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Abstract

Schmid and Schmidt (2007) proposed copula-based nonparametric estimators for some

multivariate extensions of Spearman’s rho. In this paper, we show that two of those

estimators are inappropriate since they can take values out of the parameter space and

we discuss alternative proposals.

Keywords: Spearman’s rho; Multivariate concordance; Empirical copula, Clayton co-

pula, Gaussian copula.

1 Introduction

There has been several multivariate copula-based measures proposed in the literature to

generalize the population bivariate association Spearman’s rho; see, for instance, Wolff

(1980), Nelsen (1996, 2002), Dolati and Úbeda-Flores (2006), Schmid and Schmidt

(2007), Nelsen and Úbeda-Flores (2012) and García et al. (2013). See also Joe (1990)

for a non-copula-based approach. The problem of estimating such measures has been

addressed in Joe (1990) and Schmid and Schmidt (2007). The first author proposes

estimators based on ranks and compare their asymptotic efficiency when they are used

as test statistics for independence. The second authors suggest plug-in estimators

based on empirical copulas and establish their asymptotic normality under rather weak

assumptions concerning the copula. García et al. (2013) address the estimation problem

in the trivariate case.
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The objective of this paper is to show that two of the statistics proposed in Schmid

and Schmidt (2007) can not be used as estimators of their population coefficients coun-

terparts, since they could take values out of the parameter space. To overcome this

problem, we date back to Joe (1990) and propose alternative nonparametric estimators.

The paper is organized as follows. Section 2 briefly reviews some popular multi-

variate extensions of the population bivariate association Spearman’s rho coefficient.

Section 3 focuses on two copula-based multivariate estimators proposed by Schmid and

Schmidt (2007) and provides theoretical and empirical evidence of their drawbacks. Sec-

tion 4 introduces alternative nonparametric estimators and compares, through Monte

Carlos experiments, their finite sample performance. Finally, Section 5 concludes the

paper with a summary of our main results. Here onwards, we will refer to Schmid and

Schmidt (2007) paper as SS07.

2 Multivariate extensions of bivariate Spearman’s rho

Let 1 and 2 denote two continuous random variables with joint cumulative distri-

bution function  and marginal distribution functions 1 and 2, respectively. Let 

denote the copula  : I2 → I, where I = [0 1], such that  (1 2) = (1(1) 2(2))

for all (1 2) ∈ 2. Let 1 and 2 be uniform random variables defined as the proba-

bility integral transformations 1 = 1(1) and 2 = 2(2). Then, the copula  is

the joint distribution function of (1 2) and the population bivariate Spearman’s rho

for 1 and 2 can be written in the following two equivalent ways (see Nelsen, 1991):

 = 12

Z
I2
(1 2)12 − 3 = 12

Z
I2
12(1 2)− 3 (1)

If we move to a multivariate framework with more than two variables involved,

there is not a unique multivariate version of Spearman’s  coefficient. In this section,

we focus on two multivariate copula-based versions of  that were proposed in Wolff

(1980) and Nelsen (1996) and were further considered by SS07. Alternative expressions

of these two coefficients were introduced in Joe (1990) and will be discussed in Section

4. Other multivariate versions of Spearman’s rho, not considered in this paper, have

also been proposed; see, for instance, Nelsen (2002), Nelsen and Úbeda-Flores (2012)

and García et al. (2013).

Let X = (1 ) be a -dimensional continuous random variable with joint dis-

tribution function  , marginals 1   and copula  : I
 → I such that  (1  ) =

(1(1)  ()) for all (1  ) ∈  Let  = () for  = 1 2  . Then

each  is uniform on [0 1] and  is the joint distribution function of U = (1  );

see Sklar (1959) for the main results on copulas as the link between joint d -dimensional

distribution functions to their one-dimensional margins. If the  variables 1 

were independent, the copula of X would be the independent copula Π, defined as

Π(u) =
Q

=1

, for u =(1  ) ∈ I. Moreover, the copula  is upper-bounded by
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the Fréchet-Hoeffding upper bound  , defined as (u) = min(1  ).  is a

copula that represents maximal dependence, i.e. the case when each of the random

variables 1  is almost surely a strictly increasing function of any of the others

The first multivariate version of  that we consider, due to Wolff (1980) and Nelsen

(1996), is a generalization of the left-hand side expression in (1) defined as:

− =

R
I
(u)u− R

I
Π(u)uR

I
(u)u− R

I
Π(u)u

 (2)

The denominator of the expression above represents the maximum value of its own nu-

merator, i.e. its value at the maximal copula = . Moreover, since
R
I
Π(u)u =12

and
R
I
(u)u = 1(+ 1) − see Nelsen (1996) − , expression (2) can be written as:

− =
(+ 1)

2 − (+ 1)
∙
2
Z
I
(u)u− 1

¸
 (3)

Following Nelsen (1996), − can be regarded as a multivariate measure of average lower
orthant dependence.

The second multivariate version of  considered in this paper was originally pro-

posed by Nelsen (1996) as a multivariate measure of average upper orthant dependence.

This coefficient is a generalization of the right-hand side expression in (1) defined as:

+ =

R
I
Π(u)(u)− R

I
Π(u)uR

I
Π(u)(u)− R

I
Π(u)u

 (4)

Again, the denominator of this expression resembles its own numerator evaluated at

the maximal copula, i.e. when  = . Moreover, since
R
I
Π(u)M() = 1(+ 1) −

see Nelsen (1996) − expression (4) can be alternatively written as:

+ =
(+ 1)

2 − (+ 1)
∙
2
Z
I
Π(u)(u)− 1

¸
 (5)

When the copula ofX is the upper bound , both − and 
+
 attain their maximum

value, 1, and they become zero when the components of X are independent, i.e. when

 = Π A lower bound for both − and + is [2 − ( + 1)!]{![2 − ( + 1)]}; see
Nelsen (1996). For  = 2, both −2 and +2 reduce to bivariate Spearman’s  in (1).

The measure − was first defined in Wolff (1980) who denoted it by . Unlike,

SS07 denote − and + by 1 and 2, respectively. Moreover, 
−
 and + were already

proposed by Joe (1990) as ( ) and ( ), respectively.

3 Some drawbacks of two nonparametric estimators based

on empirical copulas

Let {(1  )}=1 be a sample of  serially independent random vectors from

the -dimensional continuous variable X = (1 ) with associated copula  intro-

duced in Section 2. Let  be the  of  among {1 }, with  = 1  
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and  = 1  . SS07 estimates the copula  by the empirical copula defined as:

e(u) =
1



P
=1

Q
=1

1{≤}, for u =(1  ) ∈ I (6)

where 1 denotes the indicator function on a set  and e = . Then, they

propose estimating the coefficients − and + defined in Section 2 by replacing the

copula  in (3) and (5) with the empirical copula in (6), i.e.:

e− = ()

∙
2
Z
I

e(u)u− 1
¸
= ()

"
2



P
=1

Q
=1

(1− e)− 1
#
 (7)

e+ = ()

∙
2
Z
I
Π(u) e(u)− 1

¸
= ()

Ã
2



P
=1

Q
=1

e − 1
!
 (8)

where () = ( + 1)[2 − ( + 1)]. However, as we will next show, these estimators
are inappropriate since they can take values out of the parameter space. For instance,

the maximum value of e+ , that is achieved in the case of perfect dependence, i.e.
when e1 = e2 =  = e for each  almost surely, is given by

()

"
2



P
=1

µ




¶

− 1
#
 (9)

Therefore, when  = 2, the maximum value of e+2 becomes 1 + 2(3+ 1)2, which is
greater than 1 Moreover, it can also be shown that the following relationship holds:

e−2 = −12 + e+2 
Hence, if e+2 = −1 it will turn out that e−2  −1, which is an unfeasible value for an
estimator of −2  Also, if e−2 = 1, it will turn out that e+2  1, which is an unfeasible

value for an estimator of +2 . The following example enhances this feature.

Example 1. The following matrices display a simulated sample of size  = 5 from

a standard bivariate Normal variable (12) with zero correlation, together with its

empirical marginal distribution functions:

()=1:2=1:5 =

⎛⎜⎜⎜⎜⎜⎝
−0933 −0248
−0370 −2072
−0371 1223

2555 −0532
0152 −0125

⎞⎟⎟⎟⎟⎟⎠
0

(e)=1:2=1:5 =

⎛⎜⎜⎜⎜⎜⎝
02 06

06 02

04 10

10 04

08 08

⎞⎟⎟⎟⎟⎟⎠
0



Applying formulae (7) and (8) to these data, it turns out that e−2 = −1368 ande+2 = 1032, which are both clearly outside the parametric space [−1 1]
When  = 3 both −3 and +3 are bounded to take values in [−23 1]. However, it

turns out from (9) that the maximum value of e+3 becomes 1 + 2( + 1)2, which is
4



clearly greater than 1. Moreover, our following example illustrates that e−3 could also
take values out of the parameter range.

Example 2. The following matrices display a simulated sample of size  = 5 from

a standard trivariate Normal variable (123) where the correlation matrix is the

identity matrix, together with its empirical marginal distribution functions:

()=1:3=1:5 =

⎛⎜⎜⎜⎜⎜⎝
1138 −1058 0109

−0346 −1031 0846

−0210 0557 −0141
−0084 1483 −0679
1033 0536 0632

⎞⎟⎟⎟⎟⎟⎠
0

(e)=1:3=1:5 =

⎛⎜⎜⎜⎜⎜⎝
10 02 06

02 04 10

04 08 04

06 10 02

08 06 08

⎞⎟⎟⎟⎟⎟⎠
0



Applying formulae (7) and (8) to these data, we obtain e−3 = −0859 and e+3 = 0331,
the former being less than the theoretical parametric lower bound −23

In higher dimensions, the upper bound for e+ in (9) can be evaluated using the

formula 0.121 in Gradshteyn and Ryzhik (1994) and similar results would come up. As

expected, this bound converges to 1 as →∞

To reinforce the arguments above, we next estimate, via Monte Carlo simulations,

the probability that a sample yields a Spearman’s rho exceeding the theoretical para-

meter range for a given copula model. In order to do that we generate samples from

the -dimensional Clayton copula:

(u; ) = (1  ; ) =
³
−1 + · · ·+ − − + 1

´1


with   0; see Nelsen (2006, p. 152). This copula is tail asymmetric, exhibiting greater

dependence in the lower orthant than in the upper orthant. Following Blumentritt and

Schmid (2014), we also consider an elliptical equicorrelated -dimensional Gaussian

copula with correlation matrix  = 11
0
+(1− )I where −1(− 1)    1, 1 is

a unit column vector and I denotes the identity matrix. In both cases, four dimensions

are analyzed:  = {2 3 4 5}.
For the Clayton copula we take parameter values  = {02 05 1 2 5}. These yield

the following values of bivariate Spearman‘s rho (computed by numerical integration):

 = {0135 0295 0479 0682 0885}. For the Gaussian copula, we use the identity
 = 2 sin(6) to choose positive values of  that provide in the bivariate case the

same values of  above; see Joe (1997, p. 54). We also allow for negative values

of  that fulfill the restriction   −1( − 1) for all dimensions. Hence, we take
 = {−02−01 0141 0308 0496 0699 0894}. With these models and parameter
values we cover a wide spectrum of possible bivariate and multivariate relationships.

To analyze the influence of the sample size we take  = {20 40 50 100 500} These
sample sizes are frequently encountered in applications of copulas to fields like energy,

hydrology or macroeconomics; see for instance, Favre et al. (2004), Genest and Favre

(2007), Granger et al. (2006) and Zimmer (2012). Obviously, in other fields like finance,

these sample sizes are unusual since thousands of observations are readily available.
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For each copula model, parameter value and dimension, we simulate 1000 replicates

of size  using the Copula Package in R. Then, for each replicate, we compute bothe− and e+ and we estimate the probability that these exceed the theoretical parameter
range as the proportion of replicates where this happens. As expected, the estimated

probabilities converge to zero as the sample size increases. Therefore, we focus our

discussion on sample sizes  = {20 40 50}.
Figure 1 displays a curve of the estimated probabilities of e+ to be outside the

theoretical parameter range as a function of the parameter value arranged by copula

model (columns) and dimension (rows). In each panel the curves for  = {20 40 50}
are displayed. Several conclusions emerge from this figure. First, the problem of getting

a value of e+ outside the theoretical parameter range is remarkable in small samples
and small dimension settings. Second, the larger the parameter value, i.e., the larger

the dependence in the data, the larger the probability that this occurs. For instance,

in both copula models, even with samples of size  = 50, there is a probability around

50% of getting a value of e+2 exceeding the parameter space if the parameters take the
highest values considered. This probability is still around 25% in the 3−dimensional
Gaussian copula. Third, for a given sample size , the estimated probability thate+ exceeds the parameter range decreases as the dimension  increases. Finally, as

expected, such probability also decreases as the sample size increases.

Regarding e− , the probability of this estimator to be outside the theoretical range
is zero in all cases considered. However, we have checked that in the bidimensional

case, e−2 could exceed the parameter range in models with stronger negative values of
parameter  and small samples. The results are available upon request.

INSERT FIGURE 1 AROUND HERE

4 Alternative nonparametric estimators of multivariate

dependence

Joe (1990) already proposed an estimator of + based on ranks. In this section, we work

out an alternative expression of this estimator and propose an estimator of − We also
discuss modified-SS07 alternatives based on using the so-called pseudo-observations,

∗ = ( + 1), rather than e = , and we compare them both analytically

and by simulations.

4.1 Definition of the estimators

The multivariate coefficient of concordance + introduced in section 2 was already

proposed by Joe (1990) as a scaled expected value of 1(1) · · ·(), namely:
1

+ =
[1(1) · · ·()]− 1

2
 (10)

1Note that [1(1) · · ·()] = (1 · · ·) =

I
Π(u)(u)

6



where 1 = [1(1)] · · ·[()] = (1) · · ·() = (12) and 2 stands for

the value of the numerator in (10) when the joint distribution of (1 ) is the

upper Fréchet-Hoeffding bound, i.e. when 1(1) =  = () with probability one.

Hence, 2 = 1(+ 1)− 12 The sample version of (10) in Joe (1990) is:

b+ =
1



P
=1

Q
=1

 −
µ
+ 1

2

¶

1



P
=1

 −
µ
+ 1

2

¶
 (11)

The motivation behind this estimator is based on estimating in (10) the three pa-

rameters involved, namely the expectation, say 0 = [1(1) · · ·()] and the

parameters 1 and 2. By contrast, the Schmid and Schmidt’s statistic e+ defined in
(8) only estimates 0 and keeps the constants 1 and 2 as known. The parameter 0

is estimated by replacing the expectation of the product by the corresponding sample

product moment, i.e., b0 = 1



P
=1

Q
=1

e  (12)

The parameter 1 in (10) is itself a product of expectations. Hence, when each of these

expectations is estimated by its corresponding sample average, the following estimator

of 1 turns out: b1 = Q
=1

Ã
1



P
=1

e

!
 (13)

Finally, the parameter 2 in (10) will be estimated by the corresponding sample version

of the numerator of (10) evaluated in the case of perfect dependence, i.e., when the

ranks in each dimension coincide. In particular, if we take e = , as in SS07, the

following estimation of 1 and 2 will come up:

b1 = µ+ 1
2

¶

, b2 = 1



P
=1

µ




¶

−
µ
+ 1

2

¶

 (14)

Now, putting (12) and (14) back together, the estimator of + is obtained as:

b+ = b0 − b1b2 =

1



P
=1

Q
=1

e −
¡
+1
2

¢
1



P
=1

³



´
− ¡+1

2

¢ (15)

Note that (15) collapses to (11) by just multiplying both the numerator and the de-

nominator of the former by . By construction, the maximum value of b+ is 1.
Joe (1990) suggests another multivariate generalization of Spearman’s  that con-

sists of replacing 1 · · ·   in (10) by  1 · · ·   , where the latter are the corres-

ponding survival functions, namely  () = (  ) = 1 − (), for  = 1  

7



In doing so, the coefficient − in (3) will come up as the scaled expected value of

 1(1) · · · (), given by:
2

− =
[ 1(1) · · · ()]− 1

2
 (16)

where the parameter 1 is now regarded as the product of the expectations of the

survival functions, rather than the cumulative distribution functions, that is:

1 = [ 1(1)] · · ·[ ()] = (12)


and 2 stands for the value of the numerator in (16) when the joint distribution of

(1 ) is the upper Fréchet-Hoeffding bound, i.e. 2 = 1(+ 1)− 12
From expression (16), it seems clear that the Schmid and Schmidt’s statistic e−

in (7) consists of only estimating the expectation in (16) while keeping the constants

1 and 2 as known. However, following the motivation of the estimator b+ explained
before, we suggest an alternative estimator of − based on estimating in (16) both the
expectation, that will be denoted by 0 = [ 1(1) · · · ()] and the parameters 1

and 2. In order to do that, let us define  = + 1− , as in García et al. (2013),

and set e  = . Following the same argument as before, we have:

b0 = 1



P
=1

Q
=1

e   b1 = Q
=1

Ã
1



P
=1

e 

!
=

µ
+ 1

2

¶

 (17)

Finally, the parameter 2 is estimated with the corresponding sample version of the

numerator of (16) evaluated in the case of perfect dependence, and we end up with the

following estimator of − :

b− = b0 −b1b2 =

1



P
=1

Q
=1

e  −
¡
+1
2

¢
1



P
=1

³



´
− ¡+1

2

¢  (18)

Again, multiplying both the numerator and the denominator of (18) by , an alterna-

tive expression of b− in terms of ranks is obtained, namely:
b− =

1



P
=1

Q
=1

 −
µ
+ 1

2

¶

1



P
=1

 −
µ
+ 1

2

¶
 (19)

By construction, this estimator is bounded not to exceed its maximum value 1.

2Recall that [ 1(1) · · · ()] = [(1−1) · · · (1−)] =

I
Π(u)(u) =


I
(u)u, where

Π(u) =


=1

(1− ); see Lemma 3.1. in Dolati and Úbeda-Flores (2006).
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Noticeably, for the bidimensional case ( = 2), both b+2 and b−2 reduce to the usual
sample bivariate Spearman’s  . By contrast, neither e+2 nor e−2 in SS07 coincide with
 . Moreover, when  = 3, the estimators b+3 and b−3 reduce to:

b+3 =
8

(− 1)(+ 1)2
P

=1

123 − + 1

− 1 

b−3 =
8

(− 1)(+ 1)2
P

=1

123 − + 1

− 1 

These estimators appear in García et al. (2013) as particular cases of an estimator for

the directional −coefficients developed by Nelsen and Úbeda-Flores (2012) in trivariate
distributions. Its asymptotic distribution can also be found in García et al. (2013).

As a final comment, it should be pointed out that, using the following result:

P
=1

 =
+1

+ 1
+()

(see formula 0.121 in Gradshteyn and Ryzhik (1994)), it can be shown that expressions

(15) and (18) are asymptotically equivalent to expressions (8) and (7), respectively.

Hence, in large samples, the Schmid and Schmidt’s statistics e− and e+ defined in

Section 3 will provide very similar values to the estimators b+ and b− proposed in this
section, though the former are not proper estimators while the latter are. However,

in small samples they could become quite different, with the former providing even

unfeasible values out of the boundaries, as it was highlighted in Section 3.

To complete this subsection, we recall that some authors have proposed modified-

SS07 estimators based on using the so-called pseudo-observations, ∗ = ( + 1),

instead of e = , to avoid the problems on the boundary. In particular, if the

SS07 statistics e− and e+ defined in (7) and (8) were constructed using ∗ instead ofe , the estimators used in Blumentritt and Schmid (2014) and Bedo and Ong (2000),

respectively, would come up. Let us denote by e−∗ and e+∗ such estimators. Then, it
turns out that e+2∗ = e−2∗ = −1

+1
 and so, e+2∗  1 and e−2∗  1. When  = 3, it is not

difficult to show that the maximum value of both e+3∗ and e−3∗ is (−1)(+1) and so,e+3∗  1 and e−3∗  1. Similar results can be easily worked out for higher dimensions,

since for a general , both e−∗ and e+∗ are bounded above by:
( ) =

(+ 1)

2 − (+ 1)

"
2

(+ 1)

P
=1

 − 1
#


Therefore, it seems that these estimators fail to achieve the maximum value 1 for

maximal dependence and take a narrower range of values that they should be.

Furthermore, the following relationship holds between the estimators e−∗ and e+∗
and the estimators b− and b+ introduced before:

e+∗ = ( )b+  e−∗ = ( )b−
9



Thus, their bias and mean squared error (mse) fulfill the following identities:

(e+∗) = ( )(b+ ) + [( )− 1]+ 
(e+∗) = [( )]2(b+ ) + 2( )[( )− 1](b+ )+ + [( )− 1]2+2
Obviously, the same relationships hold between bias and mse of e−∗ and b− and the

parameter − . Moreover, since ( ) converges to 1 as →∞ the estimators e±∗ andb± are aymptotically equivalent. However, the question arises on how these estimators
compare in small samples. The equations above reveal that both bias and rmse depend

on ,  and the copula model. In next subsection, we conduct a Monte Carlo study to

compare the finite sample performance of these estimators.

Finally, it should be emphasized that the estimators b− and b+ in (19) and (11)

keep the same regardless of whether we use ∗ or e . For instance, if we proceed as

we did before to work out expression (11), but we put ∗ instead of e in (12) and

(13), we get the following:

b∗0 =
1



P
=1

Q
=1

∗ =
1

(+ 1)

P
=1

Q
=1

 

b∗1 =
Q

=1

Ã
1



P
=1

∗

!
=
1

2
 b∗2 = 1

(+ 1)

P
=1

 − 1

2


Now, putting these three values back together to make up the estimator (b∗0 − b∗1)b∗2
we end up with the same definition of b+ in (11). A similar argument shows that in

order to derive the expression of our estimator b− in (19), it does not matter whether
we use e  =  or 

∗
 = (+ 1) when defining the quantities b0, b1 and b2 in

(17) and (18), since the final estimator will become the same.

4.2 Finite sample performance: a comparative study

To assess the finite sample performance of the estimators introduced in the previous

subsection, we conduct Monte Carlo simulations for the same -dimensional copulas

described in section 3. We consider four dimensions,  = {2 3 4 5} and six sample
sizes,  = {20 40 50 100 500 1000}. For each copula, each parameter value and each
dimension , we generate 1000 Monte Carlo replicates of size  and for each replicate,

we compute the two estimators of the coefficient + defined in the previous subsection,

namely b+ and e+∗, and the two estimators of the coefficient − , namely b− and e−∗.
Finally, for each estimator we compute the mean and rmse over all replicates. Similar

Monte Carlo experiments on e−∗ with larger sample sizes can be found in Blumentritt
(2012) and Blumentritt and Schmid (2014).

Table 1 displays the results on the estimation of + for the Clayton copula with

dimension  = 3, parameter values  = {02 05 1 2 5} and four selected sample sizes
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 = {20 50 100 500}3. This table also displays, for each simulated model, an aproxi-
mated value of the true Spearman’s multivariate rho. These values were obtained by

numerical integration or by Monte Carlo simulation as the average of its corresponding

sample version in (11) across 300 samples of size 500000. Note that for the Clayton

copula, not even the bivariate Spearman’s rho has an analytical expression as a function

of the parameter  Table 2 displays similar results for the coefficient −  Finally, Table
3 reports the results from estimating − in the equicorrelated Gaussian copula with

dimension  = 3, parameter values  = {−02−01 0141 0308 0496 0699 0894}
and  = {20 50 100 500} Note that since this copula is radially symmetric, − = + ,

thus, only the results for b− and e−∗ are displayed (the results for b+ and e+∗ not
displayed here, are nearly the same, as expected).

INSERT TABLE 1 AROUND HERE

INSERT TABLE 2 AROUND HERE

INSERT TABLE 3 AROUND HERE

We first comment the results from the Clayton copula. In terms of bias, both

estimators b± and e±∗ tend to underestimate their corresponding true parameters ±
but the former always outperforms the latter. In fact, one could expect a maximum

relative bias of 10% in b± while the relative bias in e±∗ could reach 18%. In terms
of rmse, there is not a clear dominance of one estimator over the other. Whereas the

estimators e±∗ provide lower rmse than the estimators b± for lower values of  (low

dependence), the behaviour turns the other way round when the value of  is large

(high dependence). As expected, both the bias and rmse tend to reduce as the sample

size increases and the differences between both estimators become negligible in large

samples. Additionally, we note that both estimators reproduce properly one of the

main features of the Clayton copula, namely its asymmetry. Accordingly, for fixed 

and fix , it always happens that b−  b+ and e−∗  e+∗ (compare tables 1 and 2)
Regarding the Gaussian copula (see table 3), similar results arise for the positive

values of parameter . Both estimators b− and e−∗ underestimate the parameter − but
the former always has less bias. Actually, the maximum relative bias of b− is around
5% while the relative bias in e−∗ could reach 17%. As reported by Blumentritt and
Schmid (2014), the absolute bias of e−∗ increases steadily along with the parameter
. Actually, for the largest positive values of  the bias of e−∗ in small samples is
quite important and much larger than that of b+ . In terms of rmse, both b− and e−∗
perform very similarly for moderate positive values of  but when  takes the largest

value considered, the former dominates the latter in small samples. When   0, both

estimators overestimate the parameter + and, in general, b+ outperforms e−∗ in terms
of bias. Both estimators have similar rmse, but the rmse of e−∗ is slightly smaller in
small samples and with lower correlation Moreover, both estimators seem to estimate

3The complete simulation results for all dimensions and all sample sizes are not displayed to save

space but are available upon request.
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with more precision negative parameters than positive ones. Again, both the bias and

rmse tend to reduce as the sample size increases and the differences between both

estimators become negligible in large samples, as expected.

Noticeably, we have checked that the results for higher dimensions hardly change.

5 Conclusions

This paper shows that two of the multivariate sample versions of the Spearman’s rho

coefficient proposed in SS07 can not be used as estimators of their population coun-

terparts, since they could take values out of the parameter space. In turn, we propose

alternative nonparametric estimators based on the results in Joe (1990) and we com-

pare them, both analytically and by simulations, with some modified-SS07 estimators

based on pseudo-observations. We check that, in general, the former outperforms the

latter, especially in small samples and in models with higher dependence. Moreover,

the latter do not reach the maximum value 1 when there is maximal dependence and

take a narrower range of values than they should.
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Table 1. Monte Carlo results for two estimators of Spearman’s multivariate + based

on 1000 samples of size  generated from a -variate Clayton copula with parameter 

and dimension  = 3. For each model the true parameter values of + are also displayed

   = 20  = 50  = 100  = 500

 + mean rmse mean rmse mean rmse mean rmse

0.2 0.132 b+ 0119 0148 0131 0096 0131 0066 0131 0029e+∗ 0108 0135 0126 0092 0128 0064 0130 0029

0.5 0.282 b+ 0267 0154 0278 0093 0276 0064 0281 0030e+∗ 0242 0144 0267 0091 0271 0064 0280 0030

1 0.453 b+ 0437 0145 0447 0090 0450 0064 0451 0028e+∗ 0396 0142 0429 0089 0441 0064 0450 0028

2 0.648 b+ 0627 0125 0641 0078 0645 0053 0648 0023e+∗ 0567 0138 0616 0082 0632 0054 0645 0023

5 0.858 b+ 0835 0078 0849 0046 0854 0031 0858 0014e+∗ 0756 0123 0815 0062 0837 0037 0854 0015

Table 2. Monte Carlo results for two estimators of Spearman’s multivariate − based
on 1000 samples of size  generated from a -variate Clayton copula with parameter 

and dimension  = 3. For each model the true parameter values of − are also displayed

   = 20  = 50  = 100  = 500

 − mean rmse mean rmse mean rmse mean rmse

0.2 0.139 b− 0125 0160 0136 0102 0137 0070 0137 0032e−∗ 0113 0145 0131 0098 0135 0069 0136 0031

0.5 0.308 b− 0290 0172 0301 0104 0300 0072 0306 0034e−∗ 0262 0162 0289 0102 0294 0072 0305 0034

1 0.504 b− 0481 0160 0493 0101 0499 0071 0502 0030e−∗ 0436 0158 0474 0101 0490 0071 0500 0030

2 0.717 b− 0686 0130 0705 0080 0711 0052 0716 0023e−∗ 0620 0150 0678 0085 0697 0055 0713 0023

5 0.911 b− 0884 0065 0901 0035 0905 0025 0910 0010e−∗ 0800 0123 0865 0057 0887 0033 0907 0011
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Table 3. Monte Carlo results for two estimators of Spearman’s multivariate − based
on 1000 samples of size  generated from a -variate equicorrelated Gaussian copula

with parameter  and dimension  = 3. For each model the true parameter values of

− are also displayed

   = 20  = 50  = 100  = 500

 − mean rmse mean rmse mean rmse mean rmse

−02 −0191 b− −0189 0104 −0186 0068 −0189 0047 −0190 0021e−∗ −0171 0096 −0179 0066 −0185 0046 −0190 0021

−01 −0096 b− −0095 0129 −0093 0077 −0094 0055 −0095 0024e−∗ −0086 0117 −0089 0074 −0092 0054 −0095 0024

0141 0135 b− 0130 0149 0131 0096 0135 0067 0134 0029e−∗ 0117 0136 0126 0093 0132 0066 0134 0029

0308 0295 b− 0284 0158 0289 0101 0293 0067 0293 0031e−∗ 0257 0148 0278 0098 0287 0066 0292 0031

0496 0479 b− 0458 0155 0465 0091 0472 0062 0478 0029e−∗ 0415 0153 0446 0092 0463 0063 0476 0029

0699 0682 b− 0652 0127 0672 0072 0680 0048 0681 0022e−∗ 0590 0144 0646 0077 0667 0049 0678 0022

0894 0885 b− 0861 0066 0875 0035 0880 0025 0884 0010e−∗ 0779 0119 0841 0055 0862 0033 0880 0011
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Figure 1: Estimated probabilities of e�+d to be outside the theoretical parameter range as
a function of the parameter value arranged by copula model (columns) and dimension
(rows). Four dimensions are considered: d = 2 (1st row), d = 3 (2nd row), d = 4 (3rd
row) and d = 5 (4rth row). In each panel the estimated probabilities for sample sizes
n = f20; 40; 50g are displayed.
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