
Problem Setting clusterApply Load Balancing parLapply

Parallel with ‘snow’
An Example

Feng Yi

April 27, 2012

1 / 13

Problem Setting clusterApply Load Balancing parLapply

Resources

Slides can be downloaded from:

http://www.stat.umn.edu/∼yixxx064/parallel/snowExample.pdf

2 / 13

Problem Setting clusterApply Load Balancing parLapply

Problem Setting

Suppose you have covariance matrix Σ, with

p = 500, n = 5000

You want to do simulation: generate 100 replicates of data,
estimate precision matrix Σ−1. Finally, you want to summarize the
100 estimates.
Estimation error is defined as:

error = ||Σ̂−1 − Σ−1|| (1)

3 / 13

Problem Setting clusterApply Load Balancing parLapply

NonParallel Version of R Code

set.seed(12345)

for (wp.i in 1:n.trials){

error.RD <- rep(0, 100)

Step 1: generate data

data <- rmvnorm(n, sigma = covMatrix)

Step 2: calculation

inv.mat.est = solve(cov(data))

Step 3: save your results

error.RD[wp.i] = norm(inv.mat.est - ar1, type="1")

}

The ‘n.trials’ is total number of jobs.

4 / 13

Problem Setting clusterApply Load Balancing parLapply

Parallel Version of R Code: 1

Write up a wrapper function:

wrapper.function <- function(n.trials) {

error.RD <- NULL

for (wp.i in 1:n.trials) {

data <- rmvnorm(n, sigma = covMatrix)

inv.mat.est = solve(cov(data))

error.RD[[wp.i]] = norm(inv.mat.est - ar1, type="1")

}

list(error.RD = error.RD)

}

The ‘n.trials’ is the number of jobs on each node.

5 / 13

Problem Setting clusterApply Load Balancing parLapply

Parallel Version of R Code: 2

library(snow)

library(rlecuyer)

start up a cluster

cl <- makeCluster(5, type="MPI")

Get all ‘‘library’’s into each core

invisible(clusterEvalQ(cl, {library(mvtnorm); NULL}))

Set random seed(s)

clusterSetupRNG(cl, type="RNGstream", seed=10)

Get all parameters, and functions into each core

clusterExport(cl, list("ar1", "covMatrix", "n"))

Apply parallel function

parRet <- clusterApply(cl, rep(100/5, 5), wrapper.function)

Stop cluster

stopCluster(cl)

6 / 13

Problem Setting clusterApply Load Balancing parLapply

Useful Suggestions

• Save one node for your parent job.

• Be careful about the memory restriction.

• Use some special index for the “for” loop of wrapper function.

• The children nodes have the same priority as your parent node
in the example.

7 / 13

Problem Setting clusterApply Load Balancing parLapply

Load Balancing

Suppose you have ‘n’ jobs to ‘clusterApply’ on ‘m’ nodes with
n > m. The ‘m’ nodes start ‘m’ jobs simultaneously, and they will
not start next jobs until all the previous ‘m’ jobs are done.

Load balancing becomes important when it takes quite different
time to finish each of the ‘n’ jobs, and n > m. You hope every
node starts the next job immediately after it finishes the previous
one. If this is the case, you realize load balancing.

8 / 13

Problem Setting clusterApply Load Balancing parLapply

Load Balancing Problem with ‘clusterApply’

> sleeptime <- abs(rnorm(20, 5, 10))

> tm <- snow.time(clusterApply(cl, sleeptime, Sys.sleep))

0 20 40 60 80

Elapsed Time

No
de

0
1

2
3

4
Cluster Usage

9 / 13

Problem Setting clusterApply Load Balancing parLapply

‘parLapply’ Function

“parLapply” :

• a high-level snow function

• it realizes task chunking

• it partially solves loading balance problems

• it will have less I/O operations when the number of jobs are
greater than the number of nodes

• most useful snow function

10 / 13

Problem Setting clusterApply Load Balancing parLapply

Load Balancing with ‘parLapply’

> sleeptime <- abs(rnorm(20, 5, 10))

> tm <- snow.time(parLapply(cl, sleeptime, Sys.sleep))

0 10 20 30 40

Elapsed Time

No
de

0
1

2
3

4
Cluster Usage

11 / 13

Problem Setting clusterApply Load Balancing parLapply

‘parLapply’ Example

After you start up a cluster, set random seeds, get useful library,
function into each node, you can try:

The length of ‘‘flag’’ is the total number of jobs.

wrapper.fun2 <- function(flag, n, covMatrix, ar1) {

Step 1: generate data

data <- rmvnorm(n, sigma = covMatrix)

Step 2: calculation

inv.mat.est = solve(cov(data))

Step 3: save your results

error = norm(inv.mat.est - ar1, type="1")

}

Error = unlist(parLapply(cl, rep(1,n.trials), wrapper.fun2,

n=n, covMatrix=covMatrix, ar1=ar1))

‘parLapply’ returns a list of ‘wrapper’ function return value.

12 / 13

Problem Setting clusterApply Load Balancing parLapply

Reference

• Parallel R - Data Analysis in the Distributed World, by
Q.Ethan McCallum, Stephen Weston

• Parallel Processing here at the School of Statistics, by Charles
J. Geyer

13 / 13

	Problem Setting
	clusterApply
	Load Balancing
	parLapply

