
  

 

Abstract— This work aims at studying the usefulness of 

the spectral information contained in airflow (AF) recordings 

in the context of Obstructive Sleep Apnea-Hypopnea 

Syndrome (OSAHS) in children. To achieve this goal, we 

defined two spectral bands of interest related to the 

occurrence of apneas and hypopneas. We characterized these 

bands by extracting six common spectral features from each 

one. Two out of the 12 features reached higher diagnostic 

ability than the 3% oxygen desaturation index (ODI3), a 

clinical parameter commonly used as screener for OSAHS. 

Additionally, the stepwise logistic regression (SLR) feature-

selection algorithm showed that the information contained in 

the two bands was complementary, both between them and 

with ODI3. Finally, the logistic regression method involving 

spectral features from the two bands, as well as ODI3, 

achieved high diagnostic performance after a bootstrap 

validation procedure (84.6±9.6 sensitivity, 87.2±9.1 

specificity, 85.8±5.2 accuracy, and 0.969±0.03 area under 

ROC curve). These results suggest that the spectral 

information from AF is helpful to detect OSAHS in children. 

I. INTRODUCTION 

The Obstructive Sleep Apnea-Hypopnea Syndrome 
(OSAHS) is characterized by recurrent episodes of apnea 
(complete absence of airflow) and hypopnea (significant 
reduction of airflow) during sleep [1]. Apneic events lead 
to oxygen desaturations and arousals which prevent 
patients from resting while sleeping, disturbing both their 
health and quality of life [1]. Common symptomatology of 
pediatric OSAHS includes overnight snoring and sleep 
difficulties [2], which derive in other daytime symptoms 
and illnesses such as cognitive and behavioral 
irregularities, abnormal growth, and cardiovascular 
malfunctions [3]. Up to 6 % of children affected has been 
reported [3], indicating the high prevalence of OSAHS.  

OSAHS is diagnosed by means of nocturnal 
polysomnography (PSG) test, which acts as the “gold 
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standard” [1]. PSG requires recording a wide range of 
physiological signals from patients overnight, including 
electroencephalogram (EEG), electrocardiogram (ECG), 
oxygen saturation (SpO2), and airflow (AF) [1]. Hence, 
the necessary equipment is both complex and costly [4]. 
OSAHS and its severity are established according to the 
apnea hypopnea index (AHI), which estimates the number 
of apneic events per hour. To derive AHI, physicians need 
to examine all the physiological recordings. Consequently, 
PSG is also time-consuming [4]. Furthermore, PSG may 
interfere with the sleep routine of patients since it has to 
be carried out into a specialized sleep unit.  

To overcome these drawbacks a number of alternatives 
have been studied. One common approach is the 
computation of different estimations of AHI, such as the 
respiratory disturbance index (RDI) or the oxygen 
desaturation index (ODI), using a reduced set of signals 
from PSG [5]. Alternatively, single-channel signals such 
as SpO2 and photoplethysmography (PPG) have been 
recently assessed to automatically detect OSAHS, both in 
adults and children [6-9]. 

In this paper, the analysis of single-channel AF 
recordings from children is proposed. The main objective 
is to evaluate eventual differences between OSAHS 
patients (OSAHS-positive) and no-OSAHS subjects 
(OSAHS-negative). The study of AF is a straightforward 
choice since apneas and hypopneas are defined on the 
basis of its amplitude variations [10]. The recurrence of 
apneic events naturally leads to a study in the frequency 
domain. In this sense, recent works have shown that 
OSAHS modifies the spectral content of AF recordings 
from adults at certain frequencies, and that the information 
contained in such frequencies is useful in OSAHS 
detection [11, 12]. However, no studies have been found 
applying a similar analysis to AF recordings from 
children. According to the above mentioned, we pose two 
research questions: 

i. How OSAHS alters the spectral information of AF  

recordings from children? 
 

ii. Are these alterations useful to distinguish OSAHS  

in children? 

To answer the first one we perform an exploratory 
analysis of the power spectral density (PSD) of the AF 
recordings. We look for spectral bands of interest, as well 
as their characterization. To assess the second question, 
we evaluate the diagnostic performance of several 
common spectral features, separately and in a jointly way 
through logistic regression models. Additionally, we also 
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assess the diagnostic performance of 3% ODI (ODI3) for 
comparison purposes. Our hypothesis is that the spectral 
information contained in single-channel AF could be 
useful to help in the diagnosis of pediatric OSAHS.  

II. SUBJECTS AND SIGNALS UNDER STUDY 

This study involved AF recordings from 50 children 
ranging 3 to 13 years old (24 OSAHS-negative and 26 
OSAHS-positive). All of them were remitted to the unit of 
respiratory sleep disorders of the Hospital Universitario 
de Burgos (Spain), due to clinical suspicion of OSAHS. 
AF was acquired during a polygraphy test performed at 
patients’ home. The sensor used to obtain AF was a 
thermistor and the sample rate was 100 Hz. The 
physicians used the AHI derived from PSG to establish 
OSAHS. As stated by the American Academy of Sleep 
Medicine (AASM), they scored apneas and hypopneas as 
events lasting 2 missed respiratory cycles, at least [10]. An 
AHI threshold of 3 events/hour was used to distinguish 
OSAHS-positive from OSAHS-negative subjects. The 
Review Board on Human Studies accepted the protocol 
and an informed consent was obtained for each subject. 
Table I shows clinical and demographical data from the 
subjects under study. No statistical significant differences 
in body mass index (BMI) or age were found between 
groups (p-value >> 0.01).    

III. METHODS 

A. Power Spectral Density analysis 

We computed the PSD of each AF recording to 
explore eventual differences between the spectral 
information of OSAHS-positive and OSAHS-negative 
groups. The estimation of the PSDs was carried out by the 
non-parametric Welch method, which is suitable for non-
stationary signals [13]. A Hamming window of 2

15
 

samples (50% overlap) along with a discrete Fourier 
transform of 2

16
 samples were used. Each PSD was 

normalized (PSDn) dividing all their spectral components 
by their corresponding total power. 

To define the spectral bands of interest, we looked for 
statistical significant differences between PSDns from 
OSAHS-positive and OSAHS-negative groups. We used a 
p-value based methodology consisting in applying the 
Mann-Whitney U test to the amplitude values of the 
PSDns from both groups, at each frequency [11, 12]. Fig. 
1 shows the median value of the PSDns from OSAHS-
positive (red) and OSAHS-negative (blue) samples at each 
frequency. It also shows the p-value obtained in the 
comparison of both groups (grey). We selected those 
spectral bands in which the p-value were lower than 0.01 
at least in the 90% of their components. Two bands were 
defined: 0.119-0.192 Hz (BW1); 0.784-0.890 Hz (BW2). 
These bands were characterized in every subject by 
extracting six common spectral features from each one: 

 Maximum and minimum amplitude (MA, mA), computed 
as the highest and the lowest PSDn values in each band. 

 First to fourth statistical moments (Mf1-Mf4), i.e. mean, 
standard deviation, skewness, and kurtosis, respectively.  

B. Logistic Regression: feature selection and 

classification 

The logistic regression (LR) method is a supervised 
learning algorithm which estimates the posterior 
probability of a given instance xi belonging certain class 
Ck (in our case, Ck = OSAHS-positive or OSAHS-
negative). Hence, the posterior probability p(Ck; xi) is 
computed through the logistic function: 
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where β0 and β are obtained by the weighted least squares 
minimization procedure  [14].  Thus, an instance xi is 
assigned to the class with larger posterior probability. 

We used LR with two purposes. First, it was used to 
automatically select those relevant and non-redundant 
features. This was performed through the stepwise LR 
method (SLR), proposed by Hosmer and Lemeshow [14]. 
Specifically, we applied the forward-selection backward-
elimination algorithm. Second, LR was also used to assess 
the joint potentiality of the selected features from BW1 
and BW2 to predict OSAHS in children.  

C. Statistical analysis and results validation 

The Mann-Whitney U test was used to evaluate 
statistical differences in the spectral features from 
OSAHS-positive and OSAHS-negative groups. Sensitivity 
(Se, percentage of OSAHS-positive subjects rightly 
classified), specificity (Sp, percentage of OSAHS-
negative subjects rightly classified), and accuracy (Acc, 
overall percentage of subjects rightly classified) were used 
to measure the diagnostic ability of both single features 
and LR models. To find an optimum threshold, uo, for the 
assessment of each single feature, a receiver operating-
characteristics (ROC) analysis was done. The area under 
the ROC (AROC) was also computed in each case. 

We used the bootstrap 0.632 algorithm to validate our 
results [15]. Thus, since the number of subjects in our 
database is n=50, 50 new groups of size 50 were built by 
resampling with replacement from the original one. These 
acted as training groups. For each training group a number 
of elements are repeated. The instances not included in 
them acted as test groups. Following this procedure, a 
measure m obtained from the test set would be a 
pessimistic estimation of the true one [15]. Hence, both 
the training and the test groups are used to compute m by 

TABLE I.   DEMOGRAPHIC AND CLINICAL DATA 

Features All OSAHS+ OSAHS- 

# Subjects 50 26 24 

Age* (years) 5.3±2.5 5.4±2.7 5.2±2.4 

Male (%) 46.0 38.5 54.2 

BMI+ (kg/m2) 16.5±2.5 16.9±3.0 16.1±1.7 

Rcording Time (h) 8.9±0.8 8.8±1.0 9.0±0.5 

AHI (e/h) 9.9±13.8 17.9±15.4 1.3±0.8 

BMI: Body Mass Index; AHI: Apnea Hypopnea Index; *p-value = 0.76; +p-value = 0.94 



  

 

weighting their corresponding estimations as follows [15]: 

.368.0632.0 trainingtest mmm   (2) 

Finally, the 50 estimations of m are averaged to show a 
global performance. 

IV. RESULTS 

A. Descriptive analysis and feature selection 

Table II summarizes the averaged values (mean ± 
standard deviation) of each spectral feature. Consistent 
with Fig. 1, the values of MA, mA, and Mf1 in BW1 and 
BW2 were significantly higher in OSAHS-positive than in 
OSAHS-negative subjects. Near to significant differences 
were found in Mf2 from both bands, and there were no 
differences in Mf3 and Mf4. 

SLR was used twice to select relevant and non-
redundant features. First, we applied SLR to the 12 
spectral features previously obtained. Thus, mA from 
BW1, and Mf3 and Mf4 from BW2 were automatically 
selected by SLR (SLRSpec). Then, we added ODI3 to the 
selection process. In this case, ODI3, mA and Mf4 from 
BW1, as well as Mf3 from BW2 were automatically 
chosen (SLRSpec-ODI3). 

B. Diagnostic performance 

Table III shows the diagnostic performance of the 
spectral features after the bootstrap 0.632 procedure. Se, 
Sp, and Acc values (mean ± standard deviation) were 
obtained by weighting the training and test estimations as 
stated by (2), and averaging the results from the 50 
training-test group pairs. The values of uo and AROC are 
meaningful as parameters from training groups. Hence, 
only these were used to estimate them. Among the spectral 
features, the highest Acc and AROC were reached by mA 
from BW1 (76.5 ± 3.8 %; 0.744 ± 0.07, respectively).  

Table IV includes the diagnostic performance of ODI3 
from oximeter as well as that from the SLRSpec and the 
SLRSpec-ODI3 models. In the case of the LR models, a 0.5 
posterior probability was maintained as the typical 

threshold to decide between OSAHS-positive and 
OSAHS-negative classes. The performance of ODI3 did 
not improve that of mA from BW1 and BW2. 
Additionally, SLRSpec, which only uses spectral 
information, outperformed all the single features in terms 
of Acc and AROC. Finally, the highest results were 
obtained by SLRSpec-ODI3, combining spectral information 
from AF with ODI3 from SpO2 (84.6 ± 9.6 % Se, 87.2 ± 
9.1 % Sp, 85.8 ± 5.2 % Acc, and 0.969 ± 0.03 AROC). 

V.    DISCUSSION AND CONCLUSIONS 

A spectral analysis of AF recordings from children 
was performed in the context of OSAHS. We found that 
the spectral power of AF was significantly higher in 
OSAHS-positive subjects at two frequency bands below 
(BW1) and above (BW2) the typical respiratory range in 
children (0.22-0.43 Hz., aprox.) [16]. BW1 (0.119-0.192 
Hz.) is consistent with the occurrence of apneas and 
hypopneas since these were scored when lasted 2 missed 
breaths, at least [10]. Differences in BW2 (0.784-0.890 
Hz.) could be explained by the typical respiratory 
overexertion after an apneic event, which increases the 
respiratory rate [5]. 

Useful features were obtained from BW1 and BW2. 
Thus, 6 out of 12 were significantly different in OSAHS-
positive than in OSAHS-negative subjects. Additionally, 

 
Figure 1. Bands of interest according to the spectral analysis 

TABLE II.  FEATURE AVERAGED VALUES FOR SAHS-POSITIVE AND SAHS-
NEGATIVE GROUPS 

 

BW1 BW2 

mean ± sd 

p 

mean ± sd 

p OSAHS 

+ 
 

OSAHS 

- 

 

OSAHS 

+ 

 

OSAHS 

- 
 

MA (10-3) 4.1±5.7 1.9±2.0 
<0.01 0.21±0.23 0.14±0.21 <0.01 

mA (10-4) 13.0±8.0 5.8±2.9 
<<0.01 0.87±0.78 0.38±0.28 <<0.01 

Mf1 (10-3) 2.2±1.7 1.1±0.8 <0.01 0.14±0.13 0.07±0.07 <0.01 

Mf2 (10-4) 7.5±16.6 3.2±4.3 0.045 0.28±0.31 0.25±0.48 0.029 

Mf3 (10-1) 6.5±0.5 6.5±0.5 0.993 4.7±4.8 5.7±4.6 0.541 

Mf4 (100) 3.0±1.0 3.1±1.0 0.749 3.1±1.2 2.8±0.9 0.356 

p: p-value of the Mann-Whitney U test; sd: standard deviation. 



  

mA from BW1 and BW2 outperformed the ODI3, both in 
Acc and AROC. The study showed that the information 
from the two bands is complementary since SLR selected 
features from the two of them to build the SLRSpec and 
SLRSpec-ODI3 models. Complementarity between the 
information from BW1-BW2 and ODI3 was also showed.  

Both SLRSpec and SLRSpec-ODI3 outperformed all the 
single features, including ODI3. Particularly high was the 
diagnostic performance of SLRSpec-ODI3, which widely 
improved the performance of a 6-channel respiratory 
polygraphy (RP) at each statistic (81.5 % Se, 80.8 % Sp, 
81.1 % Acc, and 0.876 AROC) [5], only requiring 
information from 2 channels (thermistor and oximeter). 
SLRSpec also improved RP in terms of AROC, and 
performed similarly in Se, Sp, and Acc. Other recent 
studies also analyzed physiological signals to help in 
OSAHS diagnosis in children. Shouldice et al. used 50 
ECG recordings, and reached 85.7 % Se, 81.8 % Sp, and 
84 % Acc by applying a quadratic linear discriminant to 
23 features [17]. Gil et al. investigated the diagnostic 
usefulness of the information contained in 21 PPG time 
series, reaching 75.0 % Se, 85.7% Sp, and 80.0% Acc [7]. 
Finally, Garde et al. achieved 80.0 % Se, 92.1 % Sp, and 
86.8% Acc applying a linear discriminant methodology to 
five features, from time and frequency domain, obtained 
from 68 SpO2 recordings [9]. 

Some limitations have to be addressed in this study. 
The sample size should be larger to empower the 
generalization ability of our results. A larger sample 
would let us define the bands of interest through an 
independent set of subjects. Thus, our spectral bands were 
defined from our specific database. However, they were 
consistent with the pathophysiology of the apneic events. 
A wide sample of subjects would be also useful to 
optimize the set of selected features. Future application of 
different spectral or non-linear measures could 
complement our findings. 

To the best of our knowledge, this is the first time that 
the spectral information of AF recordings from children is 
analyzed in the context of OSAHS. We showed that 
OSAHS in children modifies the PSD of AF at two 
abnormal respiratory bands. Single features from these 
bands outperformed the diagnostic ability of ODI3. 
Additionally, the information contained in the two bands 
showed complementarity both between them and with 
ODI3. An SLR methodology, using information from a 
thermistor and an oximeter, widely outperformed a 6-
channel RP. These results suggest that the spectral 
information from AF can be used to help in pediatric 
OSAHS detection. 
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TABLE III.  DIAGNOSTIC PERFORMANCE OF THE SPECTRAL FEATURES 

BW1 uo Se (%) Sp (%) Acc (%) AROC 

MA 2.4∙10-3 58.8±12.7 74.0±14.7 66.0±5.8 0.636±0.08 

mA 8.0∙10-4 72.9±8.5 81.0±8.9 76.5±3.8 0.744±0.07 

Mf1 1.3∙10-3 67.3±11.2 73.4±10.2 69.8±4.7 0.668±0.08 

Mf2 2.8∙10-4 60.9±11.8 65.8±14.3 63.1±5.1 0.581±0.10 

Mf3 6.1∙10-1 52.2±9.8 55.5±13.1 53.9±6.1 0.533±0.08 

Mf4 2.7∙100 50.4±12.2 56.1±12.2 52.8±5.0 0.545±8.5 

BW2      

MA 8.8∙10-5 79.4±10.3 63.8±10.3 71.9±4.7 0.672±0.07 

mA 3.4∙10-5 85.5±12.4 65.8±8.2 75.9±5.5 0.729±0.07 

Mf1 5.6∙10-5 83.3±8.9 64.6±8.7 74.3±4.5 0.690±0.09 

Mf2 1.1∙10-5 76.4±10.3 65.1±9.2 70.9±5.7 0.617±0.09 

Mf3 4.5∙10-1 52.1±12.7 50.5±13.3 51.3±6.2 0.541±0.08 

Mf4 2.7∙100 57.7±12.4 60.5±9.0 59.1±5.0 0.563±0.07 

TABLE IV.  DIAGNOSTIC PERFORMANCE OF ODI3 AND THE LOGISTIC 

REGRESSION MODELS 

 uo Se (%) Sp (%) Acc (%) AROC 

ODI3 2.6 72.2±12.3 79.7±15.5 75.8±3.5 0.702±0.08 

SLRSpec -- 
78.5±11.8 80.6±9.9 78.9±4.9 0.902±0.04 

SLRSpec-ODI3 -- 84.6±9.6 87.2±9.1 85.8±5.2 0.969±0.03 

 

 


