
 

 Abstract –– Sleep apnea-hypopnea syndrome (SAHS) is a 

chronic sleep-related breathing disorder, which is currently 

considered a major health problem. In-lab nocturnal 

polysomnography (NPSG) is the gold standard diagnostic 

technique though it is complex and relatively unavailable. On 

the other hand, the analysis of blood oxygen saturation (SpO2) 

from nocturnal pulse oximetry (NPO) is a simple, noninvasive, 

highly available and effective alternative. This study focused on 

the design and assessment of a neural network (NN) aimed at 

detecting SAHS using information from at-home unsupervised 

portable SpO2 recordings. A Bayesian multilayer perceptron 

NN (MLP-NN) was proposed, fed with complementary 

oximetric features properly selected. A dataset composed of 

320 unattended SpO2 recordings was analyzed (60% for 

training and 40% for validation). The proposed Bayesian 

MLP-NN achieved 94.2% sensitivity, 69.6% specificity, and 

89.8% accuracy in the test set. Our results suggest that 

automated analysis of at-home portable NPO recordings by 

means of Bayesian MLP-NN could be an effective and highly 

available technique in the context of SAHS diagnosis. 
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I.  INTRODUCTION 

 

 Sleep apnea-hypopnea syndrome (SAHS) has become a 

major health problem in industrialized countries due to its 

chronic nature and relatively high prevalence [1]. SAHS is 

characterized by recurrent cessations of breathing due to 

complete or partial collapse of the upper airway. Repetition 

of apneic events throughout the night prevent patients from 

resting while sleeping [1]. Nevertheless, SAHS is 

considered underdiagnosed [2]. 

 

In-laboratory nocturnal polysomnography (NPSG) is the 

gold standard diagnostic method for SAHS [3]. A 

thoroughly analysis of a NPSG study may last up to 3 hours 

[4]. Regarding NPSG, two major limitations arise, which 

contribute to collapse current facilities [5]: complexity of 

recording and analysis procedures and availability of 

specialized sleep units. Thus, simplified alternatives are 

essential to improve SAHS management. 

 

Nocturnal pulse oximetry (NPO) is a simple and 

noninvasive technique widely used to analyze the 

ventilatory process [6]. Previous studies demonstrated the 

usefulness of peripheral blood oxygen saturation (SpO2) 

from NPO in the context of SAHS diagnosis [7, 8]. 

Currently, there exist several commercial portable pulse 

oximeters, which increases its availability in order to speed 

up diagnosis. Therefore, the analysis of SpO2 from NPO has 

been proposed as a promising methodology to assist in 

SAHS diagnosis. Nevertheless, most of this research has 

been carried out in a controlled sleep laboratory. In the 

present study, we analyze the diagnostic performance of 

portable unsupervised oximetry carried out at patients’ home 

in the context of SAHS diagnosis. 

 

We hypothesized that automated analysis can enhance the 

diagnostic ability of unsupervised portable NPO. Previous 

studies assessed different pattern recognition techniques in 

the context of SAHS detection, such as linear discriminant 

analysis, logistic regression, support vector machines 

(SVM), and neural networks (NN) [9-11]. NN have been 

previously applied both for classification [12] and regression 

[13] purposes. In this study, we proposed a thoroughly 

methodology for automated signal processing based on 3 

stages: (i) feature extraction, by means of statistical 

moments, spectral analysis and nonlinear methods; (ii) 

feature selection, by means of the fast correlation-based 

filter (FCBF); and (iii) pattern recognition, using a binary 

multilayer perceptron NN (MLP-NN) with Bayesian 

training to classify subject suspected of suffering from 

SAHS. The aim of this study is twofold: first, to design and 

assess a classification MLP-NN with high generalization 

ability and (ii) to validate unsupervised portable NPO at 

patients’ home in the context of SAHS diagnosis. 

 

 

II. SUBJECTS AND SIGNALS 

 

 All subjects involved in the study underwent complete 

in-lab NPSG (E-series, Compumedics) at the Sleep Unit of 

the Río Hortega University Hospital in Valladolid (Spain) 

due to high clinical pre-test probability of suffering from 

moderate-to-severe SAHS. The American Academy of 

Sleep Medicine (AASM) scoring rules were applied to 

quantify the apnea-hypopnea index (AHI), which was used 

to confirm or exclude the disease [14]. An AHI ≥ 10 events 
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  TABLE I 

DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF THE POPULATION 

 

Characteristics Whole dataset Training set Test set 

Subjects (n) 320 193 127 

Age (years) 54.8 ± 13.5 54.2 ± 12.8 55.6 ± 14.4 

Males (%) 74.1 76.7 70.1 
BMI (kg/m2) 29.2 ± 5.5 29.3 ± 5.4 29.1 ± 5.5 

AHI (e/h) 39.2 ± 29.4 38.9 ± 28.7 39.6 ± 30.6 

BMI: body mass index; AHI: apnea-hypopnea index 

per hour of sleep (e/h) were considered as SAHS-positive. 

In addition, all subjects carried out unsupervised portable 

NPO at home. A WristOx2 3150 portable pulse oximeter 

(Nonin) was used to carry out unsupervised NPO. SpO2 was 

recorded and stored at a sampling rate of 1 Hz and 

subsequently analyzed offline. In-lab and at-home sleep 

studies were accomplished in consecutive nights in order to 

reduce night-to-night variability. All patients received oral 

plus written information in order to correctly use the device. 

The Ethical Committee validated the information provided 

to the patients and approved the protocol. All subjects 

signed an informed consent to participate in the study. 

 

 A total of 320 subjects compose the population under 

study. The whole dataset was divided into a training set 

(first 193 consecutive patients, 60%), for optimization and 

training purposes, and a test set (127 consecutive remaining 

subjects, 40%), for validation in an independent test set. 

Table I shows the sociodemographic and clinical 

characteristics of the population under study. 

 

 

III. METHODOLOGY 

 

 Automated feature extraction, selection, and 

classification stages were applied to unsupervised SpO2 

recordings. Training and test datasets were used to design 

and assess the proposed methodology, respectively. 

 

A. Feature extraction 

 

 A total of 16 features composed each input pattern to 

the Bayesian MLP-NN. Features were arranged into four 

complementary feature subsets [10]: 

 

1) Statistical moments in the time domain. Mean 

(M1t), variance (M2t), skewness (M3t), and 

kurtosis (M4t) from the data histogram of 

amplitudes in the time domain were computed to 

quantify central tendency, dispersion, asymmetry, 

and peakedness [15]. 

 

2) Statistics in the frequency domain. Statistical 

moments M1f-M4f were computed to characterize 

the histogram of amplitudes from the power 

spectral density (PSD) function [15]. In addition, 

the median frequency (MF) and the spectral 

entropy (SE) were also computed to characterize 

the power distribution (degree of flatness). 

 

3) Conventional spectral measures. Conventional 

measures based on total signal power (PT), as well 

as relative power (PR) and peak amplitude (PA) in 

the apnea-related frequency band (0.014-0.033 Hz) 

were computed to analyze the periodicity of 

desaturations due to apneic events [6, 10]. 

 

4) Nonlinear measures. Sample entropy (SampEn), 

central tendency measure (CTM), and Lempel-Ziv 

complexity (LZC) were computed to quantify 

regularity, variability, and complexity of SpO2 [10]. 

 

B. Feature selection 

 

 FCBF is a dimensionality reduction technique that 

selects relevant and non-redundant variables independently 

of the classification stage. It is based on a normalization of 

the information gain (IG) called the symmetric uncertainty 

(SU) [16]. SU is computed as follows: 
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where Xi represents every single feature involved in the 

study, Y is the AHI in the context of SAHS diagnosis, and H 

is the Shannon entropy. Firstly, FCBF ranks features 

according to their relevance and a threshold is applied to 

discard irrelevant features (the higher SUi the more relevant 

feature). In this study, the log criterion was applied [16]. In 

the second step, a redundancy analysis is accomplished to 

remove redundant features: SUi,j(featurei,featurej) between each 

pair of remaining ranked features (SUi  SUj) is computed, 

so that feature j is removed if SUi,j ≥ SUi. 

 

C. Feature classification 

 

 This stage is aimed at classifying oximetric patterns 

composed of selected optimum features into two mutually 

exclusive classes: SAHS-negative or SAHS-positive. To 

accomplish this task, we proposed to use MLP-NNs, which 

are able to stablish complex nonlinear decision boundaries 

to discriminate classes without assuming any a priori 

statistical distribution of the input data [17, 18]. The 

maximum likelihood criterion is the conventional technique 

to optimize NNs, in order to minimize the error function 

[17]. Nevertheless, in this study, we propose to apply the 

Bayesian inference approach, which models the posterior 

probability density function of the weight vector p(w|D) as 

follows [19, 20]: 
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Fig. 1.  Optimization of the Bayesian MLP-NN in the training set. 
Optimum NH is selected to maximize overall Acc from the loo-cv 

process in the training set. 
  
 

 TABLE II 

CONFUSION MATRIX IN A BINARY CLASSIFICATION CONTEXT FOR THE 

PROPOSED BAYESIAN MLP-NN IN THE TEST SET 

 

Automated 

Reference 

Bayesian MLP-NN 

SAH- negative SAHS-positive 

P
S

G
 

SAHS-negative 16 7 

SAHS-positive 6 98 

 

where w is the vector of weights for a particular training set 

D, p(w) is the prior probability function over weight space, 

p(D|w) is the likelihood of the training data, and p(D) is a 

normalization factor. Modeling the probability this way 

allows better generalization ability than determining an 

optimum set of weights for a particular training set. Then, 

the distribution of output values for the MLP-NN can be 

inferred according to the following expression: 

 dwDptpDtp )|(),|(),|( wwxx ,  (3) 

which can be interpreted as the probability of membership 

of an input pattern x to target t, i.e. to the positive class 

(t=C1) or to the negative class (t=C2) [19, 20]. In order to 

obtain the optimum number of neurons in the hidden layer 

(NH), leave-one-out cross-validation (loo-cv) was applied in 

the training set. 

 

D. Statistical analysis 

 

 Kolmogorov-Smirnoff and Levene tests were used to 

assess normality and homoscedasticity of every single 

feature. The nonparametric Mann-Whitney U test was 

applied to search for statistical significant differences (p-

value < 0.01). Classification performance was assessed in 

terms of sensitivity (Se), specificity (Sp), positive (PPV) and 

negative (NPV) predictive values, positive (LR+) and 

negative (LR-) likelihood ratios, and accuracy (Acc), which 

were all derived from a two-class confusion matrix. In 

addition, the kappa coefficient was also computed. 

 

 

III. RESULTS 

 

A.  Training set 

 

The proposed 16 features were computed in the training 

set to compose the initial feature space. All features reached 

significant statistical differences (p-value<0.01) between 

SAHS-negative and SAHS positive groups. Nevertheless, 

just the following features were automatically selected by 

FCBF due to its higher relevancy and complementarity: 

M1t, M3t, M4t, SE, PR, SampEn, CTM y LZC. Using this 

optimum feature subset, the Bayesian MLP-NN was 

optimized in the training set. As can be seen in Fig. 1, 

NH=18 was the optimum number of neurons. 

 

B.  Test set 

 

 The Bayesian MLP-NN was further validated in the 

independent test set. Table II shows the confusion matrix for 

the binary classification of patients into SAHS-negative and 

SAHS-positive classes. The proposed Bayesian MLP-NN 

reached 94.2% Se, 69.6% Sp, 93.3% PPV, 72.7% NPV, 3.10 

LR+, and 0.08 LR- in the test set. Overall Acc and kappa in 

the test set were 89.8% and 0.65, respectively. 

IV. DISCUSSION 

 

 In this study, a novel approach for automated SAHS 

detection based on Bayesian MLP-NN was proposed. The 

methodology was designed and assessed using single-

channel SpO2 recordings from unattended portable NPO at-

home. Feature extraction, selection, and classification stages 

were implemented. A total of 8 features from 

complementary signal processing techniques were 

automatically selected and fed the Bayesian MLP-NN. The 

proposed classifier reached high performance (89.8% Acc) 

with a slightly unbalanced Se-Sp pair (94.2% vs. 69.6%). 

 

 Previous studies demonstrated the usefulness of 

different kinds of NN in the context of SAHS diagnosis, 

both for classification and regression. In the study by 

Marcos et al., a conventional MLP-NN fed with nonlinear 

features from in-lab NPO reached 89.8% Se, 79.4% Sp, and 

85.5% Acc in a test set [12]. Similarly, in a subsequent 

study, Marcos et al. assessed a Bayesian MLP-NN fed with 

14 features from NPO in the same context, reaching 87.8% 

Se, 82.4% Sp, and 85.6% Acc in a test set [20]. In a recent 

study carried out by the same authors, a regression MLP-NN 

achieved 89.6% Se, 81.3% Sp, and 86.8% Acc in the test set 

applying the same cutoff for SAHS (AHI=10 e/h) [13]. 

SVMs have been also applied for SAHS detection from 

oximetry recordings. In a recent study aimed at detecting 

moderate-to-severe SAHS, Hang et al. designed a SVM-



 

based classifier using conventional oximetric indexes and 

achieved 88% Se, 86% Sp, and 87% Acc [21]. Similarly, 

Álvarez et al. used 7 oximetric features automatically 

selected as inputs to a SVM classifier, reaching 84.2% Acc 

(84.6% Se and 83.3% Sp) and 84.5% Acc (95.2% Se and 

80.0% Sp) in different test sets for a cutoff equal to 10 e/h 

[10]. In the study by Morillo et al., different classifiers were 

combined, including NNs and SVMs, in a multiclass 

approach, achieving 86% Acc and 0.8 kappa [11]. 

Nevertheless, all the studies were carried out in a controlled 

and supervised sleep laboratory. On the other hand, our 

approach assessed the diagnostic ability of SpO2 recordings 

acquired using a portable pulse oximeter at patient’s home. 

 

Some limitations must be taken into account. Firstly, the 

prevalence of SAHS in the population under study was high 

(80.3%). Moreover, 56.3% presented severe SAHS (AHI ≥ 

30 e/h). This could influence the training process of the NN 

and, thus, the results of the study (Se-Sp imbalance). 

Another limitation is related to the recording protocol. The 

reference in-lab NPSG and portable NPO at patients’ home 

were carried out in different nights. Thus, night-to-night 

variability could also influence the results. 

 

 

V.  CONCLUSION 

 

 Our results suggest that portable SpO2 recordings retain 

high diagnostic ability in an unattended setting. Our 

approach based on a Bayesian MLP-NN reached high 

performance in an independent test set using an optimal 

feature subset from oximetry automatically selected. 

Therefore, we can conclude that automated analysis of 

portable at-home SpO2 recordings by means of Bayesian 

MLP-NN could be a useful tool to develop an out-of-center 

screening test for SAHS. 
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