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Why Build a New ML Toolkit?  

• Performance: GPU performance pulling away from other 

platforms for *sparse* and dense data.  

Minibatch + SGD methods dominant on Big Data,… 

 

• Customizability: Great value in customizing models (loss 

functions, constraints,…) 

 

• Explore/Deploy: Explore fast, run the same code in 

prototype and production. Be able to run on clusters.  

   

    

    

   



Desiderata 

• Performance: 

• Roofline Design (single machine and cluster) 

• General Matrix Library with full CPU/GPU acceleration 

 

• Customizability: 

• Modular Learner Architecture (reusable components) 

• Likelihood “Mixins” 

 

• Explore/Deploy: 

• Interactive, Scriptable, Graphical 

• JVM based (Scala) w/ optimal cluster primitives 

 

   

    

    

   



Roofline Design (Williams, Waterman, Patterson, 2009) 

• Roofline design establishes fundamental performance 

limits for a computational kernel. 
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CPU vs GPU Memory Hierarchy 

Intel 8 core Sandy Bridge CPU NVIDIA GK110 GPU 

8 MB L3 Cache 
1.5 MB L2 Cache 

4 MB register file (!) 4kB registers: 

1 MB Shared Mem 

2 MB L2 Cache 

512K L1 Cache 

1 MB Constant Mem 

1 TB/s 1 TB/s 

40 TB/s 

13 TB/s 

5 TB/s 

10s GB Main Memory 4 GB Main Memory 

20 GB/s 

500 GB/s 
500  GB/s 

200 GB/s 



Natural Language Parsing (Canny, Hall, Klein, EMNLP 2013) 

Natural language parsing with a state-of-the-art grammar 

(1100 symbols, 1.7 million rules, 0.1% dense) 

 

End-to-End Throughput (4 GPUs): 

2-2.4 Teraflops (1-1.2 B rules/sec), 1000 sentences/sec. 

 

This is more than 105 speedup for unpruned grammar 

evaluation (and it’s the fastest constituency parser). 

 

How: Compiled grammar into instructions, blocked groups 

of rules into a hierarchical 3D grid, fed many sentences in a 

queue, auto-tuned. Max’ed every resource on the device.  

   

    

    

   



Roofline Design – Matrix kernels 

• Dense matrix multiply 

• Sparse matrix multiply 
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A Rooflined Machine Learning Toolkit 

Compressed disk streaming at 
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Matrix + Machine Learning Layers 

Written in the beautiful Scala language: 

• Interpreter with JIT, scriptable.  

• Open syntax +,-,*, ,, etc, math looks like math. 

• Java VM + Java codebase – runs on Hadoop, Yarn, Spark. 

• Hardware acceleration in C/C++ native code (CPU/GPU). 

• Easy parallelism: Actors, parallel collections. 

• Memory management (sort of ).  

• Pre-built for multiple Platforms (Windows, MacOS, Linux). 

 

Experience similar to Matlab, R, SciPy 

   

    

    

   



Benchmarks 

Recent benchmarks on some representative tasks: 

• Text Classification on Reuters news data (0.5 GB) 

• Click prediction on the Kaggle Criteo dataset (12 GB) 

• Clustering of handwritten digit images (MNIST) (25 GB) 

• Collaborative filtering on the Netflix prize dataset (4 GB) 

• Topic modeling (LDA) on a NY times collection (0.5 GB) 

• Random Forests on a UCI Year Prediction dataset (0.2 GB) 

• Pagerank on two social network graphs at 12GB and 48GB  

 

   

    

    

   



Benchmarks 

Systems (single node) 

• BIDMach 

• VW (Vowpal Wabbit) from Yahoo/Microsoft 

• Scikit-Learn 

• LibLinear 

Cluster Systems 

• Spark v1.1 and v1.2 

• Graphlab (academic version) 

• Yahoo’s LDA cluster 

 

   

    

    

   



Benchmarks: Single-Machine Systems 

   

    

    

   

System Algorithm Dataset Dim Time 

(s) 

Cost  

($) 

Energy 

(KJ) 

BIDMach Logistic Reg.  RCV1 103 14 0.002 3 

Vowpal 

Wabbit 

Logistic Reg.  RCV1 103 130 0.02 30 

LibLinear Logistic Reg. RCV1 103 250 0.04 60 

Scikit-Learn Logistic Reg.  RCV1 103 576 0.08 120 

RCV1: Text Classification, 103 topics (0.5GB).  

Algorithms were tuned to achieve similar accuracy.   



Benchmarks: Cluster Systems 

   

    

    

   

System A/B Algorithm Dataset Dim Time 

(s) 

Cost  

($) 

Energy 

(KJ) 

Spark-72 

BIDMach 

Logistic Reg. RCV1 1 

103 

30 

14 

0.07 

0.002 

120 

3 

Spark-64 

BIDMach 

RandomForest YearPred 1 280 

320 

0.48 

0.05 

480 

60 

Spark-128 

BIDMach 

Logistic Reg.  Criteo 1 400 

81 

1.40 

0.01 

2500 

16 

Spark-XX = System with XX cores 

BIDMach ran on one node with GTX-680 GPU 



Benchmarks: Cluster Systems 

   

    

    

   

System A/B Algorithm Dataset Dim Time 

(s) 

Cost 

($) 

Energy 

(KJ) 

Spark-384 

BIDMach 

K-Means MNIST 4096 1100 

735 

9.00 

0.12 

22k 

140 

GraphLab-576 

BIDMach 

Matrix 

Factorization 

Netflix 100 376 

90 

16 

0.015 

10k 

20 

Yahoo-1000 

BIDMach 

LDA (Gibbs) NYtimes 1024 220k 

300k 

40k 

60 

4E10 

6E7 

Spark-XX or GraphLab-XX = System with XX cores 

Yahoo-1000 had 1000 nodes 



BIDMach at Scale 

Latent Dirichlet Allocation 

 

 

 

 

 

 

 

 

BIDMach outperforms cluster systems on this problem, and 

has run up to 10 TB on one node.  

 

 

Convergence on 1TB data 



Benchmark Summary 

• BIDMach on a PC with NVIDIA GPU is at least 10x faster 

than other single-machine systems for comparable accuracy.  

 

• For Random Forests or single-class regression, BIDMach on 

a GPU node is comparable with 8-16 worker clusters.  

 

• For multi-class regression, factor models, clustering etc., 

GPU-assisted BIDMach is comparable to 100-1000-worker 

clusters. Larger problems correlate with larger values in this 

range.  

 

 

 

 

 

   

    

    

   



In the Wild (Examples from Industry) 

• Multilabel regression problem (summer intern project): 

• Existing tool (single-machine) took ~ 1 week to build a model. 

• BIDMach on a GPU node takes 1 hour (120x speedup) 

• Iteration and feature engineering gave +15% accuracy. 

 

• Auction simulation problem (cluster job): 

• Existing tool simulates auction variations on log data. 

• On NVIDIA 3.0 devices (64 registers/thread) we achieve a 70x 

speedup over a reference implementation in Scala 

• On NVIDIA 3.5 devices (256 registers/thread) we can move 

auction state entirely into register storage and gain a 400x 

speedup.  



In the Wild (Examples from Industry) 

• Classification (cluster job): 

• Cluster job (logistic regression) took 8 hours. 

• BIDMach version takes < 1 hour on a single node. 

 

• SVMs for image classification (single machine) 

• Large multi-label classification took 1 week with LibSVM. 

• BIDMach version (SGD-based SVM) took 90 seconds.  

 



Performance Revisited 

• BIDMach had a 10x-1000x cost advantage over the other 

systems. The ratio was higher for larger-scale problems.  

• Energy savings were similar to the cost savings, at 10x-

1000x.  

 

 

But why?? 

• We only expect about 10x  

from GPU acceleration? 

• See our Parallel Forall post: 

http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/  
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BIDMach ML Algorithms 

1. Regression (logistic, linear)  

2. Support Vector Machines 

3. k-Means Clustering 

4. Topic Modeling - Latent Dirichlet Allocation 

5. Collaborative Filtering 

6. NMF – Non-Negative Matrix Factorization 

7. Factorization Machines  

8. Random Forests 

9. Multi-layer neural networks 

10. IPTW (Causal Estimation) 

11. ICA 

 

 

 

 

= Likely the fastest implementation available 



Research: SAME Gibbs Sampling 

• SAME sampling accelerates standard Gibbs samplers with 
discrete+continuous data.  

• Our first instantiation gave a 100x speedup for a very widely-
studied problem (Latent Dirichlet Allocation), and was more 
accurate than any other LDA method we tested: 

 

• SAME sampling is a general 
approach that should be 
competitive with custom 
symbolic methods. 

 

• Arxiv paper on BIDMach 
website.  

 

 



Research: Rooflined cluster computing 

Kylix (ICPP 2014) 

• Near optimal model aggregation for sparse problems. 

• Communication volume across layers has a characteristic 

Kylix shape: 

 

 

 



Software (version 1.0 just released) 

Code: github.com/BIDData/BIDMach 

 

Wiki: http://bid2.berkeley.edu/bid-data-project/overview/ 

BSD open source libs and dependencies, papers 

 

In this release: 

• Random Forests, ICA 

• Double-precision GPU matrices 

• Ipython/IScala Notebook 

• Simple DNNs  

 

Wrapper for Berkeley’s Caffe coming soon… 
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