel using segue, Rhipe, R-Hive…

•  Use sql-like interfaces
–  Apache Hive with Hadoop

–  File sprawl and process issues

•  Regular DBMS
–  How to fit square peg in a round hole

–  No in-line R calls from SQL but commercial efforts are underway.

•  This Talk: Interface Hadoop with R over dataspaces

page 8

Why Interface Hadoop and R at cluster level?

•  R only works on:

– Data is in-memory, stand alone. Single-threaded, mostly.
“multicore” package in R help here.

•  HDFS can be “the” data and analytic store.

•  Interfacing with Hadoop brings parallel processing capability to
R environment.

How do we interface Hadoop and R, at cluster level?

page 9

Our prototypes
User segmentations

Hotel bookings
Airline Performance*

page 10

* Public dataset	

Before Hadoop

page 11

page 12

With Hadoop

Getting a Buy-in

presented a long-term, unstructured data growth story and

explained how this will help harness long-tail opportunities at

lowest cost.

page 13

- Traditional DW!
-  Classical Stats!
-  Sampling!

- Big Data!
-  Specific spikes!
-  Median is not the message!

* From a blog 	

Workload and Resource Partition

page 14

Purpose � Data Volume � Platform preference � Resource Level �

Collection� Scalable, elastic�
GB to TB�

Hadoop (cluster level) � Developers �

Aggregation/
Summary �

Large scale, �
Big data�
GB to TB�

Rhipe �
Hadoop streaming �
Hadoop Interactive �

Developers �
Analysts�
Machine Learning Teams�

Modeling/
Visualization�

Small datasets,�
In-memory, �
MB to GB �

R (stand-alone) � Analysts�
Machine Learning Teams�

User Segmentation by Browsers

page 15

Seasonal variations

page 16

•  Customer hotel stay gets longer during summer months

•  Could help in designing search based on seasons.

Airline Performance

page 17

Description of Use Case

•  Analyze openly available dataset: Airline on-time performance.

•  Dataset was used in “Visualization Poster Competition 2009”

– Consists of flight arrival/departure details from 1987-2008.

– Approximately 120 MM records totaling 120GB.

•  Available at: http://stat-computing.org/dataexpo/2009/

page 18

Airline Delay Plot: R code

page 19

> deptdelays.monthly.full <- read.delim("~/OSCON2011/Delays_by_Month.dat", header=F)!
> View(deptdelays.monthly.full)!
> names(deptdelays.monthly.full) <- c("Year","Month","Count","Airline","Delay”)!
> Delay_by_month <- deptdelays.monthly.full[order(deptdelays.monthly.full
$Delay,decreasing=TRUE),]!
> Top_10_Delay_by_Month <- Delay_by_Month[1:10,]!
> Top_10_Normal <- ((Delay - mean(Delay)) / sd(Delay))!
> symbols(Month, Delay, circles= Top_10_Normal, inches=.3, fg="white”,bg="red”,…)!
> text(Month, Delay, Airline, cex= 0.5)!

Multiple Distributions: R code

page 20

> library(lattice)!
> deptdelays.monthly.full$Year <- as.character(deptdelays.monthly.full$Year)!
> h <- histogram(~Delay|Year,data=deptdelays.monthly.full,layout=c(5,5))!
> update(h)!

Running R on Hadoop:
Hadoop Streaming

page 21

Hadoop Streaming – Overview

•  An alternative to the Java MapReduce API which allows you to
write jobs in any language supporting stdin/stdout.

•  Limited to text data in current versions of Hadoop. Support for
binary streams added in 0.21.0.

•  Requires installation of R on all DataNodes.

page 22

Hadoop Streaming – Dataflow

page 23

1988,1,9,6,1348,1331,1458,1435,PI,942,NA,70,64,NA,23,17,SYR,BWI...	

1988,1,17,7,1331,1331,1440,1435,PI,942,NA,69,64,NA,5,0,SYR,BWI…	

1987,10,14,3,741,730,912,849,PS,1451,NA,91,79,NA,23,11,SAN,SFO...	

1987,10,21,3,728,730,848,849,PS,1451,NA,80,79,NA,-1,-2,SAN,SFO...	

1987,10,23,5,731,730,902,849,PS,1451,NA,91,79,NA,13,1,SAN,SFO…	

1987,10,30,5,1712,1658,1811,1800,DL,475,NA,59,62,NA,11,14,LEX,ATL...	

Input to map

PI|1988|1 	
 17 	

PI|1988|1 	
 0 	

PS|1987|10 	
 11 	

PS|1987|10 	
 -2 	

PS|1987|10 	
 1 	

DL|1987|10 	
 14 	

Output from map

*	

* Map function receives input records line-by-line via standard input.

Hadoop Streaming – Dataflow Cont’d

page 24

DL|1987|10 	
 14 	

PI|1988|1 	
 0 	

PI|1988|1 	
 17 	

PS|1987|10 	
 1 	

PS|1987|10 	
 11 	

PS|1987|10 	
 -2 	

Input to reduce

1987 	
 10 	
 1 	
 DL 	
 14 	

1988 	
 1 	
 2 	
 PI 	
 8.5 	

1987 	
 10 	
 3 	
 PS 	
 3.333333 	
Output from reduce

*	

* Reduce receives map output key/value pairs sorted by key, line-by-line.

Hadoop Streaming – Example

page 25

#! /usr/bin/env Rscript!

con <- file("stdin", open = "r")!
while (length(line <- readLines(con, n = 1, warn = FALSE)) > 0) {!
 fields <- unlist(strsplit(line, "\\,"))!
 if (!(identical(fields[[1]], "Year")) & length(fields) == 29) {!
 deptDelay <- fields[[16]]!
 if (!(identical(deptDelay, "NA"))) {!
 cat(paste(fields[[9]], "|", fields[[1]], "|", fields[[2]], !
 sep=""), "\t”, deptDelay, "\n")!
 }!
 }!
}!
close(con)!

map.R

Hadoop Streaming – Example Cont’d

page 26

#!/usr/bin/env Rscript!

con <- file("stdin", open = "r")!
delays <- numeric(0) # vector of departure delays!
lastKey <- ""!
while (length(line <- readLines(con, n = 1, warn = FALSE)) > 0) {!
 split <- unlist(strsplit(line, "\t"))!
 key <- split[[1]]!
 deptDelay <- as.numeric(split[[2]])!

 if (!(identical(lastKey, "")) & (!(identical(lastKey, key)))) {!
 keySplit <- unlist(strsplit(lastKey, "\\|"))!
 cat(keySplit[[2]], "\t", keySplit[[3]], "\t", length(delays), "\t", keySplit
[[1]], "\t", (mean(delays)), "\n")!
 lastKey <- key!
 delays <- c(deptDelay) !
 } else { !
 lastKey <- key!
 delays <- c(delays, deptDelay)!
 }!
}!
keySplit <- unlist(strsplit(lastKey, "\\|"))!
cat(keySplit[[2]], "\t", keySplit[[3]], "\t", length(delays), "\t", keySplit[[1]],
"\t", (mean (delays)), "\n")!

reduce.R

Running R on Hadoop:
Hadoop Interactive

page 27

Hadoop Interactive (hive) – Overview

•  Very unfortunate acronym.

•  Provides an interface to Hadoop from the R environment.

•  Provides R functions to access HDFS – DFS_list(),
DFS_dir_create(), DFS_put()…

•  Provides R functions to control Hadoop – hive_start(),
hive_stop()…

•  And allows streaming jobs to be executed from R via
hive_stream().

•  Allows HDFS data, including the output from MapReduce
processing, to be manipulated and analyzed directly from R.

page 28

Hadoop Interactive – Example

page 29

#! /usr/bin/env Rscript!

mapper <- function() {!
...!
}!

reducer <- function() {!
...!
}!

library(hive)!
DFS_dir_remove("/dept-delay-month", recursive = TRUE, henv = hive())!
hive_stream(mapper = mapper, reducer = reducer, !
 input="/data/airline", output="/dept-delay-month", !
 henv = hive())!
results <- DFS_read_lines("/dept-delay-month/part-r-00000", !
 henv = hive())!

Running R on Hadoop:
RHIPE

page 30

RHIPE – Overview

•  Active project with frequent updates and active community.

•  RHIPE is based on Hadoop streaming source, but provides
some significant enhancements, such as support for binary
files.

•  Developed to provide R users with access to same Hadoop
functionality available to Java developers.

–  For example, provides rhcounter() and rhstatus(),
analagous to counters and the reporter interface in the Java
API.

•  Can be somewhat confusing and intimidating.

–  Then again, the same can be said for the Java API.

– Worth taking the time to get comfortable with.

page 31

RHIPE – Overview Cont’d

•  Allows developers to work directly on data stored in HDFS in
the R environment.

•  Also allows developers to write MapReduce jobs in R and
execute them on the Hadoop cluster.

•  RHIPE uses Google protocol buffers to serialize data. Most R
data types are supported.

– Using protocol buffers increases efficiency and provides
interoperability with other languages.

•  Must be installed on all DataNodes.

page 32

RHIPE – MapReduce

map <- expression({}) !

reduce <- expression(!

 pre = {…},!

 reduce = {…}, !

 post = {…}!

) !

z <- rhmr(map=map,reduce=reduce,!

 inout=c("text","sequence”), !

 ifolder=INPUT_PATH ,!

 ofolder=OUTPUT_PATH,!

 …)!

rhex(z) !

page 33

RHIPE – Dataflow

page 34

Keys = […]	

Values =	

 [1988,1,9,6,1348,1331,1458,1435,PI,942,NA,70,64,NA,23,17,SYR,BWI...	

 1988,1,17,7,1331,1331,1440,1435,PI,942,NA,69,64,NA,5,0,SYR,BWI…	

 1987,10,14,3,741,730,912,849,PS,1451,NA,91,79,NA,23,11,SAN,SFO...	

 1987,10,21,3,728,730,848,849,PS,1451,NA,80,79,NA,-1,-2,SAN,SFO...	

 1987,10,23,5,731,730,902,849,PS,1451,NA,91,79,NA,13,1,SAN,SFO…	

 1987,10,30,5,1712,1658,1811,1800,DL,475,NA,59,62,NA,11,14,LEX,ATL...]	

Input to map

PI|1988|1 	
 17 	

PI|1988|1 	
 0 	

PS|1987|10 	
 11 	

PS|1987|10 	
 -2 	

PS|1987|10 	
 1 	

DL|1987|10 	
 14 	

Output from map

*

* Note that Input to map is a vector of keys and a vector of values.

RHIPE – Dataflow Cont’d

page 35

DL|1987|10 	
 [14] 	

Input to reduce

1987 	
 10 	
 1 	
 DL 	
 14 	

1988 	
 1 	
 2 	
 PI 	
 8.5 	

1987 	
 10 	
 3 	
 PS 	
 3.333333 	
Output from reduce

PI|1988|1 	
 [0, 17] 	

PS|1987|10 	
 [1,11,-2] 	

* Note that input to reduce is each unique key and a vector of values
 associated with that key.

*

RHIPE – Example

page 36

#! /usr/bin/env Rscript!

library(Rhipe)!
rhinit(TRUE, TRUE)!

map <- expression({!
 # For each input record, parse out required fields and output new record:!
 mapLine = function(line) {!
 fields <- unlist(strsplit(line, "\\,"))!
 # Skip header lines and bad records:!
 if (!(identical(fields[[1]], "Year")) & length(fields) == 29) {!
 deptDelay <- fields[[16]]!
 # Skip records where departure dalay is "NA":!
 if (!(identical(deptDelay, "NA"))) {!
 # field[9] is carrier, field[1] is year, field[2] is month:!
 rhcollect(paste(fields[[9]], "|", fields[[1]], "|", fields[[2]], sep=""),
deptDelay)!
 }!
 }!
 }!
 # Process each record in map input:!
 lapply(map.values, mapLine)!
})!

RHIPE – Example Cont’d

page 37

reduce <- expression(!
 reduce = {!
 count <- length(reduce.values)!
 avg <- mean(as.numeric(reduce.values))!
 keySplit <- unlist(strsplit(reduce.key, "\\|"))!
 },!
 post = {!
 rhcollect(keySplit[[2]], !
 paste(keySplit[[3]], count, keySplit[[1]], avg, sep="\t"))!
 }!
)!

Create job object:!
z <- rhmr(map=map, reduce=reduce,!
 ifolder="/data/airline/", ofolder=”/dept-delay-month,!
 inout=c('text', 'text'), jobname='Avg Departure Delay By Month')!
Run it:!
rhex(z)!

RHIPE – Example Cont’d

page 38

library(lattice)!
rhget("/dept-delay-month/part-r-00000", "deptdelay.dat")!
deptdelays.monthly.full <- read.delim("deptdelay.dat", header=F)!
names(deptdelays.monthly.full)<- c("Year","Month","Count","Airline","Delay")!
deptdelays.monthly.full$Year <- as.character(deptdelays.monthly.full$Year)!
h <- histogram(~Delay|Year,data=deptdelays.monthly.full,layout=c(5,5))!
update(h)!

Running R on Hadoop:
Segue

page 39

Segue – Overview

•  Intended to work around single-threading in R by taking
advantage of Hadoop streaming to provide simple parallel
processing.

–  For example, running multiple simulations in parallel.

•  Suitable for embarrassingly pleasantly parallel problems – big
CPU, not big data.

•  Runs on Amazon’s Elastic Map Reduce (EMR).

– Not intended for internal clusters.

•  Provides emrlapply(), a parallel version of lapply()!

page 40

Segue – Example

page 41

estimatePi <- function(seed){!
 set.seed(seed)!
 numDraws <- 1e6!

 r <- .5 #radius... in case the unit circle is too boring!
 x <- runif(numDraws, min=-r, max=r)!
 y <- runif(numDraws, min=-r, max=r)!
 inCircle <- ifelse((x^2 + y^2)^.5 < r , 1, 0)!

 return(sum(inCircle) / length(inCircle) * 4)!
 }!

seedList <- as.list(1:1000)!
require(segue)!
myCluster <- createCluster(20)!
myEstimates <- emrlapply(myCluster, seedList, estimatePi)!
stopCluster(myCluster)!

Predictive Analytics on
Hadoop: Sawmill

page 42

Sawmill – Overview

•  A framework for integrating a PMML-compliant Scoring Engine
with Hadoop.

•  Hadoop streaming allows easier integration of a scoring engine
into reducer code (Python and R).

–  The output of a MapReduce run becomes a segmented
PMML model – one segment for each partition

•  Training the models and Scoring are separate MapReduce
jobs.

•  Interoperates with open source scoring engines such as
Augustus, as well as a forthcoming R scoring engine.

page 43

Alternatives

•  Apache Mahout

–  Scalable machine learning library.

–  Offers clustering, classification, collaborative filtering on Hadoop.

•  Python

–  Many modules available to support scientific and statistical computing.

•  Revolution Analytics

–  Provides commercial packages to support processing big data with R.

•  Ricardo – looks interesting but you can’t have it.

•  Other HPC/parallel processing packages, e.g. Rmpi or snow.

•  Apache Hive + RJDBC?

–  We haven’t been able to get it to work yet.

–  You can however wrap calls to the Hive client in R to return R objects. See
https://github.com/satpreetsingh/rDBwrappers/wiki

page 44

Conclusions

•  If practical, consider using Hadoop to aggregate data for input
to R analyses.

•  Avoid using R for general purpose MapReduce use.

•  For simple MapReduce jobs, or “embarrassingly” parallel jobs
on a local cluster, consider Hadoop streaming (or Hadoop
Interactive).

–  Limited to processing text only.

– But easy to test at the command line outside of Hadoop:

• $ cat DATAFILE |./map.R |sort |./reduce.R!
•  To run compute-bound analyses with relatively small amount of

data on the cloud look at Segue.

•  Otherwise, look at RHIPE.

page 45

Conclusions Cont’d

•  Also look at alternatives – Mahout, Python, etc.

•  Make sure your cluster nodes are consistent – same version of
R installed, required libraries are installed on each node, etc.

page 46

Example Code

•  https://github.com/jseidman/hadoop-R

page 47

References

•  Hadoop

– Apache Hadoop project: http://hadoop.apache.org/

– Hadoop The Definitive Guide, Tom White, O’Reilly Press,
2011

•  R

– R Project for Statistical Computing: http://www.r-project.org/

– R Cookbook, Paul Teetor, O’Reilly Press, 2011

– Getting Started With R: Some Resources:
http://quanttrader.info/public/gettingStartedWithR.html

page 48

References

•  Hadoop Streaming

– Documentation on Apache Hadoop Wiki:
http://hadoop.apache.org/mapreduce/docs/current/
streaming.html

– Word count example in R :
https://forums.aws.amazon.com/thread.jspa?
messageID=129163

page 49

References

•  Hadoop InteractiVE

– Project page on CRAN:
http://cran.r-project.org/web/packages/hive/index.html

– Simple Parallel Computing in R Using Hadoop:
http://www.rmetrics.org/Meielisalp2009/Presentations/
Theussl1.pdf

page 50

References

•  RHIPE

–  RHIPE - R and Hadoop Integrated Processing Environment:
http://www.stat.purdue.edu/~sguha/rhipe/

–  Wiki: https://github.com/saptarshiguha/RHIPE/wiki

–  Installing RHIPE on CentOS:
https://groups.google.com/forum/#!topic/brumail/qH1wjtBgwYI

–  Introduction to using RHIPE: http://ml.stat.purdue.edu/rhafen/rhipe/

–  RHIPE combines Hadoop and the R analytics language, SD Times:
http://www.sdtimes.com/link/34792

–  Using R and Hadoop to Analyze VoIP Network Data for QoS, Hadoop World 2010:

•  video:
http://www.cloudera.com/videos/
hw10_video_using_r_and_hadoop_to_analyze_voip_network_data_for_qos

•  slides:
http://www.cloudera.com/resource/
hw10_voice_over_ip_studying_traffic_characteristics_for_quality_of_service

page 51

References

•  Segue

– Project page: http://code.google.com/p/segue/

– Google Group:http://groups.google.com/group/segue-r

– Abusing Amazon’s Elastic MapReduce Hadoop service…
easily, from R, Jefferey Breen:
http://jeffreybreen.wordpress.com/2011/01/10/segue-r-to-
amazon-elastic-mapreduce-hadoop/

– Presentation at Chicago Hadoop Users Group March 23,
2011:
http://files.meetup.com/1634302/segue-presentation-
RUG.pdf

page 52

References

•  Sawmill

– More information:

•  Open Data Group www.opendatagroup.com

•  oscon-info@opendatagroup.com

– Augustus, an open source system for building & scoring
statistical models

•  augustus.googlecode.com

– PMML

•  Data Mining Group: dmg.org

– Analytics over Clouds using Hadoop, presentation at Chicago
Hadoop User Group:
http://files.meetup.com/1634302/CHUG 20100721 Sawmill.pdf

page 53

References

•  Ricardo

– Ricardo: Integrating R and Hadoop, paper:
http://www.cs.ucsb.edu/~sudipto/papers/sigmod2010-
das.pdf

– Ricardo: Integrating R and Hadoop, Powerpoint
presentation:
http://www.uweb.ucsb.edu/~sudipto/talks/Ricardo-
SIGMOD10.pptx

page 54

References

•  General references on Hadoop and R

– Pete Skomoroch’s R and Hadoop bookmarks:
http://www.delicious.com/pskomoroch/R+hadoop

– Pigs, Bees, and Elephants: A Comparison of Eight
MapReduce Languages:
http://www.dataspora.com/2011/04/pigs-bees-and-
elephants-a-comparison-of-eight-mapreduce-languages/

– Quora – How can R and Hadoop be used together?:
http://www.quora.com/How-can-R-and-Hadoop-be-used-
together

page 55

References

•  Mahout

– Mahout project: http://mahout.apache.org/

– Mahout in Action, Owen, et. al., Manning Publications, 2011

•  Python

–  Think Stats, Probability and Statistics for Programmers, Allen
B. Downey, O’Reilly Press, 2011

•  CRAN Task View: High-Performance and Parallel Computing with
R, a set of resources compiled by Dirk Eddelbuettel:
http://cran.r-project.org/web/views/
HighPerformanceComputing.html

page 56

References

•  Other examples of airline data analysis with R:

– A simple Big Data analysis using the RevoScaleR package
in Revolution R:
http://www.r-bloggers.com/a-simple-big-data-analysis-using-
the-revoscaler-package-in-revolution-r/

page 57

And finally…

page 58

Parallel R (working title), Q Ethan McCallum, Stephen
Weston, O’Reilly Press, due autumn 2011

 “R meets Big Data - a basket of strategies to help you use R
 for large-scale analysis and computation.”

