
R news and tutorials contributed by (573) R bloggers

Home
About
RSS
add your blog!
R jobs���
Contact us

Welcome!

FollowFollow

Here you will find daily
news and tutorials
about R, contributed by
over 573 bloggers.
There are many ways to
follow us -
By e-mail:

Your e-mail here

Subscribe

On Facebook:

Sé el primero de tus
amigos en indicar que
te gusta esto.

R blog…
26 391 Me gu…

Me gusta esta páginaMe gusta esta página

If you are an R blogger
yourself you are invited
to add your own R
content feed to this site
(Non-English R bloggers
should add themselves-
here)

 Jobs for R-
users

Product Analyst
(@ Pittsburgh)
Quantitative
Developer/Data
Scientist (@
Mountain View)
Data Scientist
AWF
Network Link
analysis Consultant
(@ London)
Seeking R

Programmers for
long term contract
role

Search & Hit Enter

Popular
Searches

heatmap
web scraping
maps
undefined
hadoop
shiny
twitter
boxplot
animation
ggplot2
trading
finance
time series
latex
excel
ggplot
PCA
quantmod
googlevis
eclipse
market research
rstudio
how to import
image file to R
tutorial
knitr
rattle
coplot
rcmdr
gis
sweave

Recent Posts

STAN trailer
[PG+53]
Survival Analysis –
2
Using Google
Analytics with R
R News From JSM
2015
Mapping Historic
US Presidential
Election Results
Showing a
distribution over
time: how many
summary stats?
functional
enrichment for
GTEx paper
Milestone: 7000
packages on
CRAN

Differences in the
network structure
of CRAN and
BioConductor
SWMPr 2.1.0 on
CRAN
Visualizing bdsns
data using bdvis
How Do Auction
Values Differ by the
Number of Teams
in Your League? A
Multilevel Model
How do you know
if your data has
signal?
Multilevel Models
and Political
Advertising
JSM 2015 [day
#2]

Other sites

SAS blogs
Jobs for R-users
Statistics of Israel

Using OpenMP-ized C code with
R
August 11, 2011
By mbq

(This article was first published on Stack Exchange Stats Blog » R tips&tricks, and kindly
contributed to R-bloggers)

What is OpenMP? Basically a standard compiler extension allowing one to
easily distribute calculations over multiple processors in a shared-memory
manner (this is especially important when dealing with large data — simple
separate-process approach usually requires as many copies of the working
data as there are threads, and this may easily be an overkill even in overall
size, not to mention the time wasted for copying).

The magic of OpenMP is that once you have a C or Fortran code, in most
cases you need nothing more than a few additional compiler flags — thus
the code remains as portable and as readable as before the modification.
And is usually just nice and simple, not counting few common parallelism
traps and some quirks related to the fact we want it to work with R.

In this post I don’t want to make an OMP tutorial (the web is full of them),
rather show how to use it with R. Thus, I’ll use a toy example: a function
that calculates the cumulative sum in an unnecessary demanding way:

 #include <R.h>
 #include <Rinternals.h>
 SEXP dumbCumsum(SEXP a){
 SEXP ans;
 PROTECT(a=coerceVector(a,REALSXP));
 PROTECT(ans=allocVector(REALSXP,length(a)));
 double* Ans=REAL(ans);
 double* A=REAL(a);
 for(int e=0;e<length(a);e++){
 Ans[e]=0.;
 for(int ee=0;ee<e+1;ee++)

0LikeLike ShareShare

 Ans[e]+=A[ee];
 }
 UNPROTECT(2);
 return(ans);
 }

There is only one for loop responsible for most computational time and no
race conditions, thus the OMP-ized version will look like this:

 #include <R.h>
 #include <Rinternals.h>
 #include <omp.h>
 SEXP dumbCumsum(SEXP a){
 SEXP ans;
 PROTECT(a=coerceVector(a,REALSXP));
 PROTECT(ans=allocVector(REALSXP,length(a)));
 double* Ans=REAL(ans);
 double* A=REAL(a);
 #pragma omp parallel for
 for(int e=0;e<length(a);e++){
 Ans[e]=0.;
 for(int ee=0;ee<e+1;ee++)
 Ans[e]+=A[ee];
 }
 UNPROTECT(2);
 return(ans);
 }

Time for R-specific improvements; first of all, it is good to give the user an
option to select number of cores to use (for instance he has 16 cores and
want to use first 8 for one job and next 8 for something else — without such
option he would have to stick to sequential execution); yet it is also nice to
have some simple option to use the full capabilities of the system. To this
end we will give our function an appropriate argument and use OMP
functions to comply with it:

 #include <R.h>
 #include <Rinternals.h>
 #include <omp.h>
 SEXP dumbCumsum(SEXP a,SEXP reqCores){
 //Set the number of threads
 PROTECT(reqCores=coerceVector(reqCores,INTSXP));
 int useCores=INTEGER(reqCores)[0];
 int haveCores=omp_get_num_procs();
 if(useCores<=0 || useCores>haveCores) useCores=haveCores;
 omp_set_num_threads(useCores);
 //Do the job
 SEXP ans;
 PROTECT(a=coerceVector(a,REALSXP));
 PROTECT(ans=allocVector(REALSXP,length(a)));
 double* Ans=REAL(ans);
 double* A=REAL(a);
 #pragma omp parallel for
 for(int e=0;e<length(a);e++){
 Ans[e]=0.;
 for(int ee=0;ee<e+1;ee++)
 Ans[e]+=A[ee];
 }
 UNPROTECT(3);
 return(ans);
 }

This code will also ensure that the number of threads won’t be larger than
the number of physical cores; doing this gives no speedup and comes with a
performance loss caused by OS scheduler.

Finally, time to resolve small quirk — R has some code to guard the C call
stack from overflows, which is obviously not thread-aware and thus have a
tendency to panic and screw the whole R session up when running parallel
code. To this end we need to disable it using the trick featured in R-ext.
First, we include Rinterface to have an access to the variable with stack limit

 #define CSTACK_DEFNS 7
 #include "Rinterface.h"

and then set it to almost infinity in the code

 R_CStackLimit=(uintptr_t)-1;

Voilà, the stack is now unprotected — the work with R just become a bit
more dangerous, but we can run parallel stuff without strange problems. The
full code looks like this:

 #include <R.h>
 #include <Rinternals.h>
 #include <omp.h>
 #define CSTACK_DEFNS 7
 #include "Rinterface.h"
 SEXP dumbCumsum(SEXP a,SEXP reqCores){
 R_CStackLimit=(uintptr_t)-1;
 //Set the number of threads
 PROTECT(reqCores=coerceVector(reqCores,INTSXP));
 int useCores=INTEGER(reqCores)[0];
 int haveCores=omp_get_num_procs();
 if(useCores<=0 || useCores>haveCores) useCores=haveCores;
 omp_set_num_threads(useCores);
 //Do the job
 SEXP ans;
 PROTECT(a=coerceVector(a,REALSXP));
 PROTECT(ans=allocVector(REALSXP,length(a)));
 double* Ans=REAL(ans);
 double* A=REAL(a);
 #pragma omp parallel for
 for(int e=0;e<length(a);e++){
 Ans[e]=0.;
 for(int ee=0;ee<e+1;ee++)
 Ans[e]+=A[ee];
 }
 UNPROTECT(3);
 return(ans);
 }

Now, time to make sure that R will compile our function with OMP support
(and thus make it parallel). To this end, we create a Makevars file (in the
src in case of package and in code directory when using dangling object
files) with a following contents (for GCC):

 PKG_CFLAGS=-fopenmp
 PKG_LIBS=-lgomp

The first line will trigger parsing OMP pragmas, the latter will link the OMP
library with omp_* functions.

We are ready to test our example:

 $ R CMD SHLIB omp_sample.c
 $ R
 > dyn.load('omp_sample.so')
 > .Call('dumbCumsum',runif(100000),0L)

Try to run sum system monitor (like htop or GUI one that comes with your
desktop environment) and watch your powerful CPU being finally fully
utilized (-;

To close with an optimistic aspect, few words about limitations. Don’t even
try to run any R code or use features like random number generation or
Ralloc inside parallelized blocks — R engine is not thread-safe and thus this
will end in a more or less spectacular failure.

Plus of course all issues of parallel programming and OMP itself also apply
— but that is a different story.

Related

To leave a comment for the author, please follow the link and comment on his blog:
Stack Exchange Stats Blog » R tips&tricks .

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics
such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio,
Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression,
PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site?
Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Top 3 Posts from the past 2
days

Scatterplots
In-depth introduction to machine learning in
15 hours of expert videos
Installing R packages

Search & Hit Enter

Top 9 articles of the week

1. Scatterplots
2. In-depth introduction to machine learning in

15 hours of expert videos
3. Installing R packages
4. Using apply, sapply, lapply in R
5. Turning your R (or Python) models into

APIs
6. Basics of Histograms
7. Differences in the network structure of

CRAN and BioConductor
8. Read Excel files from R
9. Adding a legend to a plot

Sponsors

0

LikeLike

ShareShare

0LikeLike ShareShare

Plotly: collaborative, publication-quality graphing.

Search & Hit Enter

Full list of contributing R-bloggers
R-bloggers was founded by Tal Galili, with gratitude to the R community.
Is powered by WordPress using a bavotasan.com design.
Copyright © 2015 R-bloggers. All Rights Reserved. Terms and Conditions for this website

