
Machine Learning at the Limit

John Canny*^

* Computer Science Division

University of California, Berkeley

^ Yahoo Research Labs

@GTC, March, 2015

My Other Job(s)

Yahoo [Chen, Pavlov, Canny, KDD 2009]*

Ebay [Chen, Canny, SIGIR 2011]**

Quantcast 2011-2013

Microsoft 2014

Yahoo 2015

* Best application paper prize

** Best paper honorable mention

Data Scientist’s Workflow

Digging Around

in Data

Hypothesize

Model

Customize

Large Scale

Exploitation

Evaluate

Interpret

Sandbox

Production

Data Scientist’s Workflow

Digging Around

in Data

Hypothesize

Model

Customize

Large Scale

Exploitation

Evaluate

Interpret

Sandbox

Production

Why Build a New ML Toolkit?

• Performance: GPU performance pulling away from other

platforms for *sparse* and dense data.

Minibatch + SGD methods dominant on Big Data,…

• Customizability: Great value in customizing models (loss

functions, constraints,…)

• Explore/Deploy: Explore fast, run the same code in

prototype and production. Be able to run on clusters.

Desiderata

• Performance:

• Roofline Design (single machine and cluster)

• General Matrix Library with full CPU/GPU acceleration

• Customizability:

• Modular Learner Architecture (reusable components)

• Likelihood “Mixins”

• Explore/Deploy:

• Interactive, Scriptable, Graphical

• JVM based (Scala) w/ optimal cluster primitives

Roofline Design (Williams, Waterman, Patterson, 2009)

• Roofline design establishes fundamental performance

limits for a computational kernel.

Operational Intensity (flops/byte)

T
h
ro

u
g
h
p
u
t
(g

fl
o
p
s
)

1

10

100

1000

0.01 0.1 1 10 100

GPU ALU throughput

CPU ALU throughput

1000

A Tale of Two Architectures

Intel CPU NVIDIA GPU

Memory Controller

L3 Cache

Core

ALU

Core

ALU

Core

ALU

Core

ALU

L2 Cache

ALU ALU ALU ALU ALU ALU

CPU vs GPU Memory Hierarchy

Intel 8 core Sandy Bridge CPU NVIDIA GK110 GPU

8 MB L3 Cache
1.5 MB L2 Cache

4 MB register file (!) 4kB registers:

1 MB Shared Mem

2 MB L2 Cache

512K L1 Cache

1 MB Constant Mem

1 TB/s 1 TB/s

40 TB/s

13 TB/s

5 TB/s

10s GB Main Memory 4 GB Main Memory

20 GB/s

500 GB/s
500 GB/s

200 GB/s

Natural Language Parsing (Canny, Hall, Klein, EMNLP 2013)

Natural language parsing with a state-of-the-art grammar

(1100 symbols, 1.7 million rules, 0.1% dense)

End-to-End Throughput (4 GPUs):

2-2.4 Teraflops (1-1.2 B rules/sec), 1000 sentences/sec.

This is more than 105 speedup for unpruned grammar

evaluation (and it’s the fastest constituency parser).

How: Compiled grammar into instructions, blocked groups

of rules into a hierarchical 3D grid, fed many sentences in a

queue, auto-tuned. Max’ed every resource on the device.

Roofline Design – Matrix kernels

• Dense matrix multiply

• Sparse matrix multiply

Operational Intensity (flops/byte)

T
h
ro

u
g
h
p
u
t
(g

fl
o
p
s
)

1

10

100

1000

0.01 0.1 1 10 100

GPU ALU throughput

CPU ALU throughput

1000

DataSource

(JBOD disks)
Learner

Model

Optimizer

Mixins

Model

Optimizer

Mixins

GPU 1 thread 1

GPU 2 thread 2

:

:

CPU host code

data

blocks

DataSource

(Memory)

DataSource

HDFS over

network

Zhao+Canny

SIAM DM 13, KDD 13, BIGLearn 13

A Rooflined Machine Learning Toolkit

Compressed disk streaming at

~ 0.1-2 GB/s 100 HDFS nodes

30 Gflops to

2 Teraflops per GPU

Matrix + Machine Learning Layers

Written in the beautiful Scala language:

• Interpreter with JIT, scriptable.

• Open syntax +,-,*, ,, etc, math looks like math.

• Java VM + Java codebase – runs on Hadoop, Yarn, Spark.

• Hardware acceleration in C/C++ native code (CPU/GPU).

• Easy parallelism: Actors, parallel collections.

• Memory management (sort of).

• Pre-built for multiple Platforms (Windows, MacOS, Linux).

Experience similar to Matlab, R, SciPy

Benchmarks

Recent benchmarks on some representative tasks:

• Text Classification on Reuters news data (0.5 GB)

• Click prediction on the Kaggle Criteo dataset (12 GB)

• Clustering of handwritten digit images (MNIST) (25 GB)

• Collaborative filtering on the Netflix prize dataset (4 GB)

• Topic modeling (LDA) on a NY times collection (0.5 GB)

• Random Forests on a UCI Year Prediction dataset (0.2 GB)

• Pagerank on two social network graphs at 12GB and 48GB

Benchmarks

Systems (single node)

• BIDMach

• VW (Vowpal Wabbit) from Yahoo/Microsoft

• Scikit-Learn

• LibLinear

Cluster Systems

• Spark v1.1 and v1.2

• Graphlab (academic version)

• Yahoo’s LDA cluster

Benchmarks: Single-Machine Systems

System Algorithm Dataset Dim Time

(s)

Cost

($)

Energy

(KJ)

BIDMach Logistic Reg. RCV1 103 14 0.002 3

Vowpal

Wabbit

Logistic Reg. RCV1 103 130 0.02 30

LibLinear Logistic Reg. RCV1 103 250 0.04 60

Scikit-Learn Logistic Reg. RCV1 103 576 0.08 120

RCV1: Text Classification, 103 topics (0.5GB).

Algorithms were tuned to achieve similar accuracy.

Benchmarks: Cluster Systems

System A/B Algorithm Dataset Dim Time

(s)

Cost

($)

Energy

(KJ)

Spark-72

BIDMach

Logistic Reg. RCV1 1

103

30

14

0.07

0.002

120

3

Spark-64

BIDMach

RandomForest YearPred 1 280

320

0.48

0.05

480

60

Spark-128

BIDMach

Logistic Reg. Criteo 1 400

81

1.40

0.01

2500

16

Spark-XX = System with XX cores

BIDMach ran on one node with GTX-680 GPU

Benchmarks: Cluster Systems

System A/B Algorithm Dataset Dim Time

(s)

Cost

($)

Energy

(KJ)

Spark-384

BIDMach

K-Means MNIST 4096 1100

735

9.00

0.12

22k

140

GraphLab-576

BIDMach

Matrix

Factorization

Netflix 100 376

90

16

0.015

10k

20

Yahoo-1000

BIDMach

LDA (Gibbs) NYtimes 1024 220k

300k

40k

60

4E10

6E7

Spark-XX or GraphLab-XX = System with XX cores

Yahoo-1000 had 1000 nodes

BIDMach at Scale

Latent Dirichlet Allocation

BIDMach outperforms cluster systems on this problem, and

has run up to 10 TB on one node.

Convergence on 1TB data

Benchmark Summary

• BIDMach on a PC with NVIDIA GPU is at least 10x faster

than other single-machine systems for comparable accuracy.

• For Random Forests or single-class regression, BIDMach on

a GPU node is comparable with 8-16 worker clusters.

• For multi-class regression, factor models, clustering etc.,

GPU-assisted BIDMach is comparable to 100-1000-worker

clusters. Larger problems correlate with larger values in this

range.

In the Wild (Examples from Industry)

• Multilabel regression problem (summer intern project):

• Existing tool (single-machine) took ~ 1 week to build a model.

• BIDMach on a GPU node takes 1 hour (120x speedup)

• Iteration and feature engineering gave +15% accuracy.

• Auction simulation problem (cluster job):

• Existing tool simulates auction variations on log data.

• On NVIDIA 3.0 devices (64 registers/thread) we achieve a 70x

speedup over a reference implementation in Scala

• On NVIDIA 3.5 devices (256 registers/thread) we can move

auction state entirely into register storage and gain a 400x

speedup.

In the Wild (Examples from Industry)

• Classification (cluster job):

• Cluster job (logistic regression) took 8 hours.

• BIDMach version takes < 1 hour on a single node.

• SVMs for image classification (single machine)

• Large multi-label classification took 1 week with LibSVM.

• BIDMach version (SGD-based SVM) took 90 seconds.

Performance Revisited

• BIDMach had a 10x-1000x cost advantage over the other

systems. The ratio was higher for larger-scale problems.

• Energy savings were similar to the cost savings, at 10x-

1000x.

But why??

• We only expect about 10x

from GPU acceleration?

• See our Parallel Forall post:

http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/

http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/
http://devblogs.nvidia.com/parallelforall/bidmach-machine-learning-limit-gpus/

BIDMach ML Algorithms

1. Regression (logistic, linear)

2. Support Vector Machines

3. k-Means Clustering

4. Topic Modeling - Latent Dirichlet Allocation

5. Collaborative Filtering

6. NMF – Non-Negative Matrix Factorization

7. Factorization Machines

8. Random Forests

9. Multi-layer neural networks

10. IPTW (Causal Estimation)

11. ICA

= Likely the fastest implementation available

Research: SAME Gibbs Sampling

• SAME sampling accelerates standard Gibbs samplers with
discrete+continuous data.

• Our first instantiation gave a 100x speedup for a very widely-
studied problem (Latent Dirichlet Allocation), and was more
accurate than any other LDA method we tested:

• SAME sampling is a general
approach that should be
competitive with custom
symbolic methods.

• Arxiv paper on BIDMach
website.

Research: Rooflined cluster computing

Kylix (ICPP 2014)

• Near optimal model aggregation for sparse problems.

• Communication volume across layers has a characteristic

Kylix shape:

Software (version 1.0 just released)

Code: github.com/BIDData/BIDMach

Wiki: http://bid2.berkeley.edu/bid-data-project/overview/

BSD open source libs and dependencies, papers

In this release:

• Random Forests, ICA

• Double-precision GPU matrices

• Ipython/IScala Notebook

• Simple DNNs

Wrapper for Berkeley’s Caffe coming soon…

http://bid2.berkeley.edu/bid-data-project/overview/
http://bid2.berkeley.edu/bid-data-project/overview/
http://bid2.berkeley.edu/bid-data-project/overview/
http://bid2.berkeley.edu/bid-data-project/overview/
http://bid2.berkeley.edu/bid-data-project/overview/
http://bid2.berkeley.edu/bid-data-project/overview/
http://bid2.berkeley.edu/bid-data-project/overview/

Thanks

Sponsors:

Collaborators:

