
R news and tutorials contributed by (573) R bloggers

Home
About
RSS
add your blog!
R jobs���
Contact us

Welcome!

FollowFollow

Here you will find daily
news and tutorials
about R, contributed by
over 573 bloggers.
There are many ways to
follow us -
By e-mail:

Your e-mail here

Subscribe

On Facebook:

Sé el primero de tus
amigos en indicar que
te gusta esto.

R blog…
26 391 Me gu…

Me gusta esta páginaMe gusta esta página

If you are an R blogger
yourself you are invited
to add your own R
content feed to this site
(Non-English R bloggers
should add themselves-
here)

 Jobs for R-
users

Product Analyst
(@ Pittsburgh)
Quantitative
Developer/Data
Scientist (@
Mountain View)
Data Scientist
AWF
Network Link
analysis Consultant
(@ London)
Seeking R

Programmers for
long term contract
role

Search & Hit Enter

Popular
Searches

heatmap
web scraping
maps
undefined
hadoop
shiny
twitter
boxplot
animation
ggplot2
trading
finance
time series
LaTeX
excel
ggplot
pca
quantmod
googlevis
eclipse
market research
RStudio
how to import
image file to R
tutorial
knitr
rattle
coplot
rcmdr
gis
sweave

Recent Posts

Differences in the
network structure
of CRAN and
BioConductor
SWMPr 2.1.0 on
CRAN
Visualizing bdsns
data using bdvis
How Do Auction
Values Differ by the
Number of Teams
in Your League? A
Multilevel Model
How do you know
if your data has
signal?
Multilevel Models
and Political
Advertising
JSM 2015 [day
#2]

The Keep Function
On radical
manuscript
openness
How Do You
Know if Your Data
Has Signal?
In case you missed
it: July 2015
roundup
Share your Shiny
Apps with Docker
and Kitematic!
JSM 2015 [day
#1]
Curl 0.9.2: tweaks
and proxies for
windows
Turning your R (or
Python) models into
APIs

Other sites

SAS blogs
Jobs for R-users
Statistics of Israel

OpenMP Tutorial, with R
Interface
January 17, 2015
By matloff

(This article was first published on Mad (Data) Scientist, and kindly contributed to R-
bloggers)

Almost any PC today is multicore. Dual-core is standard, quad-core is
easily attainable for the home, and larger systems, say 16-core, are easily
within reach of even smaller research projects. In addition, large multicore
systems can be “rented” on Amazon EC2 and so on.

The most popular way to program on multicore machines is to use
OpenMP, a C/C++ (and FORTRAN) callable system that runs on Linux,
Mac and Windows. (For Macs, you need the OpenMP-enabled version of
Mac’s clang compiler.)

This blog post will present a short tutorial on OpenMP, including calling
OpenMP code from R, using Rcpp. Use of the latter will be kept to
basics, so if you are also new to Rcpp, you’ll learn how to use that too.
 This tutorial is adapted from my book, Parallel Computation for Data
Science: with Examples in R, C/C++ and CUDA, to be published in
June 2015.

I’ll assume that you know R well, and have some familiarity with C/C++.

Threaded programming:

Most programs running on multicore systems are threaded. This means
that several invocations, called threads, of the given program are running
simultaneously, typically one thread per core. A key point is that the threads
share memory, making it easy for them to cooperate. The work of the
program is divided among the threads, and due to the simultaneity, we
potentially can achieve a big speedup.

85LikeLike ShareShare

potentially can achieve a big speedup.

Writing threaded code directly is messy, so higher-level systems have been
developed to hide the messy details from the programmer, thus making
his/her life far easier. As noted, OpenMP is the most popular of these
systems, though Intel’s Threading Building Blocks system is also widely
used.

Our example:

Here we convert a graph adjacency matrix to a 2-column matrix that lists
the edges. (You don’t need know what graphs are, which will be explained
shortly.) Here is an example of running our code, a function transgraph():

> m
 [,1] [,2] [,3] [,4]
[1,] 0 1 1 0
[2,] 1 0 1 1
[3,] 1 1 1 0
[4,] 0 1 1 0
> .Call("transgraph",m)
 [,1] [,2]
 [1,] 1 2
 [2,] 1 3
 [3,] 2 1
 [4,] 2 3
 [5,] 2 4
 [6,] 3 1
 [7,] 3 2
 [8,] 3 3
 [9,] 4 2
[10,] 4 3

Here our matrix m represented a 4-vertex, i.e. 4-node graph. If you are
not familiar with graphs, think of set of 4 Web sites. Row 1 of m says that
site 1 has links to sites 2 and 3, site 2 has links to sites 1, 3 and 4 and so
on. The output matrix says the same thing; e.g. the (1,2) in the first row
says there is a link from site 1 to site 2, and so on.

We might have thousands of Web sites, or even more, in our analysis. The
above matrix conversion thus could be quite computationally time-
consuming, hence a desire to do it in parallel on a multicore system, which
we will do here.

Plan of attack:

The idea is simple, conceptually. Say we have four cores. Then we
partition the rows of the matrix m into four groups. Say m has 1000 rows.
 Then we set up four threads, assigning thread 1 to work with rows 1-250,
thread 2 dealing with rows 251-500, etc. Referring to the eventual output
matrix (the 2-column matrix seen above) as mout, each thread will compute
its portion of that matrix, based on that thread’s assigned rows.

There is one tricky part, which is to stitch the outputs of the four threads
together into the single matrix mout. The problem is that we don’t know
ahead of time where in mout each thread’s output should be placed. In
order to do that, our code will wait until all the threads are done with their
assigned work, then ask how many output rows each one found.

To see how this helps, consider again the little four-site example above, and
suppose we have just two threads. Thread 1 would handle rows 1-2 of m,
finding four rows of mout, beginning with (1,2) above. These will eventually
be the first four rows of mout. The significance of that is that the output of
thread 2 must start at row 5 of mout. In this manner, we’ll know where in
mout to place each thread’s output.

The code:

#include <Rcpp.h>
#include <omp.h>

// finds the chunk of rows this thread will
// process
void findmyrange(int n,int nth,int me,
 int *myrange)
{ int chunksize = n / nth;
 myrange[0] = me * chunksize;
 if (me < nth-1)
 myrange[1] = (me+1) * chunksize - 1;
 else myrange[1] = n - 1;
}

// SEXP is the internal data type for R
// objects, as seen from C/C++;
// here our input is an R matrix adjm, and
// the return value is another R matrix
RcppExport SEXP transgraph(SEXP adjm)
{
 // i-th element of num1s will be the
 // number of 1s in row i of adjm
 int *num1s,
 *cumul1s, // cumulative sums in num1s
 n;
 // make a C/C++ compatible view of the
 // R matrix;
 // note: referencing is done with
 // (,) not [,], and indices start at 0
 Rcpp::NumericMatrix xadjm(adjm);
 n = xadjm.nrow();
 int n2 = n*n;
 // create output matrix
 Rcpp::NumericMatrix outm(n2,2);

 // start the threads; they will run the
 // code below simultaneously, though not
 // necessarily executing the same line
 // at the same time
 #pragma omp parallel
 { int i,j,m;
 // each thread has an ID (starting at 0),
 // so determine the ID for this thread
 int me = omp_get_thread_num(),
 // find total number of threads
 nth = omp_get_num_threads();
 int myrows[2];
 int tot1s;
 int outrow,num1si;
 // have just one thread execute the
 // following block, while the
 // others wait
 #pragma omp single
 {
 num1s = (int *)
 malloc(n*sizeof(int));
 cumul1s = (int *)
 malloc((n+1)*sizeof(int));
 }
 findmyrange(n,nth,me,myrows);
 for (i = myrows[0]; i <= myrows[1];
 i++) {
 // number of 1s found in this row
 tot1s = 0;
 for (j = 0; j < n; j++)
 if (xadjm(i,j) == 1) {
 xadjm(i,(tot1s++)) = j;
 }
 num1s[i] = tot1s;
 }
 // wait for all threads to be done
 #pragma omp barrier
 // again, one thread does the
 // following, others wait
 #pragma omp single
 {
 // cumul1s[i] will be tot 1s before
 // row i of xadjm
 cumul1s[0] = 0;
 // now calculate where the output of
 // each row in xadjm should start
 // in outm
 for (m = 1; m <= n; m++) {
 cumul1s[m] =
 cumul1s[m-1] + num1s[m-1];

 }
 }
 // now this thread will put the rows it
 // found earlier into outm
 for (i = myrows[0]; i <= myrows[1];
 i++) {
 // current row within outm
 outrow = cumul1s[i];
 num1si = num1s[i];
 for (j = 0; j < num1si; j++) {
 outm(outrow+j,0) = i + 1;
 outm(outrow+j,1) = xadjm(i,j) + 1;
 }
 }
 }
 // have some all-0 rows at end of outm;
 // delete them
 Rcpp::NumericMatrix outmshort =
 outm(Rcpp::Range(0,cumul1s[n]-1),
 Rcpp::Range(0,1));
 return outmshort; // R object returned!
}

(For your convenience, I’ve place the code here.)

Compiling and running:

Here’s how to compile on Linux or a Mac. In my case, I had various files in
/home/nm, which you’ll need to adjust for your machine. From the shell
command line, do

export R_LIBS_USER=/home/nm/R
export PKG_LIBS="-lgomp"
export PKG_CXXFLAGS="-fopenmp -I/home/nm/R/Rcpp/include"
R CMD SHLIB AdjRcpp.cpp

This produces a file AdjRcpp.so, which contains the R-loadable function,
transgraph(). We saw earlier how to call the code from R. However,
there is one important step not seen above: Setting the number of threads.

There are several ways to do this, but the most common is to set an
environment variable in the shell before you start R. For example, to
specify running 4 threads, type

export OMP_NUM_THREADS=2

Brief performance comparison:

I ran this on a quad core machine, on a 10000-row graph m. The pure-R
version of the code (not shown here) required 27.516 seconds to run, while
the C/C++ version took only 3.193 seconds!

Note that part of this speedup was due to running four threads in parallel,
but we also greatly benefited by running in C/C++ instead of R.

Analysis of the code:

I’ve tried to write the comments to tell most of the details of the story, but a
key issue in reading the code is what I call its “anthropomorphic” view: We
write the code pretending we are a thread!

For example, consider the lines

 #pragma omp parallel
 { int i,j,m;
 // each thread has an ID (starting at 0),
 // so determine the ID for this thread
 int me = omp_get_thread_num(),
 // find total number of threads
 nth = omp_get_num_threads();
 int myrows[2];
 ... // lots of lines here
 for (i = myrows[0]; i <= myrows[1];
 i++) {
 outrow = cumul1s[i];

 num1si = num1s[i];
 for (j = 0; j < num1si; j++) {
 outm(outrow+j,0) = i + 1;
 outm(outrow+j,1) = xadjm(i,j) + 1;
 }
 }
 }

As explained in the comments: The pragma tells the compiler to generate
machine code that starts the threads. Each of the threads — say we have
four — will simultaneously execute all the lines following the pragma,
through the line with the closing brace. However, each thread has a
different ID number, which we can sense via the call
to omp_get_thread_num(), which we record in the variable me. We
write the code pretending we are thread number me, deciding which rows
of adjm we must handle, given our ID number.

Debugging:

I’m a fanatic on debugging tools, and whenever I see a new language,
programming environment etc., the first question I ask is, How to debug
code on this thing?

Any modern C/C++ debugging tool allows for threaded code, so that for
example the user can move from one thread to another while single-stepping
through the code. But how does one do this with C/C++ code that is called
from R? The answer is, oddly enough, that we debug R itself!

But though the R Core Team would greatly appreciate your help in
debugging R we don’t actually do that. What we do is start R with the -
d option, which places us in the debugger. We then set a breakpoint in our
buggy code, e.g. for gdb

(gdb) break transgraph

We then resume execution, placing us back in R’s interactive mode, then
call our buggy function from there as usual, which places in that function —
and in the debugger! We can then single-step etc. from there.

Other OpenMP constructs:

The above example was designed to illustrate several of the most common
pragmas in OpenMP. But there are a lot more tricks you can do with it, and
in addition there are settings that you can make to improve performance.
 Some of these are explained in my book, with more examples and so on,
and in addition there are myriad OpenMP tutorials (though not R-oriented)
on the Web.

Happy OpenMP-ing!

Related

To leave a comment for the author, please follow the link and comment on his blog:
Mad (Data) Scientist.

R-bloggers.com offers daily e-mail updates about R news and tutorials on topics
such as: visualization (ggplot2, Boxplots, maps, animation), programming (RStudio,
Sweave, LaTeX, SQL, Eclipse, git, hadoop, Web Scraping) statistics (regression,
PCA, time series, trading) and more...

If you got this far, why not subscribe for updates from the site?
Choose your flavor: e-mail, twitter, RSS, or facebook...

Comments are closed.

Top 3 Posts from the past 2
days

Scatterplots
In-depth introduction to machine learning in
15 hours of expert videos
Installing R packages

Search & Hit Enter

Top 9 articles of the week

1. In-depth introduction to machine learning in
15 hours of expert videos

2. Installing R packages
3. Scatterplots
4. Using apply, sapply, lapply in R
5. Turning your R (or Python) models into

APIs
6. Basics of Histograms
7. Microsoft Launches Its First Free Online R

Course on edX
8. Read Excel files from R
9. Adding a legend to a plot

Sponsors

85

LikeLike

ShareShare

85LikeLike ShareShare

Plotly: collaborative, publication-quality graphing.

Search & Hit Enter

Full list of contributing R-bloggers
R-bloggers was founded by Tal Galili, with gratitude to the R community.
Is powered by WordPress using a bavotasan.com design.
Copyright © 2015 R-bloggers. All Rights Reserved. Terms and Conditions for this website

