
C O M P U T E | S T O R E | A N A L Y Z E

Openacc 2.0++ and OpenMP 4.0++
Directive based programing on “accelerators” today

and into the future

James Beyer, Ph.D

5/21/2014
1

C O M P U T E | S T O R E | A N A L Y Z E

What is an “accelerator”?

5/21/2014
2

● MIC/PHI
● Intel says co-processor

● Why?

● GPU
● Nvidia say accelerator

● Why?

● NUMA node
● Did you think of this one?

● DSP
● This is why TI co-chairs the OpenMP subcommittee!

● The main processor

● Network controller

● Storage controller

● …

C O M P U T E | S T O R E | A N A L Y Z E

Background -- OpenMP

5/21/2014
3

● FORTRAN version 1.0 - (October 1997)

● Accelerator additions
● Subcommittee formed Aug 2009

● Initial proposal submitted Dec 2009

● Cray OpenMP for Accelerators nears release

● Fall 2010 several members form OpenACC working group
● No mechanism with OpenMP for OpenACC to be released quickly

● OpenMP TR1 - Technical Report on Directives for Attached
Accelerators (November 2012)

● OpenMP 4.0 (July 2013)

C O M P U T E | S T O R E | A N A L Y Z E

Background -- OpenACC

5/21/2014
4

● PGI released accelerator directives

● CAPS released HMPP

● Cray prepares to release OpenMP for accelerators
directives

● Fall 2010 several members form OpenACC working group

● OpenACC 1.0 (Nov 2010)

● OpenACC 2.0 (June 2013)

● OpenACC 2.0a (Aug 2013)

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP and OpenACC today a comparison

5/21/2014
5

● Differences
● Parallelism

● Present_or_*

● Scalars

● Loops

● Calls (separate compilation units)

● Parallelism
● OpenACC

● “Off-load” and parallel startup tied together
● acc parallel

● acc kernels

● OpenMP
● “Off-load” and parallel startup disconnected

● omp target

● omp parallel

● omp teams

● omp target teams – closely nested or not going to work

C O M P U T E | S T O R E | A N A L Y Z E

OpenMP teams vs parallel

5/21/2014
6

 ● Why two different “parallel” mechanisms

● Teams
● Independent collision domains

● There used to only be one of these

● Same behavior as OpenACC gangs

● Only select directives allowed

● Parallel
● A single collision domain

● Default if neither is present

● All non-accelerator OpenMP directives allowed

C O M P U T E | S T O R E | A N A L Y Z E

Loops

5/21/2014
7

● OpenACC
● One construct “loop”

● Multiple parallelism types

● “nested” parallelism implicit

● Three levels available
● Gang

● Worker

● Vector

● OpenMP
● Three constructs

● Distribute

● Do/for

● Simd

● Nested parallelism explicit

● Implict parallelism?
● OpenACC

● !$acc loop worker

● OpenMP
● !$omp parallel do

C O M P U T E | S T O R E | A N A L Y Z E

Calls

5/21/2014
8

● OpenACC
● Routine

● Only one type of parallelism
allowed
● Gang

● Worker

● Vector

● Seq

● Hard on user

● Easy for implementer

● OpenMP
● Declare

● Type of parallelism ignored

● Easy on user

● Hard for implementer

C O M P U T E | S T O R E | A N A L Y Z E

Nested parallelism

5/21/2014
9

● OpenACC
● Added in 2.0

● Currently no full implementations
● Why?

● OpenMP
● Parallel inside of teams is allowed

● Teams inside of teams is not allowed.

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC and OpenMP tomorrow

5/21/2014
10

● OpenACC
● Tools interfaces

● Call back based
● Host captures state of device

● Better user defined type support
● Structures, classes, derived types

● Better performance portability across implementations
● Requires agreement about what the spec means!

● OpenMP
● Unstructured data constructs
● Declare target deferred_map (OpenACC link)
● Interoperability with accelerated libraries
● Multiple devices
● User defined type support
● Asynchronous support
● map(<direction>:update: list)
● Better memory hierarchy support

C O M P U T E | S T O R E | A N A L Y Z E

OpenACC and OpenMP on future architectures

5/21/2014
11

● Upcoming “interesting” architectures
● Intel PHI
● Nvidia
● ???

● Commonalities

● Vectorization
● A lot of threads

● Groups of threads, numa on a chip
● 60+ (120+) depends what you count

● This number jumps if you count vector lanes

● 2048 per multiprocessor
● 15 multiprocessors
● This number goes down if you consider warps as vectors

● Interesting memory structure

● Separate memories no longer an “issue”
● Or are they?

C O M P U T E | S T O R E | A N A L Y Z E

Vectorization

5/21/2014
12

● Does we need anything new here?

● OpenMP
● SIMD

● Workshare

● OpenACC
● Loop vector

● Autovector

● Kernels

● Programmers just need to learn to write vector loops
● Questions

● Is a vector loop a parallel loop?
● yes

● Is a parallel loop a vector loop?
● No

● Conclusion
● We just need better programmers not directives

C O M P U T E | S T O R E | A N A L Y Z E

Threads

5/21/2014
13

● Is the number of threads an issue?
● How many codes do you see that need 10000 OpenMP threads?

● What does a barrier look like if 10000+ threads need to checkin?
● What about 100 threads?

● Answer, barriers are going to get more complex

● Does threadprivate make sense anymore
● Did it ever really make sense

● Fortran programmers say yes

● C and C++ programmers tend to say no

● Thread affinity
● Intel

● Nvidia

C O M P U T E | S T O R E | A N A L Y Z E

Memory architecture

5/21/2014
14

● Intel and Nvidia are both making it easier to access data
where ever it is in memory!

● Is this a good solution?

● At least two memories
● Bandwidth optimized memory

● Latency optimize memory

● Cache
● Do we expose these in the programming model?

● OpenACC uses cache directive
● This is targeted at nvidia shared memory

● Is it sufficient or do we need something more?

● Do we need something new when memory motion is no
purely an optimization?
● Compiler can get something right

● Is this enough?

C O M P U T E | S T O R E | A N A L Y Z E

Conclusions

5/21/2014
15

● OpenACC is nearing mid-life

● OpenMP is working hard to catch up with OpenACC

● All this work is not a waste of effort
● Memory structures are just going to get more complex

● Parallel loops will always be important

● Vector loops are important again and will remain so
● Remember vector loops are parallel loops

● Location location location
● Not just a realtors buzz word anymore!

