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Abstract

In this paper, we introduce ordinal proximity measures in the setting of unbal-
anced qualitative scales by comparing the proximities between linguistic terms
without numbers, in a purely ordinal approach. With this new tool, we pro-
pose how to measure the consensus in a set of agents when they assess a set
of alternatives through an unbalanced qualitative scale. We also introduce an
agglomerative hierarchical clustering procedure based on these consensus mea-
sures.
Keywords: decision making; qualitative scales; proximity; difference measure-
ment; consensus; clustering.

1. Introduction

In different decision-making problems, agents have to show their opinions
on a set of alternatives and then an aggregation procedure is used for generat-
ing a collective outcome: a winning alternative, several winning alternatives, a
ranking on the set of alternatives, etc.

The agents opinions can be provided in very different ways: the favorite
alternative, a subset of acceptable alternatives, a ranking on the set of alterna-
tives, an assessment for each alternative, etc.

When agents assess independently each alternative, the corresponding as-
sessments can be of different nature depending on the context: numerical values,
intervals of real numbers, fuzzy numbers, linguistic terms, etc.
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Qualitative scales are formed by linguistic terms. Usually, these scales are
balanced and uniform: there are the same number of positive and negative
terms, and adjacent terms are equidistant (for instance, ‘very bad’, ‘bad’, ‘ac-
ceptable’, ‘good’ and ’very good’). However, sometimes the qualitative scales
are unbalanced: there are different number of positive terms compared to nega-
tive ones1, and it is not clear how to measure the nearness between the linguistic
terms of an unbalanced qualitative scale2.

In this paper, we do not assign numerical distances between linguistic terms,
but we propose to make pairwise comparisons of psychological proximities be-
tween them. This approach has some similarities with difference measurement
within the classical measurement theory (see Krantz et al. [32, chapter 4] and
Roberts [40, section 3.3]), and also with non-metric multidimensional scaling,
where only the ranks of the psychological distances or proximities are known
(see Bennett and Hays [5], Shepard [41], Coombs [12], Kruskal and Wish [33],
Cox and Cox [13] and Borg and Groenen [7, chapter 9], among others). We have
also to mention Bossert et al. [9] that consider ordinal measures of distances in
the analysis of diversity.

In order to explain how the mentioned comparisons can be made, we con-
sider, as an example, that some journals use the linguistic terms ‘reject’, ‘major
revision’, ‘minor revision’ and ‘accept’ in the evaluation of papers. It has no
sense to assign numerical values neither to these terms nor to distances be-
tween terms. However, an author may feel that the psychological proximity
between ‘minor revision’ and ‘accept’ is bigger than the psychological proxim-
ity between ‘minor revision’ and ‘major revision’. Obviously, this author could
compare psychological proximities between the rest of pairs of linguistic terms.
Initially, this task may seem hard, because there are 162 = 256 possible pair-
wise comparisons. Fortunately, it is not necessary to compare all the pairs3: the
psychological proximity between two terms does not depend on the order these
terms are presented; the psychological proximity between a term and itself is
always the same and it is bigger than the psychological proximity between two
different terms; etc.

Taking into account the previous ideas, we propose the notion of ordinal
proximity measure as a mapping that assigns an element of a chain to each pair
of psychological proximities between linguistic terms, satisfying four indepen-
dent properties: all the elements in the chain correspond to some psychological
proximity, i.e., no element in the chain is superfluous; psychological proximities
are symmetric, i.e., the order of the pairs is irrelevant in the comparison; the
maximum psychological proximity is reached when comparing a linguistic term
with itself; and given three different linguistic terms, the degree of proximity

1For instance, Herrera et al. [24] consider the following nine linguistic terms: ‘none’, ‘low’,
‘medium’, ‘almost high’, ‘high’, ‘quite high’, ‘very high’ and ‘total’.

2Nevertheless, within a fuzzy approach, some cardinal proposals on unbalanced qualitative
scales can be found in Herrera et al. [24] and Cabrerizo et al. [11], among others.

3In Remark 1 we show that, with four linguistic terms, only between three and six com-
parisons are needed.
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between the lowest and the highest terms should be smaller than the degrees
of proximity between the lowest and the intermediate terms and between the
intermediate and the highest terms.

Once the ordinal proximity measuring model has been introduced, we pro-
pose consensus measures and agglomerative hierarchical clustering procedures
when a group of agents evaluate the alternatives through a qualitative scale,
taking into account the ordinal proximities between individual assessments.

Given a subset of agents and a subset of alternatives, we define the degree
of consensus as the upper median of the proximities between all the pairs of in-
dividual assessments. We propose a sequential tie-breaking process and provide
some properties of the degrees of consensus.

We have also devised an agglomerative hierarchical clustering procedure
where agents are grouped into clusters by defining the similarity between two
groups of agents with respect to a subset of alternatives as the degree of consen-
sus in the merged group. We have illustrated our proposal from the qualitative
marks obtained by a group of students in several subjects.

The rest of the paper is organized as follows. Section 2 is devoted to intro-
duce and analyze ordinal proximity measures. In Section 3 we propose some
applications to consensus and clustering. And Section 4 includes some conclud-
ing remarks.

2. Ordinal proximity measures

Let A = {1, . . . ,m}, with m ≥ 2, be a set of agents and let X = {x1, . . . , xn},
with n ≥ 2, be the set of alternatives which have to be evaluated. Each agent
assigns a linguistic term to every alternative within a finite linguistic ordered
scale L = {l1, . . . , lg}, arranged from the lowest to the highest terms4, where
the granularity of L is at least 3 (g ≥ 3).

2.1. The model

Consider that the psychological proximity between lr ∈ L and ls ∈ L is
represented by πrs and let ∆ = {πrs | r, s ∈ {1, . . . , g}} be the set of all
possible psychological proximities between linguistic terms5.

Although we do not associate numbers to psychological proximities, we as-
sume that it is possible to compare psychological proximities between linguistic
terms through an asymmetric and transitive binary relation � on ∆, where
πrs � πtu means that the psychological proximity between lr and ls is bigger
than the psychological proximity between lt and lu.

We consider that the following properties should be satisfied for all r, s, t, u ∈
{1, . . . , g}:

4For instance, Balinski and Laraki [4] consider the following six linguistic terms: ‘to reject’
(l1), ‘poor’ (l2), ‘acceptable’ (l3), ‘good’ (l4), ‘very good’ (l5) and ‘excellent’ (l6).

5At this stage we do not specify what kind of mathematical objects represent psychological
proximities.
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1. If neither πrs � πtu nor πtu � πrs, then πrs = πtu.

2. πsr = πrs.

3. πrr = πss.

4. If s 6= t, then πrr � πst.
5. If r < s < t, then πrs � πrt and πst � πrt.
6. If r < s and (r, s) 6= (1, g), then πrs � π1g.

We now introduce a formal notion of proximity between linguistic terms with
values on a finite chain (linear order) ∆ = {δ1, . . . , δh}, with δ1 � · · · � δh,
that captures the properties introduced above. The elements of ∆ have no
meaning and they only represent different degrees or proximity, being δ1 and δh
the maximum and minimum degrees of proximity, respectively.

As usual in the setting of linear orders, δr ≺ δs means δs � δr; δr � δs
means δr ≺ δs or δr = δs; and δr � δs means δr � δs or δr = δs.

First we assume that all the elements of ∆ are relevant because they are
reached as the degree of proximity between at least a pair of linguistic terms
(exhaustiveness). We also assume that the proximity between a pair of linguistic
terms does not depend on the order these terms are presented (symmetry),
and the maximum proximity between linguistic terms is only reached when
comparing a term with itself. Additionally, we assume that, given three different
linguistic terms, the degree of proximity between the lowest and the highest
terms should be smaller than the degrees of proximity between the lowest and
the intermediate terms and also between the intermediate and the highest terms
(monotonicity).

Definition 1. An ordinal proximity measure on L with values in ∆ is a map-
ping π : L2 −→ ∆, where π(lr, ls) = πrs means the degree of proximity between
lr and ls, satisfying the following conditions:

1. Exhaustiveness: For every δ ∈ ∆, there exist lr, ls ∈ L such that δ = πrs.

2. Symmetry: πsr = πrs, for all r, s ∈ {1, . . . , g}.
3. Maximum proximity: πrs = δ1 ⇔ r = s, for all r, s ∈ {1, . . . , g}.
4. Monotonicity: min{πrs, πst} � πrt, for all r, s, t ∈ {1, . . . , g} such that
r < s < t.

Every ordinal proximity measure can be represented by a g × g symmetric
matrix with coefficients in ∆, where the elements in the main diagonal are
πrr = δ1, r = 1, . . . , g:

π11 · · · π1s · · · π1g
· · · · · · · · · · · · · · ·
πr1 · · · πrs · · · πrg
· · · · · · · · · · · · · · ·
πg1 · · · πgs · · · πgg

 = (πrs) .

This matrix is called proximity matrix.
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Taking into account the conditions of Definition 1, it is only necessary to
show the upper half proximity matrix

δ1 π12 π13 · · · π1(g−1) π1g

δ1 π23 · · · π2(g−1) π2g

· · · · · · · · ·
δ1 π(g−1)g

δ1

 .

Proposition 1. The four conditions appearing in Definition 1 are independent.

Proof:

1. The matrix  δ1 δ2 δ3
δ2 δ1 δ3
δ3 δ3 δ1


satisfies conditions 1, 2 and 3, but not condition 4: min{π12, π23} = δ3 =
π13.

2. The matrix  δ1 δ3 δ4
δ3 δ1 δ3
δ4 δ3 δ2


satisfies conditions 1, 2 and 4, but not condition 3: π33 = δ2 6= δ1.

3. The matrix  δ1 δ2 δ4
δ3 δ1 δ2
δ4 δ2 δ1


satisfies conditions 1, 3 and 4, but not condition 2: π12 = δ2 6= δ3 = π21.

4. The matrix  δ1 δ2 δ4
δ2 δ1 δ2
δ4 δ2 δ1


satisfies conditions 2, 3 and 4, but not condition 1: δ3 6= πrs for all
r, s ∈ {1, . . . , g}.

2.2. Some results

In the following proposition we establish that the minimum proximity be-
tween linguistic terms is only reached when comparing the extreme linguistic
terms l1 and lg.

Proposition 2. For all r, s ∈ {1, . . . , g}, πrs = δh ⇔ (r, s) ∈ {(1, g), (g, 1)}.
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Proof: By way of contradiction, suppose there exist r, s ∈ {1, . . . , g} such
that r < s, (r, s) 6= (1, g) and πrs = δh. If s < g, by min{πrs, πsg} � πrg,
we have δh � πrg, that is a contradiction. If s = g, then 1 < r < g. By
min{π1r, πrg} � π1g, we have δh � π1g, that is a contradiction.

In the following proposition we extend monotonicity to four linguistic terms
(similar extensions can be made for more than four linguistic terms).

Proposition 3. For all r, s, t, u ∈ {1, . . . , g} such that r < s < t < u, the
following properties hold:

1. If πrs � πst, then πrs � πsu.

2. If πrs � πtu, then πrs � πsu.

3. If πtu � πst, then πtu � πrt.
4. If πtu � πrs, then πtu � πrt.
5. If πrt � πtu, then πrt � πsu.

6. If πsu � πrs, then πsu � πrt.

Proof:

1. Since min{πst, πtu} � πsu, we have πst � πsu. By πrs � πst and transi-
tivity of �, we obtain πrs � πsu.

2. Since min{πst, πtu} � πsu, we have πtu � πsu. By πrs � πtu and
transitivity of �, we obtain πrs � πsu.

3. Since min{πrs, πst} � πrt, we have πst � πrt. By πtu � πst and transi-
tivity of �, we obtain πtu � πrt.

4. Since min{πrs, πst} � πrt, we have πrs � πrt. By πtu � πrs and transi-
tivity of �, we obtain πtu � πrt.

5. Since min{πst, πtu} � πsu, we have πtu � πsu. By πrt � πtu and transi-
tivity of �, we obtain πrt � πsu.

6. Since min{πrs, πst} � πrt, we have πrs � πrt. By πsu � πrs and transi-
tivity of �, we obtain πsu � πrt.

In the following result, we show that the cardinality of the chain ∆ is located
between the granularity of L and a polinomial of degree 2 of that granularity.

Proposition 4. The following condition holds:

g ≤ h ≤ g · (g − 1)

2
+ 1.

Proof: The minimum cardinality of ∆ is obtained if the proximities πrs are
identical whenever |s−r| is fixed. Since |s−r| ∈ {0, 1, . . . , g−1}, the minimum
value of h is g.
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The maximum number of degrees of proximity (without considering δ1 and
δh) are shown by rows

δ1 π12 π13 · · · π1(g−1) δh

δ1 π23 · · · π2(g−1) π2g

· · · · · · · · ·
δ1 π(g−1)g

δ1


→ g − 2

→ g − 2

· · ·
→ 1

→ 0

i.e., it is

(g − 1)− 1 + (g − 2) + · · ·+ 1 =
g · (g − 1)

2
− 1.

Taking into account the two extreme degrees of proximity δ1 and δh, the
maximum value of h is

2 +
g · (g − 1)

2
− 1 =

g · (g − 1)

2
+ 1.

Table 1 shows how the cardinality of ∆ varies according to the granularity
of L, for g = 3, 4, . . . , 11.

g Cardinality of ∆
3 3 ≤ h ≤ 4

4 4 ≤ h ≤ 7

5 5 ≤ h ≤ 11

6 6 ≤ h ≤ 16

7 7 ≤ h ≤ 22

8 8 ≤ h ≤ 29

9 9 ≤ h ≤ 37

10 10 ≤ h ≤ 46

11 11 ≤ h ≤ 56

Table 1: Cardinality of ∆ according to the granularity of L.

2.3. Generating ordinal proximity measures from pairwise comparisons

In the following example, we show what are the possible chains ∆ and or-
dinal proximity measures π in the simplest situation of a scale formed by three
linguistic terms.

Example 1. For g = 3, two cases of ∆ and three different ordinal proximity
measures π are possible:

1. The balanced case, where π12 = π23 = δ2
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l1 l2 l3

and the proximity matrix  δ1 δ2 δ3
δ2 δ1 δ2
δ3 δ2 δ1

 .

2. The unbalanced case with π23 = δ2 � δ3 = π12

l1 l2 l3

and the proximity matrix  δ1 δ3 δ4
δ3 δ1 δ2
δ4 δ2 δ1

 .

3. The unbalanced case with π12 = δ2 � δ3 = π23

l1 l2 l3

and the proximity matrix  δ1 δ2 δ4
δ2 δ1 δ3
δ4 δ3 δ1

 .

It is easy to check that all the previous matrices satisfy the conditions ap-
pearing in Definition 1.

Notice that in the balanced case h = 3, but in the unbalanced cases h = 4.

For g > 3 the complexity increases, as we can see in the following remark.

Remark 1. The g×g proximity matrix (πrs) contains g2 degrees of proximity.
If we compare by pairs all these degrees of proximity, we would have to make(
g2
)2

= g4 comparisons. However, some of them are not necessary.
By Definition 1, we know that πrr = δ1 � πrs for all r, s ∈ {1, . . . , g} such

that r 6= s; πsr = πrs for all r, s ∈ {1, . . . , g}; and πrs � πrt and πst � πrt
for all r, s, t ∈ {1, . . . , g} such that r < s < t. By Proposition 2, we also know
that πrs � π1g = δh for all r, s ∈ {1, . . . , g} such that (r, s) /∈ {(1, g), (g, 1)}.
And by Proposition 3, if r < s < t < u and πrs � πst, then πrs � πsu; etc.

Consider now the case of g = 4, where we only need to compare by pairs
the following five degrees of proximity: π12, π13, π23, π24 and π34.
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Notice that, by Definition 1, we know that π12 � π13, π23 � π13, π23 � π24
and π34 � π24. Then, we have the following pairwise comparisons:

π12 � π13 π12 − π23 π12 − π24 π12 − π34
π13 ≺ π23 π13 − π24 π13 − π34

π23 � π24 π23 − π34
π24 ≺ π34

Additionally, by Proposition 3, we also know the following implications:

π12 � π23 ⇒ π12 � π24
π12 � π34 ⇒ π12 � π24
π34 � π23 ⇒ π34 � π13
π34 � π12 ⇒ π34 � π13
π13 � π34 ⇒ π13 � π24
π24 � π12 ⇒ π24 � π13.

Consequently, there are three essential pairwise comparisons: π12 − π23,
π12−π34 and π23−π34. Depending on the results of these comparisons, the fol-
lowing comparisons could be also necessary: π12−π24, π13−π34 and π13−π24.
Thus, among the 162 = 256 potential pairwise comparisons (πrs versus πtu
for all r, s, t, u ∈ {1, . . . , 4}), only between three and six pairwise comparisons
would be needed.

Following the pattern introduced in Remark 1 for g = 4, it is possible to de-
termine the proximity matrix for g > 4 from some basic pairwise comparisons.

Remark 2. Given a finite linguistic ordered scale L = {l1, . . . , lg}, an im-
portant issue is who determines the proximity matrix. A possibility is that a
representative group of agents B declare how they understand the proximities
between the basic pairs of linguistic terms, and then a majority rule is applied
for determining ∆ and the corresponding degrees of proximity.

Simple majority is the most decisive majority (when indifferences are al-
lowed, the winner can have very poor support). Qualified majorities require
more support for declaring a winner and they go from absolute majority to
unanimity. In turn, majorities based on difference of votes go from simple ma-
jority to unanimity (see Garćıa-Lapresta and Llamazares [18], Llamazares [35]
and Llamazares et al. [36]). Figure 1 illustrates the relationships among the
mentioned majorities.

We now introduce a method for generating social proximity outcomes, through
different majorities, from the pairwise comparisons among degrees of proximity
for all the basic pairs (lr, ls), (lt, lu) ∈ L2. We have considered that the statu
quo is πrs = πtu: this should be the outcome whenever there does not exist a
majority, previously fixed, declaring πrs � πtu or πtu � πrs.

With πrs �b πtu we denote that agent b ∈ B declares that lr is closer to
ls than lt is to lu. Analogously, πrs =b πtu denotes that agent b ∈ B declares
that the proximity between ls and lt is the same as that between lt and lu.
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Absolute majoritySimple majority Unanimity

Majorities based on difference of votes

Qualified majorities

Figure 1: Majorities.

1. If the majority based on difference of k ∈ {0, 1, . . . ,#B − 1} votes is
applied6:

(a) πrs � πtu ⇔
(
#{b ∈ B | πrs �b πtu} > #{b ∈ B | πtu �b πrs}+ k

and #{b ∈ B | πrs �b πtu} > #{b ∈ B | πrs =b πtu}+ k
)
,

(b) πtu � πrs ⇔
(
#{b ∈ B | πtu �b πrs} > #{b ∈ B | πrs �b πtu}+ k

and #{b ∈ B | πtu �b πrs} > #{b ∈ B | πrs =b πtu}+ k
)
,

(c) πrs = πtu, otherwise.

2. If the qualified majority of threshold q ∈ [0.5, 1) is applied7:

(a) πrs � πtu ⇔ #{b ∈ B | πrs �b πtu} > q ·#B,

(b) πtu � πrs ⇔ #{b ∈ B | πtu �b πrs} > q ·#B,

(c) πrs = πtu, otherwise.

Once this information has been collected, it is necessary to adjust the ordinal
information for providing the chain ∆ and the proximity matrix satisfying the
conditions appearing in Definition 1, as in Remark 1.

It is important noticing that the mentioned majorities may generate intransi-
tivities in � or in = , i.e., there can exist linguistic terms lr, ls, lt, lu, lv, lw ∈ L
such that, after aggregating the individual opinions by a specific majority, it
occurs πrs � πtu, πtu � πvw and not πrs � πvw (either πvw � πrs or
πvw = πrs); or πrs = πtu, πtu = πvw and πrs 6= πvw (either πrs � πvw
or πvw � πrs). Monotonicity and Proposition 3 can also be violated after the
aggregation process. These kinds of paradoxes and inconsistencies may be con-
sidered as specific problems of judgment aggregation theory within the social
choice theory (see Dietrich and List [14], List [34], Mongin [38] and Grossi and
Pigozzi [23], among others).

When some of the above inconsistencies appear, a decision maker would se-
lect an appropriate chain ∆ and the corresponding proximity matrix. Obviously,
another possibility would be for that group of agents to vote on their preferred

6Simple majority corresponds to the case k = 0.
7Absolute majority corresponds to the case q = 0.5.
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proximity matrices and then apply an appropriate voting system for obtaining
the outcome. This avoids the appearance of inconsistencies but agents have to
analyze a high number of complex alternatives.

2.4. A field experiment

We now present the results of a survey made to 76 members of the Span-
ish Society for Fuzzy Logic and Technology (ESTYLF ) about the degrees of
proximity among the usual decisions of some journal editors (see Table 2).

l1 l2 l3 l4
Reject Major revision Minor revision Accept

Table 2: Meaning of the linguistic terms.

The data obtained in the survey are included in Table 3.

π12 versus π23 Number %
π12 � π23 27 35.5

π12 ≺ π23 32 42.1

π12 = π23 17 22.4

π23 versus π34 Number %
π23 � π34 6 7.9

π23 ≺ π34 69 90.8

π23 = π34 1 1.3

π12 versus π34 Number %
π12 � π34 10 13.2

π12 ≺ π34 54 71.0

π12 = π34 12 15.8

π12 versus π24 Number %
π12 � π24 42 55.3

π12 ≺ π24 18 23.7

π12 = π24 16 21.0

π13 versus π34 Number %
π13 � π34 0 0.0

π13 ≺ π34 75 98.7

π13 = π34 1 1.3

π13 versus π24 Number %
π13 � π24 1 1.3

π13 ≺ π24 53 69.7

π13 = π24 22 29.0

Table 3: Data of the survey.

We now present the results generated by simple and absolute majorities when
aggregating individual opinions of the proximities between linguistic terms.

• Simple majority:

π34 � π23 � π12 � π24 � π13 � π14 and πrr = δ1 for every r ∈
{1, . . . , 4}.
This information allows us to assign the following degrees of proximity

πrr = δ1 � π34 = δ2 � π23 = δ3 � π12 = δ4 � π24 = δ5 � π13 = δ6 � π14 = δ7

11



and the upper half proximity matrix
δ1 δ4 δ6 δ7

δ1 δ3 δ5
δ1 δ2

δ1


that can be visualized as follows

l1 l2 l3 l4

• Absolute majority:

π34 � π12 = π23 � π24 � π13 � π14 and πrr = δ1 for every r ∈ {1, . . . , 4}.
This information allows us to assign the following degrees of proximity

πrr = δ1 � π34 = δ2 � π12 = π23 = δ3 � π24 = δ4 � π13 = δ5 � π14 = δ6

and the upper half proximity matrix
δ1 δ3 δ5 δ6

δ1 δ3 δ4
δ1 δ2

δ1


that can be visualized as follows

l1 l2 l3 l4

3. Applications to consensus and clustering

Once ordinal proximity measures have been introduced and analyzed, we
now propose some applications to consensus and clustering.

3.1. Consensus

For measuring the degree of consensus among a group of agents that pro-
vide their opinions on a set of alternatives, different proposals can be found in
the literature (see Mart́ınez-Panero [37] for an overview of different notions of
consensus).

In the fuzzy framework, there exists a huge amount of literature where some
degrees of consensus have been defined (see Spillman et al. [42], Kacprzyk and
Fedrizzi [28, 29, 30], Kacprzyk et al. [31], Fedrizzi et al. [17], Herrera et al. [25]
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and Bordogna et al. [6], among others). Some referenced surveys can be found
in Cabrerizo et al. [10], Herrera-Viedma et al. [26] and Palomares et al. [39].

In the social choice framework, the notion of consensus measure was in-
troduced by Bosch [8] in the context of linear orders. Additionally, Bosch [8]
and Alcalde-Unzu and Vorsatz [1] provided axiomatic characterizations of sev-
eral consensus measures in the context of linear orders. Garćıa-Lapresta and
Pérez-Román [19] extended that notion to the context of weak orders and they
analyzed a class of consensus measures generated by distances. Alcantud et
al. [2] provided axiomatic characterizations of some consensus measures in the
setting of approval voting. In turn, Erdamar et al. [15] extended the notion of
consensus measure to the preference-approval setting through different kinds of
distances, and Garćıa-Lapresta et al. [22] introduced another extension to the
framework of hesitant linguistic assessments.

A profile is a matrix

V =


v11 · · · v1i · · · v1n
· · · · · · · · · · · · · · ·
va1 · · · vai · · · van
· · · · · · · · · · · · · · ·
vm1 · · · vmi · · · vmn

 = (vai )

consisting of m rows and n columns of linguistic terms, where the element
vai ∈ L represents the linguistic assessment given by the agent a ∈ A to the
alternative xi ∈ X.

With #I we denote the cardinality of I. With P2(A) = {I ⊆ A | #I ≥ 2}
we denote the family of subsets of at least two agents.

For measuring the consensus in a group of agents over a set of alternatives,
we start ordering all the degrees of proximity between individual assessments
over the alternatives in a decreasing fashion, i.e, from highest to lowest degrees
of proximity. Then, we define the degree of consensus as the upper median of
the degrees of proximity.

We have to note that when the number of elements in a list of ordered
elements is odd, the median is unique. But if that number is even, then there
are two medians; in that case, we choose the upper median (in our context,
the lowest degree of proximity, i.e., the pessimistic outcome), as proposed by
Balinski and Laraki in the voting system Majority Judgment [3, 4] for individual
linguistic assessments (they consider the lower median because they arrange the
inputs in an increasing fashion).

Definition 2. Given a profile V = (vai ), the degree of consensus in a subset of
agents I ∈ P2(A) over a subset of alternatives ∅ 6= Y ⊆ X is defined as

C(I, Y ) = M

(
π
(
vai , v

b
i

)
a,b∈I , a<b

xi∈Y

)
∈ ∆,

where M is the upper median operator.
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Remark 3. For each alternative, the number of pairwise comparisons between
individual assessments given by the agents of I is

p(I) =
#I · (#I − 1)

2
.

In the following proposition we show that the degree of consensus is not
susceptible to be considered either too high or too low.

Proposition 5. Given a profile V = (vai ), for every subset of agents I ∈
P2(A) and every subset of alternatives ∅ 6= Y ⊆ X, the following conditions
hold:

#
{

(a, b, xi) ∈ I × I × Y | a < b , π
(
vai , v

b
i

)
� C(I, Y )

}
≥ p(I) ·#Y

2

and

#
{

(a, b, xi) ∈ I × I × Y | a < b , π
(
vai , v

b
i

)
� C(I, Y )

}
≥ p(I) ·#Y

2
.

Proof: It is a direct consequence of the notion of medians.

In the following proposition, we provide necessary and sufficient conditions
for having maximum and minimum degrees of consensus (in the last case only
for two agents and one alternative).

Proposition 6. Given a profile V = (vai ), a subset of agents I ∈ P2(A), two
agents a, b ∈ A, a subset of alternatives ∅ 6= Y ⊆ X and an alternative xi ∈ X,
the following properties hold:

1. C(I, Y ) = δ1 if and only if there exists r ∈ {1, . . . , g} such that

# {(a, xi) ∈ I × Y | vai = lr} >
p(I) ·#Y

2
.

2. C({a, b}, {xi}) = δh if and only if (vai , v
b
i ) ∈ {(l1, lg), (lg, l1)}.

Proof:

1. First, notice that the number of elements in the list π
(
vai , v

b
i

)
a,b∈I , a<b

xi∈Y
is

p(I) ·#Y . Since C(I, Y ) = δ1 if and only the upper median of that list
is δ1, i.e., more than a half of the assessments are the same, say lr, we
obtain the result.

2. It follows from Proposition 2.

Since the cardinality of ∆ could be low, it is very easy to have ties among
the degrees of consensus in different subsets of agents. We now introduce a
sequential tie-breaking process based on one of the proposals of Balinski and
Laraki [3].
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Starting from C(1)(I, Y ) = C(I, Y ), we calculate C(2)(I, Y ) as in C(I, Y )
but after dropping the upper median of the list π

(
vai , v

b
i

)
a,b∈I , a<b

xi∈Y
, and analo-

gously for C(2)(I, Y ), etc.

Definition 3. Given a profile V = (vai ), the sequential consensus vector rela-
tive to a subset of agents I ∈ P2(A) and a subset of alternatives ∅ 6= Y ⊆ X
is defined as

C(I, Y ) =
(
C(1)(I, Y ), C(2)(I, Y ), . . . , C(p(I))(I, Y )

)
∈ ∆p(I)·#Y .

Definition 4. Given a profile V = (vai ), the consensus order relative to a subset
of alternatives ∅ 6= Y ⊆ X is defined as

I <Y J if C(I, Y ) <` C(J, Y ),

where <` is the lexicographic weak order on ∆min{p(I)·#Y, p(J)·#Y }, i.e., I <Y

J if one of the following conditions hold:

C(1)(I, Y ) � C(1)(J, Y )

C(1)(I, Y ) = C(1)(J, Y ) and C(2)(I, Y ) � C(2)(J, Y )

C(1)(I, Y ) = C(1)(J, Y ) , C(2)(I, Y ) = C(2)(J, Y ) and C(3)(I, Y ) � C(3)(J, Y )

. . .

3.2. Clustering

In many contexts and disciplines, observations or objects are grouped in
clusters in such a way that elements within each cluster are similar to one an-
other with respect to an attribute. Then, objects are classified in homogeneous
clusters and the objects in a cluster are more similar to each other than they
are to an object belonging to a different cluster (see Jain et al. [27] and Everitt
et al. [16], among others).

We now devise an agglomerative hierarchical clustering procedure in the
context of unbalanced qualitative scales. More specifically, we have analyzed
how agents can be grouped into clusters when such agents rate alternatives by
means of linguistic terms from a predetermined unbalanced qualitative scale.

In the cluster formation, we have considered that the similarity between two
groups of agents with respect to a set of alternatives is the degree of consensus
in the merged group, as in Garćıa-Lapresta and Pérez-Román [20, 21] (in other
settings). That consensus is measured by taking into account the degrees of
proximity between all the pairs of individual assessments over the alternatives
that are being evaluated.

Definition 5. Given a profile V = (vai ), the similarity function relative to a
subset of alternatives ∅ 6= Y ⊆ X

SY :
(
P(A) \ {∅}

)2 −→ ∆
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is defined as

SY (I, J) =

{
C(I ∪ J, Y ), if #(I ∪ J) ≥ 2,

δ1, if #(I ∪ J) = 1.

Remark 4. Similarity and proximity are related notions. In this paper, the
concept of ordinal proximity is applied to pairs of linguistic terms, while the
concept of similarity is applied to pairs of subsets of agents (with respect a subset
of alternatives). In the extreme case of two agents and a single alternative,
the similarity between these agents on that alternative is just the proximity
between their assessments: given an alternative xi ∈ X and two different agents
a, b ∈ A, we have

S{xi} ({a}, {b}) = C ({a, b}, {xi}) = π
(
vai , v

b
i

)
.

Definition 6. Given a profile V = (vai ), the sequential similarity vector rela-
tive to a subset of alternatives ∅ 6= Y ⊆ X for I, J ∈

(
P(A) \ {∅}

)
is defined

as

SY (I, J) =
(
S
(1)
Y (I, J), S

(2)
Y (I, J), . . . , S

(p(I∪J)·#Y )
Y (I, J)

)
∈ ∆p(I∪J)·#Y ,

where

S
(k)
Y (I, J) =

{
C(k)(I ∪ J, Y ), if #(I ∪ J) ≥ 2,

δ1, if #(I ∪ J) = 1.

Given a profile V = (vai ) and a subset of alternatives ∅ 6= Y ⊆ X, we
consider all the degrees of proximity π

(
vai , v

b
i

)
, with a, b ∈ A and xi ∈ Y .

The agglomerative hierarchical clustering procedure we propose has some
similarities to the one provided by Garćıa-Lapresta and Pérez-Román [21]. It
consists of a sequential process addressed by the following stages:

1. The initial clustering is AY
0 = {{1}, . . . , {m}}.

2. Calculate the similarities between all the pairs of agents, SY ({a}, {b}) for
all a, b ∈ A.

3. Select the two agents a, b ∈ A that maximize SY in a lexicographic man-
ner (taking into account the corresponding sequential similarity vectors)
and construct the first cluster AY

1 = {a, b}.
4. The new clustering is AY

1 =
(
AY

0 \ {{a}, {b}}
)
∪ {AY

1 }.
5. Calculate the similarities SY (AY

1 , {c}) and take into account the previ-
ously computed similarities SY ({c}, {d}), for all {c}, {d} ∈ AY

1 .

6. Select the two elements of AY
1 that maximize SY in a lexicographic

manner and construct the second cluster Ai
2.

7. Proceed as in previous items until obtaining the next clustering Ai
2.

The process continues in the same way until obtaining the last cluster,
AY

m−1 = {A}.
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3.3. An illustrative example

In order to illustrate how the proposed agglomerative hierarchical cluster-
ing process works, we have considered the qualitative evaluations obtained for
169 students of the first year of the Degree in Commerce at the University of
Valladolid during the academic year 2013-2014.

Table 4 contains the usual qualitative four marks in the Spanish education
system.

l1 l2 l3 l4
Spanish Suspenso Aprobado Notable Sobresaliente
English Fail Sufficient Good Excellent

Table 4: Marks.

The nine subjects appearing in Table 5 have been considered the agents8

and the alternatives are the students that have been evaluated.

Agent Name
1 Economic History of Trade
2 Introduction to Economic Theory
3 Basics of Law
4 Business Organization
5 Mathematics for Business
6 Spanish and World Economy
7 Basics of Financial Accounting
8 Information Technology for Commercial Management I
9 Introduction to Statistics

Table 5: Subjects.

A survey about the proximities among the terms of Table 4 was made by 36
teachers of the Degree in Commerce at the University of Valladolid. The data
obtained in the survey are included in Table 6.

We now present the results generated by simple majority when aggregating
individual opinions of the proximities between linguistic terms:

π12 = π34 � π23 � π13 = π24 � π14 and πrr = δ1 for every r ∈ {1, . . . , 4}.
This information allows us to assign the following degrees of proximity

πrr = δ1 � π12 = π34 = δ2 � π23 = δ3 � π13 = π24 = δ4 � π14 = δ5

and the corresponding upper half proximity matrix

8Although the agents are the teachers that evaluate the students in each subject, for
simplicity we have identified subjects and teachers (some subjects have several teachers, but
marks are unique for each student in each subject).
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π12 versus π23 Number %
π12 � π23 17 47.2

π12 ≺ π23 4 11.1

π12 = π23 15 41.7

π23 versus π34 Number %
π23 � π34 6 16.7

π23 ≺ π34 17 47.2

π23 = π34 13 36.1

π12 versus π34 Number %
π12 � π34 10 27.8

π12 ≺ π34 9 25.0

π12 = π34 17 47.2

π12 versus π24 Number %
π12 � π24 26 72.2

π12 ≺ π24 0 0.0

π12 = π24 10 27.8

π13 versus π34 Number %
π13 � π34 0 0.0

π13 ≺ π34 34 94.4

π13 = π34 2 5.6

π13 versus π24 Number %
π13 � π24 1 2.8

π13 ≺ π24 5 13.9

π13 = π24 30 83.3

Table 6: Data of the survey.


δ1 δ2 δ4 δ5

δ1 δ3 δ4
δ1 δ2

δ1


that can be visualized as follows

l1 l2 l3 l4

In order to show how the clustering process works, we have considered two
cases. The computations for obtaining the corresponding sequential consensus
and similarity vectors have been conducted with MATLAB.

1. The first profile we have considered is a matrix of 9 rows and 169 columns
containing the 1521 marks obtained by the whole group of students in the
9 subjects. In this first clustering process, we have only focused in the
total set of alternatives (students), i.e., Y = X.
After comparing the different sequential similarity vectors, we have ob-
tained the following clusters of agents (subjects):
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AX
0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}
AX

1 = {{5, 7}, {1}, {2}, {3}, {4}, {6}, {8}, {9}}
AX

2 = {{1, 5, 7}, {2}, {3}, {4}, {6}, {8}, {9}}
AX

3 = {{1, 2, 5, 7}, {3}, {4}, {6}, {8}, {9}}
AX

4 = {{1, 2, 3, 5, 7}, {4}, {6}, {8}, {9}}
AX

5 = {{1, 2, 3, 4, 5, 7}, {6}, {8}, {9}}
AX

6 = {{1, 2, 3, 4, 5, 7, 9}, {6}, {8}}
AX

7 = {{1, 2, 3, 4, 5, 6, 7, 9}, {8}}
AX

8 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}.

This cluster formation can be interpreted as there does not exist a group
structure in the set of agents (subjects). This is not unusual at all when
the clustering is processed in an agglomerative hierarchical fashion.

2. The second profile we have considered is a matrix of 9 rows and 42 columns
containing the 378 marks obtained by a group of 42 students in the 9
subjects.
Now we have obtained the following clusters of agents (subjects):

AX
0 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}
AX

1 = {{1, 7}, {2}, {3}, {4}, {5}, {6}, {8}, {9}}
AX

2 = {{1, 7}, {3, 4}, {2}, {5}, {6}, {8}, {9}}
AX

3 = {{1, 7}, {3, 4, 6}, {2}, {5}, {8}, {9}}
AX

4 = {{1, 2, 7}, {3, 4, 6}, {5}, {8}, {9}}
AX

5 = {{1, 2, 7}, {3, 4, 6}, {8, 9}, {5}}
AX

6 = {{1, 2, 5, 7}, {3, 4, 6}, {8, 9}}
AX

7 = {{1, 2, 5, 7}, {3, 4, 6, 8, 9}}
AX

8 = {{1, 2, 3, 4, 5, 6, 7, 8, 9}}.

4. Concluding remarks

Using unbalanced qualitative scales requires some measurement of proxim-
ities among the terms of the scale. Since in this setting cardinal measurement
of proximities is meaningless, we have proposed to make pairwise comparisons
of proximities between pairs of terms within a purely ordinal approach. After
these comparisons, it is possible to assign an element of an abstract chain to
each proximity between pairs of linguistic terms. This ordinal approach allows
to measure the degree of consensus in each group of agents over every subset of
alternatives and, subsequently, to generate an agglomerative hierarchical clus-
tering procedure on the set of agents which is based on the degrees of consensus
in the possible merged groups of agents.
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As mentioned in Remark 2, an important and non-trivial issue is who and
how to determine the chain ∆ and the corresponding proximity matrix. When
a group of agents declare their opinions on the ordinal proximities among the
terms of an unbalanced qualitative scale and these opinions are aggregated
through a voting system, inconsistencies may appear, as happens in different
problems analyzed within the judgment aggregation theory. These aspects de-
serve special attention and they will be addressed in further research.
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