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Abstract: Heart rate variability (HRV) provides useful information about heart dynamics 

both under healthy and pathological conditions. Entropy measures have shown their utility 

to characterize these dynamics. In this paper, we assess the ability of spectral entropy (SE) 

and multiscale entropy (MsE) to characterize the sleep apnoea-hypopnea syndrome (SAHS) 

in HRV recordings from 188 subjects. Additionally, we evaluate eventual differences in 

these analyses depending on the gender. We found that the SE computed from the very low 

frequency band and the low frequency band showed ability to characterize SAHS regardless 

the gender; and that MsE features may be able to distinguish gender specificities. SE and 

MsE showed complementarity to detect SAHS, since several features from both analyses 

were automatically selected by the forward-selection backward-elimination algorithm. 

Finally, SAHS was modelled through logistic regression (LR) by using optimum sets of 

selected features. Modelling SAHS by genders reached significant higher performance than 

doing it in a jointly way. The highest diagnostic ability was reached by modelling SAHS in 

women. The LR classifier achieved 85.2% accuracy (Acc) and 0.951 area under the ROC 

curve (AROC). LR for men reached 77.6% Acc and 0.895 AROC, whereas LR for the whole 

OPEN ACCESS



Entropy 2015, 17 124 

 

 

set reached 72.3% Acc and 0.885 AROC. Our results show the usefulness of the SE and MsE 

analyses of HRV to detect SAHS, as well as suggest that, when using HRV, SAHS may be 

more accurately modelled if data are separated by gender. 

Keywords: sleep apnoea; spectral entropy; multiscale entropy; heart rate variability 
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1. Introduction 

The sleep apnoea-hypopnoea syndrome (SAHS) is a highly prevalent disease which negatively 

impacts both the health and quality of life of affected people [1]. SAHS is mainly characterized by the 

recurrence of both total breathing cessation (apnoea events) and significant airflow reduction 

(hypopnoea events) during sleep time [2]. Apnoeas and hypopnoeas cause oxygen desaturations and 

sleep fragmentation [2], preventing patients from resting while sleeping, and leading to daytime 

symptoms such as morning headaches, excessive sleepiness, memory loss, or decreased concentration [3]. 

Apnoeic events are also related to challenging processes for different main body systems. In this regard, 

hypoxemia, hypercapnia, inspiratory overexertion, or arousals may vary the normal response of systems 

such as neural, cardiovascular, and metabolic [1]. Thus, SAHS has been associated with major 

pathological conditions such as hypertension, stroke, coronary artery disease, congestive heart failure, 

atrial fibrillation, or diabetes [1–3]. 

Simplifying SAHS diagnosis has become a major concern for experts in recent years. The standard 

diagnostic test is overnight polysomnography (PSG), which is technically complex and expensive [4], 

since it involves monitoring and recording multiple physiological signals such as electroencephalogram 

(EEG), electrocardiogram (ECG), electromyogram, oxygen saturation (SpO2), and airflow [5]. PSG is 

also time-consuming since the physicians need an offline inspection of these recordings to diagnose 

SAHS. Additionally, it is well-known that SAHS is an underdiagnosed disease. As a result, there exists 

an increasing demand of PSG tests [6], which exceed the clinical resources in many of the Western 

countries [7]. The limitations of overnight PSG have led to a search for diagnostic alternatives for SAHS. 

In this regard, one common approach has been the analysis of reduced sets of signals chosen among 

those involved on PSG [6]. 

Heart rate variability (HRV), which is derived from ECG, has been widely investigated to assess 

multiple conditions related to the heart and the autonomic nervous system (ANS) [8]. This connection 

between the heart function and the ANS, extensively reported in the literature, provides a unique 

framework when studying SAHS which is not present in the case of other signals involved in PSG.  

In this regard, the ANS response to the apnoeic events has been associated with a recurrent  

progressive-bradycardia/abrupt-tachycardia pattern observed in HRV [9,10]. Therefore, HRV has been 

usually studied through different approaches to gain insight into SAHS and help in its diagnosis [9–14]. 

The recurrence of bradycardia-tachycardia patterns justifies the use of frequency analyses and the 

definition of spectral bands of interest. Thus, the power in the very low frequency band (VLF, 0–0.04 Hz.), 

in the low frequency band (LF, 0.04–0.15 Hz.), and in the high frequency band (HF, 0.15–0.4 Hz.) has 
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been successfully assessed in studies involving SAHS [11,12]. On the other hand, some works have 

reported chaotic heart beat behaviours [15,16], which suggest applying of nonlinear analyses to HRV. 

Entropy measures, as a common choice to quantify nonlinear dynamics in biomedical signals, have 

shown to be useful in the study of different pathologies and physiological conditions like Alzheimer’s 

disease (AD) [17], diabetes [18], atrial fibrillation [19], or SAHS [20,21]. Particularly, the multiscale 

entropy (MsE) analysis has been widely applied to biomedical signals in order to quantify their 

irregularity (or complexity) over time scales. Thus, MsE has shown its usefulness to study heart rate 

dynamics [22], to find differences in the HRV from healthy subjects and subjects suffering from 

congestive heart failure and atrial fibrillation [23], to show different behaviours in the heart rate of young 

and elder [23], to quantify the complexity of human gait [24], to improve the knowledge of the EEG 

behaviour in AD patients [25], as well as to evaluate the effects of drugs in the EEG of schizophrenia 

patients [26]. Moreover, spectral entropy (SE) has been helpful to quantify the depth of anaesthesia in 

EEG recordings from women undergoing gynaecological surgery [27], to detect endpoints in speech 

signals recorded in noisy environments [28], to show the changes that AD causes in the spectrum of 

magnetoencephalographic and EEG recordings [17,29], as well as to enhance the automatic detection of 

SAHS from single-channel SpO2 recordings obtained during nocturnal oximetry [30]. 

We hypothesize that both SE and MsE can be useful to gain insight into the effects that SAHS causes 

in HRV and, consequently, to help in its detection. Thus, the main objective of this paper is the 

assessment of these analyses in the context of SAHS. As mentioned above, HRV has been commonly 

used to help in SAHS diagnosis, both in frequency and time domain. However, no studies have been 

found showing the behaviour of HRV in SAHS patients (SAHS-positive) and no-SAHS subjects (SAHS-

negative) through SE and MsE, or combining them to automatically detect SAHS. Furthermore, HRV is 

well-known to be affected by gender [8]. In this regard, HRV has shown significantly lower amplitude 

in healthy women of all ages, along with lower standard deviation [31]. These findings justify take 

eventual gender specificities into account when analysing HRV. Therefore, we firstly propose to analyse 

SE and MsE in HRV recordings from SAHS-positive and SAHS-negative considering these potential 

differences, i.e., considering the whole set of recordings as well as dividing it into women and men. 

Then, the use of the automatic forward-selection backward-elimination algorithm (FSBE) is proposed 

to obtain optimum sets of features from the three sets. This analysis highlights relevant features as well 

as allows evaluating the complementarity of SE and MsE when modelling SAHS [32]. Finally, we assess 

the diagnostic ability of logistic regression models built with these features and we compare the results 

reached for women, men, and the whole set of recordings. 

2. Methodology 

2.1. Subjects and Signals under Study 

The study involved 188 subjects (134 men and 54 women) sent to the sleep unit of the Hospital 

Universitario Rio Hortega (Valladolid, Spain) due to suspicion of SAHS. All subjects underwent 

overnight PSG. No subjects with reported cardiac illnesses were included in the study. Apnoeas and 

hypopnoeas were scored by a single expert, who followed the rules of the American Academy of Sleep 

Medicine (AASM) [33]. An apnoea-hypopnoea index (AHI) of 10 events per hour (e/h) was established 
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as the threshold for a positive diagnosis. Accordingly, 93 men and 26 women were considered as  

SAHS-positive. The Ethics Committee of the Hospital Universitario Rio Hortega (Spain) accepted the 

protocol and all the subjects gave their informed consent. Table 1 shows demographical and clinical data 

from the subjects (mean ± standard deviation). No statistically significant differences were found in body 

mass index (BMI) and age between SAHS-positive and SAHS-negative groups in men and women 

(Mann-Whitney U test, p-value > 0.01), nor were found in AHI, BMI, and age between men and women 

in SAHS-positive and SAHS-negative groups (p-value > 0.01). 

Table 1. Demographic and clinical data from the subjects under study. 

 Women Men 

 SAHS-Negative SAHS-Positive SAHS-Negative SAHS-Positive 

#Subjects 28 26 41 93 
Age (years) 49.2 ± 8.6 58.3 ± 14.3 46.0 ± 13.1 51.1 ± 11.7 
BMI (kg/m2) 26.8 ± 6.9 28.8 ± 5.8 28.8 ± 5.6 29.2 ± 2.9 

AHI (e/h) 3.3 ± 2.3 32.8 ± 24.7 4.1 ± 2.5 33.0 ± 22.5 

PSG was carried out with a polysomnograph (Alice 5, Respironics, Philips Healthcare,  

The Netherlands). The HRV signals were obtained from ECG, which was recorded during overnight 

PSG (6 to 8 h) at a sample rate of 200 Hz. Each sample in the HRV signal is the time between two 

consecutive R peaks [34]. Hence, to derive HRV, we firstly applied a QRS-complex detection algorithm 

[35]. It was reported to reach high sensitivity (99.94%) and positive predictive value (99.93%), even in 

the presence of muscular noise and baseline artefacts (99.88% sensitivity and 99.73% positive predictive 

value, respectively) [35]. It is based on Hilbert transform and consists of two stages. Initially, the first 

differential of the ECG signal is computed (dECG). This is carried out to avoid baseline shifts and motion 

artefacts. Then the Hilbert transform is applied to dECG (h(n) = H[dECG]). Due to the properties of 

Hilbert transform, points around peaks in h(n) are regions of high probability of containing actual QRS 

peaks [35]. Since in h(n) the P and T waves are low comparing with the R waves [35], an adaptive 

threshold is used to establish those regions truly corresponding to R waves. In the second stage of the 

algorithm, these regions are used to look for the actual peaks in the original ECG. After QRS-complex 

detection, the difference between R-R peaks was computed. In order to deal with arrhythmia-related 

artefacts, we excluded those R-R intervals not fitting: (i) 0.33 s < R-R interval < 1.5 s and (ii) difference 

to the previous R-R interval > 0.66 s [11]. No statistically significant differences (Mann-Whitney U test) 

were found between women and men in the percentage of R-R intervals discarded per subject or between 

SAHS-positive and SAHS-negative subjects in both groups. Before performing the spectral analysis, the 

HRV signals were resampled at 3.41 Hz by the use of linear interpolation [11]. This sample frequency 

was chosen as a trade-off between not to add a large amount of estimated data and take an efficient 

length for the posterior fast Fourier transform computation. 

2.2. Analysis in Frequency Domain: Spectral Entropy 

The power spectral density (PSD) of each resampled HRV recording was computed. We used the 

Welch’s method since it is suitable for non-stationary signals [36]. A Hamming window of 210 points 

(50% overlap), along with a discrete Fourier transform of 211 points, were used to estimate the PSDs. 
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Then, each PSD was normalized (PSDn) by dividing the amplitude value at each frequency by the 

corresponding total power. In spite of some controversy [37], it is commonly accepted that LF is 

associated with sympathetic activity [8,11], i.e., variations in the low-frequency PSD values from HRV 

reflect changes in the sympathetic nervous system. On the other hand, HF has been related to the 

respiratory rhythms and, therefore, to the parasympathetic activity [8,11]. The physiological 

interpretation of the very-low-frequency PSD values remains unclear [11], and it has been simply 

identified with long-period rhythms [38]. 

SE measurements were obtained from VLF (SEVLF), LF (SELF), HF (SEHF), and 0–0.4 Hz (SEVLF-HF) 

bands. SE quantifies the uniformity, or flatness, of a PSD distribution [17,39]. Thus, a uniform (flat) 

spectrum, whose components are equally dispersed along frequencies, gives a high SE value (SE ≈ 1) [40]. 

This is the case of low predictability signals like the white noise [39,40]. Conversely, a condensed spectrum 

gives a low SE value (SE ≈ 0), which is the case of high predictability signals like sinusoids [39,40]. 

Thereby, for each band, higher SE values correspond to less predictability for the associated components 

in time domain. SE can be computed from the following expression [17]: 
2

1

PSDn( ) log[PSDn( )]
f

f f

SE f f
=

= − ⋅  (1)

which is the application of Shannon’s entropy to the normalized values of the PSD between the f1 and 

f2 frequency limits [17]. 

2.3. Nonlinear Analysis in Time Domain: Multiscale Entropy 

It is accepted that biological systems tend to non-linearity. As stated above, the heart rate is supposed 

to behave in this way [16]. In this regard, the MsE analysis applied to HRV has showed to be helpful in 

determining complexity patterns of several illnesses, as well as age [22,23]. MsE was originally 

developed by Costa et al. [41] on the basis of approximate entropy (ApEn) or sample entropy (SampEn). 

ApEn was designed by Pincus as an entropy measure which quantifies irregularity in time series [42]. 

Richman and Moorman improved ApEn by developing SampEn to reduce the bias caused by self-

matching [43]. 

SampEn divides time-series into consecutive vectors of length m. It assesses whether the maximum 

absolute distance between the corresponding components of each pair of vectors is less than or equal to 

a tolerance r, i.e., if the vectors match each other within r. If so, the vectors are considered as similar. 

The same process is repeated for vectors of length m + 1. Then, it is computed the conditional probability 

of similar vectors of length m remaining similar when the length is m + 1. The final SampEn value is 

obtained as the negative logarithm of such conditional probability [29,43]. Thus, higher values of 

SampEn indicate less self-similarity in the times-series and, consequently, more irregularity [29]. 

Our MsE analysis begins by applying SampEn to the original HRV series. This is the first scale.  

Scale 2 is computed by applying SampEn to a time-series whose values are the original HRV values 

averaged every two samples, without overlapping. In the same way, scale k is computed applying  

SampEn to time-series whose values are the original HRV values averaged every k samples without 

overlapping [41]. 

SampEn requires fitting a vector length, m, and a tolerance, r. We used m = 3 and r = 0.2 times the 

standard deviation of the time-series, as common choices in the study of HRV through SampEn [44]. 
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Our HRV recordings have an average length of 29,000 points. A proper computation of SampEn requires 

at least 10m points [43]. Hence, we chose 25 as a conservative number of scales to be analysed. The 

SampEn values of the 25 scales were taken as features (SampEn1- SampEn25). 

2.4. Logistic Regression: Automatic Feature Selection and Classification 

Logistic regression (LR) is a well-known supervised learning algorithm which estimates the posterior 

probability that a given instance xi belongs to certain class Ck. This posterior probability, p(Ck| xi), is 

computed through the logistic function: 

i

i

e

e
Cp ik xβ

xβ

T

T

x
+

+

+
=

0

0

1
)|(

β

β

 (2)

where β0 and β are obtained by the weighted least squares minimization procedure [32]. Then, an 

instance xi is assigned to the class with larger posterior probability. In our case, we have two classes: 

SAHS-positive and SAHS-negative. Input pattern xi for each subject was composed of the feature values 

obtained for that subject after the SE and MsE analyses. 

In this study LR was used with two purposes. First, to automatically select relevant and non-redundant 

features among those extracted from the SE and MsE analyses. This was performed through the  

forward-selection backward-elimination algorithm (FSBE), proposed by Hosmer and Lemeshow [32]. 

Then, LR was also used to assess the joint diagnostic ability of the features selected in the  

previous step. 

2.5. Statistical Analysis 

Features did not pass the Lilliefors normality test. Hence, the non-parametric Mann-Whitney U test 

was used to establish eventual statistically significant differences between SAHS-positive and  

SAHS-negative subjects (p-value < 0.01), both in women and men. The diagnostic ability of LR was 

assessed in terms of sensitivity (Se, percentage of SAHS-positive subjects rightly classified), specificity 

(Sp, percentage of SAHS-negative subjects rightly classified), accuracy (Acc, overall percentage of 

subjects rightly classified), positive predictive value (PPV, proportion of positive test results which are 

true positives), negative predictive value (NPV, proportion of negative test results which are true 

negatives), positive likelihood ratio (LR+, Se/(1-Sp)), and negative likelihood ratio (LR-, (1-Se)/Sp). 

The area under the receiver operating-characteristic curve was also computed (AROC). All the statistics 

were obtained after a leave-one-out cross-validation (loo-cv) procedure. 

3. Results 

Our results are divided into three sections. First, we compare the PSDn of SAHS-positive and  

SAHS-negative subjects, along with their corresponding SEVLF, SELF, SEHF, and SEVLF-HF mean values. 

Then, a similar analysis is conducted by using MsE curves and the features extracted from them: 

SampEn1-SampEn25. Thus, 29 features are obtained from the HRV of each subject. Finally, we compare 

LR models obtained to detect SAHS in women, men, and the whole set of subjects, which are built with 

an optimum subset out of the 29 features for each case. 
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3.1. Spectral Entropy 

Figure 1 shows the averaged PSDn for the whole sets of SAHS-positive and SAHS-negative subjects 

(men and women jointly). VLF (0–0.04 Hz), LF (0.04–0.15 Hz), and HF (0.15–0.4 Hz) bands are also 

showed. Figure 2 shows the average PSDn values in women and men for the SAHS-positive and  

SAHS-negative groups. PSDn in both genders follow the same pattern, with SAHS-positive curves being 

qualitatively higher than the SAHS-negative ones from 0.015 to 0.060 Hz, approximately, i.e., covering 

part of VLF and LF bands. Mean values of SE for the four bands considered are displayed in Table 2, 

separated by genders and SAHS class. 

 

Figure 1. Normalized power spectral density of HRV in the whole set of SAHS-negative 

(blue) and SAHS-positive (red) subjects. 

 

Figure 2. Normalized power spectral density of HRV in women (solid lines) and men 

(dashed lines) for the SAHS-positive and SAHS-negative groups. 
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Table 2. Spectral entropy features from VLF, LF, HF, and VLF-HF bands for women and 

men (mean ± standard deviation). P-values obtained from the Mann-Whitney U test. 

 Women Men 

 SAHS-Negative SAHS-Positive p-value SAHS-Negative SAHS-Positive p-value 

SEVLF 0.959 ± 0.020 0.971 ± 0.011 <0.01 0.958 ± 0.020 0.966 ± 0.018 <0.01 

SELF 0.984 ± 0.011 0.959 ± 0.028 <10−4 0.983 ± 0.012 0.960 ± 0.035 <10−4 

SEHF 0.979 ± 0.021 0.970 ± 0.022 0.158 0.983 ± 0.015 0.976 ± 0.023 0.219 

SEVLF-HF 0.899 ± 0.060 0.863 ± 0.051 <0.05 0.900 ± 0.053 0.873 ± 0.061 <0.05 

Statistically significant differences between SAHS-positive and SAHS-negative subjects were found 

in the SE measures from VLF and LF of women and men (Mann-Whitney U test,  

p-value < 0.01). Specifically, SAHS-positive women and men present significantly higher SEVLF and 

significantly lower SELF. On the other hand, no statistically significant differences were found in the SE 

of HF and the whole band. Finally, no statistically significant differences between women and men were 

found in any of the SE measures, either between SAHS-positive groups or between SAHS-negative ones. 

3.2. Multiscale Entropy 

Figure 3 displays averaged MsE curves for the 25 scales of SAHS-positive and SAHS-negative whole 

groups (men and women jointly). Figure 4 depicts the average MsE curves for SAHS-positive and 

SAHS-negative subjects, divided into women and men. It can be observed that SAHS increases SampEn 

values, i.e., irregularity of HRV, for all the scales. A common behaviour is observed both in men and 

women, since the differences in low scales (1st to 7th) are lower than those in the high scales (from the 

8th). This indicates higher differences in the degree of HRV irregularity of SAHS-positive subjects as 

more R-R intervals are averaged. However, only scale 13th reaches statistically significant differences 

between SAHS-positive and SAHS-negative men, whereas statistically significant differences are 

showed for scale 8th and from scale 12th onwards in women. No statistically significant differences 

were found between SAHS-negative women and men, and only scale 1 showed them in the case of the 

SAHS-positive groups. 

 

Figure 3. Averaged MsE curves for 25 scales of the SAHS-negative (blue) and  

SAHS-positive (red) whole groups. 
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Figure 4. Average MsE curves of HRV in women (solid lines) and men (dashed lines) for 

the SAHS-positive and SAHS-negative groups. Black asterisks over SAHS-positive curves 

mark statistical significant differences (Mann-Whitney U test) with the corresponding 

SAHS-negatives (p-value < 0.01). Grey asterisks mark p-values in the range 0.01–0.05. 

3.3. Feature Selection and Classification Results 

The relevancy and complementarity of the features from SE and MsE analyses were assessed by the 

LR-based FSBE selection algorithm. In this regard, three experiments were conducted. First, only the 

features from women were included in the FSBE algorithm. Then, we did the same with the features 

from men. Finally, we applied the FSBE methodology to the 29 extracted features from the whole set of 

subjects. Table 3 shows the features selected in each case. SE and MsE features were selected in the 

three of them, showing that the information obtained from these analyses is complementary for SAHS 

detection. Moreover, SEVLF, SELF, and SampEn2 are common in the three optimum sets of features. 

Different tendencies can be observed for men and women in the remaining MsE features selected. For 

female subjects only scales below 8 were selected, whereas in the case of men the remaining features 

were selected from scales above 9. 

Table 3. Features automatically selected by the FSBE algorithm for women, men, and the 

whole set of subjects. Common features for the three cases are in bold. 

 Number of Features Features Selected 

Women 5 SEVLF, SELF, SampEn1, SampEn2, and SampEn7 

Men 12 
SEVLF, SELF, SEVLF-HF, SampEn2, SampEn10, SampEn13, SampEn16, 

SampEn17, and SampEn20- SampEn23 

All 15 
SEVLF, SELF, SEVLF-HF, SampEn2, SampEn7, SampEn9, SampEn11, 

SampEn13, SampEn14, SampEn17,and SampEn19- SampEn23 
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Table 4. Diagnostic ability of the three LR models trained with the optimal features from 

women (LRFSBE-W), men (LRFSBE-M), and all subjects (LRFSBE-All). Results were computed 

through a loo-cv procedure. 

 Se(%) Sp(%) Acc(%) PPV(%) NPV(%) LR+ LR- AROC 

LRFSBE-W 80.8 89.3 85.2 87.5 83.3 7.6 0.215 0.951 
LRFSBE-M 87.1 56.1 77.6 81.8 65.7 1.98 0.230 0.895 
LRFSBE-All 79.8 59.4 72.3 77.2 63.1 1.97 0.340 0.885 

The results of the diagnostic ability assessment of the corresponding LR models are shown in  

Table 4. All the statistics were computed after a loo-cv procedure. It can be observed that LRFSBE-W and 

LRFSBE-M, separately, achieve a significant higher performance than the LR model containing all the 

subjects. LRFSBE-W achieves the highest overall performance. 

4. Discussion and Conclusions 

In this study, the ability of entropy measures to characterize SAHS in HRV recordings was evaluated. 

We also looked for eventual differences in these analyses depending on gender. Spectral entropy 

measurements in the VLF and LF bands characterized SAHS transversely, i.e., regardless the gender. 

Thus, for both genders, SAHS decreased predictability of long-period rhythms in HRV (significantly 

higher SEVLF). Also, it made more predictable the rhythms usually associated with sympathetic activity 

(significantly lower SELF). Spectral powers from VLF (PVLF), LF (PLF), and HF (PHF), as well as the 

LF/HF spectral power ratio (PLF/HF), have usually acted as parameters to characterize different 

physiological conditions in the HRV signal [8]. Table 5 shows the values of these conventional 

parameters reached by our SAHS-negative and SAHS-positive groups both in women and men (mean ± 

standard deviation). The corresponding p-values are also displayed (Mann-Whitney U test, p-value 

significance threshold = 0.01). No statistically significant differences were found between SAHS-

negative and SAHS-positive women in any of the classical parameters and only PHF showed a p-value < 

0.01 in the case of men. Thus, SE showed higher performance when characterizing SAHS than the 

spectral powers obtained from the conventional VLF, LF, and HF bands. Nevertheless, a clear increase 

in the PSDn of SAHS-positive subjects can be observed in the range 0.015–0.060 Hz, covering part of 

VLF and LF bands (see Figure 3). It has been established that the typical duration of apnoeic events ranges 

from 20 to 40 s [45], which in the frequency domain would mainly affect the 0.025–0.050 Hz band. Latest 

studies confirmed this as the band with the highest statistically significant differences between SAHS-

positive and SAHS-negative subjects in the airflow signal [46,47]. Additionally, a recent study has 

reported an increased cardio-respiratory coordination during the apnoeic events [48]. Hence, there exist 

strong indications that the observed changes covering part of the VLF and LF bands may be directly 

caused by these events, suggesting that further investigation is needed to find a specific spectral band 

related to SAHS in HRV. Finally, no differences were found in the SE from the HF band. This could be 

due to its relationship with normal breathing patterns [11], which are more predictable as well as 

predominant even in the presence of severe SAHS. 
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Table 5. Differences in the conventional spectral features of women and men (mean ± 

standard deviation). PVLF: spectral power in the VLF band. PLF: spectral power in the LF 

band. PHF: spectral power in the HF band. PLF/HF: PLF/PHF ratio. 

 Women Men 

 SAHS-Negative SAHS-Positive p-Value SAHS-Negative SAHS-Positive p-Value 

PVLF 0.425 ± 0.153 0.489 ± 0.170 0.076 0.437 ± 0.167 0.503 ± 0.168 <0.05 

PLF 0.236 ± 0.052 0.241 ± 0.068 0.897 0.250 ± 0.051 0.250 ± 0.068 0.640 

PHF 0.234 ± 0.087 0.199 ± 0.118 0.058 0.228 ± 0.102 0.183 ± 0.108 <0.01 

PLF/HF 1.164 ± 0.514 1.639 ± 1.065 0.130 1.407 ± 0.874 1.898 ± 1.247 <0.05 

MsE analysis also found differences in SAHS-positive and SAHS-negative subjects. Both in women 

and men, SAHS increased the average irregularity of HRV in the 25 time scales considered. Although it 

is usually accepted that the disease condition leads to a decrease of HRV irregularity [8], it has been also 

shown that sick sinus syndrome, characterized by bradycardia-tachycardia events, can increase the 

entropy measures [8]. As these bradycardia-tachycardia patterns are also recurrent after apnoeic events 

[9], this is consistent with the higher values of HRV irregularity showed in the MsE analysis of the 

SAHS-positive subjects. Moreover, in both genders, differences for the inferior scales are lower than 

those for the coarse-grained scales, indicating that SAHS affects more the long-term rhythms. This 

agrees with the differences found in the SE of VLF and LF. However, unlike the case of SE, we found 

different tendencies in men and women in the MsE curves. Mean values throughout the scales were 

higher for SAHS-positive and lower for SAHS-negative women than the corresponding for  

men. Thereby, 15 out of the 25 scales reached significant differences between SAHS-positive and  

SAHS-negative women, whereas only one did the same among men. In this regard, it has been previously 

reported that the R-R intervals from healthy women are significantly shorter and present less standard 

deviation than the corresponding from men [31]. This is reflected in HRV time series as lower mean 

amplitude and degree of variability. In this study the same tendency is observed since mean and standard 

deviation values in HRV are 0.886 ± 0.15 ms for SAHS-negative men and 0.878 ± 0.13 ms for SAHS-

negative women. When comparing the two groups, in which normal heart behaviour is expected, the 

lower degree of variability may be one reason for the lesser mean values of entropy in women throughout 

the scales. In SAHS-positive subjects, the mean and standard deviation values in HRV behave in the 

same way (0.901 ± 0.12 ms for men and 0.888 ± 0.10 ms for women). Progressive bradycardia patterns 

are present in HRV from SAHS patients, i.e., there are recurrent periods of increased HRV amplitude. 

Since the mean amplitude in women is lower, the difference to the increased HRV values may be higher 

than in men. This may be one reason for explaining the upper values of entropy, which tachycardia 

episodes would not be able to compensate because of their abrupt nature. 

The FSBE algorithm showed the complementarity of SE and MsE analyses by automatically selecting 

features from both of them in the case of women, men, and the whole set of subjects. Additionally, since 

SEVLF and SELF were common for the three sets of optimum features, it supported SE as a transversal 

characterizing of SAHS. It also supported the ability of MsE to distinguish gender specificities in HRV, 

since only scales below the 8th were selected in the case of women and eight out of the nine scales 

selected for men were above the 9th. 
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LR models were built with the three sets of selected features. These showed significantly higher 

performance when modelling SAHS by genders (85.2% Acc for LRFSBE-W, 77.6% Acc for LRFSBE-M) 

than when doing it in a jointly way (72.3% Acc for LRFSBE-All). As a result, Acc increased 9.3% among 

women and 6.7% among men when comparing with the performance of the general model. Our feature 

selection methodology was optimized for an AHI threshold = 10 e/h. However, the outputs provided by 

the LR models can be also evaluated for other common thresholds. Thereby, for AHI = 5 (15) e/h, the 

Acc of LRFSBE-W, LRFSBE-M, and LRFSBE-ALL reaches 75.9% (79.6%), 76.1% (66.4%), and 72.3% (65.4%), 

respectively. Although 5 and 15 e/h are suboptimal thresholds for these models, the obtained results 

show the same general tendency as in the case of AHI = 10 e/h. Thus, it is suggested that SAHS may be 

more easily modelled from the SE and MsE analyses of HRV in the case of women. 

Table 6 displays results from previous works focused on automatic SAHS classification. Data from 

studies involving SpO2, airflow, snoring, respiratory effort, and HRV were included. In the case of the 

SpO2 signal, Acc and AROC range from 84.1% to 95% and 0.822 to 0.967, respectively [49–52].  

A database composed of 187 recordings was used to model a multi-layer perceptron (MLP) classifier, 

which was obtained from three non-linear features [49]. Six spectral (3) and non-linear (3) features were 

extracted from the same database to obtain four more classifiers by means of linear and quadratic 

discriminant analysis, K-nearest neighbours (KNN), and LR [50]. The best diagnostic ability for SpO2 

in terms of AROC (0.967) was achieved by a LR model obtained from four automatically-selected 

features extracted from the frequency and time domain of 147 recordings [51]. The best Acc (95.0%)  

was reported in the case of a support vector machine (SVM) classifier evaluated for a 5 e/h AHI  

threshold [52].  

Up to nine features were extracted and analysed from the Hilbert transform of 41 oronasal airflow 

recordings [53]. The highest diagnostic ability was showed by the 25th frequency percentile of the 

Hilbert spectrum histogram (87.8% Acc and 0.877 AROC). However, these results were reached 

evaluating an AHI threshold = 5 e/h. Other recent study analysed linear and non-linear features from 

thermistor airflow [46]. A LR model obtained from three spectral features reached 82.4% Acc and 0.904 

AROC after loo-cv (AHI threshold = 10 e/h). Moreover, five time and phase domain features from the 

abdominal and thoracic respiratory effort signals were used to feed a SVM classifier which reached 

89.0% Acc, evaluated for AHI = 5 e/h [52]. Snoring sounds have been also assessed in the context of 

SAHS classification. A LR classifier modelled with nine spectral features reached 81.1% Acc and 0.850 

AROC (AHI= 5 e/h threshold); and 86.5% Acc and 0.920 AROC (AHI = 5 e/h threshold) [54]. Another 

LR classifier obtained from 11 time and frequency domain features was evaluated for AHI = 10 e/h [55]. 

High diagnostic performance after loo-cv was reported (90.2% Acc and 0.967 AROC). 
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Table 6. Comparison with previous works focused on automatic classification of SAHS. 

MLP: multi-layer perceptron artificial neural network, LDA: linear discriminant analysis, 

QDA: quadratic discriminant analysis, KNN: K-nearest neighbours, LR: logistic regression, 

SVM: support vector machine, Loo: leave one out. 

Study Signal #Subjects Classifier #Features Validation 
AHI  

Threshold 

Se  

(%) 

Sp  

(%) 

Acc 

(%) 
AROC 

Roche et al. 2003 [56] HRV 147 Tree 8 k-fold 10 64.2+ 75.6+ 69.3+ - 

Marcos et al. 2008 [49] SpO2 187 MLP 3 Hold-out 10 89.8 79.4 85.5 0.900 

Marcos et al. 2009 [50] SpO2 187 LDA 6 Hold-out 10 86.6 80.4 84.1 0.925 

   QDA 6 Hold-out 10 91.1 78.3 85.8 0.913 

   KNN 6 Hold-out 10 88.1 84.8 86.7 0.822 

   LR 6 Hold-out 10 85.1 87.0 85.8 0.930 

Caseiro et al. 2010 [53] Airflow 41 Threshold 1 - 5 81.0 95.0 87.8+ 0.877 

Álvarez et al. 2010 [51] SpO2 148 LR 4 Loo 10 92.0 85.4 89.7 0.967 

Fiz et al. 2010 [54] Snoring 37 LR 9 - 5 87.0 71.4 81.1+ 0.850 

     - 15 80.0 90.9 86.5+ 0.920 

Karunajeewa et al. 

2011 [55] 
Snoring 41 LR 11 Loo 10 89.3 92.3 90.2+ 0.967 

Al-Angari et al.  

2012 [52] 
SpO2 100 SVM 2 - 5 91.8 98.0 95.0 - 

 Respiratory effort   5 - 5 85.7 92.2 89.0 - 

 HRV   5 - 5 79.6 78.4 79.0 - 

Gutiérrez-Tobal et al.  

2012 [46] 
Airflow 148 LR 3 Loo 10 88.0 70.8 82.4 0.903 

Ravelo-Garcia et al. 

2014 [57] 
HRV 97 LR 5 k-fold 10 88.7 82.9 86.6+ 0.941 

This study (LRFSBE-W) HRV 54 LR 5 Loo 10 80.8 89.3 85.2 0.951 

This study (LRFSBE-M) HRV 134 LR 13 Loo 10 87.1 56.1 77.6 0.895 

This study (LRFSBE-All) HRV 188 LR 15 Loo 10 79.8 59.4 72.3 0.885 

+ Computed from reported data. 

Decision trees, SVM, and LR classifiers have been also used to model SAHS from HRV features. 

Eight features from wavelet analysis were used to build a decision tree, reaching 69.3% Acc [56].  

A SVM model was obtained from five time and frequency domain features [52]. Authors reported 79.0% 

Acc when evaluating the classifier for AHI = 5 e/h. A recent study reported 86.6% Acc and 0.941 AROC 

for a LR classifier modelling with four clinical variables and one symbolic dynamic feature extracted 

from HRV [57]. Finally, several works have reported 100% Acc when classifying 30 subjects from the 

PhysioNet Apnea-ECG database, which was used in the Computers in Cardiology Challenge 2000 [58]. 

However, comparison with studies using this database is difficult since borderline subjects were 

deliberately removed from the competition. Additionally, only one woman was included in the apnea 

group [59]. 

Our LR models achieved high diagnostic ability comparing with those studies involving HRV. Only 

the Acc reported in the study from Ravelo-García et al. outperformed the Acc reached by our LRFSBE-W 

model. However, our AROC was slightly higher and we did not include clinical variables in the 
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modelling process. Moreover, only the results reported in the studies conducted by Álvarez et al. and 

Karunajeewa et al. outperformed our LRFSBE-W classifier both in Acc and AROC. Nonetheless, the  

latter does not meet the subject:feature ratio criterion which avoids bias in the logistic regression 

coefficients [60]. These results suggest that our proposal could be helpful to detect SAHS, especially in 

the case of women. Actually, none of the above mentioned studies addressed the problem of evaluating 

gender differences when modelling SAHS. 

Some limitations need to be pointed out in this study. First, an increased number of subjects would 

provide our results with higher statistical power. Additionally, a larger number of subjects would let us 

define the optimum sets of features from an independent database. Nonetheless, we validated their 

performance by the use of leave-one-out cross-validation. Increasing the SAHS-negative men would be 

particularly helpful since there exists a clear unbalance with SAHS-positive ones. However, the 

prevalence of SAHS in our database reflects a realistic proportion of SAHS patients among the subjects 

which undergo PSG [7,61]. Another limitation is the complexity inherent to the acquisition of surface 

ECG as a previous step to obtain HRV. Although acquiring ECG is significantly easier than recording 

the whole set of signals involved during PSG, there exist studies which address the obtaining of HRV 

from simpler devices such as the oximeter [62,63]. Moreover, regarding the R-R time series, no specific 

correction for the timing of R waves associated with ectopic beats has been applied in this study. On the 

other hand, there are some factors with ability to change HRV dynamics. We did not address issues like 

tobacco and alcohol consumption, as well as differences in the fitness of the subjects. These could be 

the object of interesting future research. Another future goal is to carry out an exhaustive analysis of the 

optimal values of m and r for the computation of SampEn from HRV in the context of SAHS. Although 

the values used in this study have shown their usefulness in the characterization of a range of 

physiological conditions, we did not test other values which could enhance the characterization of SAHS 

in our specific database. Regarding the spectral and nonlinear analysis, other features extracted from 

HRV could complement our study and increase the diagnostic ability of our methodology. Finding a 

single feature with ability to gather the complementary information of those interdependent features 

present in our study would be of great interest. In addition, the use of more complex classifiers could 

also improve the results achieved. Finally, even though no statistically significant difference was found 

between the age of SAHS-positive and SAHS-negative groups (either women or men), higher average 

values are present in those affected by SAHS. In this regard, no statistically significant correlation was 

found between any of the features used in the LR models and age (all the absolute Spearman’s correlation 

coefficients were lower than 0.18 and the corresponding p-values higher than 0.11). 

In summary, we showed that SE and MsE analyses of HRV can be used to help in SAHS detection. 

The complementarity of the two of them was also exposed. The ability of MsE to distinguish gender 

specificities in HRV was suggested too. Higher diagnostic ability was reached when modelling SAHS 

from entropy measures of women and men separately. A LR model built with five SE and MsE features 

from women achieved the highest performance in SAHS detection (85.2% Acc, 0.951 AROC for an AHI 

threshold = 10 e/h). This suggests that SAHS may be more easily modelled from HRV in the case of 

women. Our results show the utility of the SE and MsE analyses to help in SAHS detection, as well as 

indicate that, when using HRV, SAHS may be more accurately modelled if data are separated by gender. 
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