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Abstract

Welfare is multidimensional as it involves not only income, but also

education, health or labour. The composite indicators of welfare are usua-

lly based on aggregating somehow the information across dimensions and

individuals. However, this approach ignores the relationship between the

dimensions being aggregated. To face this goal, in this paper we analyse

the dependence between the dimensions included in the Human Develop-

ment Index (HDI), namely income, health and schooling, through three

copula-based measures of multivariate association: Spearman’s footrule,

Gini’s gamma and Spearman’s rho. We discuss their properties and prove

new results on Spearman’s footrule. The copula approach focuses on the

positions of the individuals across dimensions, rather than the values that

the variables attain for such individuals. Thus, it allows for more general

types of dependence than the linear correlation. We base our study on

data from 1980 till 2014 for the countries included in the 2015 Human

Development Report. We find out that though the overall HDI has in-

creased over this period, the dependence between its dimensions remains

high and nearly unchanged so that the richest countries tend to be also

the best ranked in both health and education.

Keywords: concordance, multivariate association, human development,

copula, Spearman’s rho.
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1 Introduction

There is a general agreement that welfare is a multidimensional concept encom-

passing not only income, but also non-monetary dimensions such as education,

labour and health; see, for instance, Kolm [1], Atkinson and Bourbignon [2]

and Sen [3]. In turn, welfare depends on the level achievements in each dimen-

sion and also on two other factors related to the spread across the individual

achievements of each dimension (Kolm [1]) and the degree of association across

dimensions of welfare. As Atkinson and Bourguignon [2] point out, for two joint

distributions with the same marginals but different degree of association, less

association between dimensions of welfare is socially preferred. For instance, a

world where one country is top-ranked in all welfare dimensions, another country

is second-ranked in all welfare dimensions and so forth, will enjoy lower welfare

than a world where the positions of the countries across dimensions are less

correlated. This criterion was formalized by Tsui [4] who called it correlation

increasing majorization and was further discussed by Bourbignon and Chack-

ravarty [5] who propose a stronger version called correlation increasing switch.

The relevance of incorporating dimensional interactions when measuring welfare

has also been pointed out by Duclos et al. [6], Decancq et al. [7] and Seth [8]. In

this framework, we face the problem of measuring the dependence between the

three dimensions included in the most commonly used index of welfare, namely

the HDI. These dimensions are income, health and education.

In the bivariate case, there are several measures of dependence. The most

well-known is Pearson’s linear correlation coefficient, which is suitable for linear

dependence and elliptical data. However, empirical research shows that, in

welfare economics, the data seldom belongs to this class. In this case, copula-

based measures, such as Spearman’s rho, Spearman’s footrule and Gini’s gamma

(among others), would be more appropriate. These measures focus on the posi-

tions of the individuals across dimensions, rather than on the specific values

that the corresponding variables attain for such individuals. Therefore, they

are invariant to increasing and continuous transformations of the underlying

variables and allow us to capture more general types of dependence than the

linear correlation. The copula approach also enables generalizing these measures

to a multivariate framework, where more than two variables are involved. In

this framework, the pairwise dependence is not sufficient, in general, to infer

properties of global dependence. For instance, some examples exist of variables

which are pairwise independent but are multivariate dependent; see Nelsen [9]

and Nelsen and Úbeda-Flores [10]. Therefore, in a multivariate setting, using

measures of multivariate (rather than only bivariate) dependence is essential.

In welfare contexts, copula-based multivariate methods have been recently

employed by Decancq [11] and Pérez and Prieto [12]. The former applies both

the multivariate Kendall’s tau and Spearman’s rho in Nelsen [13] to illustrate

how the dependence between the dimensions of well-being included in the HDI

has evolved in Russia between 1995 and 2015. Pérez and Prieto [12] con-

sider other multidimensional versions of Spearman’s rho proposed by Nelsen

[9], Nelsen and Úbeda-Flores [10] and García et al. [14], that are capable of re-
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vealing some other forms of dependence. These measures are then used to study

how the dependence between the dimensions included in the AROPE (At Risk

Of Poverty and Exclusion) rate, i.e. income, material needs and work intensity,

has evolved in Spain over the period 2009-2013.

The contribution of this paper is twofold. First, we focus on two copula-based

measures of multivariate association that have been scarcely used in practice,

namely Gini’s gamma (also known as Gini’s rank association coefficient) and

Spearman’s footrule. We prove some new results concerning the latter and

we fit them into the unifying framework of the Average Orthant Dependence

measures, so that comparisons are easier. The measures considered can be

regarded as 1−distance alternatives to the well-known Spearman’s rho coeffi-
cient. Hence, they have some appealing properties although they suffer from

some minor disadvantages; see Genest et al. [15] and the references therein.

Second, in our empirical application, we employ these two coefficients, as well

as a multivariate Spearman’s rho, to analyse how the association among the

dimensions of the HDI has evolved in the world from 1980 till 2014. We use

data from the countries included in the 2015 Human Development Report (see

UNDP [16]). As far as we know, this is the first time that these measures are

applied in a welfare context. Hence, some new insights on the topic are provided.

The paper is organized as follows. Section 2 introduces the copula and its

main properties and recall its relationship with the concepts of concordance

and orthant dependence. In Section 3 we describe Spearman’s footrule, both in

their population and empirical versions, and we prove some new results. Sec-

tion 4 is devoted to Gini’s gamma coefficient. It describes its main properties

and compares it with both Spearman’s footrule and Spearman’s rho. Section 5

illustrates the use of these three coefficients to measure the evolution of the de-

pendence among the dimensions of the HDI over the period 1980-2014. Section

6 closes the paper with a summary of our main conclusions.

2 Preliminary concepts and notation

2.1 Copulas

A −dimensional copula  is a multivariate distribution function on I, with

I =[0 1], whose univariate marginal distributions are uniform on I. Thus,

each −copula  can be associated with a −dimensional random variable

U = (1  ) such that  is (0 1) for  = 1 2   and  is the joint

distribution function of U. Moreover,  is also an aggregation function since it

is nondecreasing in each variable and fulfills the boundary conditions

(0  0) = 0 and (1  1) = 1

From the statistical point of view, the importance of copulas comes up in the

Sklar’s theorem (Sklar [17]). This theorem establishes that, if X = (1 )

is a −dimensional random variable with joint distribution function  and uni-

variate marginal distribution functions 1     , then there exists a copula
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 : I → I such that, for all (1     ) ∈ ,  can be represented as

 (1  ) = (1(1)  ()) (1)

If the margins 1   are all continuous, the copula  in (1) is unique; other-

wise  is uniquely determined on 1 ×  × . Conversely, if  is a

−copula and 1   are univariate distribution functions, then the function

 defined in (1) is a joint distribution function with margins 1  . There-

fore, the copula  allows to link any multivariate distribution function and its

margins. Throughout this paper, we assume that 1   are all continuous.

Any copula  satisfies the Fréchet-Hoeffding bounds inequality

 (u) ≤ (u) ≤(u)

for every u =(1  ) ∈ I, where  (u) = (1 + · · · +  −  + 1 0)

and (u) = min(1  ).  is always a copula and represents maximal

dependence, i.e. the case where each component  of X is almost surely a

strictly increasing function of every other component  . However,  is only a

copula if  = 2, in which case it represents perfect negative dependence. If the

variables 1  are independent, the copula of X will be the independent

copula defined as Π(u) = 1 · · ·. Another important function associated with
a copula  is the survival function  : I → I defined as

(u) = (U  u) = (1  1       )

In general,  is not a copula; see Nelsen [18] for a survey on the copula theory.

2.2 Concordance

Roughly speaking, concordance of random variables refers to their tendency

to take all large values together or all small values together. More precisely,

two observations (1 2) and (
0
1 

0
2) from a bidimensional random variable

are concordant if {1  01 2  02} or {1  01 2  02} and they are
discordant if {1  01, 2  02} or {1  01 2  02}. In higher dimensions,
two observations x = (1  ) and x

0 = (01  
0
) from a −dimensional

continuous random vector are concordant if x  x0 or x  x0, where x  x0

(x  x0) denote the component-wise inequality   0 (  0), for all  =
1   However, discordance does not generalize to dimensions  ≥ 3. Thus, in
the multivariate case, some dependence properties are based on the probability

of concordance alone which can be written in terms of copulas as follows.

LetX andX0 be two independent −dimensional continuous random vectors
with common univariate margins and −copulas  and  0, respectively, and let
0 be the probability of concordance between X and X0. Nelsen [13] shows that

0(
0) = (X  X0) + (X  X0) =

Z
I
[(u) + (u)]0u)

The function 0 is symmetric in its arguments, i.e. 0(
0) = 0(

0 ),
and is easily evaluated for pairs of the copulas  and Π In particular, it can
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be shown that 0() = 1, 0(Π) = 2( + 1) and 0(ΠΠ) = 12
−1

Moreover, as Behboodian et al. [19] point out, the function 0 can be extended
to the case in which either  or 0 is a measurable function from I to I, as it

will happen when  = , for instance.

Some well-known measures of association can be written in terms of 0. For
instance, the multivariate population version of Spearman’s rho for a random

vector X = (1 ) with −copula  proposed by Nelsen [13] is defined as

() =
(+ 1)

2 − (+ 1)[2
−10(Π)− 1] (2)

Thus, in a sense, Spearman’s rho measures the concordance relationship between

the distribution of X as represented by their copula , and independence as

represented by the copula Π. Noticeably,  takes the value 1 when  = and

the value 0 when  = Π but its lower bound is [2 − (+ 1)!][!(2 − − 1)].

2.3 Orthant dependence

Let X = (1 ) be a -dimensional continuous random variable with mar-

ginals 1   and copula  : I → I such that  is the joint distribution

function of U = (1  ), where  = () for  = 1 2  . Then:

• X is positively lower orthant dependent (PLOD) if (u) ≥ Π(u), for
each u ∈ I, that is, if the probability that the variables 1  take

simultaneously small values is at least as great as it would be were they

independent.

• X is positively upper orthant dependent (PUOD) if (u) ≥ Π(u), for
each u ∈ I, that is, if the probability that the variables 1  take

simultaneously large values is at least as great as it would be were they

independent

• X is positively orthant dependent (POD) if both inequalities hold.

The corresponding negative concepts are defined by reversing the sense of

the inequalities. For  = 2, PLOD and PUOD are the same and reduce to POD.

Obviously, the same reduction occurs with the analogous negative concepts.

In this framework, the differences [(u)−Π(u)] and [(u)−Π(u)] can be re-
garded as measures of “local” lower and upper orthant dependence, respectively.

Accordingly, Dolati and Úbeda-Flores [20] introduce the following function:

(0) =
Z
I
[(u)−Π(u) + (u)−Π(u)] 0(u)

that represents the 0−average of orthant dependence (AOD), i.e., the expecta-
tion of [(U)−Π(U)+(U)−Π(U)] taken with respect to copula 0. Moreover,
they also define a general class of AOD measures of multivariate association as

() = (
0)
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where  = 1(0), and establish conditions on 0 for  to be a measure
of multivariate concordance. Noticeably, the function (0) can be easily
re-written in terms of the probability of concordance as

(0) = 0(
0)−0(Π 

0) (3)

Therefore, the AODmeasure  can also be regarded as a normalized probability

of concordance between  and  0 given by

() =
0(

0)−0(Π 
0)

0( 0)−0(Π 
0)


The coefficient  in (2) is an example of an AOD measure of multivariate

association since it can be written as

() =
0(Π)−0(ΠΠ)
0(Π)−0(ΠΠ)

=  (Π) (4)

with  = 1(Π) = [2−1( + 1)][2 − ( + 1)]. Moreover,  is also a
measure of multivariate concordance according to the axiomatic definitions in

Dolati and Úbeda-Flores [20] and Taylor [21].

In a welfare context, were the vector X represents the dimensions of welfare,

the coefficient  has a very interesting interpretation (see Decancq [11]) as the

normalized probability that a randomly selected individual from the distribution

ofX outranks or is outranked by a randomly selected individual from a reference

distribution with independent dimensions. Therefore, the more dependence

there is between the dimensions of welfare, the higher this normalized probability

and so the higher the value of 

In next sections we introduce multivariate versions of other not so well-

known measures of association, like Spearman’s footrule and Gini’s gamma,

and we describe their relationship with the concepts introduced in this section.

3 A multivariate version of Spearman’s footrule

The population version of Spearman’s footrule for a random vector (12)

with copula , that will be denoted by 2 is given by (see Nelsen [22])

2 = 1− 3
Z Z

I2
|1 − 2|(1 2)

This coefficient is similar to Spearman’s 2 in (2) which can be re-written as

2 = 1− 6
Z Z

I2
(1 − 2)

2(1 2)

Whereas the former is based on absolute differences, the latter employs squared

differences. Because of that, Spearman’s footrule has been viewed as an 1
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alternative to Spearman’s rho. Moreover, the Spearman’s footrule 2 can also

be written in terms of the probability of concordance as follows

2 = 6

Z Z
I2
(1 2)(1 2)− 2 = 302()− 2

This coefficient takes the values: 1 when  =  ; 0 when  = Π; and −12
(rather than −1) when  =  Hence, unlike 2, it does not behave in a sym-

metric fashion with respect to the upper and lower Fréchet-Hoeffding bounds.

The multivariate version of the Spearman’s footrule for a random vector

X = (1 ) with −copula , defined by Úbeda-Flores [23], is given by

() =
(+ 1)

(− 1)
0
()−

2

(− 1)  (5)

Thus, in a sense,  can be regarded as a normalized concordance “distance”

between the distribution of X as represented by their copula , and maximal

dependence as represented by the copula 

Úbeda-Flores [23] shows that  is 0 when  = Π and 1 when  =  but

its lower bound is −1. Moreover, he shows that in the trivariate case ( = 3),
where X = (123) with copula , the coefficient 3() can be written as

3() =
12 + 13 + 23

3
 (6)

where  denotes the corresponding Spearman’s footrule for the bivariate ran-

dom variable (), with 1 ≤    ≤ 3.
We next show that  can be regarded as an AOD multivariate measure of

association. However, as Dolati and Úbeda-Flores [20] point out,  is not a

measure of multivariate concordance according to their axiomatic definition.

Proposition 1 Let  be a d-copula. Then () is an AOD measure of asso-

ciation given by

() =  () (7)

with  = 1().

Proof. Recall that 0(Π) = 2(+ 1). Thus, using (3) and (5) we have

() =
(+ 1)

(− 1) [
0
()−0(Π)] =

(+ 1)

(− 1)()

But () = 0()−0(Π) = 1− 2(+1) = (− 1)(+1), thus

() =
0()−0(Π)
0()−0(Π)

=
()

()


and the result follows.

In practice, the copula  is unknown and () must be estimated from the

data. Therefore, a sample version of () is required. Let {(1  )}=1
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be a sample of  serially independent random vectors from the -dimensional

vector X = (1 ) and let  be the  of  among {1 },
with  = 1   and  = 1  . Úbeda-Flores [23] proposes the following

estimator of :

b = 1− + 1

− 1
1

2 − 1
P
=1

∙
max
1≤≤

()− min
1≤≤

()

¸
 (8)

Genest et al. [15] show that, under fairly general conditions, b is an asympto-
tically unbiased estimator of  and it is asymptotically normally distributed.

Note that, in the case of perfect dependence, i.e., when the ranks in each

dimension coincide, b = 1. Also note that, when  = 2, the coefficient defined

in (8) reduces to the sample bivariate Spearman’s footrule − usually denoted
as  − given by

b2 =  = 1− 3

2 − 1
P
=1

|1 −2 |

Moreover, we next show that, in the trivariate case ( = 3), property (6) con-

tinues to hold for the corresponding empirical coefficients.

Proposition 2 The sample Spearman’s footrule b3 is equal to the average of
the three pairwise sample Spearman’s footrule coefficients, that is

b3 = b12 + b13 + b23
3

 (9)

Proof. The trivariate sample Spearman’s footrule coefficient for a tridimen-

sional random vector (123) is

b3 = 1− 2

2 − 1
P
=1

[max(1  2  3)−min(1  2  3)]

and the pairwise sample Spearman’s footrule coefficient for a pair () is

b = 1− 3

2 − 1
P
=1

| − | (10)

But |− | = 2max( )− (+ ), so that

b12 + b13 + b23
3

= 1− 1

2 − 1
P
=1

(|1 −2 |+ |1 −3 |+ |2 −3 |) =

= 1− 2

2 − 1
P
=1

[max(1  2) + max(1  3) + max(2  3)−1 −2 −3 ]

Now, it is checked readily that the term in brackets in the equation above is equal

to {max(1  2  3)−min(1 2 3)}. For instance, if 1  2  3 ,

max(1  2  3)−min(1  2  3) = 1 −3 
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and

max(1  2) + max(1  3) + max(2  3)−1 −2 −3 =

= 1 +1 +2 −1 −2 −3 = 1 −3 

Proceeding in a similar way for the other possible cases, the result follows.

4 A multivariate version of Gini’s gamma

Another measure of association closely related to Spearman’s rho and Spear-

man’s footrule is the Gini’s gamma. The bivariate population version of Gini’s

gamma is based on the 1−distance from any point (1 2) in the square I
2

to the principal and secondary diagonals of I2. In particular, given a random

vector (12) with copula , its Gini’s gamma coefficient is defined as

2 = 2

Z Z
I2
(|1− 1 − 2| − |1 − 2|)(1 2)

Its relationship to Spearman’s 2 shows up when this is re-written as

2 = 3

Z Z
I2
[(1− 1 − 2)

2 − (1 − 2)
2](1 2);

see Nelsen [13]. Thus, Gini’s gamma (like Spearman’s footrule) employs absolute

differences rather than squared differences and so it can also be regarded as an

1 competitor to Spearman’s rho.

To further enhance the differences and similarities between these three coeffi-

cients, let us note that bivariate Gini’s gamma can also be written in terms of

the probability of concordance as

2 = 4

Z Z
I2
[((1 2)+ (1 2)](1 2)−2 = 2[02()+02( )]−2;

see Nelsen [22]. Like Spearman’s 2, the coefficient 2 takes the value 1 when

 =  , the value 0 when  = Π and the value −1 when  =  . Never-

theless, whereas bivariate Spearman’s 2 and Spearman’s footrule 2 measure

concordance relationships between copula  and Π (independence) and copula

 and  (perfect positive dependence), respectively, bivariate Gini’s gamma

measures a concordance relationship between copula  and monotone depen-

dence, as represented by the copulas  (perfect positive dependence) and 

(perfect negative dependence). In higher dimensions ( ≥ 3), this interpretation
does not hold since  is no longer a copula and the concept of perfect negative

dependence is not that clear.

Behboodian et al. [19] works out an alternative expression of 2 given by

2 = 4 [
0
2()−02(Π )]
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where  is the average of the upper and lower Fréchet-Hoeffding bounds, i.e.

 = ( + )2 Based on this expression, they define the multivariate popu-

lation version of Gini’s gamma associated with a −copula  as

() =  [
0
()−0(Π )] (11)

where  = 1[
0
()−0(Π )] with:

0() = 1−
−1P
=1

1

4


0(Π ) =
1

+ 1
+

1

2(+ 1)!
+

P
=0

(−1)
µ




¶
1

2(+ 1)!


The coefficient  in (11), like  and , takes the value 1 when  = 

(perfect dependence) and the value 0 when  = Π (independence). Moreover,

taking into account equations (3) and (11) it turns out that the multivariate

Gini’s gamma coefficient  can be written as

() =
0()−0(Π )
0()−0(Π )

=  () (12)

where  = 1(). Therefore,  is also an AOD measure of association;

compare expression (12) with the AOD representations of the coefficients 
and  in (4) and (7), respectively. Whereas  and  are AOD measures with

respect to copulas Π and  , respectively, the multivariate Gini’s  is an AOD

measure of association with respect to . Thus, the Gini’s coefficient  can be

interpreted as a normalized average “distance” between the copula  and the

average of the upper and lower Fréchet-Hoeffding bounds.

As to our knowledge, it is not determined whether  satisfies the axioms

established in Dolati and Úbeda-Flores [20] and Taylor [21] for measures of

multivariate concordance, since  is not even a copula. This topic is left for

further research.

In the trivariate case, Behboodian et al. [19] show that the trivariate Gini’s

gamma for (123) is just the average of the three corresponding pairwise

Gini’s coefficients, that is

3() =
12 + 13 + 23

3
 (13)

where  denotes the pairwise Gini’s gamma for the bivariate random variable

(), with 1 ≤    ≤ 3. Furthermore, Behboodian et al. [19] provides the
sample version of the coefficient  and show that, in the trivariate case, the

relationship (13) also holds for the corresponding sample versions, that is

b3 = 3 =
b12 + b13 + b23

3
 (14)

where b is the bivariate sample Gini’s gamma for the pair (), namely

b = 1

b22c
P
=1

(|+ 1− − | − | − |) (15)
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where bc denotes de integer part of .
Noticeably, properties (13) and (14) are shared by both multivariate Spear-

man’s footrule (see Section 3) and multivariate Spearman’s rho (see Dolati and

Úbeda-Flores [20]). Hence, in the trivariate case, the sample version of the

multivariate Spearman’s rho in (2) can also be computed as the average of the

well-known pairwise sample Spearman’s rho coefficients.

5 Empirical application

In this section, we apply the copula-based coefficients of multivariate association

described in previous sections to measure how the dependence among dimensions

of welfare has evolved in the world over the period 1980-2014.

5.1 Data and variables

The dimensions of welfare we have selected are those included in the most

commonly used index of welfare, namely the HDI. These dimensions are health,

education and income. Health is approximated by life expectancy at birth,

indicating number of years a newborn infant could expect to live if prevai-

ling patterns of age-specific mortality rates at the time of birth stay the same

throughout the infant’s life. Education is characterized by two indicators: mean

years of schooling for adult (average number of years of education received by

people ages 25 and older) and expected years of schooling for children (number

of years of schooling that a child of school entrance age can expect to receive if

prevailing patterns of age-specific enrolment rates persist throughout the child’s

life). Finally, income is approximated by Gross National Income per capita

in 2011 Purchasing Power Parity terms. The data of the four indicators are

available at the web page http://hdr.undp.org and cover yearly data over the

period 1980—2014 with discontinuous intervals up to 2005.

Following the methodology of UNDP [16], we normalize the four indicators

to put on a common [0,1] scale, in the following way:

  =
( −  )

( − )


The minimum and maximum values, fixed goalposts, can be interpreted for each

indicator as “natural zero” and “aspirational goals”, respectively (for further

details see UNDP [16] and Anand and Sen [24]). To have only one index for

the education dimension, the arithmetic mean of the two normalized indicators

of education described above is taken. Finally, to get a consistent time series

over the full period of analysis, we have computed all the indicators using the

methodology of UNDP [16]. Thus, the HDI is calculated through the geometric

mean of the three dimensional indices.

The unit of our analysis is the country and the countries considered are

those included in the UNDP [16]. From 2010 till 2015 we have full data for 187

countries. Nevertheless, there are missing data for some countries in some years
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before 2010. For instance, in 1980 and 1985 we lack data from 63 countries, but

over the period 2005- 2009 the missing data reduce to 13 countries.

5.2 Results

We first analyse the evolution of the distribution of the HDI. In order to do that,

we plot in Figure 1 the corresponding boxplots for the years considered. The

box-and-whisker plot (called simply a boxplot) is a method of displaying data

that consists of a box extending from the first quartile (1) to the third quartile

(3), with an added line at the median and a dot at the mean and two whiskers

extending from 1 to 1− 15(3−1) and from 3 to 3 + 15(3−1);

see Tukey [25]. Figure 1 shows that, in terms of the HDI, there has been a

steady increase of welfare around the world over the last thirty five years though

this increase has not been homogeneous over the full period. In particular, we

observe a remarkable increase of the HDI over the period 1980-2005, where

the world average HDI rose from 0.543 in 1980 to 0.650 in 2005. This upward

trend continued mildly till 2014, when the average stood at 0.694. This overall

increase reflects aggregate improvements in the three dimensions that make up

the HDI (health, education and income).

INSERT FIGURE 1 AROUND HERE

The question arises whether this increase in welfare is accompanied by an

increase or a decrease of the interdependence among the three dimensions of

the HDI. As we point out in the introduction, incorporating dimensional inter-

actions becomes relevant in measuring welfare. Furthermore, since we face a

multidimensional problem, measures of multivariate dependence should be used

to grasp the wide spectrum of possible bivariate and multivariate relationships.

To face this goal we apply the measures of multivariate association described in

sections 3 and 4. To compute the multivariate sample versions of Spearman’s

footrule and Gini’s gamma we apply formulae (9)-(10) and (14)-(15), respec-

tively. As a benchmark, we also compute the sample version of multivariate

Spearman’s rho as the average of the three pairwise sample Spearman’s rho

coefficients. The results obtained are displayed in Figure 2.

INSERT FIGURE 2 AROUND HERE

Several conclusions emerge from this figure. First, the three coefficients are

all positive and moderately high revealing an important degree of association

between the three dimensions of welfare. This means that the richest countries

tend to be also the healthiest and best educated ones, and the poorest countries

tend to be also those with the lowest health and the least educated ones. Notice-

ably, this conclusion is robust to the measure used. Another remarkable feature

from Figure 2 is that the values of the three measures have barely changed since

1980, indicating that no improvements in lessening the multivariate dependence

between income, health and education have been achieved over the last years.

It is also worth noting that Spearman’s rho is always higher than the two other
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measures, regardless of the year considered. Whereas Spearman’s footrule has

kept around 0.59 and Gini’s gamma around 0.67, Spearman’s rho has been about

0.81. Recall that these measures can take different values as they capture dis-

tinct aspects of the multivariate dependence between the three dimensions. In

fact, it could be concluded that the joint distribution of the three development

dimensions is further from independence (as the Spearman’s rho reveals) than

from the maximal dependence (as captured by the Spearman’s footrule).

To complement these results, Table 1 displays, for each of the three measures

considered, the corresponding possible pairwise coefficients to measure bivariate

association between: health and education (indexed as 12), health and income

(indexed as 13) and education and income (indexed as 23).

[INSERT TABLE 1 AROUND HERE]

In this table, we first observe that all the pairwise coefficients are positive,

regardless of the measure used and the pair of variables being associated. This

confirms that, given a pair of dimensions, countries that are top-ranked in one

dimensions are more likely to be also top-ranked in the other. The positive

association between health and income is consistent with other studies, like

Preston [26], Sen [27] and Deaton [28]. The positive association between health

and education is also reported by Deaton [28], Grossman [29] and Cutler and

Lleras-Muney [30]. Evidence on the positive relationship between education

and income dates back to the seminal works of Becker ([31], [32]), Schultz [33]

and Denison [34]. Recent works on the topic include Barro [35] and Francis

and Iyare [36], among others. Table 1 also reveals that the temporal pattern

of the bidimensional coefficients depends on the dimensions in hand and the

period considered. From 2005 onwards, all measures keep nearly constant but

the degree of association between health and education is always lower than

the degree of association between income and education or income and health,

which are both nearly the same over this period, regardless of the measure used.

By contrast, the patters between 1980 and 2005 are quite different. Whereas

association between health and education decreased sharply in this period, the

association between income and health and income and education both increase

though at different rates. Again, this conclusion is robust to the measure used.

As a final comment, let us recall that Spearman’s rho coefficients are based

on squared differences of ranks, while Gini’s gamma and Spearman’s footrule

coefficients are based on absolute differences. Hence, Gini’s gamma and Spear-

man’s footrule are more robust than Spearman’s rho to higher discrepancies

between the ranks in different dimensions for a given country. For instance,

Equatorial Guinea belongs to the 1st decile in life expectancy (position 15 in

this dimension) but it is within the 30% of countries with the highest income

(position 134 in this dimension). Therefore, the influence of a country like this

one is more harmful to b12 (and consequently to b3) than to the corresponding
gamma and footrule coefficients, that keep more robust to such a big difference

between the ranks.
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6 Conclusions

In this paper we have focused on two copula-based multivariate measures of

association that have been scarcely used in practice, namely Gini’s gamma and

Spearman’s footrule. As a benchmark, we have also considered a multivariate

generalization of the well-known Spearman’s rho rank association coefficient.

We have revised their main properties and discussed their similarities and diffe-

rences and we have also provided new results for the multivariate Spearman’s

footrule. In our empirical application, we have applied these three measures to

analyse how the dependence among dimensions of welfare has evolved in the

world over the period 1980-2014. The dimensions considered are those included

in the HDI, that is, income, health and education, and the countries considered

are those included in the 2015 Human Development Report.

Our main conclusion is that, although the welfare, as measured by the HDI,

has increased over the period considered, the degree of multivariate dependence

among income, health and schooling has kept positive and high and nearly

unchanged. Moreover, this result is robust to the measure of multivariate de-

pendence used. This means that small (high) values of the three welfare dimen-

sions tend to occur together, so that the richest countries tend to be also the

healthiest and the most educated ones, while the poorest countries tend to have

simultaneously the lowest level of both education and health. Therefore, even

though the overall welfare is steadily improving, it is very unlikely for a country

that is low-ranked in one dimension of welfare to get a higher position in the

other two dimensions and vice-versa, specially if the country is low ranked in

income. Moreover, when looking at the bidimensional relationships, our results

reveal that, over the last decade, the degree of association between health and

education has become lower than the degree of association between income and

education or income and health.
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Table 1. Evolution of the sample bivariate Spearman’s footrule, Gini’s gamma

and Spearman’s rho coefficients between dimensions 1 (health), 2 (education)

and 3 (income) of the HDI over the period 1980-2014

Year b12 b13 b23 b12 b13 b23 b12 b13 b23
1980 0670 0586 0526 0752 0659 0614 0885 0791 0737

1985 0660 0612 0545 0744 0680 0634 0884 0819 0770

1990 0561 0661 0541 0657 0728 0623 0813 0856 0769

2000 0537 0653 0596 0629 0722 0680 0788 0855 0817

2005 0539 0628 0610 0628 0701 0687 0781 0836 0828

2006 0544 0612 0608 0638 0681 0685 0783 0820 0825

2007 0542 0611 0614 0633 0677 0692 0783 0818 0829

2008 0544 0609 0618 0635 0675 0695 0784 0814 0831

2009 0544 0605 0614 0628 0699 0690 0781 0811 0827

2010 0545 0622 0602 0628 0690 0684 0780 0828 0821

2011 0544 0624 0614 0626 0691 0692 0778 0831 0827

2012 0544 0624 0611 0627 0691 0692 0777 0830 0826

2013 0541 0622 0613 0624 0688 0694 0774 0826 0828

2014 0560 0615 0610 0650 0691 0687 0802 0825 0831
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Figure 1: Evolution of the distribution of the HDI over the period 1980-2014
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Figure 2: Evolution of the multivariate association between the dimensions of

the HDI over the period 1980-2014 as measured by the coefficients Spearman’s

footrule (black), Gini’s gamma (dark grey) and Spearman’s rho (light grey)

coefficients
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